KR20050081236A - 다공 광섬유 및 그 제조방법 - Google Patents

다공 광섬유 및 그 제조방법 Download PDF

Info

Publication number
KR20050081236A
KR20050081236A KR1020040009394A KR20040009394A KR20050081236A KR 20050081236 A KR20050081236 A KR 20050081236A KR 1020040009394 A KR1020040009394 A KR 1020040009394A KR 20040009394 A KR20040009394 A KR 20040009394A KR 20050081236 A KR20050081236 A KR 20050081236A
Authority
KR
South Korea
Prior art keywords
optical fiber
porous
core
refractive index
air holes
Prior art date
Application number
KR1020040009394A
Other languages
English (en)
Other versions
KR100617713B1 (ko
Inventor
오정현
백영민
박근덕
김순재
김병삼
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020040009394A priority Critical patent/KR100617713B1/ko
Priority to US10/902,537 priority patent/US7286739B2/en
Priority to EP04020843A priority patent/EP1564569A1/en
Priority to CNB2004100770436A priority patent/CN1310046C/zh
Priority to JP2005030453A priority patent/JP2005227779A/ja
Publication of KR20050081236A publication Critical patent/KR20050081236A/ko
Application granted granted Critical
Publication of KR100617713B1 publication Critical patent/KR100617713B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Abstract

본 발명은 공기구멍(air hole)을 갖는 다공 광섬유(holey fiber) 및 그 제조방법에 관한 것이다.
본 발명에 따른 다공 광섬유는 제1 굴절률을 갖는 코어와; 상기 코어를 감싸도록 형성되고, 제2 굴절률을 갖는 외측 클래딩과; 상기 코어와 외측 클래딩 사이에 형성되고, 다수의 공기구멍이 산재되어 제3 굴절률을 갖는 내측 클래딩을 포함하여 구성되며, 상기 다수의 공기구멍은 불규칙적으로 산재되어 있음을 특징으로 한다.

