KR20050004929A - 비수성 전해질 및 이를 포함하는 리튬 이차 전지 - Google Patents

비수성 전해질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR20050004929A
KR20050004929A KR1020030042557A KR20030042557A KR20050004929A KR 20050004929 A KR20050004929 A KR 20050004929A KR 1020030042557 A KR1020030042557 A KR 1020030042557A KR 20030042557 A KR20030042557 A KR 20030042557A KR 20050004929 A KR20050004929 A KR 20050004929A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium
carbonate
battery
formula
Prior art date
Application number
KR1020030042557A
Other languages
English (en)
Other versions
KR100508923B1 (ko
Inventor
김진성
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-2003-0042557A priority Critical patent/KR100508923B1/ko
Priority to US10/869,437 priority patent/US7060392B2/en
Priority to JP2004187941A priority patent/JP4252503B2/ja
Priority to CNB2004100640396A priority patent/CN100346526C/zh
Publication of KR20050004929A publication Critical patent/KR20050004929A/ko
Application granted granted Critical
Publication of KR100508923B1 publication Critical patent/KR100508923B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 리튬 이차 전지용 전해질은 리튬염; 비수성 유기 용매; 및 하기 화학식 1의 설파이드 화합물을 포함한다:
[화학식 1]
상기 식에서 R1내지 R10은 각각 독립적으로 수소, 알킬, 알케닐, 및 알키닐로 이루어진 군에서 선택된다.
본 발명의 전해질에 첨가된 설파이드 화합물은 초기 충전시 카보네이트계 유기 용매보다 먼저 분해되어 SEI 피막을 형성함으로써 카보네이트계 유기 용매가 분해되는 것을 억제한다.

Description

비수성 전해질 및 이를 포함하는 리튬 이차 전지{A NON-AQUEOUS ELECTROLYTE AND A LITHIUM SECONDARY BATTERY COMPRISING THE SAME}
발명의 분야
본 발명은 비수성 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 상온 충전시 및 충전 후 고온 저장시 전지의 두께가 팽창되는 것을 방지할 수 있는 비수성 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
종래 기술
최근 첨단 전자산업의 발달로 전자장비의 소량화 및 경량화가 가능하게 됨에 따라 휴대용 전자 기기의 사용이 증대되고 있다. 이러한 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전지의 필요성이 증대되어 리튬 이차 전지의 연구가활발하게 진행되고 있다. 리튬 이차 전지의 양극 활물질로는 리튬 금속 산화물이 사용되고 음극 활물질로는 리튬 금속, 리튬 합금, (결정질 또는 비정질) 탄소 또는 탄소 복합체가 사용되고 있다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형 또는 코인형 등이 있다. 이중 각형 리튬 이온 전지의 단면도는 도 1에 도시되어 있다. 상기 각형 리튬 이온 전지(3)는 양극(5), 음극(6) 및 상기 양극(5)과 음극(6) 사이에 존재하는 세퍼레이터(7)를 포함하는 전극조립체(4)를 케이스(8)에 넣은 다음, 케이스(8)의 상부에 전해질을 주입하고 캡 플레이트(11)로 밀봉하여 조립한다.
리튬 이차 전지의 평균 방전 전압은 3.6∼3.7 V 정도로 다른 알칼리 전지, Ni-MH 전지, Ni-Cd 전지 등에 비하여 높은 전력을 얻을 수 있다. 그러나 이런 높은 구동 전압을 내기 위해서는 충방전 전압영역인 0∼4.2 V에서 전기화학적으로 안정한 전해질 조성물이 요구된다. 이러한 이유로 에틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트 등의 비수성 카보네이트계 용매의 혼합물을 전해질으로 사용하고 있다. 그러나 이러한 조성을 가지는 전해질은 Ni-MH 전지 또는 Ni-Cd 전지에 사용되는 수계(aqueous) 전해질에 비하여 이온전도도가 현저히 낮아 고율 충방전시 전지 특성이 저하되는 문제점이 있다.
리튬 이차 전지의 초기 충전시 양극인 리튬 금속 산화물로부터 나온 리튬 이온이 음극인 탄소 전극으로 이동하여 탄소에 인터컬레이션된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 필름이라고 한다. 충전 초기에 형성된 SEI 피막은 충방전중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해질의 유기 용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다. 따라서 일단 SEI 피막이 형성되고 나면, 리튬 이온은 다시 탄소 음극이나 다른 물질과 부반응을 하지 않게 되어 리튬 이온의 양이 가역적으로 유지된다. 즉, 음극의 탄소는 충전 초기에 전해질과 반응하여 음극 표면에 SEI 피막과 같은 패시베이션 층(passivation layer)을 형성하여 전해질이 더 이상 분해되지 않고 안정적인 충방전을 유지할 수 있도록 한다(J. Power Sources, 51(1994), 79-104). 이러한 이유로 리튬 이차 전지는 초기의 충전 반응 이후 더 이상의 비가역적인 패시베이션 층의 형성 반응을 나타내지 않고 안정적인 사이클 라이프를 유지할 수 있다.
그러나 SEI 피막 형성 반응중 카보네이트계 유기 용매의 분해로 인하여 전지 내부에 가스가 발생하는 문제점이 있다(J. Power Sources, 72(1998), 66-70). 이러한 가스로는 비수성 유기 용매와 음극 활물질의 종류에 따라 H2, CO, CO2, CH4, C2H6, C3H8, C3H6등이 될 수 있다. 전지 내부의 가스 발생으로 인하여 충전시 전지의 두께가 팽창된다. 또한 충전 후 고온 저장시 시간이 경과함에 따라 증가된 전기화학적 에너지와 열에너지에 의하여 패시베이션 층이 서서히 붕괴되어 노출된 음극 표면과 주위의 전해질이 반응하는 부반응이 지속적으로 일어나게 된다. 이때 계속적으로 가스가 발생하여 전지 내부의 압력이 상승하게 된다. 이러한 내압의 증가는 각형 전지와 리튬 폴리머 전지(PLI)가 특정 방향으로 부풀어오르는 등 전지의 특정면의 중심부가 변형되는 현상을 유발한다. 이로 인하여 전지의 전극군내 극판간 밀착성에서 국부적인 차이점이 발생하여 전지의 성능과 안전성이 저하되고 리튬 이차 전지의 세트 장착 자체를 어렵게 하는 문제점이 있다.
상기 문제점을 해결하기 위한 방법으로 일정 수준 이상의 내압 상승시 내부의 전해질을 분출시키기 위한 벤트 또는 전류 차단기(current breaker)를 장착하여 비수성 전해질을 포함하는 이차 전지의 안전성을 개선하는 방법이 있다. 그러나 이 방법은 내압 상승으로 인하여 오작동의 위험까지 야기시키는 문제점이 있다.
또한 내압 상승을 억제하기 위하여 전해질에 첨가제를 주입하여 SEI 형성 반응을 변화시키는 방법이 알려져 있다. 그 예로, 일본 특허공개 제9-73918호에는 1% 이하의 디페닐 피크릴히드라질(diphenyl picrylhydrazyl) 화합물을 첨가함으로써 전지의 고온저장성을 향상시키는 방법이 개시되어 있고, 일본 특허공개 제8-321312호에는 1~20%의 N-부틸 아민류의 화합물을 전해질에 사용함으로써 수명 성능 및 장기 저장성을 향상시키는 방법이 개시되어 있으며, 일본 특허공개 제8-64238호에는 3×10-4∼3×10-3몰의 칼슘염을 첨가하여 전지의 저장성을 향상시키는 방법이개시되어 있고, 일본 특허공개 제6-333596호에는 아조 화합물을 첨가하여 전해질과 음극과의 반응을 억제시킴으로써 전지의 저장성을 향상시키는 방법이 개시되어 있다. 또한 일본 특허공개 제7-176323호는 전해질에 CO2를 첨가하는 방법을 개시하고 있고, 일본 특허공개 제7-320779호에는 전해질에 설파이드계 화합물을 첨가하여 전해질 분해를 억제하는 방법이 기재되어 있다.
이와 같이 전지의 저장성과 안정성을 개선하기 위해서 소량의 유기물 또는 무기물을 첨가함으로써 SEI 피막과 같은 음극 표면에 적절한 피막 형성을 유도하는 방법을 사용하고 있다. 그러나 첨가되는 화합물은 고유의 전기화학적 특성에 따라 초기 충방전시 음극인 카본과 상호작용하여 분해되거나 불안정한 피막을 형성하며, 그 결과로 전자내 이온 이동성이 저하되고, 전지내부에 기체를 발생시키며, 내압을 상승시킴으로써 오히려 전지의 저장성과 안정성, 수명 성능 및 용량을 악화시키는 문제점이 있다.
본 발명의 목적은 초기 충전시 카보네이트계 유기 용매의 분해로 인한 전지 내부의 가스의 발생을 억제할 수 있는 유기 설파이드 화합물을 함유하는 비수성 전해질을 제공하기 위한 것이다.
본 발명의 다른 목적은 상온 충전시 및 충전후 고온 저장시 전지의 두께 변화가 거의 없는 리튬 이차 전지를 제공하기 위한 것이다.
도 1은 리튬 이차 전지의 단면도이다.
도 2는 본 발명의 실시예 및 비교예 따라 제조된 전해질을 포함하는 리튬 이차 전지의 수명 특성을 나타낸 그래프이다.
상기 본 발명의 목적을 달성하기 위하여, 본 발명은 리튬염; 비수성 유기 용매; 및 하기 화학식 1의 화합물을 포함하는 리튬 이차 전지용 전해질을 제공한다:
[화학식 1]
상기 식에서 R1내지 R10은 각각 독립적으로 수소, 알킬, 알케닐, 및 알키닐으로 이루어진 군에서 선택된다.
본 발명은 또한 상기 전해질; 양극 활물질로서 리튬 금속 산화물로 이루어지는 양극; 및 음극 활물질로서 탄소, 탄소 복합체, 리튬금속, 또는 리튬합금으로 이루어지는 음극을 포함하는 리튬 이차 전지를 제공한다.
이하, 본 발명을 더욱 상세히 설명한다.
본 발명의 전해질은 리튬염; 비수성 유기 용매 및 화학식 1의 화합물을 포함한다.
상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, 및 LiI로 이루어진 군에서 선택되는 1 종 또는 2 종 이상을 혼합시켜 사용가능하다.
리튬염의 농도는 0.6 내지 2.0M 범위 내에서 사용하는 것이 바람직하며, 0.7내지 1.6M 범위 내에서 사용하는 것이 더 바람직하다. 리튬염의 농도가 0.6M 미만이면 전해질의 전도도가 낮아져 전해질 성능이 떨어지고, 2.0M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되고 저온성능도 저하되는 문제점이 있다. 이들 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 한다.
상기 비수성 유기용매로는 카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르로는 부티로락톤(BL), 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있으며, 상기 에테르로는 디부틸 에테르 등이 사용될 수 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있으나 이들에 한정되는 것은 아니다.
상기 비수성 유기용매중 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 바람직하다. 상기 부피비로 혼합되어야 전해질의 성능이 바람직하게 나타난다.
상기 비수성 용매로 에틸렌 카보네이트와 저비점 카보네이트 용매를 혼합하여 사용하는 것이 바람직하다. 상기 저비점 카보네이트 용매로는 120℃ 이하의 비점을 가지는 용매가 바람직하게 사용된다. 이들의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 있다.
또한 본 발명의 전해질은 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 2]
상기 식에서 R11은 할로겐 또는 탄소수 1 내지 10의 알킬기이고 n는 0 내지 6의 정수이다.
방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 클로로벤젠, 니트로벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 등이 있다. 방향족 탄화수소계 유기용매를 포함하는 전해질에서 카보네이트계 용매/방향족 탄화수소계 용매의 부피비가 1:1 내지 30:1인 것이 바람직하다. 상기 부피비로혼합되어야 전해질의 성능이 바람직하게 나타난다.
상기 리튬염을 함유하는 비수성 카보네이트계 유기 용매에 화학식 1의 화합물을 첨가하여 본 발명의 비수성 전해질을 제조한다:
[화학식 1]
상기 식에서 R1내지 R10은 각각 독립적으로 수소, 알킬, 알케닐, 및 알키닐로 이루어진 군에서 선택된다. 상기 알킬은 탄소수 1 내지 7의 알킬이 바람직하고, 상기 알케닐로는 탄소수 2 내지 7의 알케닐이 바람직하며, 상기 알키닐로는 탄소수 2 내지 7의 알키닐이 바람직하다.
상기 화학식 1로 나타내어지는 화합물중 알릴 다이 설파이드, 메틸 알릴 다이 설파이드, 에틸 알릴 다이 설파이드 등이 바람직하게 사용될 수 있다.
상기 화합물은 전해질에 대하여 0.1 내지 10 중량%, 바람직하게는 0.1 내지 5 중량%, 더욱 바람직하게는 0.5 내지 2 중량%의 양으로 첨가된다. 상기 화합물의 사용량이 0.1 중량% 미만일 경우에는 전지 내부에서의 가스 발생 억제 효과를 기대하기 어렵고, 10 중량%를 초과하는 경우에는 전지의 초기 충방전 효율과 수명 성능이 사용량 증가에 따라 감소하는 문제점이 발생한다.
상기 화학식 1의 화합물은 초기 충전시 카보네이트계 유기 용매보다 먼저 분해되어 리튬 이온과 반응하여 SEI 피막을 형성함으로써 카보네이트계 유기 용매의분해를 억제한다. 따라서 초기 충전시 카보네이트계 유기 용매의 분해로 인한 가스의 발생을 억제할 수 있으므로 상온 충전시 또는 충전 후 고온 저장시 각형 전지나 리튬 폴리머 전지의 두께가 팽창하는 것을 방지할 수 있다.
본 발명의 리튬 이차 전지의 전해질은 통상 -20∼60℃의 온도 범위에서 안정하여 4V의 전압에서도 안정적인 특성을 유지한다. 본 발명의 전해질은 리튬 이온 전지, 리튬 폴리머 전지 등 모든 리튬 이차 전지에 적용될 수 있다.
본 발명에서 리튬 이차 전지의 양극 재료로는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질, 리튬이온과 가역적으로 리튬-함유 화합물을 형성할 수 있는 물질이 사용될 수 있다. 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질의 예로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, 또는 LiNi1-x-yCoxMyO2(0<x<1, 0<y<1, 0<x+y<1, M은 Al, Sr, Mg, La 등의 금속), LiFeO2, V2O5, TiS2, MoS2와 같은 금속 산화물 또는 칼코게나이드 화합물이 있다. 상기 리튬이온과 가역적으로 리튬-함유 화합물을 형성할 수 있는 물질로는 실리콘(Si), 이산화 주석(SnO2), 티타늄 나이트레이트 등이 있다.
리튬 이차 전지의 음극 재료로는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질, 리튬 금속, 또는 리튬-함유 합금 등이 사용될 수 있으며, 상기 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질로는 결정질 또는 비정질의 탄소재 물질이 사용될 수 있다. 결정질 탄소로는 천연흑연과 메조카본섬유(mesocarbon fiber: MCF), 메조카본 마이크로비드(mesocarbon microbeads,MCMB) 등과 같은 인조흑연이 있으며, 비정질 탄소로는 비정질계 탄소 물질로는 핏치(pitch)를 약 1000℃에서 열처리하여 얻는 소프트 카본과 고분자 수지를 탄화시켜서 얻는 하드 카본이 있다. 상기 탄소재 물질은 d002 층간거리(interplanar distance)가 3.35∼3.38이고 X-선 회절(X-ray diffraction)에 의한 Lc(crystallite size)가 적어도 20㎚ 이상인 물질이 바람직하다.상기 리튬-함유 합금의 예로는 리튬과 Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, 또는 Cd 등의 금속과의 합금이 있으며,
상기 활물질을 포함하는 슬러리를 적당한 두께와 길이로 박판의 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 본 발명의 비수성 전해질을 주입하여 리튬 이차 전지를 제조한다. 상기 세퍼레이터로는 폴리에틸렌 세퍼레이터, 폴리프로필렌 세퍼레이터, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터 또는 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터를 사용할 수 있다.
본 발명의 리튬 이차 전지는 각종 전자제품의 전원으로 사용될 수 있다. 예를 들어 휴대용 전화기, 핸드폰, 게임기, 휴대용 텔레비젼, 노트북 컴퓨터, 계산기, 라디오 등에 사용할 수 있으며, 이에 한정되는 것은 아니다.
다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.
실시예 및 비교예
(실시예 1)
에틸렌 카보네이트/디메틸 카보네이트(EC/DMC)가 1/1로 혼합된 비수성 유기 용매에 1M의 LiPF6를 첨가하고, 전해질에 대하여 0.5 중량%의 알릴 설파이드를 첨가하여 전해질을 제조하였다.
(실시예 2)
알릴 설파이드의 첨가량을 1 중량%로 한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
(실시예 3)
알릴 설파이드의 첨가량을 2 중량%로 한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
(실시예 4)
알릴 설파이드의 첨가량을 5 중량%로 한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
(비교예 1)
알릴 설파이드을 첨가하지 않은 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해질을 제조하였다.
분해 전압 측정
상기 실시예 2 및 비교예 1의 전해질에 대하여 사이클릭 볼타메트리(cyclicvoltametry)에 의하여 분해 전압을 측정하여 하기 표 1에 기재하였다.
분해 전압(V)
실시예 2 0.7
비교예 1 0.5
사이클 전압 측정 조건은 다음과 같다:
작업 전극: MCF, 기준 전극: Li-금속, 상대 전극: Li-금속
전압 범위: 3V∼0V, Scan Rate: 0.1 mV/s.
알릴 설파이드가 첨가된 실시예 2의 전해질이 상기 화합물이 첨가되지 않은 비교예 1의 전해질에 비하여 분해 전압이 높아 초기 충전시 먼저 분해되며 상기 분해 전압에서 SEI 피막 형성 반응이 일어난다. 이때 형성된 SEI 피막은 카보네이트계 유기용매의 분해를 막기 때문에 이들 유기용매의 분해로 인한 가스 발생을 억제할 수 있다. 이로써 전지의 내부 압력을 감소시켜 만충전 후의 전지의 두께를 감소시킬 수 있다.
리튬 이차 전지의 제조
양극 활물질로서 LiCoO2, 바인더로서 폴리비닐리덴 플루오라이드(PVDF) 및 도전제로서 카본을 92:4:4의 중량비로 혼합한 다음, N-메틸-2-피롤리돈에 분산시켜 양극 슬러리를 제조하였다. 이 슬러리를 두께 20㎛의 알루미늄 호일에 코팅한 후 건조, 압연하여 양극을 제조하였다. 음극 활물질로서 결정성 인조흑연과 바인더로서 PVDF를 92:8의 중량비로 혼합한 다음, N-메틸-2-피롤리돈에 분산시켜 음극 슬러리를 제조하였다. 이 슬러리를 두께 15㎛의 구리 호일에 코팅한 후 건조, 압연하여 음극을 제조하였다. 상기 제조된 전극들을 두께 25㎛의 폴리에틸렌 재질의 세퍼레이터를 사용하여 권취, 압축하여 30㎜×48㎜×6㎜인 각형 캔에 넣은 다음, 상기 실시예 1∼4와 비교예 1의 전해질을 주입하여 각형 전지를 제조하였다.
충전 후 전지의 두께 변화
상기 실시예 1∼4 및 비교예 1의 전해질을 주입하여 제조된 리튬 이차 전지에 대하여 정전류-정전압(CC-CV) 조건하에서 170mA의 전류, 4.2V의 충전 전압으로 충전한 후, 1 시간 방치후 170mA의 전류로 2.5V까지 방전하고 1시간 방치하였다. 이 과정을 3회 반복한 후 425mA의 전류로 2시간 30분 동안 4.2V 충전 전압으로 충전하였다. 초기 전지 조립 후 전지의 두께에 대한 충전 후 두께 증가율을 측정하였다. 이중 실시예 1∼4 및 비교예 1의 결과를 하기 표 2에 기재하였다.
만충전 후 전지의 두께변화(%)
실시예 1 4.5
실시예 2 4.4
실시예 3 4.1
실시예 4 6.0
비교예 1 7.9
알릴 설파이드가 첨가된 실시예 1∼4의 전해질을 포함하는 리튬 이차 전지가 알릴 설파이드가 첨가되지 않은 비교예 1에 비하여 상온 충전시 두께 팽창이 훨씬 감소한 것을 확인할 수 있다.
전지 수명 성능 측정
상기 실시예 1∼3 및 비교예 1의 전해질을 사용하여 제조된 리튬 이차 전지에 대하여 CC-CV 조건하에서 800mA, 4.2V의 충전 전압까지 2시간 30분 동안 충전하고 CC 조건하에서 800mA, 2.75V의 컷-오프 전압까지 방전하였다. 이 충방전을 300회 반복하여 사이클에 따른 용량 감소를 측정하였다. 실시예 1∼3 및 비교예 1의 결과를 도 1에 나타내었다. 도 1에서 보는 바와 같이, 비교예 1의 전해질을 사용한 전지는 충방전 사이클이 진행되는 동안 용량이 현저하게 감소한 반면에, 실시예 1∼3의 전해질을 사용한 전지는 초기용량은 비교예 1에 비하여 떨어지나 사이클에 따른 용량 감소가 적음을 알 수 있다.
본 발명의 전해질에 첨가된 화학식 1의 설파이드계 화합물은 초기 충전시 카보네이트계 유기 용매보다 먼저 분해되어 SEI 피막을 형성함으로써 카보네이트계 유기 용매가 분해되는 것을 억제한다. 따라서 본 발명의 전해질이 적용된 리튬 이차 전지는 초기 충전시 카보네이트계 유기 용매의 분해로 인한 가스의 발생을 억제하여 전지의 내압을 감소시키고, 상온 충전시 및 충전 후 고온 저장시 전지의 두께가 팽창되는 것을 방지하며, 수명특성도 우수하다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (15)

  1. 리튬염;
    유기 용매; 및
    전해질에 대하여 하기 화학식 1의 화합물을 포함하는 비수성 전해질:
    [화학식 1]
    상기 식에서 R1내지 R10은 각각 독립적으로 수소, 알킬, 알케닐, 및 알키닐로 이루어진 군에서 선택됨.
  2. 제1항에 있어서, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, 및 LiI로 이루어진 군에서 선택되는 적어도 하나인 리튬 전지용 전해질.
  3. 제2항에 있어서, 상기 리튬염은 0.6 내지 2.0M의 농도로 사용되는 리튬 전지용 전해질.
  4. 제1항에 있어서, 상기 비수성 유기용매는 카보네이트, 에스테르, 에테르 및 케톤으로 이루어진 군에서 선택되는 적어도 하나의 용매인 리튬 전지용 전해질.
  5. 제4항에 있어서, 상기 카보네이트는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택되는 적어도 하나의 용매인 리튬 전지용 전해질.
  6. 제4항에 있어서, 상기 카보네이트는 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트의 혼합용매인 리튬 전지용 전해질.
  7. 제1항에 있어서, 상기 비수성 유기용매는 카보네이트계 용매와 방향족 탄화수소계 유기용매의 혼합용매인 리튬 전지용 전해질.
  8. 제7항에 있어서, 상기 방향족 탄화수소계 유기용매는 하기 화학식 2를 가지는 것인 리튬 이차 전지용 전해질:
    [화학식 2]
    상기 식에서 R11은 할로겐 또는 탄소수 1 내지 10의 알킬기이고 n은 0 내지 6의 정수임.
  9. 제8항에 있어서, 상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 및 이들의 혼합물로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 전해질.
  10. 제1항에 있어서, 상기 화학식 1의 화합물이 알릴 다이 설파이드, 메틸 알릴 다이 설파이드, 에틸 알릴 다이 설파이드 및 이들의 혼합물로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 전해질.
  11. 제1항에 있어서, 상기 화학식 1의 화합물은 전해질 총량에 대하여 0.1 내지 10 중량%로 사용되는 리튬 이차 전지용 전해질.
  12. 제11항에 있어서, 상기 화학식 1의 화합물은 전해질 총량에 대하여 0.1 내지 5 중량%로 사용되는 리튬 이차 전지용 전해질.
  13. 제12항에 있어서, 상기 화학식 1의 화합물은 전해질 총량에 대하여 0.5 내지 2 중량%로 사용되는 리튬 이차 전지용 전해질.
  14. 제1항 내지 제13항중 어느 하나의 항에 따른 전해질;
    리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질, 리튬이온과 가역적으로 리튬-함유 화합물을 형성할 수 있는 물질을 양극 활물질로 포함하는 양극;
    리튬 이온의 가역적인 인터칼레이션/디인터칼레이션 가능한 물질, 리튬 금속, 또는 리튬 합금을 음극 활물질로 포함하는 음극;
    을 포함하는 리튬 이차 전지.
  15. 제14항에 있어서, 상기 리튬 이차 전지가 리튬 이온 전지 또는 리튬 폴리머 전지인 리튬 이차 전지.
KR10-2003-0042557A 2003-06-27 2003-06-27 비수성 전해질 및 이를 포함하는 리튬 이차 전지 KR100508923B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-0042557A KR100508923B1 (ko) 2003-06-27 2003-06-27 비수성 전해질 및 이를 포함하는 리튬 이차 전지
US10/869,437 US7060392B2 (en) 2003-06-27 2004-06-17 Non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2004187941A JP4252503B2 (ja) 2003-06-27 2004-06-25 非水性電解質及びこれを含むリチウム二次電池
CNB2004100640396A CN100346526C (zh) 2003-06-27 2004-06-28 非水电解液及包含它的锂二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0042557A KR100508923B1 (ko) 2003-06-27 2003-06-27 비수성 전해질 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20050004929A true KR20050004929A (ko) 2005-01-13
KR100508923B1 KR100508923B1 (ko) 2005-08-17

Family

ID=33536326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0042557A KR100508923B1 (ko) 2003-06-27 2003-06-27 비수성 전해질 및 이를 포함하는 리튬 이차 전지

Country Status (4)

Country Link
US (1) US7060392B2 (ko)
JP (1) JP4252503B2 (ko)
KR (1) KR100508923B1 (ko)
CN (1) CN100346526C (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715361B2 (en) 2005-11-18 2010-05-11 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving a downlink signal in a communication system
US7808954B2 (en) 2005-11-22 2010-10-05 Samsung Electronics Co., Ltd Method and system for controlling data rate in a communication system
USD808940S1 (en) 2016-05-13 2018-01-30 Samsung Electronics Co., Ltd. Stand for television
US11735736B2 (en) 2014-01-23 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, and electronic device
WO2023229121A1 (ko) * 2022-05-25 2023-11-30 주식회사 정석케미칼 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691539B2 (en) * 1998-09-03 2010-04-06 Ube Industries, Ltd. Non-aqueous secondary battery having increased discharge capacity retention
JP4569129B2 (ja) * 2004-03-04 2010-10-27 三菱化学株式会社 リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP4759932B2 (ja) * 2004-04-26 2011-08-31 株式会社Gsユアサ 非水電解質二次電池
JP2006187130A (ja) * 2004-12-28 2006-07-13 Hitachi Ltd 捲回式鉛電池を電源とする電動パワーステアリングシステム及びそれに用いられるモータとインバータ装置
CN101292389B (zh) * 2005-10-20 2010-09-22 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP5092232B2 (ja) * 2005-12-14 2012-12-05 株式会社Gsユアサ 非水電解質電池
US8658833B2 (en) * 2006-11-11 2014-02-25 Ecospray Limited Garlic processing
KR20100093321A (ko) * 2009-02-16 2010-08-25 삼성에스디아이 주식회사 비수 전해질, 및 이를 포함하는 리튬 이차 전지
US8288036B2 (en) * 2009-05-18 2012-10-16 Samsung Sdi Co., Ltd. Secondary battery and method of making the secondary battery
KR101136254B1 (ko) 2010-05-20 2012-04-19 삼성에스디아이 주식회사 이차전지
US8062787B2 (en) 2009-09-11 2011-11-22 Samsung Sdi Co., Ltd Secondary battery and method of manufacturing the secondary battery
US8048559B2 (en) * 2009-07-08 2011-11-01 Samsung Sdi Co., Ltd Secondary battery and method of making the secondary battery
JP5172869B2 (ja) * 2009-09-04 2013-03-27 三星エスディアイ株式会社 二次電池及びその二次電池の製造方法
WO2011059458A1 (en) 2009-11-16 2011-05-19 Dow Global Technologies Llc Battery electrolyte solutions containing phosphorus-sulfur compounds
US8802281B2 (en) 2010-08-05 2014-08-12 Samsung Sdi Co., Ltd. Secondary battery with movement prevention tape
KR101127616B1 (ko) * 2010-09-13 2012-03-22 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 이용한 리튬 이차 전지
KR101297175B1 (ko) * 2011-03-10 2013-08-21 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지
US9979008B2 (en) 2014-11-14 2018-05-22 GM Global Technology Operations LLC Methods for making a solid electrolyte interface layer on a surface of an electrode
BR112019011107B1 (pt) * 2016-12-02 2022-08-30 Arkema Inc Bateria a base de espécie de organoenxofre, eletrólito e anodo
KR20190021504A (ko) * 2017-08-22 2019-03-06 전자부품연구원 리튬-황 이차전지용 전해액 및 그를 포함하는 리튬-황 이차전지
CN109449486A (zh) * 2018-10-15 2019-03-08 苏州大学 一种电解液添加剂的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182255B2 (ja) 1993-05-25 2001-07-03 三洋電機株式会社 非水系電解質電池
JPH07320779A (ja) 1994-05-20 1995-12-08 Sanyo Electric Co Ltd 非水電解液電池
JP3384625B2 (ja) 1994-08-25 2003-03-10 三洋電機株式会社 非水電解液電池
JPH08321312A (ja) 1995-05-24 1996-12-03 Sanyo Electric Co Ltd 非水電解液電池
JPH0973918A (ja) 1995-09-05 1997-03-18 Fuji Elelctrochem Co Ltd 電池用非水電解液
US7691539B2 (en) * 1998-09-03 2010-04-06 Ube Industries, Ltd. Non-aqueous secondary battery having increased discharge capacity retention
KR100316686B1 (ko) * 1999-07-01 2001-12-12 안복현 전지용 비수전해액
JP4529274B2 (ja) * 2000-04-18 2010-08-25 ソニー株式会社 非水電解質電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715361B2 (en) 2005-11-18 2010-05-11 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving a downlink signal in a communication system
US7808954B2 (en) 2005-11-22 2010-10-05 Samsung Electronics Co., Ltd Method and system for controlling data rate in a communication system
US11735736B2 (en) 2014-01-23 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, and electronic device
USD808940S1 (en) 2016-05-13 2018-01-30 Samsung Electronics Co., Ltd. Stand for television
WO2023229121A1 (ko) * 2022-05-25 2023-11-30 주식회사 정석케미칼 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법

Also Published As

Publication number Publication date
CN100346526C (zh) 2007-10-31
US20040265702A1 (en) 2004-12-30
KR100508923B1 (ko) 2005-08-17
US7060392B2 (en) 2006-06-13
JP2005019409A (ja) 2005-01-20
CN1585186A (zh) 2005-02-23
JP4252503B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
KR100508923B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100536196B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100515298B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100527827B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100612272B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR101211127B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100898284B1 (ko) 리튬 이차 전지
KR100984134B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20010086281A (ko) 리튬 이차 전지용 전해액
KR100471970B1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR100412522B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR100450199B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR100458570B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100412527B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR100412524B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR100982323B1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR101294763B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100750246B1 (ko) 락톤계 화합물을 포함하는 리튬 2차전지용 비수성 전해액
KR20070094414A (ko) 벤질 페닐 에테르를 포함하는 리튬 2차전지용 비수성전해액

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130723

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee