KR20040059778A - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR20040059778A
KR20040059778A KR1020020086281A KR20020086281A KR20040059778A KR 20040059778 A KR20040059778 A KR 20040059778A KR 1020020086281 A KR1020020086281 A KR 1020020086281A KR 20020086281 A KR20020086281 A KR 20020086281A KR 20040059778 A KR20040059778 A KR 20040059778A
Authority
KR
South Korea
Prior art keywords
fuse
interlayer insulating
film
insulating film
semiconductor device
Prior art date
Application number
KR1020020086281A
Other languages
Korean (ko)
Inventor
장헌용
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020086281A priority Critical patent/KR20040059778A/en
Publication of KR20040059778A publication Critical patent/KR20040059778A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE: A method for fabricating a semiconductor device is provided to improve repair yield of a semiconductor device by preventing damage to adjacent fuses and their peripheral structure in a fuse cutting process. CONSTITUTION: The first interlayer dielectric(32) is formed on a substrate(30). A fuse(33) is formed on the first interlayer dielectric. A buffering silicon nitride layer is formed on the fuse in a laser radiation process. The second interlayer dielectric(34) is formed on the buffering silicon nitride layer. The second interlayer dielectric on the fuse is selectively removed to be left by a predetermined thickness.

Description

반도체 장치의 제조방법{Method for fabricating semiconductor device}Method for fabricating semiconductor device

본 발명은 반도체 장치의 제조방법에 관한 것으로, 특히 반도체 장치의 리페어 공정시 사용되는 퓨즈를 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a fuse used in a repair process of a semiconductor device.

반도체 장치, 특히 메모리장치 제조시 수많은 미세 셀 중에서 한 개라도 결함이 있으면 메모리로서의 기능을 수행 하지 못하므로 불량품으로 처리된다. 그러나 메모리 내의 일부 셀에만 결함이 발생하였는데도 불구하고 장치 전체를 불량품으로 폐기하는 것은 수율(yield)측면에서 비효율적인 처리방법이다.In the manufacture of a semiconductor device, especially a memory device, if any one of a number of fine cells is defective, the semiconductor device does not function as a memory and thus is treated as a defective product. However, despite the fact that only a few cells in the memory have failed, discarding the entire device as defective is an inefficient process in terms of yield.

따라서, 현재는 메모리장치 내에 미리 설치해둔 예비 메모리 셀(이하 리던던시(redundancy) 셀이라 함)을 이용하여 불량 셀을 대체함으로써, 전체 메모리를 되살려 주는 방식으로 수율 향상을 이루고 있다.Therefore, the current yield is improved by replacing a defective cell by using a preliminary memory cell (hereinafter, referred to as a redundancy cell) previously installed in the memory device.

리던던시 셀을 이용한 리페어 작업은 통상, 일정 셀 어레이(cell array)마다 스페어 로우(spare low)와 스페어 칼럼(sparecolumn)을 미리 설치해 두어 결함이 발생된 불량 메모리 셀을 로우/컬럼 단위로 스페어 메모리 셀로 치완해 주는 방식으로 진행된다.In the repair operation using redundancy cells, spare rows and spare columns are pre-installed for each cell array, and defective defective memory cells are replaced with spare memory cells in row / column units. Proceed in a way that will.

이를 자세히 살펴보면, 웨이퍼 가공 완료후 테스트를 통해 불량 메모리 셀을 골라내면 그에 해당하는 어드레스(address)를 스페어 셀의 어드레스 신호로 바꾸어 주는 프로그램을 내부회로에 행하게 된다. 따라서, 실제 사용시에는 불량 라인에 해당하는 어드레스 신호가 입력되면 이 대신 예비 라인으로 선택이 바뀌게 되는 것이다.In detail, when a defective memory cell is selected through a test after wafer processing is completed, a program is executed in an internal circuit to change an address corresponding to the address signal of a spare cell. Therefore, in actual use, when an address signal corresponding to a bad line is input, the selection is changed to a spare line instead.

전술한 프로그램 방식 중에서, 가장 널리 사용되는 방식이 레이저 빔으로 퓨즈를 태워 끊어버리는 방식인데, 레이저의 조사에 의해 끊어지는 배선을 퓨즈라 하고, 그 끊어지는 부위와 이를 둘러싸는 영역을 퓨즈 박스라 한다. 통상적으로 퓨즈라인 상부에는 일정한 두께의 절연막을 남겨, 이후 리페어 공정시 레이저 조사에 의해 퓨즈가 끊어 지는 공정에 완충역할을 하도록 하고 있다.Among the above-described program methods, the most widely used method is to burn a fuse with a laser beam and blow it. The wiring broken by the laser irradiation is called a fuse, and the broken portion and the area surrounding the fuse box are called fuse boxes. . In general, an insulating film having a predetermined thickness is left on the fuse line, and then a buffering function is performed in a process in which the fuse is blown by laser irradiation during the repair process.

그러나 공정 환경 또는 웨이퍼 상에서 장치의 위치, 퓨즈의 넓이 등에 따라 퓨즈 상부에 남겨지는 절연막의 두께 변화가 심하여, 레이저 조사로 퓨즈를 절연시키더라도 주변 퓨즈와의 단락문제, 퓨즈 미절연 또는 레이저 조사로 인하 하부구조의 데미지가 문제점으로 되고 있다.However, depending on the process environment or the location of the device on the wafer, and the width of the fuse, the thickness of the insulating film remaining on the fuse is severe. Damage to the infrastructure is becoming a problem.

도1a는 종래기술에 의한 다층 금속 배선구조를 채택한 반도체 장치에서 퓨즈를 도시한 단면도이다.Fig. 1A is a sectional view showing a fuse in a semiconductor device employing a multilayer metal wiring structure according to the prior art.

종래기술에 의해 퓨즈가 형성된 반도체 장치의 단면은, 도1의 도시된 바와 같이, 기판(10) 상부에 소자분리막(11), 게이트 패턴(12), 콘택플러그(14), 제1 및 제2 비아플러그(17,21), 제1,2 금속배선(16,19) 및 퓨즈(20a,20b)과, 층간절연막들(13,15,18) 및 패드(pad)(22)가 형성된다. 여기서, 편의상 각각의 층간절연막들(13,15,18)은 각각 하나의 층으로 도시하였지만 실제로는 여러 층의 절연막들이 적층된 막으로 이루어질 수 있다.As shown in FIG. 1, a cross-section of a semiconductor device in which a fuse is formed according to the related art is shown in FIG. Via plugs 17 and 21, first and second metal wires 16 and 19, and fuses 20a and 20b, interlayer insulating layers 13, 15, and 18, and pads 22 are formed. Here, for convenience, each of the interlayer insulating films 13, 15, and 18 is illustrated as one layer, but in practice, the interlayer insulating films 13, 15, and 18 may be formed of a film in which several insulating films are stacked.

여기서 퓨즈(20a,20b)는 제2 금소배선(19)을 형성할 때에 같이 형성되는 구조를 취하고 있으나, 퓨즈는 메모리 장치의 비트라인 또는 워드라인이 될 수도 있고, 다른 금속배선이 될 수도 있다. 이러한 사항들은 추후에 후술되는 본 발명의 실시예에도 그대로 적용된다. 또한, 도면부호 '23'은 리페어 공정시 퓨즈절단을 위해 퓨즈상부의 층간절연막(21)을 일정두께만큼 제거하여 형성하게 되는 퓨즈박스이다. 이 때 퓨즈상부의 층간절연막(21)은 약 3000Å 정도 형성시키는 공정을 진행한다.Here, the fuses 20a and 20b have a structure that is formed together when the second metal wires 19 are formed. However, the fuses may be bit lines or word lines of the memory device or other metal wires. These matters also apply to embodiments of the present invention described later. In addition, reference numeral 23 denotes a fuse box formed by removing the interlayer insulating layer 21 on the upper portion of the fuse by a predetermined thickness for cutting the fuse during the repair process. At this time, the interlayer insulating film 21 on the upper portion of the fuse is formed to have a thickness of about 3000 mW.

이어서 도1b에 도시된 바와 같이, 반도체 장치의 테스트시에 결함이 발생한 경우에 리페어를 위해서 레이저를 이용하여 퓨즈(20a)를 절단하게 된다.Subsequently, as illustrated in FIG. 1B, when a defect occurs during the test of the semiconductor device, the fuse 20a is cut by using a laser for repair.

그러나, 레이저를 조사하여 퓨즈(20a)를 절단하게 되면 주변의 층간절연막과 이웃한 퓨즈(20b)에도 데미지를 입히게 된다.However, when the fuse 20a is cut by irradiating the laser, damage is also caused to the adjacent interlayer insulating film and the neighboring fuse 20b.

더구나 퓨즈박스를 형성할 때에 퓨즈(20a,20b)의 상부에 남아 있는 층간절연막(18)의 두께는 제어가 쉽지않고 웨이퍼상의 장치의 위치에 따라 그 두께가 달라져, 일정한 에너지로 레이저를 퓨즈로 조사하여도 컷팅 불량이 쉽게 발생되며, 퓨즈주변 구조에 데미지를 주는 크랙(Crack)현상이 일어나게 되는 것이다.In addition, the thickness of the interlayer insulating film 18 remaining on the top of the fuses 20a and 20b when forming the fuse box is not easy to control and varies depending on the position of the device on the wafer. Even if the cutting defect is easily generated, the crack phenomenon that damages the structure around the fuse occurs.

여기서 발생한 크랙은 후속 환경테스트들인 고온, 고압, 수분상태에서 테스트측정시에 수분침투와 같은 현상에 의하여 퓨즈의 산화가 발생하면서 에러를 유발할 수 있다.Cracks generated here may cause errors due to oxidation of the fuse due to phenomena such as moisture penetration during test measurements at high temperature, high pressure, and moisture conditions, which are subsequent environmental tests.

도2a는 퓨즈박스 및 퓨즈를 나타내는 전자현미경 사진이고, 도2b는 퓨즈 절단시 문제점을 보여주는 전자현미경 사진이다.Figure 2a is an electron micrograph showing a fuse box and a fuse, Figure 2b is an electron microscope picture showing a problem when cutting the fuse.

도2b는 도2a에 도시된 퓨즈를 레이져 조사하여 절단할 때 주변 층간절연막(실리콘 산화막에 크랙된 부분과, 이로 인해 이웃한 퓨즈까지 데미지가 가해진 것이나타나 있다.FIG. 2B shows that damage is applied to the peripheral interlayer insulating film (the part cracked in the silicon oxide film and thus to the neighboring fuses) when the fuse shown in FIG. 2A is cut by laser irradiation.

전술한 바와 같이 하나의 퓨즈를 레이저 조사하여 절단하는 리페어 공정에서 주변의 층간절연막과 이웃한 퓨즈에 데미지가 가해져 반도체 장치의 신뢰성 및 수율에 문제를 가져오고 있다.As described above, damage is applied to neighboring interlayer insulating films and neighboring fuses in a repair process in which a fuse is cut by laser irradiation, thereby causing a problem in reliability and yield of a semiconductor device.

본 발명은 상기의 문제점을 해결하기 위해 제안된 것으로 리페어 공정에서 퓨즈의 레이저 컷팅시 퓨즈 주변구조에 가해지는 데미지를 방지하는 반도체 장치 제조방법을 제공함을 목적으로 한다.The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device that prevents damage to the surrounding structure of the fuse during laser cutting of the fuse in the repair process.

도1a 및 1b는 종래 기술에 의한 반도체 장치의 퓨즈를 나타내는 단면도.1A and 1B are cross-sectional views showing a fuse of a semiconductor device according to the prior art.

도2a는 퓨즈박스 및 퓨즈를 나타내는 전자현미경 사진이다.2A is an electron micrograph showing a fuse box and a fuse.

도2b는 퓨즈 절단시 문제점을 보여주는 전자현미경 사진이다.Figure 2b is an electron micrograph showing a problem when cutting the fuse.

도3a 내지 도3e는 본 발명의 바람직한 일실시예에 따른 반도체 제조방법을 나타내는 도면.3A to 3E are diagrams illustrating a semiconductor manufacturing method according to a preferred embodiment of the present invention.

** 도면의 주요 부분에 대한 부호 설명** Explanation of symbols on the main parts of the drawing

30 : 기판30: substrate

31 : 소자분리막31: device isolation film

32 : 제1 층간절연막32: first interlayer insulating film

33 : 퓨즈33: fuse

34 : 제2 층간절연막34: second interlayer insulating film

35 : 실리콘 질화막35 silicon nitride film

36 : 제3 층간절연막36: third interlayer insulating film

상기의 목적을 달성하기 위하여, 이를 위해 본 발명은 기판상에 제1 층간절연막을 형성하는 단계; 상기 제1 층간절연막 상에 퓨즈를 형성하는 단계; 상기 퓨즈상에 레이저 조사공정시 완충용 실리콘 질화막을 형성하는 단계; 및 상기 완충용 실리콘 질화막상에 제2 층간절연막을 형성하는 단계를 포함하는 반도체 장치의 제조방법을 제공한다.In order to achieve the above object, the present invention for this purpose comprises the steps of forming a first interlayer insulating film on the substrate; Forming a fuse on the first interlayer insulating film; Forming a buffer silicon nitride film on the fuse during the laser irradiation process; And forming a second interlayer insulating film on the buffer silicon nitride film.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시 할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily implement the technical idea of the present invention. do.

도3a 내지 도3e는 본 발명의 바람직한 일실시예에 따른 반도체 제조방법을 나타내는 도면이다.3A to 3E are views illustrating a semiconductor manufacturing method according to an exemplary embodiment of the present invention.

본 발명의 일실시예에 따른 반도체 제조방법은 먼저, 도3a에 도시된 바와 같이 기판(30)상에 소자분리막(31)을 형성하고, 그 상부에 제1 층간절연막(32)를 형성한다. 여기서 소자분리막(31)은 STI(Shallow trench isolation)형 소자분리막으로 형성하고 그 상부에 제1 층간절연막(32)를 형성한다.In the semiconductor manufacturing method according to the exemplary embodiment of the present invention, first, as shown in FIG. 3A, the device isolation layer 31 is formed on the substrate 30, and the first interlayer insulating layer 32 is formed thereon. The isolation layer 31 is formed of a shallow trench isolation (STI) isolation layer, and a first interlayer insulating layer 32 is formed thereon.

이어서 도3b에 도시된 바와 같이, 제1 층간절연막(32)상에 퓨즈(32)를 형성한다.Subsequently, as shown in FIG. 3B, a fuse 32 is formed on the first interlayer insulating film 32.

이어서 도3c에 도시된 바와 같이, 퓨즈가 형성된 패턴을 따라서 제2 층간절연막(34)을 형성한다.Subsequently, as illustrated in FIG. 3C, a second interlayer insulating film 34 is formed along the pattern in which the fuse is formed.

이어서 도3d에 도시된 바와 같이, 제2 층간절연막(34)상에 실리콘 질화막(35)을 형성한다. 여기서 형성하는 실리콘 질화막(35)은 후속 리페어 공정시 하나의 퓨즈를 레이저 조사로 절단할 때 절단된 퓨즈주변의 제1 층간절연막(32)과 제2 층간절연막(34)에 가해진 데미지에 버퍼역할을 하기 위한 것이다.Subsequently, as shown in FIG. 3D, a silicon nitride film 35 is formed on the second interlayer insulating film 34. The silicon nitride film 35 formed as a buffer serves as a buffer to damage applied to the first interlayer insulating film 32 and the second interlayer insulating film 34 around the cut fuse when one fuse is cut by laser irradiation in a subsequent repair process. It is to.

이어서 3e에 도시된 바와 같이, 실리콘 질화막(35)상에 제3 층간절연막(36)을 형성한다. 이어서 퓨즈(32)가 형성된 영역의 상부에 형성된 제3 층간절연막(36)을 선택적으로 제거하여 퓨즈박스(미도시)를 형성한다.Subsequently, as shown in 3e, a third interlayer insulating film 36 is formed on the silicon nitride film 35. Subsequently, the third interlayer insulating layer 36 formed on the region where the fuse 32 is formed is selectively removed to form a fuse box (not shown).

전술한 바와 같이 본 발명에 의해 퓨즈 및 퓨즈박스를 형성하게 되면 리페어공정시 하나의 퓨즈를 레이저 조사로 절단할 때, 절단된 퓨즈의 주변 영역의 층간절연막(34,36)이 데미지를 입어 크랙이 생긴다하더라도 층간절연막(34)과 층간절연막(36) 사이에 형성된 실리콘 질화막(35)이 완충작용을 하게 된다.As described above, when the fuse and the fuse box are formed according to the present invention, when one fuse is cut by laser irradiation during the repair process, the interlayer insulating films 34 and 36 in the peripheral area of the cut fuse are damaged and cracks are formed. Although generated, the silicon nitride film 35 formed between the interlayer insulating film 34 and the interlayer insulating film 36 has a buffering effect.

따라서 리레어공정시 레이저 조사로 인해 제1 내지 제2 층간절연막(32,34,36)에 생기는 크랙으로 인해 수분이 침투하여 생기는 퓨즈의 산화등을 실리콘 질화막(35)에 의해 방지할 수 있는 것이다.Therefore, the silicon nitride film 35 prevents the oxidation of the fuse, which is caused by moisture penetration, due to cracks in the first to second interlayer insulating films 32, 34, and 36 due to laser irradiation during the rare process. .

또한, 전술한 실시에에서 제2 층간절연막(34) 형성 공정은 생략하고, 실리콘 질화막(35)을 퓨즈 상에 바로 형성할 수도 있다.In the above-described embodiment, the process of forming the second interlayer insulating film 34 may be omitted, and the silicon nitride film 35 may be formed directly on the fuse.

여기서 제1 내지 제3 층간절연막(32,35,37)은 USG(Undoped-Silicate Glass), PSG(Phospho-Silicate Glass), BPSG(Boro-Phospho-Silicate Glass), HDP(High density Plasma) 산화막, SOG(Spin On Glass)막, TEOS(Tetra Ethyl Ortho Silicate)막 또는 HDP(high densigy plasma)를 이용한 산화막등을 사용하거나 열적 산화막(Thermal Oxide; 퍼니스에서 600~1,100℃사이의 고온으로 실리콘 기판을 산화시켜 형성하는 막)으로 형성할 수 있다. 또한 제1 및 제2 퓨즈용 도전막(33,36)는 폴리실리콘막 또는 금속배선을 이용하여 형성한다.The first to third interlayer insulating films 32, 35, and 37 may include undoped-silicate glass (USG), phospho-silicate glass (PSG), boro-phospho-silicate glass (BPSG), and high density plasma (HDP) oxide films. Oxide the silicon substrate using a SOG (Spin On Glass) film, TEOS (Tetra Ethyl Ortho Silicate) film, or an oxide film using HDP (high densigy plasma), or thermal oxide (Thermal Oxide; Film to be formed). The first and second fuse conductive films 33 and 36 are formed using a polysilicon film or a metal wiring.

또한 실리콘 질화막(35)으로 PE(plasma enhanced)-질화막, LP(low pressure)-질화막을 이용할 수 있다.In addition, as the silicon nitride layer 35, a plasma enhanced (PE) -nitride layer or a low pressure (LP) -nitride layer may be used.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

본 발명에 의해 리페어 공정에서, 퓨즈 컷팅시 이웃한 퓨즈와 주변 구조물에 데미지가 없어 반도체 장치의 리페어 수율을 향상시킬 수 있다.According to the present invention, in the repair process, adjacent fuses and peripheral structures are not damaged at the time of fuse cutting, thereby improving the repair yield of the semiconductor device.

Claims (4)

기판상에 제1 층간절연막을 형성하는 단계;Forming a first interlayer insulating film on the substrate; 상기 제1 층간절연막 상에 퓨즈를 형성하는 단계;Forming a fuse on the first interlayer insulating film; 상기 퓨즈상에 레이저 조사공정시 완충용 실리콘 질화막을 형성하는 단계; 및Forming a buffer silicon nitride film on the fuse during the laser irradiation process; And 상기 완충용 실리콘 질화막상에 제2 층간절연막을 형성하는 단계Forming a second interlayer insulating film on the buffer silicon nitride film 를 포함하는 반도체 장치의 제조방법.Method for manufacturing a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 퓨즈상의 상기 제2 층간절연막이 소정 두께만 남도록 상기 제2 층간절연막을 선택적으로 제거하는 단계를 더 포함하는 것을 특징으로 하는 반도체 장치의 제조방법.And selectively removing said second interlayer insulating film so that said second interlayer insulating film on said fuse remains only a predetermined thickness. 제 1 항에 있어서,The method of claim 1, 상기 제1 층간절연막 또는 제2 층간절연막은The first interlayer insulating film or the second interlayer insulating film HDP막, USG막, BPSG막, PSG막 또는 HLD막중에서 선택된 하나인 것을 특징으로 하는 반도체 장치의 제조방법.A method of manufacturing a semiconductor device, characterized in that it is one selected from among HDP film, USG film, BPSG film, PSG film, or HLD film. 제 1 항에 있어서,The method of claim 1, 상기 퓨즈는The fuse 폴리실리콘막 또는 금속배선을 이용해서 형성하는 것을 특징으로 하는 반도체 장치의 제조방법.A method of manufacturing a semiconductor device, characterized in that it is formed using a polysilicon film or metal wiring.
KR1020020086281A 2002-12-30 2002-12-30 Method for fabricating semiconductor device KR20040059778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020086281A KR20040059778A (en) 2002-12-30 2002-12-30 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020086281A KR20040059778A (en) 2002-12-30 2002-12-30 Method for fabricating semiconductor device

Publications (1)

Publication Number Publication Date
KR20040059778A true KR20040059778A (en) 2004-07-06

Family

ID=37351748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020086281A KR20040059778A (en) 2002-12-30 2002-12-30 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR20040059778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865710B1 (en) * 2007-08-06 2008-10-29 주식회사 하이닉스반도체 Semiconductor device with fuse box and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865710B1 (en) * 2007-08-06 2008-10-29 주식회사 하이닉스반도체 Semiconductor device with fuse box and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100745910B1 (en) Method for forming fuse of semiconductor device
KR20040059778A (en) Method for fabricating semiconductor device
KR20040059821A (en) Method for fabricating semiconductor device
KR100799131B1 (en) Semiconductor device with fuse of impurity region
KR20040059959A (en) Method for fabricating semiconductor device
KR100605608B1 (en) Semiconductor memory device and method for fabricating the same
KR100921829B1 (en) Semiconductor device and method for fabricating the same
KR100570067B1 (en) Semiconductor memory device and method for fabricating the same
KR100853478B1 (en) Semiconductor device and Method for fabricating the same
KR100578224B1 (en) Mtehod for fabricating semiconductor memory device
KR100889336B1 (en) Semiconductor device and method for fabricating the same
KR100799130B1 (en) Method for fabricating semiconductor device with double fuse layer
KR100605599B1 (en) Semiconductor device and Method for fabricating the same
KR100583144B1 (en) Method for fabricating semiconductor memory device
KR100904478B1 (en) Semiconductor device and method for fabricating the same
KR100762874B1 (en) Method for forming fuse of semiconductor device
KR100909753B1 (en) Fuse of Semiconductor Device and Formation Method
KR20040008706A (en) Method for fabricating semiconductor device
KR20080005720A (en) Method for manufacturing fuse box a semiconductor device
KR20090088678A (en) Fuse and method for manufacturing the same
KR100909755B1 (en) Fuse of Semiconductor Device and Formation Method
KR20040059789A (en) Method for fabricating semiconductor device
KR20030058281A (en) Semiconductor device and method for fabricating the same
KR20030058306A (en) Method for repairing memory semiconductor device
KR20070100496A (en) Fuse in semiconductor device and forming using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application