Description

다공 광섬유 및 그 제조방법{HOLEY FIBER AND METHOD FOR FABRICATING THE SAME}
본 발명은 공기구멍(air hole)을 갖는 다공 광섬유(holey fiber) 및 그 제조방법에 관한 것이다.
일반적으로 다공 광섬유는 광자결정 광섬유(photonic crystal fiber: PCF)로써, 이는 광섬유의 특별한 한 형태이다. 일반 단일모드 광섬유는 유리에 저마늄(Germanium) 또는 인(Phosphorus)을 첨가하여 코어로 사용한다. 반면, 다공 광섬유는 도 1에 도시된 바와 같이 융합된 석영 유리(1)와 같은 단일 고체상의 실질적으로 투명한 소재로 만들어지며, 그 내부에 섬유의 전체 길이를 따라 섬유 축에 평행하게 연장되어 뻗어 있는 규칙적인 배열의 공기구멍(air hole)(2)이 형성되어 있다.
다공 광섬유는 규칙적인 배열 형태 내에 있어서 공기층과 석영 유리층의 유전상수 차이를 이용하여 광자 전이층을 만들고, 이러한 광자 전이층은 반도체에서의 전자 전이층(electronic band-gap)처럼 특정 파장이나 광파 진행 방향에 대해 광 저지대역(Photonic stop band)을 갖게 한다. 즉, 광자 전이층의 조건을 만족하는 빛만 광자 전이층을 통과할 수 있다.
다시 말해, 다공 광섬유 내에서의 빛의 진행은 포토닉 밴드갭 효과(Photonic Band-gap Effect)와 유효 굴절률 효과(Effective Index Effect)에 의해 이루어지며, 이에 대해서는 공개된 논문 T.A.Birks et al., Electronic Letters, Vol.31(22) p.1941(October 1995) 및 J.C.Knight et al., Proceeding of OFC, PD 3-1(February, 1996) 등에 상세히 개시된 바 있다.
이러한, 다공 광섬유는 기술적으로 많은 중요한 특성을 가지고 있다. 예컨대, 광범위한 파장 범위에 걸쳐 단일 모드를 지원할 수 있으며, 큰 모드 영역을 가질 수 있으므로 높은 광 파워(Optical Power)를 전송할 수 있고, 1.55㎛의 원격통신 파장에서 큰 상분산을 나타낼 수가 있다. 또한, 비선형성의 증가/감소 및 편광조절 소자 등으로 부각되고 있다. 따라서 이와 같이 많은 기능성을 가지고 있는 광자결정 광섬유에 대한 특성이 속속 보고되면서 가까운 미래에 광자결정 광섬유가 광통신 및 광산업에 광범위하게 적용될 것으로 기대된다.
한편, 다공 광섬유를 제조하기 위한 종래의 기술들은 대개 세공 유리 튜브(capillary glass tube)와 유리 막대(glass rod)를 원하는 형상으로 적재하여(stacking) 묶어서 모재를 제조하며, 이것을 인출하여 광섬유를 제조하고 있다.
그러나 상기 종래의 공법들은 작업자의 수작업에 의해 조립되고 이에 따라 조립과정에서 오염들을 유발시켜 세척 등의 작업을 반복적으로 필요로 한다. 또한 유리튜브 및 막대를 쌓아서(stacking) 묶음(bundle)으로 제작함에 따라 공기구멍의 배열이 대부분 육각형(hexagonal) 모양으로 단순하다. 게다가 다공 구조 광섬유는 모재로부터 광섬유를 인출할 때 광섬유 모재의 안쪽과 바깥쪽의 열전도율 차이로 인해 바깥쪽의 관형 부재들이 녹는 속도가 안쪽의 관형 부재들이 녹는 속도보다 빠르므로, 바깥쪽 공기구멍이 안쪽 공기구멍보다 현저히 작아지거나 막히게 되고, 상대적으로 커진 안쪽 공기구멍은 타원형으로 변형된다. 이와 같이 광섬유 모재로부터 광섬유를 인출할 때 발생하는 공기구멍의 변형으로 인해, 대량의 다공 구조 광섬유를 연속적으로 생산하는데 어려움이 있다.
따라서 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 다공 광섬유의 오염을 억제하고, 공기구멍을 형성하기 위해 유리 튜브 및 로드를 서로 쌓아서 작업하는 공정상의 복잡함을 해소할 수 있는 다공 광섬유의 제조방법을 제공함에 있다.
상기 목적을 달성하기 위하여 본 발명의 일실시예에 따른 다공 광섬유는 제1 굴절률을 가지며, 길이방향으로 신장된 코어와; 상기 코어를 감싸도록 형성되고, 제2 굴절률을 갖는 외측 클래딩과; 상기 코어와 외측 클래딩 사이에 형성되고, 다수의 공기구멍이 산재되어 제3 굴절률을 갖는 내측 클래딩을 포함하여 구성됨을 특징으로 한다.
바람직하게는, 상기 다수의 공기구멍은 불규칙적으로 산재되어 있음을 특징으로 한다.
바람직하게는, 상기 내측 클래딩은 공기구멍과 실리카 유리로 이루어지며, 상기 코어 및 외측 클래딩은 실리카 유리로 이루어짐을 특징으로 한다.
더욱 바람직하게는, 상기 제1 굴절률은 상기 제2 또는 제3 굴절률 보다 높음을 특징으로 한다.
또한, 상기 목적을 달성하기 위하여 본 발명은 다공 광섬유(holey fiber)의 제조방법에 있어서,
