KR20050089929A - 스토리지 도핑공정을 개선한 액정표시소자의 제조방법 - Google Patents

스토리지 도핑공정을 개선한 액정표시소자의 제조방법 Download PDF

Info

Publication number
KR20050089929A
KR20050089929A KR1020040015305A KR20040015305A KR20050089929A KR 20050089929 A KR20050089929 A KR 20050089929A KR 1020040015305 A KR1020040015305 A KR 1020040015305A KR 20040015305 A KR20040015305 A KR 20040015305A KR 20050089929 A KR20050089929 A KR 20050089929A
Authority
KR
South Korea
Prior art keywords
region
storage
pattern
active
forming
Prior art date
Application number
KR1020040015305A
Other languages
English (en)
Other versions
KR101021715B1 (ko
Inventor
이석우
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR1020040015305A priority Critical patent/KR101021715B1/ko
Publication of KR20050089929A publication Critical patent/KR20050089929A/ko
Application granted granted Critical
Publication of KR101021715B1 publication Critical patent/KR101021715B1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명의 액정표시소자의 제조방법은 액티브패턴 형성시 스토리지 영역에 회절노광을 적용함으로써 추가적인 포토리소그래피공정 없이 스토리지 영역을 도핑하기 위한 것으로, 액티브층 및 게이트전극, 소오스전극 및 드레인전극으로 구성되는 액정표시소자의 제조방법에 있어서, 액티브 영역과 스토리지 영역으로 구분되는 실리콘층에 광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 적용하여, 상기 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계; 상기 제 1 감광막패턴 및 제 2 감광막패턴을 마스크로 하여 실리콘층을 선택적으로 제거함으로써, 액티브 영역에 액티브패턴을 형성하며 스토리지 영역에 스토리지패턴을 형성하는 단계; 및 상기 스토리지패턴에 상기 제 2 감광막패턴을 통해 불순물 이온을 주입하여 제 1 스토리지전극을 형성하는 단계를 포함한다.

Description

스토리지 도핑공정을 개선한 액정표시소자의 제조방법{METHOD OF FABRICATING LIQUID CRYSTAL DISPLAY DEVICE TO BEING IMPROVED PROCESS OF STORAGE DOPING}
본 발명은 액정표시소자의 제조방법에 관한 것으로, 특히 액티브패턴인 다결정 실리콘 박막으로 구성된 스토리지 영역에 대한 도핑공정을 개선한 액정표시소자의 제조방법에 관한 것이다.
최근의 정보화 사회에서 디스플레이는 시각정보 전달매체로서 그 중요성이 더 한층 강조되고 있으며, 향후 주요한 위치를 점하기 위해서는 저소비전력화, 박형화, 경량화, 고화질화 등의 요건을 충족시켜야 한다. 현재 평판 디스플레이(Flat Panel Display; FPD)의 주력 제품인 액정표시장치(Liquid Crystal Display; LCD)는 디스플레이의 이러한 조건들을 만족시킬 수 있는 성능뿐만 아니라 양산성까지 갖추었기 때문에, 이를 이용한 각종 신제품 창출이 급속도로 이루어지고 있으며 기존의 브라운관(Cathode Ray Tube; CRT)을 점진적으로 대체할 수 있는 핵심부품 산업으로서 자리 잡았다.
일반적으로, 액정표시장치는 매트릭스(matrix) 형태로 배열된 액정셀들에 화상정보에 따른 데이터신호를 개별적으로 공급하여, 상기 액정셀들의 광투과율을 조절함으로써 원하는 화상을 표시할 수 있도록 한 표시장치이다.
상기 액정표시장치에 주로 사용되는 구동 방식인 능동 매트릭스(Active Matrix; AM) 방식은 비정질 실리콘(amorphous silicon) 박막 트랜지스터(Thin Film Transistor; TFT)를 스위칭소자로 사용하여 화소부의 액정을 구동하는 방식이다.
비정질 실리콘 박막 트랜지스터 기술은 1979년 영국의 LeComber 등에 의하여 개념이 확립되어 1986년에 3" 액정 휴대용 텔레비전으로써 실용화되었고 최근에는 50" 이상의 대면적 박막 트랜지스터 액정표시장치가 개발되었다.
그러나, 상기 비정질 실리콘 박막 트랜지스터는 캐리어(carrier)인 전자의 전계효과 이동도(field effect mobility)(<1cm2/Vsec)로는 1MHz 이상의 고속 동작을 요구하는 CMOS(Complementary Metal Oxide Semiconductor) 등과 같은 주변회로에 이용하는데는 한계가 있다.
이에 따라 전계효과 이동도가 상기 비정질 실리콘 박막 트랜지스터에 비해 큰 다결정 실리콘(polycrystalline silicon) 박막 트랜지스터를 이용하여 유리기판 위에 화소부와 구동회로부를 동시에 집적하는 연구가 활발히 진행되고 있다.
다결정 실리콘 박막 트랜지스터 기술은 1982년에 액정 컬러 텔레비전이 개발된 이후로 캠코더 등의 소형 모듈에 적용하고 있으며, 비정질 실리콘 박막 트랜지스터에 비해 낮은 감광도와 높은 전계효과 이동도를 실현할 수 있으므로 화소 어레이(pixel array)와 구동회로를 동일 기판에 직접 제작할 수 있다는 장점이 있다.
이러한 집적화에 의해 종래 필요하였던 구동 집적회로(driver Integrated Circuit; driver IC)와 화소 어레이를 연결하는 추가 공정이 불필요하여 생산성 및 신뢰성이 크게 향상될 수 있으며, 전술한 바와 같이 상기 다결정 실리콘 박막의 우수한 특성으로 인해 더 작고 뛰어난 성능의 박막 트랜지스터의 제작이 가능하다는 장점이 있다.
즉, 이동도의 증가는 구동 화소수를 결정하는 구동회로부의 동작 주파수를 향상시킬 수 있으며 이로 인한 표시장치의 고정세화가 용이해지며, 또한 화소부의 신호 전압의 충전시간의 감소로 전달 신호의 왜곡이 줄어들어 화질 향상을 기대할 수 있다.
이하, 도 1을 참조하여 액정표시장치의 구조에 대해서 자세히 살펴본다.
도 1은 일반적인 액정표시장치의 구조를 개략적으로 나타내는 평면도로서, 어레이 기판에 구동회로부를 집적시킨 구동회로 일체형 액정표시장치를 나타내고 있다.
도면에 도시된 바와 같이, 구동회로 일체형 액정표시장치(10)는 크게 어레이 기판(20)과 컬러필터 기판(30) 및 상기 어레이 기판(20)과 컬러필터 기판(30) 사이에 형성된 액정층(미도시)으로 이루어져 있다.
상기 어레이 기판(20)은 단위 화소들이 매트릭스 형태로 배열된 화상표시 영역인 화소부(25) 및 상기 화소부(25)의 외곽에 위치한 게이트 구동회로부(24)와 데이터 구동회로부(23)로 구성된 구동회로부로 이루어져 있다.
이때, 어레이 기판(20)의 구동회로부(23, 24)는 컬러필터 기판(30)에 비해 돌출된 영역에 위치하는데, 상기 어레이 기판(20)의 일측 장(長)변에는 데이터 구동회로부(23)가 위치하며 상기 어레이 기판(20)의 일측 단(短)변에는 게이트 구동회로부(24)가 위치하게 된다.
이때, 도면에는 도시하지 않았지만, 상기 어레이 기판(20)의 화소부(25)에는 상기 기판(20) 위에 종횡으로 배열되어 복수개의 화소영역을 정의하는 복수개의 게이트라인과 데이터라인이 형성되어 있다. 또한, 상기 게이트라인과 데이터라인의 교차영역에는 스위칭소자인 박막 트랜지스터가 형성되며 상기 각 화소영역에는 화소전극이 형성된다.
한편, 일반적으로 상기 데이터 구동회로부(23)와 게이트 구동회로부(24)는 입력되는 신호를 적절하게 출력시키기 위하여 인버터(inverter)인 CMOS 구조의 박막 트랜지스터를 사용하게 된다.
이때, 상기 CMOS 구조의 구동회로 일체형 액정표시장치는 동일 기판 위에 N 타입 박막 트랜지스터와 P 타입 박막 트랜지스터를 함께 형성하여야하기 때문에 단일 타입의 채널만을 형성하는 비정질 실리콘 박막 트랜지스터 액정표시장치에 비해 제조공정이 보다 복잡하다는 단점이 있다.
한편, 상기 어레이 기판의 화소전극은 컬러필터 기판의 공통전극과 함께 액정 커패시터(capacitor)를 이루는데, 상기 액정 커패시터에 인가된 전압은 다음 신호가 들어올 때까지 유지되지 못하고 누설되어 사라진다. 따라서, 인가된 전압을 유지하기 위해서는 스토리지 커패시터를 액정 커패시터에 연결해서 사용해야 한다.
이때, 일반적으로 다결정 실리콘 박막 트랜지스터 액정표시장치에서는 액티브패턴인 다결정 실리콘 박막을 연장 형성하여 스토리지 커패시터를 구성하는 하나의 스토리지전극으로 사용한다.
또한, 상기 스토리지 커패시터는 일반적으로 화상표시 영역인 화소부 내에 형성되므로 개구율의 감소 없이 충분한 커패시턴스(capacitance)를 확보하기 위해서는 상기 다결정 실리콘 박막으로 이루어진 스토리지 영역에 도핑을 해주게 되는데, 이와 같은 상기 스토리지 도핑공정의 진행에 따른 추가적인 포토리소그래피(photolithography)공정(이하, 포토공정이라 함)은 액정표시장치의 제조비용을 증가시키는 문제점을 발생시키게 한다.
또한, 일반적인 스토리지 도핑공정은 스토리지 영역에만 도핑을 진행하기 위해 추가적인 감광막패턴 형성 및 상기 감광막의 제거 공정인 애슁(ashing)공정을 필요로 하는데, 상기 공정의 진행 결과 액정표시소자의 채널층인 액티브패턴의 표면이 손상을 받게 되어 소자 특성의 열화가 나타나는 문제점이 있었다.
본 발명은 상기한 문제를 해결하기 위한 것으로, 추가적인 포토공정 없이 스토리지 영역을 도핑할 수 있도록 스토리지 도핑공정을 개선한 액정표시소자의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명의 다른 목적은 스토리지 영역의 도핑 진행과정에서 채널층인 액티브패턴의 표면 손상을 감소시킨 액정표시소자의 제조방법을 제공하는 것이다.
본 발명의 다른 목적 및 특징들은 후술되는 발명의 구성 및 특허청구범위에서 설명될 것이다.
상기한 목적을 달성하기 위하여, 본 발명의 액정표시소자의 제조방법은 액티브층 및 게이트전극, 소오스전극 및 드레인전극으로 구성되는 액정표시소자의 제조방법에 있어서, 액티브 영역과 스토리지 영역으로 구분되는 실리콘층에 광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 적용하여, 상기 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계, 상기 제 1 감광막패턴 및 제 2 감광막패턴을 마스크로 하여 실리콘층을 선택적으로 제거함으로써, 액티브 영역에 액티브패턴을 형성하며 스토리지 영역에 스토리지패턴을 형성하는 단계 및 상기 스토리지패턴에 상기 제 2 감광막패턴을 통해 불순물 이온을 주입하여 제 1 스토리지전극을 형성하는 단계를 포함한다.
이때, 상기 실리콘층은 다결정 실리콘으로 형성할 수 있다.
한편, 상기 제 1 감광막패턴 및 제 2 감광막패턴을 형성하는 단계는 상기 실리콘층 위에 감광막을 도포하는 단계, 광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 통해 상기 감광막에 빛을 조사하는 단계 및 상기 마스크를 통해 빛이 조사된 감광막을 현상하여, 상기 실리콘층 위에 감광막패턴을 형성하되, 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계로 이루어질 수 있다.
이때, 포지티브 타입의 감광막을 사용하는 경우에는 상기 회절마스크의 차단영역은 실리콘층의 액티브 영역에 적용되며 상기 제 2 투과영역은 스토리지 영역에 적용될 수 있으며, 또는 네거티브 타입의 감광막을 사용하는 경우에는 상기 회절마스크의 제 1 투과영역은 실리콘층의 액티브 영역에 적용되며 상기 제 2 투과영역은 스토리지 영역에 적용될 수도 있다.
또한, 상기 회절마스크는 광의 일부만 투과시키는 제 2 투광영역에 회절패턴이 형성되어 상기 스토리지 영역 위에 상기 제 1 두께보다 얇은 제 2 두께의 제 2 감광막패턴을 형성할 수 있다.
또한, 상기 제 2 두께의 제 2 감광막패턴은 불순물 이온 주입시 상기 감광막패턴을 통해 하부의 스토리지패턴이 도핑되어지는 100∼1500Å정도로 얇게 형성할 수 있다.
한편, 본 발명의 액정표시소자의 다른 제조방법은 기판 위에 액티브 영역 및 스토리지 영역으로 구분되는 실리콘층을 형성하는 단계, 상기 실리콘층에 회절마스크를 적용하여 상기 액티브 영역에 액티브패턴을 형성하며 상기 스토리지 영역에 제 1 스토리지전극을 형성하는 단계, 상기 기판 전면에 제 1 절연막을 증착하는 단계, 상기 액티브패턴의 위에 게이트전극을 형성하며 상기 제 1 스토리지전극 위에 제 2 스토리지전극을 형성하는 단계, 상기 게이트전극을 마스크로 하여 상기 액티브패턴의 소정영역에 불순물을 주입하여 소오스영역 및 드레인영역을 형성하는 단계, 상기 기판 위에 상기 소오스/드레인영역의 일부를 노출시키는 제 1 콘택홀이 형성된 제 2 절연막을 형성하는 단계, 상기 제 2 절연막 위에 상기 소오스영역과 전기적으로 접속하는 소오스전극 및 상기 드레인영역과 전기적으로 접속하는 드레인전극을 형성하는 단계, 상기 기판 위에 드레인전극의 일부를 노출시키는 제 2 콘택홀이 형성된 제 3 절연막을 형성하는 단계 및 상기 제 3 절연막 위에 상기 드레인전극과 전기적으로 접속하는 화소전극을 형성하는 단계를 포함한다.
이하, 상기와 같이 구성되는 본 발명의 액정표시소자의 제조방법을 바람직한 실시예를 통해 상세히 설명한다.
먼저, 도 2는 본 발명의 실시예에 따른 액정표시소자를 나타내는 평면도로써, 특히 박막 트랜지스터를 포함하는 하나의 화소를 나타내고 있다.
즉, 실제의 액정표시소자에서는 N개의 게이트라인과 M개의 데이터라인이 교차하여 NxM개의 화소가 존재하지만 설명을 간단하게 하기 위해 도면에는 단지 한 화소만을 나타내었다.
이때, 본 실시예에서는 채널층으로 다결정 실리콘 박막을 이용한 다결정 실리콘 박막 트랜지스터를 예를 들었으며, 특히 화소부의 N 타입 박막 트랜지스터를 예를 들어 설명하고 있으나 본 발명이 이에 한정되는 것은 아니다.
도면에 도시된 바와 같이, 액정표시소자의 어레이 기판(110) 위에 서로 교차 배치되어 화소영역을 정의하는 게이트라인(116)과 데이터라인(117)이 형성되어 있다. 이때, 상기 교차영역에는 외부의 구동회로부(미도시)로부터 주사신호 및 화상정보를 인가 받아 액정셀(미도시)을 스위칭하기 위한 박막 트랜지스터(120)와 상기 박막 트랜지스터(120)에 접속된 화소전극(118)이 형성된다.
이때, 상기 박막 트랜지스터(120)는 게이트라인(116)에 연결된 게이트전극(121), 데이터라인(117)에 연결된 소오스전극(122) 및 화소전극(118b)에 연결된 드레인전극(123)으로 구성되어 있다. 또한, 상기 박막 트랜지스터(120)는 게이트전극(121)과 소오스/드레인전극(122, 123)의 절연을 위한 제 1 절연막(미도시)과 제 2 절연막(미도시), 상기 게이트전극(121)에 공급되는 게이트 전압에 의해 소오스전극(122)과 드레인전극(123) 간에 전도채널(conductive channel)을 형성하는 액티브패턴(124A)을 포함한다.
한편, 다결정 실리콘 박막으로 구성된 상기 액티브패턴(124A)의 일부는 화소영역 내부로 연장 형성되어 제 1 스토리지전극(124B')을 구성하며, 게이트라인(116)과 소정간격을 두고 평행하게 배열된 스토리지라인(160A)의 일부는 화소영역 내에서 소정면적으로 확장되어 제 2 스토리지전극(160B)을 구성하게 된다.
이와 같이 구성된 제 1 스토리지전극(124B') 및 제 2 스토리지전극(160B)은 그 일부가 중첩되어 제 1 절연막을 사이에 두고 제 1 스토리지 커패시터를 형성하며, 상기 제 2 스토리지전극(160B)은 화소전극(118)과 중첩되어 제 2 절연막 및 제 3 절연막(미도시)을 사이에 두고 제 2 스토리지 커패시터를 형성하게 된다.
이때, 상기 제 1 스토리지전극(124B')은 액티브패턴(124A) 형성시 회절노광을 이용하여(즉, 추가적인 포토리소그래피공정 없이) 스토리지 도핑을 진행하게 되는데, 이를 다음의 액정표시소자 제조공정을 통해 자세히 설명한다.
도 3a 내지 도 3f는 도 2에 도시된 액정표시소자의 II-II'선에 따른 제조공정을 순차적으로 나타내는 예시도이다.
먼저, 도 3a에 도시된 바와 같이, 유리와 같은 투명한 절연물질로 이루어진 기판(110) 위에 다결정 실리콘 박막(124)을 형성한다.
이때, 상기 기판(110) 위에 실리콘산화막(SiO2)으로 구성되는 버퍼막(buffer layer)(미도시)을 형성한 후 상기 버퍼막 위에 상기 다결정 실리콘 박막(124)을 형성할 수도 있다. 이때, 상기 버퍼막은 유리기판(110) 내에 존재하는 나트륨(natrium; Na) 등의 불순물이 공정 중에 상부층으로 침투하는 것을 차단하는 역할을 한다.
한편, 상기 다결정 실리콘 박막(124)은 기판(110) 위에 비정질 실리콘 박막을 증착한 후 여러 가지 결정화 방식을 이용하여 형성할 수 있으며, 이를 설명하면 다음과 같다.
먼저, 비정질 실리콘 박막은 여러 가지 방법으로 증착할 수 있으며, 상기 비정질 실리콘 박막을 증착하는 대표적인 방법으로는 저압 화학기상증착(Low Pressure Chemical Vapor Deposition; LPCVD)방법과 플라즈마 화학기상증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)방법이 있다.
이후, 상기 비정질 실리콘 박막 내에 존재하는 수소원자를 제거하기 위한 탈수소화(dehydrogenation) 공정을 진행한 뒤 결정화를 실시한다. 이때, 비정질 실리콘 박막을 결정화하는 일반적인 열처리방법에는 크게 고상 결정화(Solid Phase Crystallization; SPC)방법과 엑시머 레이저 어닐링(Eximer Laser Annealing; ELA)방법이 있다.
한편, 상기 레이저 결정화로는 펄스(pulse) 형태의 레이저를 이용한 엑시머 레이저 어닐링방법이 주로 이용되나, 근래에는 그레인을 수평방향으로 성장시켜 결정화특성을 획기적으로 향상시킨 순차적 수평결정화(Sequential Lateral Solidification; SLS)방법이 제안되어 널리 연구되고 있다.
상기 순차적 수평결정화는 그레인이 액상(liquid phase) 실리콘과 고상(solid phase) 실리콘의 경계면에서 상기 경계면에 대하여 수직 방향으로 성장한다는 사실을 이용한 것으로(Robert S. Sposilli, M. A. Crowder, and James S. Im, Mat. Res. Soc. Symp. Proc. Vol. 452, 956~957, 1997), 레이저 에너지의 크기와 레이저빔의 조사범위를 적절하게 조절하여 그레인을 소정의 길이만큼 측면 성장시킴으로써 실리콘 그레인의 크기를 향상시킬 수 있는 결정화방법이다.
이와 같이 형성된 다결정 실리콘 박막(124)은 도 3b에 도시된 바와 같이, 포토공정 및 스토리지 도핑공정을 거쳐 액티브 영역에 액티브패턴(124A)을 형성하는 동시에 스토리지 영역에 제 1 스토리지전극(124B')을 형성하게 된다.
이때, 다결정 실리콘 박막(124)으로 구성된 상기 액티브패턴(124A) 및 제 1 스토리지전극(124B')은 회절노광(즉, 회절마스크(slit mask) 또는 하프톤마스크(half-tone mask))을 사용함으로써 한번의 포토공정을 거쳐 형성할 수 있게 되는데, 이를 자세히 설명하면 다음과 같다.
먼저, 본 실시예에 사용한 회절마스크는 광 투과영역이 슬릿구조를 가지며, 상기 슬릿영역을 통해 조사되는 노광량은 빛을 모두 투과시키는 완전투과영역에 조사된 노광량보다 적기 때문에, 포토레지스트(photoresist)와 같은 감광막을 도포한 후 상기 감광막에 부분적으로 슬릿영역 및 완전투과영역이 마련된 마스크를 사용하여 노광하게 되면 슬릿영역에 남아있는 포토레지스트의 두께와 완전투과영역에 남아있는 포토레지스트의 두께가 다르게 형성된다. 즉, 포지티브 포토레지스트인 경우에는 슬릿영역을 통해 빛이 조사된 감광막의 두께가 완전투광영역에 비해 두껍에 형성되는 반면에, 네거티브 포토레지스트인 경우에는 완전투과영역에 남아있는 포토레지스트의 두께가 두껍게 형성된다.
특히, 본 발명은 액티브패턴 형성시 회절패턴, 즉 슬릿영역을 스토리지 영역에 적용하여 스토리지패턴을 동시에 형성한 후 상기 회절패턴의 적용으로 상대적으로 얇게 형성된 스토리지 영역의 감광막패턴을 통해 상기 스토리지패턴에만 이온을 주입함으로써 추가적인 포토공정 없이 스토리지 영역에 도핑을 할 수 있게 되는데, 이를 도면을 참조하여 좀 더 상세히 설명한다.
즉, 도 4a 내지 도 4d는 도 3b에 있어서, 본 발명의 실시예에 따른 액티브패턴 형성 및 스토리지 도핑공정을 구체적으로 나타내는 예시도이다.
먼저, 도 4a에 도시된 바와 같이, 다결정 실리콘 박막(124) 전면에 포토레지스트(170)와 같은 감광막을 도포한다.
이후, 스토리지 영역(후술할 A2영역)에 슬릿영역이 적용된 본 발명의 회절마스크(180)를 통해 상기 포토레지스트(170)에 광을 조사한다.
이때, 상기 회절마스크(180)에는 광을 모두 투과시키는 제 1 투과영역(A1)과 광의 일부만 투과시키는 제 2 투과영역(A2) 및 조사된 모든 광을 차단하는 차단영역(A3)이 마련되어 있으며, 상기 마스크(180)를 투과한 빛만이 포토레지스트(170)에 조사되게 된다.
이어서, 상기 회절마스크(180)를 통해 노광된 포토레지스트(170)를 현상하고 나면, 도 4b에 도시된 바와 같이, 상기 제 1 투과영역(A1) 및 제 2 투과영역(A2)을 통해 모든 광이 조사되거나 광이 일부가 조사된 영역에는 소정 두께의 포토레지스트패턴(170A, 170B)이 남아있게 되고, 광이 조사되지 않은 차단영역(A3)영역에는 포토레지스트가 제거되게 된다.
이때, 상기 제 2 투과영역(A2)을 통해 형성된 제 2 포토레지스트패턴(170B)은 제 1 투과영역(A1)에 형성된 제 1 포토레지스트패턴(170A)보다 얇게 형성되는데, 이것은 네거티브 포토레지스트를 사용했기 때문이며, 본 발명이 이에 한정되는 것은 아니며 포지티브 포토레지스트를 사용하여도 무방하다.
다음으로, 상기와 같이 형성된 제 1 포토레지스트패턴(170A) 및 제 2 포토레지스트패턴(170B)을 마스크로 하여, 그 하부에 형성된 다결정 실리콘 박막(124)을 선택적으로 제거하여 액티브패턴(124A) 및 스토리지 커패시터용 스토리지패턴(124B)을 형성한다.
이때, 상기 회절노광의 공정조건을 제어하여 상기 제 2 포토레지스트패턴(170B)이 스토리지 영역(즉, 상기 스토리지패턴(124B))에 이온을 주입하기 위한 소정(약 100∼1500Å정도)의 두께로 남아있도록 할 수 있다.
한편, 본 실시예와 같이 네거티브 포토레지스트를 이용하여 스토리지 영역에 슬릿패턴을 적용한 회절마스크를 도면을 참조하여 설명하면 다음과 같다.
도 5는 도 4a에 있어서, 스토리지 영역에 슬릿패턴을 적용한 회절마스크를 개략적으로 나타내는 예시도이다.
이때, 도면에는 네거티브 포토레지스트에 적용되도록 설계된 회절마스크를 예를 들어 나타내고 있으나, 본 발명이 이에 한정되는 것은 아니며 마스크패턴을 반대로 구성하게 되면 포지티브 타입의 포토레지스트에 적용할 수 있게 된다.
도면에 도시된 바와 같이, 상기 회절마스크(180)는 액티브패턴(124A)을 형성하기 위한 제 1 투과영역(A1)과 스토리지 영역의 도핑을 위한 제 2 투과영역(A2)으로 구성되어 있으며, 상기 제 1 투과영역(A1)과 제 2 투과영역(A2) 이외의 영역은 상기 다결정 실리콘 박막(124)이 제거되어야 하므로 조사되는 광을 차단하는 차단영역(A3)이 형성되어 있다.
이때, 상기 제 2 투과영역(A2)은 전술한 바와 같이 소정 두께의 포토레지스트패턴(170B)을 남기기 위해 세로로 슬릿이 연속적으로 배치된 형태의 슬릿패턴이 형성되어 있다.
한편, 본 실시예에서는 세로방향으로 길게 구성된 회절패턴을 포함하는 회절마스크를 예를 들어 나타내고 있으나, 본 발명이 이에 한정되는 것은 아니며 다양한 형태의 회절패턴을 포함할 수 있다.
이와 같이 다결정 실리콘 박막으로 이루어진 액티브패턴(124A) 및 스토리지패턴(124B)이 형성되고 나면, 도 4c에 도시된 바와 같이, 상기 포토레지스트패턴(170A, 170B)을 마스크로 하여 스토리지패턴(124B)에 고농도 불순물 이온을 주입한다. 이때, 상기 제 1 포토레지스트패턴(170A)은 그 두께가 상대적으로 두꺼워 액티브패턴(124A) 내부로 이온이 주입되지 못하게 하는 마스크 역할을 하게되며, 슬릿영역이 적용된 상기 제 2 포토레지스트패턴(170B)은 그 두께가 얇게 제어되어 주입된 이온이 상기 포토레지스트패턴(170B)을 투과하여 스토리지패턴(124B)에 도핑되어 제 1 스토리지전극(124B')을 형성하게 된다.
이때, 도핑장비와 조건에 따라 다르지만, 인(phosphorus; P) 또는 비소(arsenic; As) 등의 N 타입 불순물을 10k∼1MeV의 가속에너지로 1013∼1017/cm 2 정도의 도우즈(dose)로 이온 주입하여 제 1 스토리지전극(124B')을 형성할 수 있다.
한편, 본 실시예에서는 화소부의 박막 트랜지스터를 형성하는 것을 예를 들어 설명하고 있으며, 일반적으로 화소부의 박막 트랜지스터는 N 타입으로 형성하므로 상기 제 1 스토리지전극(124B')에 N 타입 불순물 이온을 주입하였으나, 본 발명이 이에 한정되는 것은 아니며, 화소부에 P 타입 박막 트랜지스터를 형성할 수도 있으며 구동회로부에는 CMOS 구조의 소자를 형성할 수 있으므로 상기 제 1 스토리지전극(124B')에 붕소(boron; B) 등의 P 타입 불순물 이온을 주입하여 도핑할 수도 있다.
이후에, 도 4d에 도시된 바와 같이, 스트리퍼(striper)를 적용하여 상기 액티브패턴(124A) 및 제 1 스토리지전극(124B') 위에 잔존하는 포토레지스트패턴(170A, 170B)을 제거한다.
이와 같이 한번의 포토공정을 통해 액티브패턴(124A) 및 제 1 스토리지전극(124B')을 형성한 후에는, 도 3c에 도시된 바와 같이, 상기 액티브패턴(124A) 및 제 1 스토리지전극(124B') 상부 전면에 제 1 절연막(115A)을 증착한다.
이후, 상기 제 1 절연막(115A) 위에 몰리브덴(molybdenum; Mo) 또는 알루미늄(aluminum; Al) 합금 등으로 구성되는 도전성 금속물질을 증착한 후, 포토공정을 거쳐 상기 도전성 금속물질을 패터닝함으로써 액티브 영역의 액티브패턴(124A) 위에는 게이트전극(121)을 형성하며, 스토리지 영역의 제 1 스토리지전극(124B') 위에는 스토리지 커패시터용 제 2 스토리지전극(160B)을 형성한다.
이때, 상기 제 1 스토리지전극(124B')과 제 2 스토리지전극(160B)이 중첩되는 부분은 제 1 절연막(115A)을 사이에 두고 제 1 스토리지 커패시터를 형성하게 된다.
한편, 상기 게이트전극(121) 형성 후에는 액티브패턴(124A)의 소정영역에 불순물 이온을 주입하여 저항성 접촉층(ohmic contact layer)인 소오스영역(124A')과 드레인영역(124'')을 형성한다. 이때, 상기 게이트전극(121)은 액티브패턴(124A)의 채널영역에 도펀트(dopant)가 침투하는 것을 방지하는 이온-스타퍼(ion stopper)의 역할을 하게 된다.
한편, 상기 액티브패턴(124A)의 전기적 특성은 주입되는 도펀트의 종류에 따라 바뀌게 되며, 전술한 바와 같이 상기 주입되는 도펀트가 붕소 등의 3족 원소에 해당하면 P 타입 박막 트랜지스터로 인 또는 비소 등의 5족 원소에 해당하면 N 타입 박막 트랜지스터로 동작을 하게 된다.
이후, 상기의 이온 주입 공정 후에 주입된 도펀트를 활성화하는 공정을 진행할 수 있다.
다음으로, 도 3d에 도시된 바와 같이, 상기 게이트전극(121)과 제 2 스토리지전극(160B)이 형성된 기판(110) 전면에 제 2 절연막(115B)을 증착한 후 포토리소그래피공정을 통해 상기 제 1 절연막(115A)과 제 2 절연막(115B)의 일부 영역을 제거하여 소오스/드레인영역(124A', 124A'')의 일부를 노출시키는 제 1 콘택홀(140A)을 형성한다.
이후, 도 3e에 도시된 바와 같이, 도전성 금속물질을 기판(110) 전면에 증착한 후 포토공정을 이용하여 상기 제 1 콘택홀(140A)을 통해 소오스영역(124A')과 연결되는 소오스전극(122) 및 드레인영역(124A'')과 연결되는 드레인전극(123)을 형성한다.
마지막으로, 도 3f에 도시된 바와 같이, 상기 소오스전극(122) 및 드레인전극(123)을 포함하는 기판(110) 전면에 벤조사이클로부텐(Benzocyclobutene; BCB) 또는 포토아크릴(photo acryl)과 같은 유기막을 도포함으로써, 제 3 절연막(115C)을 형성한다.
이때, 상기 제 3 절연막(115C)은 실리콘산화막 또는 실리콘질화막(SiNx) 등의 무기절연막으로 형성할 수 있으며, 유기절연막과 무기절연막의 이중층으로 형성할 수도 있다.
그리고, 상기 제 3 절연막(115C)을 패터닝함으로써 드레인전극(123)의 일부를 노출시키는 제 2 콘택홀(140B)을 형성한다.
이후, 상기 기판(110) 전면에 인듐-틴-옥사이드(Indium Tin Oxide; ITO) 또는 인듐-징크-옥사이드(Indium Zinc Oxide; IZO) 등과 같은 투과율이 뛰어난 투명 도전성 물질을 증착한 후 포토공정을 이용하여 화상표시 영역 전체에 화소전극(118)을 형성한다.
이때, 상기 화소전극(118)과 중첩되는 제 2 스토리지전극(160B)은 제 2 절연막(115B)과 제 3 절연막(115C)을 사이에 두고 제 2 스토리지 커패시터를 형성하여 전술한 제 1 스토리지 커패시터와 함께 충분한 커패시턴스를 가지게 되어 신호 유지 및 플리커와 잔상 감소 등의 효과를 얻을 수 있게 된다.
한편, 본 실시예와 같이 한번의 포토공정으로 액티브패턴(124A) 및 제 1 스토리지전극(124B')을 동시에 형성하게 되면 기존과 같은 스토리지 영역의 도핑을 위한 추가적인 마스크공정을 생략할 수 있게되어 액정표시소자의 제조공정 및 제조시간이 감소하게 된다.
또한, 전술한 바와 같이 기존과 같은 두 번의 감광막 애슁공정이 한번으로 감소하게 되어 채널층을 포함하는 액티브패턴 표면의 손상이 줄어들게 되며, 그 결과 소자 특성의 열화가 줄어들게 되는데, 이에 대해서 실험결과를 통해 자세히 설명하면 다음과 같다.
도 6은 본 발명에 따라 제작된 박막 트랜지스터의 특성을 나타내는 그래프로써, 스토리지 도핑공정을 개선하기 전과 후의 박막 트랜지스터의 트랜스퍼(transfer)특성을 나타내고 있다.
이때, 사각형의 도형으로 도시된 그래프는 스토리지 도핑공정을 개선하기 전의 별도의 스토리지 도핑을 위한 포토공정을 진행하여 제작한 박막 트랜지스터의 전기적 특성을 나타내며, 원으로 도시된 그래프는 본 발명에 따라 스토리지 도핑을 위한 추가적인 포토공정 없이 제작한 박막 트랜지스터의 전기적 특성을 나타내고 있다.
또한, 채워지지 않은 사각형 및 원으로 도시되어 있는 그래프는 드레인전압 0.1V에서의 박막 트랜지스터의 특성을 나타내며, 채워진 사각형 및 원으로 도시되어 있는 그래프는 드레인전압 10V에서의 박막 트랜지스터의 특성을 나타내고 있다.
도면에 도시된 바와 같이, 드레인전압 0.1 및 10V에서의 온 전류는 스토리지 도핑공정을 개선하기 전의 경우가 개선한 후의 경우에 비해 낮으며, 누설전류(즉, 오프 전류)는 스토리지 도핑공정을 개선하기 전의 경우가 개선한 경우에 비해 높은 것을 알 수 있다.
즉, 기존에는 스토리지 영역의 도핑을 위해 추가적인 포토공정을 진행하여야 했는데, 이때 상기 포토공정에 따른 감광막의 애슁 진행시 채널층 표면이 손상 받을 수 있게 되며, 그 결과 상기와 같이 소자 특성의 열화가 나타날 가능성이 크게 된다. 그러나, 전술한 바와 같이 본 발명에서는 액티브패턴 형성시 스토리지 영역은 회절패턴을 적용함으로써 추가적인 포토공정(즉, 감광막의 애슁공정) 없이 상기 스토리지 영역을 도핑할 수 있게 되어 소자 특성의 열화가 현저히 줄어들게 된다.
또한, 상기와 같은 온 전류 및 오프 전류의 특성으로 인해 문턱전압(threshold voltage)도 추가적인 포토공정을 진행하지 않고 스토리지 도핑을 진행한 본 발명의 경우에 향상되었음을 알 수 있다.
상기한 설명에 많은 사항이 구체적으로 기재되어 있으나 이것은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 따라서 발명은 설명된 실시예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위에 균등한 것에 의하여 정하여져야 한다.
상술한 바와 같이, 본 발명에 따른 액정표시소자의 제조방법은 액티브패턴 형성시 스토리지 영역은 회절패턴을 적용함으로써 스토리지 도핑을 위한 추가적인 포토공정이 필요 없게되어 전체 제조공정 및 제조시간이 감소하게 되는 효과를 제공한다.
또한, 본 발명은 스토리지 도핑공정을 위한 추가적인 감광막의 애슁공정 없이 스토리지 영역을 도핑할 수 있게 되어 소자 특성의 열화를 현저히 감소시키는 효과를 제공한다.
도 1은 일반적인 액정표시장치의 구조를 개략적으로 나타내는 평면도.
도 2는 본 발명의 실시예에 따른 액정표시소자를 나타내는 평면도.
도 3a 내지 도 3f는 도 2에 도시된 액정표시소자의 II-II'선에 따른 제조공정을 순차적으로 나타내는 예시도.
도 4a 내지 도 4d는 도 3b에 있어서, 본 발명의 실시예에 따른 액티브패턴 형성 및 스토리지 도핑공정을 구체적으로 나타내는 예시도.
도 5는 도 4a에 있어서, 스토리지 영역에 슬릿패턴을 적용한 회절마스크를 개략적으로 나타내는 예시도.
도 6은 본 발명에 따라 제작된 박막 트랜지스터의 특성을 나타내는 그래프.
** 도면의 주요부분에 대한 부호의 설명 **
110 : 어레이 기판 124 : 다결정 실리콘 박막
124A : 액티브패턴 124B' : 제 1 스토리지전극
160A : 스토리지라인 160B : 제 2 스토리지전극
170,170A,170B : 포토레지스트 180 : 회절마스크

Claims (11)

  1. 액티브층 및 게이트전극, 소오스전극 및 드레인전극으로 구성되는 액정표시소자의 제조방법에 있어서,
    액티브 영역과 스토리지 영역으로 구분되는 실리콘층에 광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 적용하여, 상기 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계;
    상기 제 1 감광막패턴 및 제 2 감광막패턴을 마스크로 하여 실리콘층을 선택적으로 제거함으로써, 액티브 영역에 액티브패턴을 형성하며 스토리지 영역에 스토리지패턴을 형성하는 단계; 및
    상기 스토리지패턴에 상기 제 2 감광막패턴을 통해 불순물 이온을 주입하여 제 1 스토리지전극을 형성하는 단계를 포함하는 액정표시소자의 제조방법.
  2. 제 1 항에 있어서, 상기 실리콘층은 다결정 실리콘으로 형성하는 것을 특징으로 하는 액정표시소자의 제조방법.
  3. 제 1 항에 있어서, 상기 제 1 감광막패턴 및 제 2 감광막패턴을 형성하는 단계는
    상기 실리콘층 위에 감광막을 도포하는 단계;
    광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 통해 상기 감광막에 빛을 조사하는 단계; 및
    상기 마스크를 통해 빛이 조사된 감광막을 현상하여, 상기 실리콘층 위에 감광막패턴을 형성하되, 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계로 이루어지는 것을 특징으로 하는 액정표시소자의 제조방법.
  4. 제 3 항에 있어서, 포지티브 타입의 감광막을 사용하는 경우에는 상기 회절마스크의 차단영역은 실리콘층의 액티브 영역에 적용되며 상기 제 2 투과영역은 스토리지 영역에 적용되는 것을 특징으로 하는 액정표시소자의 제조방법.
  5. 제 3 항에 있어서, 네거티브 타입의 감광막을 사용하는 경우에는 상기 회절마스크의 제 1 투과영역은 실리콘층의 액티브 영역에 적용되며 상기 제 2 투과영역은 스토리지 영역에 적용되는 것을 특징으로 하는 액정표시소자의 제조방법.
  6. 제 3 항에 있어서, 상기 회절마스크는 광의 일부만 투과시키는 제 2 투광영역에 회절패턴이 형성되어 상기 스토리지 영역 위에 상기 제 1 두께보다 얇은 제 2 두께의 제 2 감광막패턴을 형성하는 것을 특징으로 하는 액정표시소자의 제조방법.
  7. 제 3 항에 있어서, 상기 제 2 두께의 제 2 감광막패턴은 불순물 이온 주입시 상기 감광막패턴을 통해 하부의 스토리지패턴이 도핑되어지는 100∼1500Å정도로 얇게 형성하는 것을 특징으로 하는 액정표시소자의 제조방법.
  8. 제 3 항에 있어서, 상기 불순물 이온은 인과 같은 5족 원소인 것을 특징으로 하는 액정표시소자의 제조방법.
  9. 제 3 항에 있어서, 상기 불순물 이온은 붕소와 같은 3족 원소인 것을 특징으로 하는 액정표시소자의 제조방법.
  10. 기판 위에 액티브 영역 및 스토리지 영역으로 구분되는 실리콘층을 형성하는 단계;
    상기 실리콘층에 회절마스크를 적용하여 상기 액티브 영역에 액티브패턴을 형성하며 상기 스토리지 영역에 제 1 스토리지전극을 형성하는 단계;
    상기 기판 전면에 제 1 절연막을 증착하는 단계;
    상기 액티브패턴의 위에 게이트전극을 형성하며 상기 제 1 스토리지전극 위에 제 2 스토리지전극을 형성하는 단계;
    상기 게이트전극을 마스크로 하여 상기 액티브패턴의 소정영역에 불순물을 주입하여 소오스영역 및 드레인영역을 형성하는 단계;
    상기 기판 위에 상기 소오스/드레인영역의 일부를 노출시키는 제 1 콘택홀이 형성된 제 2 절연막을 형성하는 단계;
    상기 제 2 절연막 위에 상기 소오스영역과 전기적으로 접속하는 소오스전극 및 상기 드레인영역과 전기적으로 접속하는 드레인전극을 형성하는 단계;
    상기 기판 위에 드레인전극의 일부를 노출시키는 제 2 콘택홀이 형성된 제 3 절연막을 형성하는 단계; 및
    상기 제 3 절연막 위에 상기 드레인전극과 전기적으로 접속하는 화소전극을 형성하는 단계를 포함하는 액정표시소자의 제조방법.
  11. 기판 위에 액티브 영역 및 스토리지 영역으로 구분되는 실리콘층을 형성하는 단계;
    상기 실리콘층에 광을 모두 투과시키는 제 1 투과영역과 광의 일부만 투과시키는 제 2 투과영역 및 광을 차단하는 차단영역이 마련된 마스크를 적용하여, 상기 액티브 영역에 제 1 두께를 갖는 제 1 감광막패턴을 형성하며 스토리지 영역에는 상기 제 1 두께보다 얇은 제 2 두께를 갖는 제 2 감광막패턴을 형성하는 단계;
    상기 제 1 감광막패턴 및 제 2 감광막패턴을 마스크로 하여 실리콘층을 선택적으로 제거함으로써, 액티브 영역에 액티브패턴을 형성하며 스토리지 영역에 스토리지패턴을 형성하는 단계;
    상기 스토리지패턴에 상기 제 2 감광막패턴을 통해 불순물 이온을 주입하여 제 1 스토리지전극을 형성하는 단계;
    상기 기판 전면에 절연막을 증착하는 단계; 및
    상기 액티브패턴 위에 게이트전극을 형성하며 상기 제 1 스토리지전극 위에 제 2 스토리지전극을 형성하는 단계를 포함하는 스토리지 커패시터의 제조방법.
KR1020040015305A 2004-03-06 2004-03-06 스토리지 도핑공정을 개선한 액정표시소자의 제조방법 KR101021715B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040015305A KR101021715B1 (ko) 2004-03-06 2004-03-06 스토리지 도핑공정을 개선한 액정표시소자의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040015305A KR101021715B1 (ko) 2004-03-06 2004-03-06 스토리지 도핑공정을 개선한 액정표시소자의 제조방법

Publications (2)

Publication Number Publication Date
KR20050089929A true KR20050089929A (ko) 2005-09-09
KR101021715B1 KR101021715B1 (ko) 2011-03-15

Family

ID=37272168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040015305A KR101021715B1 (ko) 2004-03-06 2004-03-06 스토리지 도핑공정을 개선한 액정표시소자의 제조방법

Country Status (1)

Country Link
KR (1) KR101021715B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881571A (zh) * 2012-09-28 2013-01-16 京东方科技集团股份有限公司 有源层离子注入方法及薄膜晶体管有源层离子注入方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402400B2 (ja) * 1994-04-22 2003-05-06 株式会社半導体エネルギー研究所 半導体集積回路の作製方法
JP4982918B2 (ja) * 2000-10-13 2012-07-25 日本電気株式会社 液晶表示用基板及びその製造方法
KR100436181B1 (ko) * 2002-04-16 2004-06-12 엘지.필립스 엘시디 주식회사 액정표시장치용 어레이기판 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881571A (zh) * 2012-09-28 2013-01-16 京东方科技集团股份有限公司 有源层离子注入方法及薄膜晶体管有源层离子注入方法

Also Published As

Publication number Publication date
KR101021715B1 (ko) 2011-03-15

Similar Documents

Publication Publication Date Title
US7666695B2 (en) Array substrates of liquid crystal display and fabrication method thereof
EP2881785B1 (en) Array substrate, manufacturing method therefor, and display apparatus
KR101031674B1 (ko) 액정표시소자의 제조방법 및 이에 사용되는 회절마스크
US6245602B1 (en) Top gate self-aligned polysilicon TFT and a method for its production
JPH1184418A (ja) 表示装置
KR100928490B1 (ko) 액정표시패널 및 그 제조 방법
KR101073403B1 (ko) 액정표시소자 및 그 제조방법
US7362389B2 (en) Liquid crystal display device and fabrication method thereof
JP4234363B2 (ja) 薄膜トランジスタ装置及びその製造方法、並びにそれを備えた薄膜トランジスタ基板及び表示装置
KR101021715B1 (ko) 스토리지 도핑공정을 개선한 액정표시소자의 제조방법
JP2010182716A (ja) 薄膜トランジスタ、その製造方法および表示装置
US8759166B2 (en) Method for manufacturing thin film transistor device
KR101048998B1 (ko) 액정표시소자 및 그 제조방법
KR101043991B1 (ko) 액정표시소자 및 그 제조방법
KR101021719B1 (ko) 액정표시소자 및 그 제조방법
KR20080020308A (ko) 박막 트랜지스터 기판 및 이의 제조 방법
KR20060135429A (ko) 액정표시장치 및 그 제조방법
KR101041265B1 (ko) 다결정 실리콘 박막 트랜지스터 및 그 제조방법
KR101050903B1 (ko) 다결정 실리콘 박막 트랜지스터 및 그 제조방법
KR100631019B1 (ko) 박막 트랜지스터 및 그 제조방법
KR20050065109A (ko) 액정표시소자 및 그 제조방법
KR20050096305A (ko) 액정 표시 장치용 어레이 기판 및 그 제조 방법
KR20050035789A (ko) 박막트랜지스터의 제조방법
KR20070105672A (ko) 박막 트랜지스터 기판 및 이의 제조 방법과 이를 포함하는액정 표시 패널의 제조 방법
KR20050122990A (ko) 다결정 실리콘 박막 트랜지스터 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee