KR20040061857A - Method for fabricating of semiconductor device - Google Patents
Method for fabricating of semiconductor device Download PDFInfo
- Publication number
- KR20040061857A KR20040061857A KR1020020088157A KR20020088157A KR20040061857A KR 20040061857 A KR20040061857 A KR 20040061857A KR 1020020088157 A KR1020020088157 A KR 1020020088157A KR 20020088157 A KR20020088157 A KR 20020088157A KR 20040061857 A KR20040061857 A KR 20040061857A
- Authority
- KR
- South Korea
- Prior art keywords
- hard mask
- insulating film
- layer
- forming
- gate electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823475—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823468—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 모스 전계효과 트랜지스터(Metal Oxide Semi conductor Field Effect Transistor; 이하 MOS FET라 칭함)의 게이트전극 보호를 위한 하드마스크층을 여러재질의 다층절연막으로 형성하여 후속 자기정렬 콘택(self align contact; 이하 SAC 라 칭함) 공정시 하드마스크층의 손실을 최소화하여 게이트전극의 노출에 따른 단락 발생을 방지하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, a hard mask layer for protecting a gate electrode of a metal oxide semi-conductor field effect transistor (hereinafter, referred to as a MOS FET) is formed of a multilayer insulating film of various materials. A semiconductor device capable of improving process yield and device operation reliability by minimizing loss of hard mask layer during subsequent self align contact (SAC) process to prevent short circuit caused by exposure of gate electrode. It relates to a manufacturing method.
최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체 장치의 제조 공정 중에서 식각 또는 이온주입 공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다.The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, are essential in the manufacturing process of semiconductor devices.
이러한 감광막 패턴의 분해능(R)은 감광막 자체의 재질이나 기판과의 접착력등과도 밀접한 연관이 있으나, 일차적으로는 사용되는 축소노광장치의 광원 파장(λ) 및 공정 변수(k)에 비례하고, 노광 장치의 렌즈 구경(numerical aperture; NA, 개구수)에 반비례한다.The resolution (R) of the photoresist pattern is closely related to the material of the photoresist itself or the adhesion to the substrate. It is inversely proportional to the lens aperture (NA, numerical aperture) of the device.
[R=k*λ/NA,~R=해상도,~λ=광원의~파장,~NA=개구수~][R = k * λ / NA, ~ R = resolution, ~ λ = wavelength of light source, NA = opening number ~]
여기서 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를들어 파장이 436 및 365㎚인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 라인/스페이스 패턴의 경우 각각 약 0.7, 0.5㎛ 정도가 한계이고, 0.5㎛ 이하의 미세 패턴을 형성하기 위해서는 이보다 파장이 더 작은 원자외선(deep ultra violet; DUV), 예를들어 파장이 248㎚인 KrF 레이저나 193㎚인 ArF 레이저를 광원으로 사용하는 노광 장치를 이용하여야 한다.Here, the wavelength of the light source is reduced in order to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of a line / space pattern. The limit is about 0.7 and 0.5 μm, respectively, and in order to form a fine pattern of 0.5 μm or less, deeper ultra violet (DUV), for example, KrF laser having a wavelength of 248 nm or 193 nm An exposure apparatus using an ArF laser as a light source should be used.
또한 축소노광장치와는 별도로 공정 상의 방법으로는 노광마스크(photo mask)로서 위상반전마스크(phase shift mask)를 사용하는 방법이나, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘(contrast enhancement layer; CEL) 방법이나, 두층의 감광막 사이에 에스.오.지(spin on glass; SOG)등의 중간층을 개재시킨 삼층레지스트(Tri layer resister; 이하 TLR이라 칭함) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.In addition to the reduction exposure apparatus, the process method includes a method of using a phase shift mask as a photo mask, or forming a separate thin film on the wafer to improve image contrast. A contrast enhancement layer (CEL) method or a tri layer resister (hereinafter referred to as a TLR) method in which an intermediate layer such as spin on glass (SOG) is interposed between two photoresist layers. In addition, a silicide method for selectively injecting silicon into the upper side of the photosensitive film has been developed to lower the resolution limit.
또한 상하의 도전배선을 연결하는 콘택홀은 상기에서의 라인/스페이스 패턴에 비해 디자인룰이 더 크게 나타나는데, 소자가 고집적화 되어감에 따라 자체의 크기와 주변배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스팩트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택 형성 공정에서의 마스크들간의 정확하고 엄격한 정렬이 요구되어 공정여유도가 감소돠거나, 여유가 전혀없이 공정을 진행하여야하는 어려움이 있다.In addition, the contact hole connecting the upper and lower conductive wirings has a larger design rule than the above line / space pattern. As the device becomes more integrated, the size of the contact hole and the distance between the peripheral wirings are reduced, and the contact hole diameter and The aspect ratio, which is the ratio of depths, increases. Therefore, in the highly integrated semiconductor device having the multilayer conductive wiring, accurate and strict alignment between the masks in the contact forming process is required, so that the process margin is reduced or the process must be performed without any margin.
이러한 콘택홀은 홀간의 간격 유지를 위하여 마스크 정렬시의 오배열 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration)등과 같은 요인들을 고려하여 마스크를 형성한다.These contact holes can be used for misalignment tolerance during mask alignment, lens distortion during exposure, critical dimension variation during mask fabrication and photolithography, The mask is formed by considering factors such as registration between the masks.
상기와 같은 콘택홀의 형성 방법으로는 직접 식각 방법과, 측벽 스페이서를 사용하는 방법 및 SAC 방법등이 있다.As a method of forming the contact hole as described above, there are a direct etching method, a method using a sidewall spacer, a SAC method, and the like.
상기에서 직접 식각방법과 측벽 스페이서 형성 방법은 현재의 재반 기술 수준에서 0.3㎛ 이하의 디자인 룰을 갖는 소자 제조에는 사용할 수 없어 소자의 고집적화에 한계가 있다.In the above method, the direct etching method and the sidewall spacer forming method cannot be used for manufacturing a device having a design rule of 0.3 μm or less in the current technology level, and thus there is a limitation in high integration of the device.
또한 콘택홀 형성시 리소그래피(Lithography) 공정의 한계를 극복하기 위하여 고안된 SAC 방법은 식각장벽층으로 사용하는 물질에 따라 다결정실리콘층이나 질화막 또는 산화질화막등을 사용하는 것으로 나눌 수 있으며, 가장 유망한 것으로 질화막을 식각 방어막으로 사용하는 방법이 있다.In addition, the SAC method, which is designed to overcome the limitations of the lithography process in forming contact holes, can be divided into polysilicon layer, nitride film, or oxynitride film, depending on the material used as the etch barrier layer. Can be used as an etch shield.
도 1a 내지 도1c는 종래 기술에 따른 반도체소자의 제조공정도이다.1A to 1C are manufacturing process diagrams of a semiconductor device according to the prior art.
먼저, 반도체기판(10)상에 게이트산화막(12)과 다결정실리콘이나 W등의 도전층(14)과 질화막 재질의 하드마스크층(16)을 순차적으로 형성한다. (도 1a 참조).First, a gate oxide film 12, a conductive layer 14 such as polysilicon or W, and a hard mask layer 16 made of a nitride film are sequentially formed on the semiconductor substrate 10. (See FIG. 1A).
그다음 상기 하드마스크층(16)상에 게이트 패터닝용 감광막 패턴(도시되지 않음)을 형성하고, 상기 감광막 패턴에 의해 노출되어있는 하드마스크층(16)과 도전층(14) 및 게이트산화막(12)을 순차적으로 제거하여 마스크절연막(16) 패턴과 중첩되어있는 게이트전극(18)을 형성한다. 이때 상기 하드마스크층(16)의 일부 두께가 남아 있게 된다. (도 1b 참조).Next, a gate patterning photoresist pattern (not shown) is formed on the hard mask layer 16, and the hard mask layer 16, the conductive layer 14, and the gate oxide layer 12 exposed by the photoresist pattern are formed. Are sequentially removed to form the gate electrode 18 overlapping the mask insulating film 16 pattern. At this time, some thickness of the hard mask layer 16 remains. (See FIG. 1B).