외측튜브, 내측튜브 및 중심 봉을 구비하는 튜브(tube) 형태의 몰드(mold)를 준비하는 제1 과정과; 상기 외측튜브에 비정질 실리카 입자들이 함유된 슬러리(slurry)를 붇고 젤(gel)화 시켜 외측 클래딩을 형성하는 제2 과정과; 상기 외측 클래딩과 중심 봉 사이에 이후 열처리 공정에 의해 기포를 형성하도록 기포 형성물이 첨가된 실리카 슬러리를 붇고 성형하여 내측 클래딩을 형성하는 제3 과정과; 상기 중심 봉을 제거한 후 중심 봉이 제거된 부분에 코어 물질을 붇고 젤화 시켜 코어를 형성하는 제4 과정과; 상기 제1 내지 제4 과정에 의해 성형된 다공 광섬유용 모재를 열처리하면서 광섬유를 인출하는 제5 과정을 포함하여 이루어짐을 특징으로 한다.
바람직하게는, 상기 기포 형성물의 첨가량에 의해 상기 다공 광섬유의 광 특성을 조절함을 특징으로 한다.
이하, 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
우선, 본 발명은 기존의 공기구멍들의 규칙적인 배열에 의한 클래드 부분의 수정된 전반사(modified total internal refraction)에 의한 광전송을 탈피하여 동일한 전반사 이론에 의한 광전송이 가능한 구조의 다공 광섬유를 제조하는데 특징이 있는 것이다.
도 2의 (a), (b)는 각각 본 발명에 따른 다공 광섬유의 구조와 굴절률 분포를 나타낸 것이다. 도 2의 (a)에 도시된 바와 같이 본 발명에 따른 다공 광섬유(100)는 공기구멍이 없는 실리카 유리로 구성된 외곽 클래딩(101)과, 실리카 유리와 불규칙적으로 산재된 공기구멍으로 구성된 클래딩(102)과, 중심부로서 공기구멍이 없이 실리카 유리로 구성된 코어(103)로 구성된다.
상기 클래딩(102)은 공기구멍이 무작위로 분포되어 있으며, 따라서 광자 밴드갭의 특성을 가지고 있지 않다. 그럼에도 불구하고 클래딩(102) 내에서의 공기구멍의 부피가 상당하기 때문에 평균적일 굴절률은 실리카 봉으로 이루어진 코어(103)에 비하여 낮기 때문에 빛을 코어(103)를 통하여 도파시킬 수 있다(도 2의 (b) 참조). 더욱이, 본 발명에 의한 다공 광섬유(100)는 일반 실리카 광섬유가 가지고 있는 대부분의 필요한 특성을 가지고 있다.
도 3은 본 발명에 적용된 몰드의 구성을 개략적으로 나타낸 사시도로써, 이를 참조하여 본 발명의 다공 광섬유(100)의 제작과정을 살펴보면 다음과 같다.
상기 구성을 갖는 다공 광섬유(100)를 제작하기 위해서는 3단계의 성형이 필요하다.
먼저, 1단계는 원하는 크기의 튜브(tube) 형태의 몰드(mold)를 준비하고 준비된 몰드 및 그 부속물들을 조립한다. 이때, 내측 튜브(202)의 중심에 봉(rod)(203)이 위치하도록 한다. 그리고 미리 준비된 비정질 실리카 입자들이 함유된 슬러리(slurry)를 몰드에 붇고 젤(gel)화 시켜 최외각층을 형성하는 단계이다. 이때 실리카 함유 슬러리 내에 기포(bubble)가 유입되지 않도록 미리 진공 등을 이용하여 처리한다. 이와 같이 기포가 없는 슬러리를 준비된 몰드에 붇고 젤화한 후 외측튜브(201)를 제거한다.
2단계는, 1단계에서 성형된 최외각층과 중심 봉(rod)(203) 사이에 이후 열처리 공정에 의해 기포를 형성하도록 기포 형성물이 첨가된 실리카 슬러리를 부어 성형하는 단계이다. 상기 기포 형성물로는 유기 발포제 또는 물과 섞이지 않고 유상액(emulsion)을 형성하는 각종 오일류가 가능하고, 첨가량은 전체 실리카 슬러리의 1~50% 정도이다. 즉, 공기구멍을 만들기 위해 준비된 실리카 슬러리에 오일 또는 폴리머 입자들을 넣어 분산시키며, 이들 첨가된 오일 또는 폴리머들은 이후 열처리 공정에서 타서 제거되어 기포를 형성한다.
3단계는 코어부 형성단계로서, 몰드 구성품에서 중심 봉(203)을 제거한 후 1단계와 동일한 실리카 슬러리를 부어 젤화시킨다. 젤화가 완료된 후 몰드 구성품의 튜브에서 젤을 꺼내어 건조시켜 건조젤을 완성시킨다. 실린더 모양으로 성형된 건조 젤을 열처리 및 유리화시켜 공기구멍이 산재된 다공 광섬유를 제작한다. 즉, 광섬유로 인출되기 위해서는 광섬유용 모재를 높은 온도로 가열시켜야 하기 때문에 광섬유 인출 중에 자연적으로 기포가 형성되며, 공기구멍의 밀도는 광섬유 전체에서 일정하게 유지될 수 있다. 또한, 실리카 분말을 이용하므로 실제적인 모든 형태의 혼합물들이 첨가될 수 있으며, 기존의 다공 광섬유는 공기구멍의 크기, 수 및 배열에 의해 다양한 광 특성을 구현하지만 본 발명에서는 클래딩의 성형시 기포 형성물(기름, 폴리머 등)의 첨가량에 의해 조절할 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
상술한 바와 같이 본 발명은 광섬유의 제작과정 중, 광섬유의 클래딩에 기포가 형성되도록 함으로써 기존의 다공 광섬유 제작공정에 비해 공정이 용이하다.
또한, 공정 중의 오염이 없는 대형화 모재의 형성이 가능하며, 클래딩의 성형시 첨가되는 기포 형성물의 첨가량에 따라 다양한 광 특성을 구현할 수 있는 이점이 있다.
도 1의 (a), (b)는 각각 일반적인 다공 광섬유의 구조 및 굴절률 분포를 나타낸 도면,
도 2의 (a), (b)는 각각 본 발명에 따른 다공 광섬유의 구조 및 굴절률 분포를 나타낸 도면,
도 3은 본 발명의 다공 광섬유를 제조하기 위한 몰드의 구성을 나타낸 도면.

Claims (9)

  1. 제1 굴절률을 가지며, 길이방향으로 신장된 코어와;
    상기 코어를 감싸도록 형성되고, 제2 굴절률을 갖는 외측 클래딩과;
    상기 코어와 외측 클래딩 사이에 형성되고, 다수의 공기구멍이 산재되어 제3 굴절률을 갖는 내측 클래딩을 포함하여 구성됨을 특징으로 하는 다공 광섬유.
  2. 제 1 항에 있어서, 상기 다수의 공기구멍은 불규칙적으로 산재되어 있음을 특징으로 하는 다공 광섬유.
  3. 제 2 항에 있어서, 상기 내측 클래딩은 공기구멍과 실리카 유리로 이루어짐을 특징으로 하는 다공 광섬유.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 코어 및 외측 클래딩은 실리카 유리로 이루어지며, 상기 내측 클래딩은 공기구멍과 실리카 유리로 이루어짐을 특징으로 하는 다공 광섬유.
  5. 제 1 항에 있어서, 상기 제1 굴절률은 상기 제2 또는 제3 굴절률 보다 높음을 특징으로 하는 다공 광섬유.
  6. 다공 광섬유(holey fiber)의 제조방법에 있어서,
    외측튜브, 내측튜브 및 중심 봉을 구비하는 튜브(tube) 형태의 몰드(mold)를 준비하는 제1 과정과;
    상기 외측튜브에 비정질 실리카 입자들이 함유된 슬러리(slurry)를 붇고 젤(gel)화 시켜 외측 클래딩을 형성하는 제2 과정과;
    상기 외측 클래딩과 중심 봉 사이에 이후 열처리 공정에 의해 기포를 형성하도록 기포 형성물이 첨가된 실리카 슬러리를 붇고 성형하여 내측 클래딩을 형성하는 제3 과정과;
    상기 중심 봉을 제거한 후 중심 봉이 제거된 부분에 코어 물질을 붇고 젤화 시켜 코어를 형성하는 제4 과정과;
    상기 제1 내지 제4 과정에 의해 성형된 다공 광섬유용 모재를 열처리하면서 광섬유를 인출하는 제5 과정을 포함하여 이루어짐을 특징으로 하는 다공 광섬유의 제조방법.
  7. 제 6 항에 있어서, 상기 기포 형성물의 첨가량에 의해 상기 다공 광섬유의 광 특성을 조절함을 특징으로 하는 다공 광섬유의 제조방법.
  8. 제 6 항에 있어서, 상기 제3 과정의 기포 형성물은 유기 발포제 또는 물과 섞이지 않고 유상액(emulsion)을 형성하는 각종 오일류를 포함함을 특징으로 하는 다공 광섬유의 제조방법.
  9. 제 6 항에 있어서, 상기 제4 과정의 코어 물질은
    상기 제2 과정의 외측 클래딩 형성 물질과 동일함을 특징으로 하는 다공 광섬유의 제조방법.
KR1020040009394A 2004-02-12 2004-02-12 다공 광섬유의 제조방법 KR100617713B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040009394A KR100617713B1 (ko) 2004-02-12 2004-02-12 다공 광섬유의 제조방법
US10/902,537 US7286739B2 (en) 2004-02-12 2004-07-29 Porous optical fiber and method for manufacturing the same
EP04020843A EP1564569A1 (en) 2004-02-12 2004-09-02 Porous optical fiber and method for manufacturing the same
CNB2004100770436A CN1310046C (zh) 2004-02-12 2004-09-09 多孔光纤及其制造方法
JP2005030453A JP2005227779A (ja) 2004-02-12 2005-02-07 多孔光ファイバー及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040009394A KR100617713B1 (ko) 2004-02-12 2004-02-12 다공 광섬유의 제조방법

Publications (2)

Publication Number Publication Date
KR20050081236A true KR20050081236A (ko) 2005-08-18
KR100617713B1 KR100617713B1 (ko) 2006-08-28

Family

ID=34698979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040009394A KR100617713B1 (ko) 2004-02-12 2004-02-12 다공 광섬유의 제조방법

Country Status (5)

Country Link
US (1) US7286739B2 (ko)
EP (1) EP1564569A1 (ko)
JP (1) JP2005227779A (ko)
KR (1) KR100617713B1 (ko)
CN (1) CN1310046C (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703108B1 (ko) * 2005-10-17 2007-04-06 한국과학기술연구원 광 섬유
KR101069034B1 (ko) * 2009-08-18 2011-09-29 주식회사 옵토매직 광섬유의 제조방법
KR101244326B1 (ko) * 2012-12-20 2013-03-18 한국과학기술연구원 금속 나노선이 삽입된 광섬유를 이용한 광 바이오 센서, 이의 제조 방법 및 이를 이용한 바이오 물질 검출 방법
KR20230093575A (ko) * 2021-12-20 2023-06-27 한국광기술원 고출력 빔 전송용 광섬유 모재 및 그의 제조방법

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444838B2 (en) 2003-10-30 2008-11-04 Virginia Tech Intellectual Properties, Inc. Holey optical fiber with random pattern of holes and method for making same
US7450806B2 (en) 2005-11-08 2008-11-11 Corning Incorporated Microstructured optical fibers and methods
WO2008013627A2 (en) 2006-06-30 2008-01-31 Corning Incorporated Low bend loss optical fiber with high modulus coating
US7505660B2 (en) * 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
US7526169B2 (en) 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
US7787731B2 (en) 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US8755658B2 (en) * 2007-02-15 2014-06-17 Institut National D'optique Archimedean-lattice microstructured optical fiber
US20080205839A1 (en) * 2007-02-28 2008-08-28 Scott Robertson Bickham Large effective area high SBS threshold optical fiber
US7844154B2 (en) 2007-05-07 2010-11-30 Corning Incorporated Optical fiber for optical power transmission
US8464556B2 (en) 2007-05-08 2013-06-18 Corning Incorporated Microstructured optical fibers and methods
JP4490465B2 (ja) * 2007-09-11 2010-06-23 日本電信電話株式会社 光ファイバ製造方法
JP4567716B2 (ja) * 2007-09-11 2010-10-20 日本電信電話株式会社 光ファイバ製造方法
US7921675B2 (en) * 2007-11-16 2011-04-12 Corning Incorporated Methods for making optical fiber preforms and microstructured optical fibers
US7853110B2 (en) 2007-11-28 2010-12-14 Corning Incorporated Large effective area optical fiber
US20090169163A1 (en) 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
US8175437B2 (en) 2008-02-07 2012-05-08 Corning Incorporated Microstructured transmission optical fiber
DE102008056084B4 (de) * 2008-11-06 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Zylinderförmiges Halbzeug zur Herstellung einer optischen Faser sowie Verfahren für die Herstellung der Faser oder einer Vorform dafür
US20110100061A1 (en) * 2009-10-30 2011-05-05 James Fleming Formation of microstructured fiber preforms using porous glass deposition
US8948560B1 (en) * 2010-03-15 2015-02-03 Cirrex Systems, Llc Elevating numerical aperture of optical systems
US9481599B2 (en) 2010-12-21 2016-11-01 Corning Incorporated Method of making a multimode optical fiber
JP5384679B2 (ja) * 2012-01-19 2014-01-08 湖北工業株式会社 光ファイバ母材を製造する方法及び光ファイバ母材
CN102955199A (zh) * 2012-11-09 2013-03-06 上海飞博激光科技有限公司 一种用于光纤激光器或是光纤放大器的双包层光纤
FR3006878B1 (fr) * 2013-06-17 2016-03-18 Dioptik Dispositif photoactif permettant la detection et la transformation d elements chimiques a son contact
CN104678488B (zh) * 2015-01-30 2017-08-29 燕山大学 一种用于产生局域空心光束的双环状纤芯光子晶体光纤
CN109020185B (zh) * 2018-08-03 2021-05-28 长飞光纤光缆股份有限公司 微结构光纤预制棒的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071674A (en) 1989-11-30 1991-12-10 The University Of Florida Method for producing large silica sol-gels doped with inorganic and organic compounds
AU632240B2 (en) 1990-08-27 1992-12-17 Furukawa Electric Co. Ltd., The Method for manufacturing a silica glass base material
US5333229A (en) * 1993-03-31 1994-07-26 W. L. Gore & Associates, Inc. Asymmetrical polarization-maintaining optical waveguide and process for manufacture thereof
DE19810132C2 (de) * 1997-03-10 2002-02-07 Samsung Electronics Co Ltd Vorrichtung und Verfahren zur Herstellung eines rohrförmigen Glasmonolithen unter Anwendung eines Sol-Gel-Prozesses
US6467312B1 (en) * 2000-07-11 2002-10-22 Fitel Usa Corp. Sol gel method of making an optical fiber with multiple apetures
US6954575B2 (en) 2001-03-16 2005-10-11 Imra America, Inc. Single-polarization high power fiber lasers and amplifiers
FI20010556A (fi) 2001-03-19 2002-09-20 Liekki Oy Valokuitu ja menetelmä valokuituaihion valmistamiseksi
JP2003054995A (ja) * 2001-06-05 2003-02-26 Furukawa Electric Co Ltd:The 光ファイバ母材およびその製造方法および光ファイバ
US6496634B1 (en) * 2001-07-17 2002-12-17 Marc David Levenson Holey fibers filled with raman active fluid
JP3836731B2 (ja) 2002-01-29 2006-10-25 三菱電線工業株式会社 偏波保存フォトニッククリスタルファイバの製造方法
US20030147606A1 (en) * 2002-02-01 2003-08-07 Shiho Wang Sol-gel-based optical preforms and methods of manufacture
JP3848597B2 (ja) 2002-06-14 2006-11-22 正隆 中沢 プラスチックホーリーファイバの製造方法
JP3802843B2 (ja) 2002-06-14 2006-07-26 正隆 中沢 光ファイバの製造方法
KR100518400B1 (ko) * 2003-04-30 2005-09-29 엘지전자 주식회사 토스터 겸용 전자레인지 및 그 제어방법
US7444838B2 (en) * 2003-10-30 2008-11-04 Virginia Tech Intellectual Properties, Inc. Holey optical fiber with random pattern of holes and method for making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703108B1 (ko) * 2005-10-17 2007-04-06 한국과학기술연구원 광 섬유
KR101069034B1 (ko) * 2009-08-18 2011-09-29 주식회사 옵토매직 광섬유의 제조방법
KR101244326B1 (ko) * 2012-12-20 2013-03-18 한국과학기술연구원 금속 나노선이 삽입된 광섬유를 이용한 광 바이오 센서, 이의 제조 방법 및 이를 이용한 바이오 물질 검출 방법
KR20230093575A (ko) * 2021-12-20 2023-06-27 한국광기술원 고출력 빔 전송용 광섬유 모재 및 그의 제조방법

Also Published As

Publication number Publication date
CN1310046C (zh) 2007-04-11
CN1654994A (zh) 2005-08-17
JP2005227779A (ja) 2005-08-25
US7286739B2 (en) 2007-10-23
KR100617713B1 (ko) 2006-08-28
US20050180710A1 (en) 2005-08-18
EP1564569A1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
KR100617713B1 (ko) 다공 광섬유의 제조방법
US8215129B2 (en) Method of drawing microstructured glass optical fibers from a preform, and a preform combined with a connector
US20100104869A1 (en) Photonic Crystal Fibers and Methods for Manufacturing the Same
WO2002088802A1 (en) A preform for holey optical fibre, a holey optical fibre, and a method for their production
JP4466813B2 (ja) ガラスプリフォームおよびその製造方法
WO2002026648A1 (en) Multi-component all glass photonic band-gap fiber
US20040050110A1 (en) Methods for fabricating optical fibers and optical fiber preforms
CN101504471A (zh) 具有长周期光栅的光子晶体光纤的制备方法
GB2457948A (en) Photonic bandgap fibre
EP2071369A1 (en) Holey fiber
WO2013108806A1 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
JP2005225753A (ja) ホーリーファイバー用母材及びホーリーファイバーの製造方法
JP3802843B2 (ja) 光ファイバの製造方法
KR100547799B1 (ko) 광자결정 광섬유용 모재 및 이를 이용한 광자결정 광섬유
JP5539594B2 (ja) ファイバ及びファイバの製造方法
EP1584958A1 (en) Photonic crystal fiber capable of single-mode transmission and preform thereof
EP1571131A2 (en) Method of fabricating a preform for holey optical fibre
KR20050081437A (ko) 다공 광섬유용 모재의 제조방법
WO2007122171A1 (en) Method for producing a microstructured optical fiber and fiber obtained according to the method
JP5492325B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
JP2005250024A (ja) フォトニッククリスタル光ファイバの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120730

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150805

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160809

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee