KR20040008485A - Forming method for test patterns of a semiconductor device - Google Patents

Forming method for test patterns of a semiconductor device Download PDF

Info

Publication number
KR20040008485A
KR20040008485A KR1020020042124A KR20020042124A KR20040008485A KR 20040008485 A KR20040008485 A KR 20040008485A KR 1020020042124 A KR1020020042124 A KR 1020020042124A KR 20020042124 A KR20020042124 A KR 20020042124A KR 20040008485 A KR20040008485 A KR 20040008485A
Authority
KR
South Korea
Prior art keywords
forming
gate electrode
insulating film
pattern
gate
Prior art date
Application number
KR1020020042124A
Other languages
Korean (ko)
Inventor
김경도
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020042124A priority Critical patent/KR20040008485A/en
Publication of KR20040008485A publication Critical patent/KR20040008485A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE: A method for forming a test pattern of a semiconductor device is provided to enhance the reliability of a test process by forming the test pattern for measuring only SAC(Self Aligned Contact) failure. CONSTITUTION: An N-well(33) is formed on a test pattern region of a semiconductor substrate. A gate insulating layer is formed on the semiconductor substrate. A conductive layer for a gate electrode is formed on the gate insulating layer. A gate electrode and a gate insulating layer pattern(35) are formed by etching the conductive layer for the gate electrode and the gate insulating layer. A p+ source/drain region(43) is formed by implanting p+ ions into the semiconductor substrate of both sides of the gate electrode. An insulating layer spacer(41) is formed on the gate electrode and a sidewall of the gate insulating layer pattern(35). An interlayer dielectric(45) is formed on the entire surface of the semiconductor substrate. The interlayer dielectric(45) is etched by performing a photo-etch process. A landing plug(47) is formed by forming a conductive layer thereon and etching the conductive layer.

Description

반도체소자의 테스트 패턴 형성방법{Forming method for test patterns of a semiconductor device}Forming method for test patterns of a semiconductor device

본 발명은 반도체소자의 테스트패턴 형성방법에 관한 것으로, 보다 상세하게 SAC 페일만을 측정할 수 있는 테스트패턴을 형성함으로써 소자의 특성을 보다 신뢰성 있게 테스트할 수 있는 반도체소자의 테스트패턴 형성방법에 관한 것이다.The present invention relates to a method of forming a test pattern of a semiconductor device, and more particularly, to a method of forming a test pattern of a semiconductor device capable of more reliably testing the characteristics of a device by forming a test pattern capable of measuring only a SAC fail. .

DRAM에서 테스트 패턴을 통해 소자의 전기적 특성을 측정하여 소자의 시뮬레이션에 큰 도움을 줄 수 있다.In DRAM, test patterns can be used to measure the electrical properties of the device, which can be a great help in device simulation.

반도체소자가 고집적화 되어가면서 대부분의 콘택홀은 SAC방법을 이용하여 형성되고 있다.As semiconductor devices are becoming highly integrated, most contact holes are formed using the SAC method.

특히, 최근의 기술 동향에서 SAC방법으로 콘택홀을 형성하는 경우 식각장벽으로 사용하는 물질을 도전배선의 하드마스크로 사용하고 있으며, 이때 잔존하는 하드마스크의 두께는 SAC 페일(fail) 발생에 큰 변수로 작용한다.In particular, in the recent technology trend, when the contact hole is formed by the SAC method, a material used as an etch barrier is used as a hard mask for the conductive wiring, and the thickness of the remaining hard mask is a large variable in the generation of SAC fail. Acts as.

이때, 식각장벽으로 사용되는 하드마스크의 두께는 소자의 고집적화로 인하여 어느 수준 이상은 사용할 수 없다.In this case, the thickness of the hard mask used as an etch barrier cannot be used above a certain level due to the high integration of the device.

상기 SAC 페일의 개선을 위하여 도전배선 형성 시 도전배선의 상부에 존재하는 하드마스크의 두께를 계속 증가시키고 있다.In order to improve the SAC fail, the thickness of the hard mask existing on the upper portion of the conductive line is continuously increased when the conductive line is formed.

그러나, 상기 하드마스크의 두께를 증가시키는 경우 도전배선의 형성 과정 자체가 어려워진다는 문제점이 있다.However, when increasing the thickness of the hard mask, there is a problem that the formation process of the conductive wiring itself becomes difficult.

이하, 첨부된 도면을 참고로 하여 종래기술에 따른 반도체소자의 테스트패턴 형성방법에 대하여 설명한다.Hereinafter, a test pattern forming method of a semiconductor device according to the prior art will be described with reference to the accompanying drawings.

도 1a 는 종래기술의 제1실시예에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도로서, 반도체기판의 테스트패턴 형성영역에 SAC 페일을 측정하기 위한 테스트패턴이 형성되어 있는 것을 도시한다.1A is a schematic diagram showing a leakage current measuring mechanism using a test pattern of a semiconductor device according to a first embodiment of the prior art, in which a test pattern for measuring SAC fail is formed in a test pattern formation region of a semiconductor substrate. Illustrated.

먼저, 반도체기판(도시안됨)의 테스트패턴영역에 피형 불순물을 이온주입하여 피웰(13)을 형성한다.First, the pwell 13 is formed by ion implanting an impurity in a test pattern region of a semiconductor substrate (not shown).

다음, 상기 반도체기판에 활성영역을 정의하는 소자분리절연막(11)을 형성한다.Next, a device isolation insulating film 11 defining an active region is formed on the semiconductor substrate.

그 다음, 상기 반도체기판 상부에 게이트절연막과 게이트전극용 도전층을 형성한다. 이때, 상기 게이트전극용 도전층은 n+ 불순물이 이온주입되어 있는 다결정실리콘층, WN막과 W막의 적층구조로 형성된 것이다.Next, a gate insulating film and a conductive layer for a gate electrode are formed on the semiconductor substrate. In this case, the gate electrode conductive layer is formed of a polycrystalline silicon layer into which n + impurities are ion-implanted, a stacked structure of a WN film and a W film.

다음, 게이트전극 마스크를 이용한 사진식각공정으로 상기 적층구조를 식각하여 게이트절연막패턴(15)과 다결정실리콘층패턴(17), WN막패턴(18)과 W막패턴(19)으로 형성되는 게이트전극을 형성한다.Next, the stack structure is etched by a photolithography process using a gate electrode mask to form a gate insulating film pattern 15, a polysilicon layer pattern 17, a WN film pattern 18, and a W film pattern 19. To form.

그 다음, 상기 게이트전극 양측 반도체기판에 저농도의 n형 불순물을 이온주입하여 n- 소오스/드레인영역(23)을 형성한다.Next, a low concentration of n-type impurities are implanted into the semiconductor substrates on both sides of the gate electrode to form an n− source / drain region 23.

다음, 상기 게이트전극 및 게이트절연막패턴(15)의 측벽에 절연막 스페이서(21)를 형성한다. 이때, 상기 절연막 스페이서(21)는 질화막으로 형성된 것이다.Next, an insulating film spacer 21 is formed on sidewalls of the gate electrode and the gate insulating film pattern 15. At this time, the insulating film spacer 21 is formed of a nitride film.

그 다음, 전체표면 상부에 층간절연막(25)을 형성한다. 상기 층간절연막(25)은 BPSG막으로 형성된 것이다.Next, an interlayer insulating film 25 is formed over the entire surface. The interlayer insulating film 25 is formed of a BPSG film.

다음, 비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 노출시키는 콘택마스크를 이용한 사진식각공정으로 상기 층간절연막(25)을 식각한다. 이때, 상기 식각공정은 SAC방법에 의해 실시된다.Next, the interlayer insulating layer 25 is etched by a photolithography process using a contact mask exposing portions intended as bit line contacts and storage electrode contacts. At this time, the etching process is performed by the SAC method.

그 다음, 전체표면 상부에 도전층(도시안됨)을 형성한 다음, 평탄화식각하여 랜딩플러그(27)를 형성한다. 이때, 상기 도전층은 n+ 불순물이 이온주입된 다결정실리콘층이 사용된다.Then, a conductive layer (not shown) is formed over the entire surface, and then planarized to form a landing plug 27. In this case, a polysilicon layer in which n + impurities are ion-implanted is used.

그 후, 상기 SAC방법에 의한 페일을 확인하기 위해 테스트공정을 실시한다.Thereafter, a test process is performed to confirm the fail by the SAC method.

이를 위하여 상기 랜딩플러그(27)에 Vcc 단자를 연결시키고, 상기 게이트전극(17)에 Vss 단자를 연결시켜 상기 랜딩플러그(27)와 게이트전극(17) 간의 누설전류 여부를 측정한다. 이때, 상기 랜딩플러그(27)와 게이트전극(17)이 쇼트된 경우 랜딩플러그(27)-게이트전극(17) 즉, (①)방향으로 흐르게 된다. (도 1a 참조)To this end, a Vcc terminal is connected to the landing plug 27, and a Vss terminal is connected to the gate electrode 17 to measure whether there is a leakage current between the landing plug 27 and the gate electrode 17. In this case, when the landing plug 27 and the gate electrode 17 are shorted, the landing plug 27 and the gate electrode 17 flow in the direction of the landing plug 27 and the gate electrode 17. (See Figure 1A)

도 2a 는 종래기술의 제2실시예에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도로서, 도 1a 의 피웰(13) 대신 엔웰(29)을 사용한 경우를 도시한다. 이때, 랜딩플러그(27)와 게이트전극 간의 누설전류를 테스트하기 위하여 게이트전극에 Vcc 단자를 연결하고, 엔웰(29)에 Vss 단자를 연결한다.FIG. 2A is a schematic diagram showing a leakage current measuring mechanism using a test pattern of a semiconductor device according to a second exemplary embodiment of the prior art, and illustrates a case in which an enwell 29 is used instead of the pewell 13 of FIG. 1A. At this time, in order to test the leakage current between the landing plug 27 and the gate electrode, a Vcc terminal is connected to the gate electrode, and a Vss terminal is connected to the enwell 29.

상기 구조에서 상기 랜딩플러그(27)와 게이트전극(17)이 쇼트된 경우 누설전류는 엔웰(29)-n-소오스/드레인영역(23)-랜딩플러그(27)-다결정실리콘층패턴(17), 즉 (④)방향으로 이동한다.In the above structure, when the landing plug 27 and the gate electrode 17 are shorted, the leakage current is n-well 29 -n- source / drain region 23-landing plug 27-polysilicon layer pattern 17 , That is, it moves in the direction (④).

그러나, 상기한 바와 같이 종래기술에 따른 반도체소자의 테스트패턴 형성방법은, 상기 랜딩플러그(27)와 게이트전극 간의 누설전류 측정 시 SAC 페일 이외에도 게이트절연막의 페일이 발생한 경우 측정되는 누설전류의 크기가 커지게 된다. 이러한 경우 도 1b에서 랜딩플러그(27)-다결정실리콘층패턴(17)과 n-소오스/드레인영역(23)-다결정실리콘층패턴(17), 즉 (②), (③)방향과, 도 2b에서 엔웰(29)-n-소오스/드레인영역(23)-랜딩플러그(27)-다결정실리콘층패턴(17)-엔웰(29), 즉 (④) 및 (⑤)방향으로 누설전류 통로가 형성되어 순수하게 SAC 페일에 의한 누설전류를 측정할 수 없다는 문제점이 있다.However, as described above, in the method of forming a test pattern of the semiconductor device according to the related art, the leakage current measured when the failure of the gate insulating layer in addition to the SAC failure is measured when the leakage current is measured between the landing plug 27 and the gate electrode. It becomes bigger. In this case, the landing plug 27-the polysilicon layer pattern 17 and the n-source / drain region 23-the polysilicon layer pattern 17 in Fig. 1b, i.e., directions (2) and (3), and Fig. 2b. Leakage current paths are formed in the enwells 29, n-source / drain regions 23, landing plugs 27, polysilicon layer patterns 17, enwells 29, i.e. There is a problem in that the leakage current due to the SAC fail cannot be measured purely.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 반도체기판에 엔웰을 형성하고, p+ 불순물을 이온주입하여 p+소오스/드레인영역을 형성한 후 n+불순물이 이온주입된 다결정실리콘층을 이용하여 게이트전극 및 랜딩플러그를 형성함으로써 상기 게이트전극과 랜딩플러그 간의 누설전류 측정 시 게이트전극과 p+소오스/드레인영역 간에 누설전류 경로가 형성되는 것을 방지하여 신뢰성 있는 측정치를 얻을 수 있는 반도체소자의 테스트패턴 형성방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, a gate is formed by using an polycrystalline silicon layer in which an n well is formed on a semiconductor substrate, and p + impurities are implanted to form a p + source / drain region, followed by ion implantation of n + impurities. Forming an electrode and a landing plug prevents the formation of a leakage current path between the gate electrode and the p + source / drain region when measuring the leakage current between the gate electrode and the landing plug, thereby obtaining reliable measurement values. The purpose is to provide.

도 1a 는 종래기술의 제1실시예에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도.1A is a schematic diagram showing a leakage current measuring mechanism using a test pattern of a semiconductor device according to a first embodiment of the prior art;

도 1b 는 도 1a 의 반도체소자의 테스트패턴을 이용한 SAC 페일 측정 시 문제점을 도시한 개략도.FIG. 1B is a schematic diagram illustrating a problem in measuring SAC fail using a test pattern of the semiconductor device of FIG. 1A; FIG.

도 2a 는 종래기술의 제2실시예에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도.2A is a schematic diagram showing a leakage current measuring mechanism using a test pattern of a semiconductor device according to a second embodiment of the prior art;

도 2b 는 도 2a 의 반도체소자의 테스트패턴을 이용한 SAC 페일 측정 시 문제점을 도시한 개략도.FIG. 2B is a schematic diagram illustrating a problem in measuring SAC fail using a test pattern of the semiconductor device of FIG. 2A; FIG.

도 3a 내지 도 3c 는 본 발명에 따른 반도체소자의 테스트패턴 형성방법에 의한 공정 단면도.3A to 3C are cross-sectional views illustrating a method for forming a test pattern of a semiconductor device according to the present invention.

도 4 는 본 발명에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도.4 is a schematic diagram showing a leakage current measuring mechanism using a test pattern of a semiconductor device according to the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

11, 31 : 소자분리절연막13 : 피웰11, 31: device isolation insulating film 13: Pwell

15, 35 : 게이트절연막패턴17, 37 : 다결정실리콘층패턴15, 35: gate insulating film pattern 17, 37: polysilicon layer pattern

18, 38 : WN층패턴19, 39 : W층패턴18, 38: WN layer pattern 19, 39: W layer pattern

21, 41 : 절연막 스페이서23 : n- 소오스/드레인영역21, 41: insulating film spacer 23: n- source / drain region

25, 45 : 층간절연막27, 47 : 랜딩플러그25, 45: interlayer insulating film 27, 47: landing plug

29 33 : 엔웰43 : p+ 소오스/드레인영역33 33: Enwell 43: p + source / drain region

이상의 목적을 달성하기 위해 본 발명에 따른 반도체소자의 테스트 패턴은,In order to achieve the above object, the test pattern of the semiconductor device according to the present invention,

반도체기판의 테스트패턴영역에 엔웰을 형성하는 공정과,Forming an enwell in the test pattern region of the semiconductor substrate;

상기 반도체기판 상부에 게이트절연막을 형성하는 공정과,Forming a gate insulating film on the semiconductor substrate;

상기 게이트절연막 상부에 게이트전극용 도전층을 형성하는 공정과,Forming a conductive layer for a gate electrode on the gate insulating film;

게이트전극용 마스크를 이용한 사진식각공정으로 상기 게이트전극용 도전층 및 게이트절연막을 식각하여 게이트전극 및 게이트절연막패턴을 형성하는 공정과,Forming a gate electrode and a gate insulating layer pattern by etching the gate electrode conductive layer and the gate insulating layer by a photolithography process using a mask for a gate electrode;

상기 게이트전극 양측 반도체기판에 p+ 불순물을 이온주입하여 p+ 소오스/드레인영역을 형성하는 공정과,Forming p + source / drain regions by implanting p + impurities into the semiconductor substrates on both sides of the gate electrode;

상기 게이트전극과 게이트절연막패턴 측벽에 절연막 스페이서를 형성하는 공정과,Forming an insulating film spacer on sidewalls of the gate electrode and the gate insulating film pattern;

전체표면 상부에 층간절연막을 형성하는 공정과,Forming an interlayer insulating film over the entire surface;

비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 노출시키는 콘택마스크를 이용한 사진식각공정으로 상기 층간절연막을 자기정렬적으로 식각하는 공정과,A process of self-aligning the interlayer insulating film by a photolithography process using a contact mask exposing portions intended as bit line contacts and storage electrode contacts;

전체표면 상부에 n+ 불순물이 주입된 도전층을 형성한 후 평탄화식각하여 랜딩플러그를 형성하는 공정과,Forming a landing plug by forming a conductive layer in which n + impurities are injected over the entire surface and then planarizing etching;

상기 p+ 불순물은 보론(boron)인 것과,The p + impurity is boron,

상기 게이트전극과 p+소오스/드레인영역 간에 역바이어스가 형성되어 있는 것을 특징으로 한다.A reverse bias is formed between the gate electrode and the p + source / drain region.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3a 내지 도 3c 는 본 발명에 따른 반도체소자의 테스트패턴 형성방법에 의한 공정 단면도이고, 도 4 는 본 발명에 따른 반도체소자의 테스트패턴을 사용한 누설전류 측정 메카니즘을 도시한 개략도로서 서로 연관지어 설명한다.3A to 3C are cross-sectional views illustrating a method of forming a test pattern of a semiconductor device according to the present invention, and FIG. 4 is a schematic diagram illustrating a leakage current measuring mechanism using a test pattern of a semiconductor device according to the present invention. do.

먼저, 반도체기판(도시안됨)의 테스트패턴영역에 엔형 불순물을 이온주입하여 엔웰(33)을 형성한다.First, the N well 33 is formed by ion implanting N-type impurities into a test pattern region of a semiconductor substrate (not shown).

다음, 상기 반도체기판에 활성영역을 정의하는 소자분리절연막(31)을 형성한다. (도 3a 참조)Next, a device isolation insulating film 31 defining an active region is formed on the semiconductor substrate. (See Figure 3A)

그 다음, 상기 반도체기판 상부에 게이트절연막과 게이트전극용 도전층을 형성한다. 이때, 상기 게이트전극용 도전층은 n+ 불순물이 이온주입되어 있는 다결정실리콘층, WN막과 W막의 적층구조로 형성된 것이다.Next, a gate insulating film and a conductive layer for a gate electrode are formed on the semiconductor substrate. In this case, the gate electrode conductive layer is formed of a polycrystalline silicon layer into which n + impurities are ion-implanted, a stacked structure of a WN film and a W film.

다음, 게이트전극 마스크를 이용한 사진식각공정으로 상기 적층구조를 식각하여 게이트절연막패턴(35)과 다결정실리콘층패턴(37), WN막패턴(38)과 W막패턴(39)으로 형성되는 게이트전극을 형성한다.Next, the stack structure is etched by a photolithography process using a gate electrode mask to form a gate insulating film pattern 35, a polysilicon layer pattern 37, a WN film pattern 38, and a W film pattern 39. To form.

그 다음, 상기 게이트전극 양측 반도체기판에 고농도의 p+ 불순물을 이온주입하여 p+ 소오스/드레인영역(43)을 형성한다.Next, a high concentration of p + impurities are implanted into the semiconductor substrates on both sides of the gate electrode to form a p + source / drain region 43.

다음, 상기 게이트전극 및 게이트절연막패턴(35)의 측벽에 절연막 스페이서(41)를 형성한다. 상기 절연막 스페이서(41)은 질화막으로 형성된 것이다. (도 3b 참조)Next, an insulating film spacer 41 is formed on sidewalls of the gate electrode and the gate insulating film pattern 35. The insulating film spacer 41 is formed of a nitride film. (See Figure 3b)

그 다음, 전체표면 상부에 층간절연막(45)을 형성한다. 상기 층간절연막(45)은 BPSG막으로 형성된 것이다.Next, an interlayer insulating film 45 is formed over the entire surface. The interlayer insulating film 45 is formed of a BPSG film.

다음, 비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 노출시키는 콘택마스크를 이용한 사진식각공정으로 상기 층간절연막(45)을 식각한다. 이때, 상기 식각공정은 SAC방법에 의해 실시된다.Next, the interlayer insulating layer 45 is etched by a photolithography process using a contact mask exposing portions intended as bit line contacts and storage electrode contacts. At this time, the etching process is performed by the SAC method.

그 다음, 전체표면 상부에 도전층(도시안됨)을 형성한 다음, 평탄화식각하여 랜딩플러그(47)를 형성한다. 이때, 상기 도전층은 n+ 불순물이 이온주입된 다결정실리콘층이 사용된다. (도 3c 참조)Then, a conductive layer (not shown) is formed over the entire surface, and then planarized to form a landing plug 47. In this case, a polysilicon layer in which n + impurities are ion-implanted is used. (See Figure 3c)

그 후, 상기 SAC방법에 의한 페일을 확인하기 위해 테스트공정을 실시한다.Thereafter, a test process is performed to confirm the fail by the SAC method.

이를 위하여 상기 랜딩플러그(47)에 Vcc 단자를 연결시키고, 상기 게이트전극에 Vss 단자를 연결시켜 상기 랜딩플러그(47)와 게이트전극 간의 누설전류 여부를 측정한다. 이때, 상기 랜딩플러그(47)와 게이트전극이 쇼트된 경우 누설전류는 랜딩플러그(47)-다결정실리콘층패턴(37) 즉, (⑥)방향으로 흐르고, 이는 저항 곡선으로 측정된다.To this end, a Vcc terminal is connected to the landing plug 47, and a Vss terminal is connected to the gate electrode to measure a leakage current between the landing plug 47 and the gate electrode. At this time, when the landing plug 47 and the gate electrode are shorted, the leakage current flows in the landing plug 47-polycrystalline silicon layer pattern 37, i.e., direction (⑥), which is measured by a resistance curve.

또한, 상기 게이트절연막패턴(35)이 열화되어 다결정실리콘층패턴(37)-p+소오스/드레인영역(43)-랜딩플러그(47) 즉, (⑦)방향으로 누설전류가 흐르는 경우 상기 n+ 불순물이 주입되어 있는 다결정실리콘층패턴(37)과 p+ 소오스/드레인영역(43) 간에 역바이어스(reverse bias)가 형성되어 있으므로 (⑥)방향으로 흐르는 누설전류 값에 비해 매우 작다(⑥ > ⑦). (도 4 참조)In addition, when the gate insulating film pattern 35 is deteriorated and a leakage current flows in the polysilicon layer pattern 37 -p + source / drain region 43-landing plug 47, that is, in the direction (⑦), the n + impurities Since a reverse bias is formed between the injected polysilicon layer pattern 37 and the p + source / drain region 43, it is very small compared to the leakage current value flowing in the (6) direction (6> 7). (See Figure 4)

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 테스트패턴 형성방법은, SAC방법에 의해 형성된 랜딩플러그와 게이트전극 간의 절연 특성을 측정하는 테스트패턴 형성 시 게이트절연막의 열화에 의해 게이트전극과 소오스/드레인영역 간에 누설전류 통로가 형성되는 것을 방지함으로써 순수한 SAC 페일만을 측정하여 반도체소자의 전기적 특성 및 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, in the method of forming a test pattern of a semiconductor device according to the present invention, the gate electrode and the source / drain are deteriorated due to the deterioration of the gate insulating film when the test pattern is formed to measure the insulating properties between the landing plug and the gate electrode formed by the SAC method. By preventing leakage current paths from being formed between regions, only pure SAC fail can be measured to improve electrical characteristics and reliability of semiconductor devices.

Claims (3)

반도체기판의 테스트패턴영역에 엔웰을 형성하는 공정과,Forming an enwell in the test pattern region of the semiconductor substrate; 상기 반도체기판 상부에 게이트절연막을 형성하는 공정과,Forming a gate insulating film on the semiconductor substrate; 상기 게이트절연막 상부에 게이트전극용 도전층을 형성하는 공정과,Forming a conductive layer for a gate electrode on the gate insulating film; 게이트전극용 마스크를 이용한 사진식각공정으로 상기 게이트전극용 도전층 및 게이트절연막을 식각하여 게이트전극 및 게이트절연막패턴을 형성하는 공정과,Forming a gate electrode and a gate insulating layer pattern by etching the gate electrode conductive layer and the gate insulating layer by a photolithography process using a mask for a gate electrode; 상기 게이트전극 양측 반도체기판에 p+ 불순물을 이온주입하여 p+ 소오스/드레인영역을 형성하는 공정과,Forming p + source / drain regions by implanting p + impurities into the semiconductor substrates on both sides of the gate electrode; 상기 게이트전극과 게이트절연막패턴 측벽에 절연막 스페이서를 형성하는 공정과,Forming an insulating film spacer on sidewalls of the gate electrode and the gate insulating film pattern; 전체표면 상부에 층간절연막을 형성하는 공정과,Forming an interlayer insulating film over the entire surface; 비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 노출시키는 콘택마스크를 이용한 사진식각공정으로 상기 층간절연막을 자기정렬적으로 식각하는 공정과,A process of self-aligning the interlayer insulating film by a photolithography process using a contact mask exposing portions intended as bit line contacts and storage electrode contacts; 전체표면 상부에 n+ 불순물이 주입된 도전층을 형성한 후 평탄화식각하여 랜딩플러그를 형성하는 공정을 포함하는 반도체소자의 테스트패턴 형성방법.A method of forming a test pattern of a semiconductor device, the method comprising: forming a landing plug by forming a conductive layer in which an n + impurity is implanted on an entire surface and then planarizing etching. 제 1 항에 있어서,The method of claim 1, 상기 p+ 불순물은 보론(boron)인 것을 특징으로 하는 반도체소자의 테스트패턴 형성방법.And the p + impurity is boron. 제 1 항에 있어서,The method of claim 1, 상기 게이트전극과 p+소오스/드레인영역 간에 역바이어스가 형성되어 있는 것을 특징으로 하는 반도체소자의 테스트패턴 형성방법.And a reverse bias is formed between the gate electrode and the p + source / drain region.
KR1020020042124A 2002-07-18 2002-07-18 Forming method for test patterns of a semiconductor device KR20040008485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020042124A KR20040008485A (en) 2002-07-18 2002-07-18 Forming method for test patterns of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020042124A KR20040008485A (en) 2002-07-18 2002-07-18 Forming method for test patterns of a semiconductor device

Publications (1)

Publication Number Publication Date
KR20040008485A true KR20040008485A (en) 2004-01-31

Family

ID=37317544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020042124A KR20040008485A (en) 2002-07-18 2002-07-18 Forming method for test patterns of a semiconductor device

Country Status (1)

Country Link
KR (1) KR20040008485A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914048A (en) * 1985-03-23 1990-04-03 Stc Plc Method of making Bicmos devices
KR19990075166A (en) * 1998-03-18 1999-10-15 윤종용 Contact inspection method of semiconductor device
KR20000043191A (en) * 1998-12-28 2000-07-15 김영환 Manufacturing method of monitoring apparatus of semiconductor device
KR20010058136A (en) * 1999-12-24 2001-07-05 박종섭 Method of fabricating semiconductor device
KR20010060549A (en) * 1999-12-27 2001-07-07 박종섭 Method of monitoring a source contact in a flash memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914048A (en) * 1985-03-23 1990-04-03 Stc Plc Method of making Bicmos devices
KR19990075166A (en) * 1998-03-18 1999-10-15 윤종용 Contact inspection method of semiconductor device
KR20000043191A (en) * 1998-12-28 2000-07-15 김영환 Manufacturing method of monitoring apparatus of semiconductor device
KR20010058136A (en) * 1999-12-24 2001-07-05 박종섭 Method of fabricating semiconductor device
KR20010060549A (en) * 1999-12-27 2001-07-07 박종섭 Method of monitoring a source contact in a flash memory

Similar Documents

Publication Publication Date Title
KR20110076510A (en) Buried gate in semiconductor device and the method for fabricating the same
KR100268431B1 (en) Self-aligned contact and method of fabricating the same
KR100709568B1 (en) Method for manufacturing semiconductor device with zigzag storage node
US5534451A (en) Method for fabricating a reduced area metal contact to a thin polysilicon layer contact structure having low ohmic resistance
KR20010019346A (en) Method of forming a self aligned contact in a semiconductor device
KR20040008485A (en) Forming method for test patterns of a semiconductor device
KR100328695B1 (en) Method of making storage node contact
KR20070070542A (en) Highvoltage device and method for fabricating of the same
KR20040048039A (en) Method of manufacturing a semiconductor device
KR20090081246A (en) The Method for Manufacturing Semiconductor Device
KR100520638B1 (en) Contact Forming Method of Semiconductor Device_
KR100672683B1 (en) Method for manufacturing a bipolar transistor
KR100349360B1 (en) Method of forming contacts in semiconductor devices
KR100583099B1 (en) A method for forming a metal line of a semiconductor device
KR100454628B1 (en) Method for forming wordline strapping of semiconductor device to improve photolithography process margin and area of semiconductor device
KR20060119354A (en) Method for forming a recess gate electrode
KR20060014672A (en) Semiconductor devices employing mos transistors having recessed channel regions and methods of fabricating the same
KR100745063B1 (en) Method for fabricating a landing plug of semiconductor device
KR20000020742A (en) Method for improving contact resistor of semiconductor device
KR20090044528A (en) Method for manufacturing semiconductor device
KR100586539B1 (en) Method for forming test pattern
KR20090112925A (en) Method for manufacturing semiconductor device
KR20100001134A (en) Saddle fin transistor and method for manufacturing the same
KR20090100853A (en) Method for manufacturing semiconductor device
KR20010003048A (en) Method for forming contact in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application