그후, 상기 게이트전극(18)과 하드마스크층(16) 패턴의 측벽에 절연 스페이서(20)를 형성한다. 여기서 상기 절연 스페이서는 실링 질화막(20-1)과 스페이서 질화막(20-2)으로 구성된다. (도 1c 참조).Thereafter, an insulating spacer 20 is formed on sidewalls of the gate electrode 18 and the hard mask layer 16 pattern. In this case, the insulating spacer includes a sealing nitride film 20-1 and a spacer nitride film 20-2. (See FIG. 1C).
그다음 도시되어 있지는 않으나, 상기 구조의 전표면에 랜딩 플러그 콘택을 형성하기 위한 층간절연막(도시되지 않음)을 도포하고, 랜딩 플러그 콘택홀을 형성한 후, 상기 콘택홀을 메우는 랜딩플러그를 형성한다.Although not shown, an interlayer insulating film (not shown) is formed on the entire surface of the structure to form a landing plug contact, a landing plug contact hole is formed, and a landing plug that fills the contact hole is formed.
상기와 같은 종래 기술에 따른 반도체소자의 제조방법은 랜딩 플러그 형성고정에서 하드마스크층이 모두 제거되고 그 하부의 마스크절연막 패턴이 손상되는데, 이는 후속 비트라인이나 전하저장전극 또는 금속 콘택 형성시에 다시 하드마스크층 패턴이 손상되면 그 하부의 게이트전극이 노출되어 배선간 단락이 발생할 수 있어 마스크절연막을 충분한 두께로 형성하여야하는데, 그 경우 게이트전극 패턴닝 공정시 단차가 증가되어 후속 공정을 더욱 어렵게하고 소자의 고집적화에 의해 게이트전극간 간격이 감소되어 랜딩 플러그 형성을 위한 절연막이 게이트전극들 사이를 제대로 메우지 못해 보이드가 발생할 수 있으며, CMP 공정 특성상 마스크절연막 패턴의 남아 있는 균일도가 떨어져 후속 공정시 불량 발생의 원인이 되는등 공정 수율 및 소자 동작의 신뢰성이 떨어지는 문제점이 있다.In the method of manufacturing a semiconductor device according to the related art as described above, the hard mask layer is removed from the fixing of the landing plug and the mask insulating film pattern under the damaged portion is damaged. This is again performed at the subsequent formation of the bit line, the charge storage electrode, or the metal contact. If the hard mask layer pattern is damaged, the gate electrode beneath it may be exposed and a short circuit may occur between the wirings. Thus, a mask insulating film should be formed to a sufficient thickness. In this case, the step height is increased during the gate electrode patterning process to make the subsequent process more difficult. Due to the high integration of the device, the gap between gate electrodes is reduced and voids may occur because the insulating film for forming the landing plug does not fill the gate electrodes properly. Process yield and device copper This reliability has lowered.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 게이트전극 패턴닝시 사용되는 하드마스크층을 다른 재질의 다층 적층 구조로 형성하여 게이트전극 패턴닝 후에도 일부가 남아 있도록하여 게이트전극의 상부가 마스크절연막 패턴에 의해 안정적으로 보호되도록하여 후속 공정에서 배선간 단락을 방지하고, 게이트전극 패턴닝시의 단차를 감소시켜 식각 공정을 용이하게 하며, 절연막의 보이드 발생을 방지하고, 콘택플러그 형성을 위한 CMP 공정시 패턴 균일도를 향상시키고, 두층의 절연 스페이서 물질중 두 번째 층은 콘택홀 형성후에 도포하여 층간절연막의 갭필을 유리하게 하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법을 제공함에 있다.The present invention is to solve the above problems, an object of the present invention is to form a hard mask layer used in the gate electrode patterning in a multi-layer laminated structure of a different material so that a portion remains after the gate electrode patterning gate electrode The upper part of the substrate is stably protected by a mask insulating film pattern to prevent short circuits between wirings in a subsequent process, to reduce the step difference during the gate electrode patterning, to facilitate the etching process, to prevent the occurrence of voids in the insulating film, and to contact plugs. The semiconductor device can improve the pattern uniformity during the CMP process, and the second layer of the insulating spacer material is applied after the contact hole is formed to favor the gap fill of the interlayer insulating film, thereby improving process yield and reliability of device operation. To provide a method of manufacturing.
도 1a 내지 도 1c는 종래 기술에 따른 반도체소자의 제조공정도.1A to 1C are manufacturing process diagrams of a semiconductor device according to the prior art.
도 2a 내지 도 2d는 본 발명에 따른 반도체소자의 제조공정도.2a to 2d is a manufacturing process diagram of a semiconductor device according to the present invention.
< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>
10 : 반도체기판 12 : 게이트산화막10 semiconductor substrate 12 gate oxide film
14 : 도전층 16 : 하드마스크층14 conductive layer 16 hard mask layer
18 : 게이트전극 20 : 절연 스페이서18 gate electrode 20 insulating spacer
20-1 : 실링 질화막 20-2 : 스페이서 질화막20-1: sealing nitride film 20-2: spacer nitride film
30-1 : 제1질화막 30-2 : 제2질화막30-1: First nitride film 30-2: Second nitride film
32 : 제1 스페이서 절연막 34 : 콘택홀32: first spacer insulating film 34: contact hole
36 : 제2 스페이서 절연막 38 : 콘택플러그36 second spacer insulating film 38 contact plug
상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자 제조방법의 특징은,Features of the semiconductor device manufacturing method according to the present invention for achieving the above object,
반도체기판상에 게이트절연막과, 도전층 및 하드마스크층을 순차적으로 형성하되, 상기 하드마스크층은 삼층 질화막으로 형성하되, 상하의 플라즈마 유도 화학기상증착 질화막의 사이에 저압 화학기상증착 질화막이 개재되어 있는 형태로 형성하는 공정과,A gate insulating film, a conductive layer, and a hard mask layer are sequentially formed on the semiconductor substrate, and the hard mask layer is formed of a three-layer nitride film, and a low pressure chemical vapor deposition nitride film is interposed between the upper and lower plasma induced chemical vapor deposition nitride films. Forming process,
상기 하드마스크층 이하 도전층까지를 게이트전극 패턴닝 마스크를 사용한 사진 식각 공정으로 식각하여 하드마스크층 패턴과 중첩되어있는 도전층 패턴으로된 게이트전극을 형성하는 공정과,Forming a gate electrode having a conductive layer pattern overlapping with the hard mask layer pattern by etching the conductive layer below the hard mask layer by a photolithography process using a gate electrode patterning mask;
상기 구조의 전표면에 절연 스페이서가 되는 제1 스페이서 절연막을 형성하는 공정과,Forming a first spacer insulating film serving as an insulating spacer on the entire surface of the structure;
상기 구조의 전표면에 층간절연막을 형성하는 공정과,Forming an interlayer insulating film on the entire surface of the structure;
상기 층간 절연막을 랜딩 플러그 콘택 식각 마스크를 이용한 사진 식각 공정을 패턴닝하여 랜딩플러그 콘택홀을 형성하는 공정과,Forming a landing plug contact hole by patterning a photolithography process using a landing plug contact etching mask on the interlayer insulating film;
상기 구조의 전표면에 제2 스페이서 절연막을 형성하는 공정을 구비함에 있다.And forming a second spacer insulating film on the entire surface of the structure.
이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 제조방법에 대하여 상세히 설명을 하기로 한다.Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.
도 2a 내지 도 2d는 본 발명에 따른 반도체소자의 제조공정도이다.2A to 2D are manufacturing process diagrams of a semiconductor device according to the present invention.
먼저, 반도체기판(10)상에 게이트산화막(12)을 형성하고, 그 상부에 게이트전극이 되는 도전층(14)과 질화막 재질의 마스크 절연막(16) 및 하드마스크층(30)을 순차적으로 형성한다. 여기서 상기 하드마스크층(30)은 제1질화막(30-1)과 제2질화막(30-2) 및 제3질화막(30-3)으로 구성되며, 제1질화막(30-1)은 랜딩 플러그 에칭 공정후에 남아 있어야하는 두께 만큼을 플라즈마 유도화학기상증착 방법으로 형성하고, 제2질화막(30-2)은 두 번째 게이트 측벽 물질의 두께 이상의 두께를 가지도록 저압 화학기상증착 방법으로 형성하고, 상기 제3질화막(30-2)은 게이트 패턴닝 시 손실되는 높이 만큼 플라즈마 유도 화학기상증착 방법으로 형성된다. 상기 제3질화막(30-3)은 게이트 패턴닝 및 랜딩 플러그 콘택홀 형성을 위한 SAC 에칭 공정시 베리어가 된다. (도 2a 참조).First, a gate oxide film 12 is formed on the semiconductor substrate 10, and a conductive layer 14 serving as a gate electrode, a mask insulating film 16 and a hard mask layer 30 made of nitride are sequentially formed thereon. do. The hard mask layer 30 may include a first nitride film 30-1, a second nitride film 30-2, and a third nitride film 30-3, and the first nitride film 30-1 may be a landing plug. The thickness that should remain after the etching process is formed by the plasma induced chemical vapor deposition method, and the second nitride film 30-2 is formed by the low pressure chemical vapor deposition method to have a thickness greater than or equal to the thickness of the second gate sidewall material. The third nitride film 30-2 is formed by a plasma induced chemical vapor deposition method by a height lost during gate patterning. The third nitride layer 30-3 becomes a barrier during the SAC etching process for gate patterning and landing plug contact hole formation. (See FIG. 2A).
그다음 상기 하드마스크층(30)상에 게이트 패터닝용 감광막 패턴(도시되지 않음)을 형성하고, 상기 감광막 패턴에 의해 노출되어있는 하드마스크층(30)과 도전층(14) 및 게이트산화막(12)을 순차적으로 제거하여 하드마스크층(16) 패턴과 중첩되어있는 게이트전극(18)을 형성한다. 이때 상기 하드마스크층(30)의 제2질화막(30-2)의 일부 두께가 제거된다. (도 2b 참조).Next, a gate patterning photoresist pattern (not shown) is formed on the hard mask layer 30, and the hard mask layer 30, the conductive layer 14, and the gate oxide layer 12 exposed by the photoresist pattern are formed. Are sequentially removed to form the gate electrode 18 overlapping with the hard mask layer 16 pattern. In this case, a part of the thickness of the second nitride film 30-2 of the hard mask layer 30 is removed. (See FIG. 2B).
그후, 상기 구조의 전표면에 절연 스페이서의 일부가 되는 제1 스페이서 절연막(32)을 형성하고, 산화막이나 질화막 재질로 상기 구조의 전표면에 랜딩 플러그 콘택을 형성하기 위한 층간절연막(도시되지 않음)을 도포하고, SAC 방법으로 랜딩 플러그 콘택홀(34)을 형성한다. (도 2c 참조).An interlayer insulating film (not shown) is then formed on the entire surface of the structure to form a first spacer insulating film 32, which is part of the insulating spacer, and to form a landing plug contact on the entire surface of the structure, using an oxide film or a nitride film. Is applied, and the landing plug contact hole 34 is formed by the SAC method. (See FIG. 2C).
그다음 상기 구조의 전표면에 제2 스페이서 절연막(36)을 도포하고, 스페이서에치하여 게이트전극(18)과 하드마스크층(30) 패턴의 측벽에 제1 및 제2 스페이서 절연막(32), (36) 패턴으로된 스페이서를 형성한다. (도 2d 참조).Then, the second spacer insulating film 36 is coated on the entire surface of the structure, and the spacers are etched to form the first and second spacer insulating films 32 and (2) on the sidewalls of the gate electrode 18 and the hard mask layer 30 pattern. 36) A spacer in a pattern is formed. (See FIG. 2D).
이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은 게이트전극 형성을 위한 하드마스크층을 이중층으로 형성하고, 게이트전극 측벽 절연막 두층중 하나를 콘택홀 형성후에 형성하였으므로, 게이트전극 패턴닝 후에도 하드마스크층이 충분히 남도록하여 후속 랜딩플러그 공정 뿐 아니라 비트라인이나 전하저장전극 콘택 형성등의 공정에서도 마스크절연막 패턴이나 게이트전극 등의 하부막들을 보호하고, 게이트전극의 단차를 감소시킬 수 있어 패턴닝 공정이 용이하고, 할로 이온주입 슬로프를 증대시킬 수 있으며, 절연막 도포시 보이드 생성이 방지되고, 게이트 노출에 따른 다락이 방지도어 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, in the method of manufacturing the semiconductor device according to the present invention, since the hard mask layer for forming the gate electrode is formed as a double layer, and one of the two layers of the gate electrode sidewall insulating film is formed after the contact hole is formed, it is difficult to harden even after the gate electrode patterning. The masking layer is sufficiently left to protect the lower layers such as the mask insulating layer pattern and the gate electrode in the subsequent landing plug process as well as the process of forming the bit line or the charge storage electrode contact, and the step difference of the gate electrode can be reduced. It is easy to increase the halo ion implantation slope, to prevent the generation of voids during the coating of the insulating film, and to prevent the fall due to the exposure of the gate door door yield and the reliability of the device operation has the advantage.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020088157A KR20040061857A (en) | 2002-12-31 | 2002-12-31 | Method for fabricating of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020088157A KR20040061857A (en) | 2002-12-31 | 2002-12-31 | Method for fabricating of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040061857A true KR20040061857A (en) | 2004-07-07 |
Family
ID=37353346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020088157A KR20040061857A (en) | 2002-12-31 | 2002-12-31 | Method for fabricating of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040061857A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100838395B1 (en) * | 2006-02-27 | 2008-06-13 | 주식회사 하이닉스반도체 | Method for fabricating semiconductor device using hardmask |
US9627509B2 (en) | 2014-07-21 | 2017-04-18 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
-
2002
- 2002-12-31 KR KR1020020088157A patent/KR20040061857A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100838395B1 (en) * | 2006-02-27 | 2008-06-13 | 주식회사 하이닉스반도체 | Method for fabricating semiconductor device using hardmask |
US9627509B2 (en) | 2014-07-21 | 2017-04-18 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100350764B1 (en) | Manufacturing method of semiconductor device | |
KR100583103B1 (en) | Method for fabricating of semiconductor device | |
KR20040061857A (en) | Method for fabricating of semiconductor device | |
KR20050052581A (en) | Manufacturing method for semicondutor device | |
KR100307560B1 (en) | Manufacturing method of semiconductor device | |
KR20060113282A (en) | Manufacturing method for semiconductor device | |
KR20000045328A (en) | Method for manufacturing semiconductor device | |
KR100944344B1 (en) | Manufacturing method for semiconductor device | |
KR100535083B1 (en) | Manufacturing method for semiconductor device | |
KR100334534B1 (en) | Manufacturing method for semiconductor device | |
KR100482997B1 (en) | Manufacturing method for semiconductor device | |
KR20050014156A (en) | Manufacturing method for semiconductor device | |
KR100304440B1 (en) | Manufacturing method of semiconductor device | |
KR100861188B1 (en) | Manufacturing method for semiconductor device | |
KR100527568B1 (en) | Manufacturing method for semiconductor device | |
KR20040080574A (en) | Method for manufacturing semiconductor device | |
KR20020002009A (en) | Manufacturing method for semiconductor device | |
KR20050041552A (en) | Manufacturing method for semiconductor device | |
KR20000045358A (en) | Fabrication method of semiconductor device | |
KR20040102720A (en) | Manufacturing method for semiconductor device | |
KR20050041550A (en) | Manufacturing method for semiconductor device | |
KR20050041553A (en) | Manufacturing method for semiconductor device | |
KR20050040001A (en) | Manufacturing method for semiconductor device | |
KR20050052585A (en) | Manufacturing method for semiconductor device | |
KR20040072261A (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |