KR20030037050A - Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst - Google Patents

Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst Download PDF

Info

Publication number
KR20030037050A
KR20030037050A KR1020010068034A KR20010068034A KR20030037050A KR 20030037050 A KR20030037050 A KR 20030037050A KR 1020010068034 A KR1020010068034 A KR 1020010068034A KR 20010068034 A KR20010068034 A KR 20010068034A KR 20030037050 A KR20030037050 A KR 20030037050A
Authority
KR
South Korea
Prior art keywords
photocatalyst
titanium
antimicrobial
antimicrobial metal
hydroxide
Prior art date
Application number
KR1020010068034A
Other languages
Korean (ko)
Other versions
KR100436240B1 (en
Inventor
김대승
Original Assignee
김대승
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김대승 filed Critical 김대승
Priority to KR10-2001-0068034A priority Critical patent/KR100436240B1/en
Publication of KR20030037050A publication Critical patent/KR20030037050A/en
Application granted granted Critical
Publication of KR100436240B1 publication Critical patent/KR100436240B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided are titanium dioxide photocatalyst with high antimicrobial action even when irradiation is not enough, and a method for fabricating the same. CONSTITUTION: The photocatalyst is composed of anatase or zinc oxide powder with 1-10 nm size and antimicrobial metal component such as Ag, Cu and Zn coated onto the powder. The method comprises the steps of (a) preparing antimicrobial metal compound by a coprecipitation process of antimicrobial metal component such as Ag, Cu and Zn and inorganic hydroxide, (b) dispersing the compound of the step (a) into water, thereby obtaining antimicrobial metal colloid, (c) preparing titanium peroxide, (d) mixing the antimicrobial metal colloid of the step (b) with the titanium peroxide, and obtaining crystalline oxide by hydrothermal reaction, and (e) coating porous inorganic oxides onto the crystalline oxide containing antimicrobial metal components by a three-step sol-gel process, thereby obtaining microcapsule type photocatalyst.

Description

항균금속성분을 함유하는 이산화티타늄 광촉매 및 그의 제조방법{Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst}Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst

항균성 금속성분과 광반응성 촉매 물질인 이산화티타늄(anatase)을 화합물 또는 혼합물 형태로 합성하여 콜로이드(colloid)화함으로서 우수한 광촉매 성능뿐만 아니라 항균능력의 강화 또는 광조사가 부족한 환경에서도 강력한 항균능력을 발현 할 수 있는 항균성 광촉매 물질을 제조하고자 한다.By synthesizing colloids by synthesizing antimicrobial metals and titanium dioxide (anatase), which is a photoreactive catalyst, in the form of compounds or mixtures, they can express not only excellent photocatalytic performance but also strong antibacterial ability even in environments where the antibacterial ability or light irradiation is insufficient. An antimicrobial photocatalyst material can be prepared.

이는 특히 인체에 안정한 금속성분, 무기산화물 성분으로 이루어져 있으므로 환경 친화적인 광촉매 항균 콜로이드용액 또는 광촉매 항균코팅제로 이용될 수 있다.In particular, since it consists of a stable metal component, inorganic oxide component to the human body can be used as environmentally friendly photocatalyst antibacterial colloidal solution or photocatalyst antimicrobial coating agent.

광촉매에 의한 환경 정화는 무한한 광에너지를 활용할 수 있고 2차 오염 부산물을 방출하지 않는다는 점에서 미래의 에너지 저감 기술로 기대되고 있다. 특히 유기물질에 대한 강력한 산화환원 작용과 초친수성 및 자기정화(self cleaning)능력이 우수하여 이를 응용한 산업제품이 점차 증가하는 추세이다. 그러나 현재까지 개발되어진 광촉매 물질의 해결해야 할 과제를 몇 가지로 요약하면 다음과 같다.Environmental purification by photocatalysts is expected as a future energy reduction technology in that it can utilize infinite light energy and does not emit secondary pollution by-products. In particular, strong redox effect on organic materials, super hydrophilicity and self-cleaning ability are excellent, and industrial products applying them are gradually increasing. However, the problems to be solved of the photocatalytic materials developed so far are summarized as follows.

1. 반응속도가 느리고 분해반응이 불완전하다.1. The reaction rate is slow and the decomposition reaction is incomplete.

2. 효율이 낮다.2. Low efficiency.

3. 특정의 물질만을 처리할 수 있다.3. Only certain substances can be treated.

4. 오염물질의 제거 분해속도가 서서히 저하된다.4. Removal of contaminants The degradation rate is slowed down.

5. 광조사가 약해지면 처리속도가 낮아진다.5. The weaker the light irradiation, the lower the processing speed.

상기의 여러 문제점을 극복하기 위한 여러 시도가 이루어지고 있는데 일례로 TiO2광촉매 입자에 Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Cr 등의 금속 성분을 첨가함으로서 보다 용이하게 산화 환원작용이 일어날 수 있도록 유도하게 되는데 이는 첨가 금속이 도너(donor)로서 작용하여 가전자대(valance band)의 전자들이 용이하게 여기(exiting) 될 수 있기 때문이다. 또한 흡착물질을 첨가하여 탈취 성능을 향상시키고, Ag, Cu 등의 항균금속을 첨가하여 광조사가 없는 상태에서도 항균능을 나타낼 수 있도록 하는 등 여러 가지의 개선작업이 진행되고 있다.Various attempts have been made to overcome the above problems, for example, by adding metal components such as Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Cr to TiO 2 photocatalyst particles more easily. The redox action can be induced to occur because the additive metal acts as a donor so that the electrons in the valence band can be easily excited. In addition, various improvements are being made, such as the addition of an adsorbent to improve the deodorizing performance, and the addition of antibacterial metals such as Ag and Cu to exhibit antibacterial activity even in the absence of light irradiation.

광촉매를 제조하는 방법은 크게 고상법, 액상법 그리고 기상법을 들 수 있는데, 이중 가장 널리 알려져 있는 방법이 액상법이며 이는 다성분계의 조성을 보다 균질하게 합성하기 용이한 장점이 있다. 액상법으로는 중화적정에 의한침전법(precipitation), 공침법(coprecipitation), 함침법(impregnation) 그리고 금속알콕사이드(metal alkoxide)를 전구체로 하는 졸-겔법(sol-gel process)등을 들 수 있다. 이중 중화적정법은 티타늄클로라이드(titanium chloride), 티타늄설페이트(titanium sulfate), 티타닐설폐이트(titanyl sulfate) 등의 티타늄염을 암모니아수(amonia water), 탄산소다(sodium carbonate), 수산화나트륨(sodium hydroxide)등의 알칼리로 중화하여 티타늄하이드로옥사이드(titanium hydroxide)를 생성하고 세척, 건조와 열처리 공정을 통하여 아나타제(anatase)상의 티타늄산화물 분말(titanium oxide powder)를 제조하게 된다. 이는 분말상과 수분산체를 용이하게 제조할 수 있는 방법으로 알려져 있다. 또한 졸겔법은 titanium tetraisopropoxide, titanium tetrabutoxide 등의 titanium alkoxide를 전구체(precursor)로 하여 알코올, 물, 촉매 등을 첨가하고 가수분해반응을 통하여 티타니아졸(titania sol)을 얻는 방법으로 여러 종류의 성분을 합성하기 용이하며 고순도의 순수 졸을 얻을 수 있고 이를 여러 종류의 담체(substrate)에 코팅(coating)하고 열처리하여 균질한 박막을 얻을 수 있는 방법으로 이용되고 있다.The photocatalyst may be classified into a solid phase method, a liquid phase method, and a vapor phase method. Among them, the most widely known method is a liquid phase method. Examples of the liquid phase method include precipitation by neutralization titration, coprecipitation, impregnation, and a sol-gel process using metal alkoxide as a precursor. In the neutralization titration method, titanium salts such as titanium chloride, titanium sulfate, and titanyl sulfate are used for ammonium water, sodium carbonate, and sodium hydroxide. It is neutralized with an alkali such as to produce titanium hydroxide (titanium hydroxide) and through the washing, drying and heat treatment process to produce an anatase (titanium oxide powder). This is known as a method of easily preparing powder and water dispersion. In addition, the sol-gel method uses titanium alkoxides such as titanium tetraisopropoxide and titanium tetrabutoxide as precursors to add alcohol, water, catalysts, etc. and to obtain titania sol through hydrolysis. It is easy and easy to obtain a pure sol of high purity and is used as a method to obtain a homogeneous thin film by coating (coating) and heat treatment to various kinds of carrier (substrate).

한편 Ag, Cu, Zn 등의 항균금속을 이용한 무기항균제 및 이들을 첨가하여 항균능력을 강화한 경우는 여러 가지가 알려져 있다. 우선 금속이온 치환능력을 가진 제올라이트를 이용하여 은이온을 첨가한 무기항균제(미국특허 USP5,468,699)가 대표적이고 이 이외에도 은착염을 인산염 등에 포접하여 항균 및 항곰팡이에 대한 효과(일본특허 특개2000-44415), 그리고 일본특허, 특개평3-205436에는 제올라이트에이온교환 하여 건조 열처리하여 제작하거나 실리카겔에 첨착하여 분말형태의 항균제를 제조하였다.On the other hand, inorganic antibacterial agents using antibacterial metals such as Ag, Cu, Zn and the like are known to enhance the antibacterial ability by adding them. First, an inorganic antimicrobial agent (US Pat. No. 5,468,699) containing silver ions using a zeolite having a metal ion substitution ability is representative. In addition, the effect of silver salts on phosphate is included to prevent antibacterial and anti mold (Japanese Patent Laid-Open No. 2000-). 44415), and Japanese Patent Application Laid-Open No. Hei 3-205436 were prepared by dry heat treatment by zeolite ion exchange or by impregnating silica gel to prepare a powdered antimicrobial agent.

일본특허, 특개평10-25435에는 다공질 실리카겔 표면에 은, 동등의 항균금속을 코팅하였다. 일본특허, 특개평3-287508을 보면 알루미나 입자의 표면에 은이온을 함유한 알루미노규산염의 피막을 형성하여 항균성 조성물로 하였고 일본특허, 특개평3-252308에서는 실리카겔의 표면에 은이온을 함유하는 알루미노규산염의 피막을 형성하여 항균성조성물로 하였다. 또한 WO96/29375의 경우 졸겔법에 의해 제조된 광촉매입자의 현탁액에 Ag, Cu, Zn 등의 금속염을 첨가하여 용액화하고 코팅하거나 광촉매 coating을 형성한 후 금속염을 도포해서 광환원 석출을 행하는 경우이다. 또한 일본특허 특개평11-322524의 경우 TiO2sol에 CuSO4등의 항균금속염을 첨가하여 유약층에 코팅하여 300-900℃로 열처리하여 항균층을 형성하였다.Japanese Patent Application Laid-open No. Hei 10-25435 coated silver and an equivalent antibacterial metal on the surface of a porous silica gel. Japanese Patent Laid-Open No. 3-287508 shows an antimicrobial composition by forming a film of aluminosilicate containing silver ions on the surface of alumina particles, and Japanese Patent Laid-Open No. 3-252308 contains silver ions on the surface of silica gel. A film of aluminosilicate was formed to obtain an antimicrobial composition. In the case of WO96 / 29375, a metal salt such as Ag, Cu, Zn, etc. is added to a suspension of photocatalyst particles prepared by the sol-gel method to form a photocatalyst after liquefying and coating or forming a photocatalyst coating. . In addition, in Japanese Patent Laid-Open No. 11-322524, an antimicrobial metal salt such as CuSO 4 was added to TiO 2 sol to coat the glaze layer, and then heat-treated at 300-900 ° C. to form an antimicrobial layer.

항균성능을 나타내는 대표적인 금속은 Ag, Cu 그리고 Zn이다. 이들을 이온상태의 금속염이나 화합물상으로 광촉매체에 첨가할 경우 자칫 응집이나, 도막 상태의 결함을 유발할 수 있으므로 사용하는 데 많은 제약을 받게 된다. 특히 Ag의 경우 대기 중에서 햇빛에 노출되면 자외선의 영향으로 서서히 변색이 되는 황변 현상이 발생되기 때문에 사용의 제한을 받게되는 문제점이 있다. 따라서 아주 미량의 첨가나 다른 물질과 화합물을 형성시켜 사용하고 있다. 그러나 화합물의 경우 입자의 크기가 커져 콜로이드 용액을 제조하기 어려운 단점이 있다. 또한 은성분을 광촉매에 첨가 코팅제로 사용할 경우 WO96/29375의 경우 극미량을 제외하고는 변색의 가능성을 배제하기 어려운 상태이고, 일본특허 특개평11-322524의 경우도 마찬가지로 변색의 위험성과 항균금속의 도포시 작업공정을 추가하여야하는 불편 그리고 광촉매능의 저하 등의 문제점을 야기할 수 있다. 그리고 일반적으로 Ag의 경우 금속이온 치환능을 가진 제올라이트(zeolite)에 Ag이온을 치환하여 건조와 열처리 공정을 거쳐 제품으로 사용하게되는데 이역시 장기간 동안 햇빛에 노출시 변색을 유발하는 문제점과 입자의 크기문제로 수분산 콜로이드 용액을 제조하는 것은 불가능하며, 코팅제에 첨가시 불투명해지게 된다. 특개평3-252308의 경우도 분말상으로 만 가능하여 콜로이드나 광촉매에 첨가하여 투명한 피막을 얻는데는 적합하지 않다.Representative metals exhibiting antimicrobial activity are Ag, Cu and Zn. When these are added to the photocatalyst in the form of ionic metal salts or compounds, they may cause aggregation or defects in the coating film state, and thus they are subject to many restrictions in use. Particularly, in the case of Ag, the yellowing phenomenon is gradually changed due to the effect of ultraviolet rays when exposed to sunlight in the air there is a problem that the use is limited. Therefore, they are used in very small amounts, or by forming compounds with other substances. However, the compound has a disadvantage in that it is difficult to prepare a colloidal solution due to the larger particle size. In addition, when the silver component is used as an additive coating agent to the photocatalyst, it is difficult to exclude the possibility of discoloration except for a very small amount in the case of WO96 / 29375. It may cause inconvenience such as adding work process and deterioration of photocatalytic ability. In general, Ag is used as a product by replacing Ag ions with zeolite having a metal ion substitution ability and then drying and heat-treating processes, which causes discoloration when exposed to sunlight for a long period of time and particle size. The problem is that it is not possible to produce a waterborne colloidal solution, which becomes opaque when added to the coating. Japanese Patent Laid-Open No. 3-252308 is also possible in powder form, and is not suitable for obtaining a transparent film by adding to a colloid or a photocatalyst.

따라서 본 발명에서는 항균성금속을 보다 안정하게 광촉매입자와 조합시키기 위하여 공침법을 통하여 항균성금속성분을 무기수산화물에 접합시킨 후 티탄산용액에 분산시키고 수열반응(hydrothermal reaction)을 유도하여 다량의 항균성 금속성분을 함유하는 결정성 광촉매 입자를 얻을 수 있게 되고, 후처리법으로 다공성 무기산화물 코팅 또는 microcapsule화 하므로서 보다 안정한 상태의 항균력이 배가된 광촉매 물질을 얻고자 한다. 이러한 광촉매는 수분산 콜로이드 형태, 분말상으로 가공하여 이용할 수 있을 뿐아니라 적합한 바인더(binder)를 첨가하여 황변 현상을 일으키지 않는 투명 코팅막을 얻을 수 있다. 광촉매 입자를 실리카 또는 티타니아(titania)로 다공질 코팅처리 즉, 분산입자를 microcapsule화 함으로서 햇빛에 장기 노출 시에도 변색이나 성능저하를 유발하지 않고, 강력한 산화환원 작용을 유지하면서 미생물에 대한 항균, 살균 능력이 탁월한 초미세(1nm내지 100nm) 무기항균제인 항균력 강화 광촉매 colloid 또는 광촉매 분말을 제공하고자 한다.Therefore, in the present invention, in order to combine the antimicrobial metal more stably with the photocatalytic particles, the antimicrobial metal component is bonded to the inorganic hydroxide by coprecipitation method, dispersed in the titanic acid solution, and the hydrothermal reaction is induced to produce a large amount of the antimicrobial metal component. Crystalline photocatalyst particles can be obtained, and a porous inorganic oxide coating or microcapsule can be obtained by post-treatment to obtain a photocatalyst material having a more stable antimicrobial activity. Such a photocatalyst can be used in the form of an aqueous colloidal form and powder, and can be used to obtain a transparent coating film that does not cause yellowing by adding a suitable binder. Microporous coating treatment of photocatalyst particles with silica or titania, that is, microcapsule of dispersed particles, does not cause discoloration or deterioration even after long-term exposure to sunlight, and maintains strong redox effect while maintaining strong redox effect. To provide this excellent ultra-fine (1nm to 100nm) inorganic antibacterial agent antibacterial enhanced photocatalyst colloid or photocatalyst powder.

도 1은 본 발명의 실시예 1, 2 그리고 3에 의한 항균력 테스트 결과1 is an antimicrobial test results according to Examples 1, 2 and 3 of the present invention

도 2는 본 발명의 실시예 1에 의한 항균도 시험 사진(균주1)Figure 2 is an antimicrobial test photograph according to Example 1 of the present invention (strain 1)

도 3은 본 발명의 실시예 1에 의한 항균도 시험 사진(균주2)Figure 3 is an antimicrobial test photograph according to Example 1 of the present invention (strain 2)

이산화티탄에 빛이 조사되면 광촉매상에서 활성산소, OH 라디칼(radical) 이 발생되어 강력한 산화환원 작용에 의해 악취물질 등을 분해 정화하는 특성을 나타내게된다. 전기적으로 반도체성질을 갖고있는 대표적인 광촉매로서는 TiO2, ZnO, RuO2, CoO, Ce2O3, Cr2O3, Rh2O3, V2O5등의 산화물과 ZnS, CdS 등의 황화물을 들 수 있다. 단파장(380nm이하)의 자외선이 조사되면 여기상태가 되어 강력한 산화력을 나타낸다. 유사한 거동을 나타내는 반도체에는 상기와 같이 여러 종류가 있지만 TiO2가 주목되어지는 이유는 화학적으로 안정성이 높은 물질이면서 광반도체로서도 우수한 장점을 갖고 있기 때문이다. 반도체 에너지밴드는 가전자대(valance band), 전도대(conduction band) 및 이들 사이에 금지대(gap)가 존재한다. 산화티탄의 경우 금지대의 에너지 gap이 3.2eV로 이 이상의 에너지를 흡수한 가전자대의 전자는 여기(exciting)되어 전도대로 이동하게 되고, 가전자대에는 정공(hole)이 만들어지고 이동은 자유롭게 된다. 따라서 자외선(UV)을 조사하게되면 여기상태 즉, 활성상태가 되어진다.When light is irradiated on titanium dioxide, active oxygen and OH radical (radical) are generated on the photocatalyst to decompose and purify odorous substances by powerful redox effect. Representative photocatalysts having an electrically semiconducting property include oxides such as TiO 2 , ZnO, RuO 2 , CoO, Ce 2 O 3 , Cr 2 O 3 , Rh 2 O 3 , V 2 O 5 , and sulfides such as ZnS and CdS. Can be mentioned. When ultraviolet rays of short wavelength (380 nm or less) are irradiated, they become excited and exhibit strong oxidizing power. Although there are many kinds of semiconductors showing similar behavior as described above, TiO 2 is attracting attention because it is a chemically stable material and has excellent advantages as an optical semiconductor. Semiconductor energy bands have a valence band, a conduction band, and a gap between them. In the case of titanium oxide, the electron gap of the valence band that absorbed more than the energy gap of 3.2 eV in the forbidden band is excited to move to the conduction band, and holes are made in the valence band and the movement is free. Therefore, when irradiated with ultraviolet (UV) light becomes an excited state, that is, an active state.

전자와 홀은 표면으로 이동하여 각각 산소, 수산기와 결합하여 라디칼을 형성한다. 산화티탄의 경우 홀의 산화력이 보다 강력하기 때문에 주로 수산기 라디칼이 유기물질을 산화해서 탄산가스(CO2)와 물(H2O)로 산화 분해시킨다. 또한 균이 사멸하지 않는 약한 자외선 광량 에서도 항균력을 나타낸다.The electrons and holes move to the surface and combine with oxygen and hydroxyl groups to form radicals. In the case of titanium oxide, the oxidizing power of the hole is stronger, and mainly hydroxyl radicals oxidize organic substances and oxidize and decompose the carbon dioxide (CO 2 ) and water (H 2 O). In addition, it exhibits antibacterial activity even in the weak ultraviolet light amount that bacteria do not die.

이산화티타늄은 여러 가지의 공정을 통하여 제조될 수 있다. 예를 들면 1. 황산티타늄(Ti(SO4)2), 황산티타닐(TiOSO4), 염화티타늄(TiCl4), 유기티타늄화합물(organic titanium compound) 등을 가수분해하는 방법, 2. 황산티타늄, 황산티타닐, 염화티타늄, 유기티타늄화합물 등에 알카리를 첨가하여 중화하여 얻는 방법, 3. 염화티타늄 등을 기상 산화하여 얻는 방법으로 구분할 수 있다. 상기의 여러방법에 의하여 만들어진 광촉매의 성능을 향상시키기 위하여 여러 방법이 시도되고 있다. 일례로 산화티타늄입자의 표면에 Ag, Cu, Pd, Fe, Ni, Cr, Co, Pt, Au, Li, Ca, Mg, Zn, Al, Rh 등으로부터 선택된 1종이상의 성분을 부착함으로서 전자의 광 여기를 용이하게 하여 광촉매의 성능을 향상시킬 수 있다. 특히 이중 Ag, Cu, Zn 등을 광촉매에 첨가할 경우 태양광이나 자외선이 조사되지 못할 때 항균성을 유지할 수 있다.Titanium dioxide can be produced through various processes. For example: 1. Hydrolysis of titanium sulfate (Ti (SO 4 ) 2 ), titanium sulfate (TiOSO 4 ), titanium chloride (TiCl 4 ), organic titanium compounds, etc. 2. Titanium sulfate And neutralization by adding alkali to titanium sulfate, titanium chloride, organotitanium compound, and the like, and 3. obtaining titanium chloride or the like by gas phase oxidation. Various methods have been attempted to improve the performance of the photocatalyst produced by the various methods described above. For example, by attaching at least one component selected from Ag, Cu, Pd, Fe, Ni, Cr, Co, Pt, Au, Li, Ca, Mg, Zn, Al, Rh, etc. to the surface of titanium oxide particles, The excitation can be facilitated to improve the performance of the photocatalyst. In particular, when Ag, Cu, Zn, etc. are added to the photocatalyst, antimicrobial activity can be maintained when sunlight or ultraviolet rays are not irradiated.

우선 항균금속을 광촉매 sol 이나 분산체에 첨가하기 위해서는 금속염, 화합물, 무기물과 이온교환 또는 표면 첨착 등 다양한 방법이 있으나 본 발병에서는 항균성금속성분을 금속수산화물에 공침법으로 조합시키고 이것을 1nm 내지 100nm이내의 미세한 colloid 상으로 제조하여 광촉매 sol에 첨가하고 수열반응을 통하여 구조의 결정화를 이루고, 다공질의 무기산화물로 microcapsule화 함으로서 보다 안정한 상태로 광촉매 입자와 공존할 수 있도록 하는 항균력 강화 광촉매물질을 제조하고자 한다. 본 발명은 황산티타늄, 황산티타닐, 염화티타늄 등의 티타늄 염과 황산아연, 질산아연 등의 아염염 중 1성분 이상을 선택하여 알칼리 성분인암모니아수(NH4OH), 탄산소다(NaCO3), 수산화나트륨(NaOH) 등을 이용하는 중화적정법으로 Ag, Cu, Zn 등의 항균금속을 무기수산화산화물로 안정화처리 하여 다량 첨가함으로서 강력한 항균력을 발휘할 수 있도록 하였다. 좀더 구체적으로 설명하면 상기의 금속염을 이온교환수나 증류수에 회석한 용액에 Ag, Cu, Zn 등의 항균 금속염을 일정량 첨가하고 충분히 용해하고 혼합한다. 이어서 이를 빙냉교반 하면서 상기의 알카리 성분 용액을 서서히 적하하여 중화하고 이를 8시간 이상 정지하여 항균금속이 함유된 금속수산화물을 얻을 수 있다. 이어서 이온교환수로 충분히 세척하고 염화물을 사용했을 경우 은거울 반응으로 잔류 염소이온의 유무를 확인한다. 그런 후 적정량의 이온교환수를 혼합한 후 고정도의 분산기를 이용하여 이온교환수에 분산처리한다. 이때 고형분 농도는 10중량부가 되도록 한다.In order to add antimicrobial metal to photocatalyst sol or dispersion, there are various methods such as metal salt, compound, inorganic substance and ion exchange or surface deposition, but in this case, antimicrobial metal component is combined with metal hydroxide by coprecipitation method and it is within 1nm to 100nm. The present invention aims to produce an antimicrobial strengthening photocatalyst material that can be added to a photocatalyst sol and crystallized through hydrothermal reaction and microcapsule with porous inorganic oxide to coexist with photocatalyst particles in a more stable state. The present invention selects one or more components of titanium salts such as titanium sulfate, titanium sulfate, titanium chloride and zinc salt, zinc sulfate, zinc nitrate, and the like, which are alkaline ammonia water (NH 4 OH), sodium carbonate (NaCO 3 ), Neutralization titration method using sodium hydroxide (NaOH) and the like to stabilize the antimicrobial metals such as Ag, Cu, Zn with inorganic hydroxide to add a large amount to exhibit a strong antimicrobial activity. In more detail, a predetermined amount of antimicrobial metal salts such as Ag, Cu, Zn, and the like are added to a solution of the metal salts immersed in ion-exchanged water or distilled water, and then sufficiently dissolved and mixed. Subsequently, the alkali component solution is slowly added to the mixture while ice-cooling and neutralized, and the mixture is stopped for 8 hours or longer to obtain a metal hydroxide containing an antibacterial metal. Subsequently, it is sufficiently washed with ion-exchanged water, and chloride is used to check the presence of residual chlorine ion by silver mirror reaction. Then, an appropriate amount of ion exchanged water is mixed and then dispersed in ion exchanged water using a high precision disperser. At this time, the solid content concentration is to be 10 parts by weight.

특히 은(silver)은 자외선의 영향으로 쉽게 변색되거나 염소(Cl) 이온과 결합하여 염화은(Ag chloride)을 형성하거나 그리고 다른 이온이나 염기와 결합할 경우 항균능력이 현저히 감소, 변색 등의 문제점으로 산업적으로 이용하는데 제약점이 많이 있다. 그러나 본 발명에서는 강력한 자외선 흡수체인 티타늄산화물 또는 아연산화물에 함유 또는 조합시킴으로서 자외선으로부터의 변색을 방지할 수 있고, TiO2, SiO2등으로 피복 처리함으로서 물리 화학적인 외부의 영향, 즉 자외선, 산알칼리, Cl이온 그리고 기계적 충격으로 인한 탈리현상 등을 방지할 수 있도록 함으로서 보다 안정한 상태로 광촉매 성능과 항균능력을 부여할 수 있도록 하였다. 여기서 TiO2, SiO2를 피복 시키는 방법은 여러 가지를 들 수 있으나 대표적으로 졸겔법(sol-gel process)을 들 수 있다. SiO2의 Precursor로 Tetraethoxysilane(Si(OC2H5)4, 그리고 TiO2의 전구체(precursor, Titanium alkoxide)로 Titanium Tetraisopropoxide(Ti(OC2H5)4), Titanium Tetraethoxide(Ti(OC3H7)4), Titanium acetate, 등을 사용하여 여기에 메탄올(methanol), 에탄올(ethanol), 이소프로필알코올(2-propanol) 등의 알코올과 물 그리고 sol형성제인 염산, 질산 등을 첨가하고 일정시간동안 교반 함으로써 가수분해를 통하여 얻을 수 있다. 즉, 항균금속함유 광촉매 수분산체에 상기의 졸겔 법으로 만들어진 실리카졸(silica sol), 실리카-티타니아 졸(silica-titania sol) 또는 중간생성물을 첨가하여 충분히 가수분해반응이 일어날 수 있도록 하여 보다 안정된 항균성 강화 광촉매를 얻을 수 있게된다.In particular, silver is easily discolored under the influence of UV rays or combines with chlorine (Cl) ions to form Ag chloride, and when combined with other ions or bases, the antimicrobial ability is significantly reduced and discolored. There are many limitations in using it. However, in the present invention, it is possible to prevent discoloration from ultraviolet rays by containing or combining titanium oxide or zinc oxide, which is a strong ultraviolet absorber, and by coating with TiO 2 , SiO 2, etc. to influence physical and chemical external influences, namely ultraviolet rays and acid alkalis. By preventing the desorption caused by the Cl, ion and mechanical impact, the photocatalyst performance and the antibacterial ability can be imparted in a more stable state. Here, the method of coating TiO 2 and SiO 2 may be various, but a typical sol-gel process may be mentioned. Tetraethoxysilane (Si (OC 2 H 5 ) 4 ) as Precursor of SiO 2 , Titanium Tetraisopropoxide (Ti (OC 2 H 5 ) 4 ) as Precursor, Titanium alkoxide) of TiO 2 , Titanium Tetraethoxide (Ti (OC 3 H 7) 4 ), Titanium acetate, etc., and alcohol, water such as methanol, ethanol, and isopropyl alcohol, 2-propanol, hydrochloric acid, nitric acid, etc. It can be obtained by hydrolysis by stirring, that is, by adding a silica sol, silica-titania sol, or an intermediate product made by the above-mentioned sol-gel method to an aqueous anti-catalyst containing an antibacterial metal, Decomposition reaction can occur to obtain a more stable antibacterial enhanced photocatalyst.

본 발명에서는 황산티타늄(Ti(SO4)2), 황산티타닐(TiOSO4), 염화티타늄(TiCl4), 황산아연(ZnSO4·3H2O), 질산아연 {Zn(NO3)2·6H2O} 등에서 1종을 선택하여 여기에 항균금속염을 첨가하고 알칼리 수용액으로 중화 적정하여 항균금속을 포함하는 무기수산화물을 생성한 다음, 이것을 물리적 또는 화학적 방법에 의해 1nm 내지 100nm 정도로 미분산하여 colloid상을 만드는 제 1단계, 황산티타늄(Ti(SO4)2), 황산티타닐(TiOSO4), 염화티타늄(TiCl4) 등에서 1종을 선택하고 여기에 알칼리 성분인 암모니아수(NH4OH), 탄산소다(NaCO3), 수산화나트륨(NaOH)등에서 1종으로 중화 적정하여 얻은 수산화티타늄(Ti(OH)2) 수분산액에 과산화수소를 첨가하여 가열하고 과산화티타늄산용액을 만든다. 이렇게 만들어진 과산화티타늄산용액에 1단계에서 만들어진 항균금속 수산화티타늄 sol을 첨가하고 분산 처리한 다음 100℃이상에서 수열합성을 통하여 결정형(anatase)의 TiO2와 항균금속함유 TiO2결정체를 제조하는 제 2단계 그리고 2단계에서 얻어진 분산체를 졸겔 법을 이용하여 다공성의 무기 산화물로 피복 시키는 3단계 공정으로 이루어져있다.In the present invention, titanium sulfate (Ti (SO 4 ) 2 ), titanium sulfate (TiOSO 4 ), titanium chloride (TiCl 4 ), zinc sulfate (ZnSO 4 · 3H 2 O), zinc nitrate {Zn (NO 3 ) 2 · 6H 2 O}, etc., select one species, add an antimicrobial metal salt thereto, neutralize and titrate with an aqueous alkaline solution to produce an inorganic hydroxide containing an antimicrobial metal, and then disperse it to about 1 nm to 100 nm by physical or chemical methods to colloid. In the first step of making a phase, one type is selected from titanium sulfate (Ti (SO 4 ) 2 ), titanium sulfate (TiOSO 4 ), titanium chloride (TiCl 4 ), and the like, and an aqueous alkali ammonia solution (NH 4 OH), Hydrogen peroxide was added to a titanium hydroxide (Ti (OH) 2 ) aqueous solution obtained by neutralization titration with sodium carbonate (NaCO 3 ), sodium hydroxide (NaOH), and the like to prepare a titanium peroxide solution. The second antimicrobial metal hydroxide sol prepared in step 1 was added to the thus prepared titanium peroxide solution and dispersed therein, followed by hydrothermal synthesis at a temperature of 100 ° C. or higher to prepare a TiA 2 and TiO 2 crystals containing an antimicrobial metal. The dispersion obtained in step 2 and step 2 is coated with a porous inorganic oxide using a sol-gel method.

본 발명에서는 중화적정시 완충용액으로서 수산화암모늄(NH4OH)과 염화암모늄(NH4Cl)을 1:1 비율로 혼합하여 사용하였다. 그리고 항균금속은 항균금속의 염화물(chloride), 질화물(nitrate), 황화물(sulfate) 그리고 초화물(acetate) 중에서 선정하여 무기염 수용액에 첨가하고 충분히 혼합한 후 중화 적정하여 항균금속이 포함된 금속수산화물을 생성하였다. 좀더 자세히 설명하면 상기의 알칼리성분을 일정비율로 이온교환수에 희석하여 수용액을 만들어 빙냉 교반 하면서 각종 성분을 첨가한 후 알칼리 수용액을 서서히 적하하여 pH가 7이 되도록 하여 항균금속성분이 포함된 금속수산화물을 형성시키고 교반을 정지한 후 약 12시간 동안 유지시킨다. 그런 후 이온교환수로 충분히 세척한 후 일정량의 물과 혼합하고 수분산처리(1nm 내지 100nm의 sol)하였다. 수분산 처리의 일례로 산이나 알칼리를 이용하여 colloid화하는 화학적방법, 볼분쇄기(ball mill), 유리비드분쇄기(glass bead mill), 마찰분쇄기(attrition mill) 또는 유화혼합기(homo. mixer)를 이용하는 물리적인 방법으로 미분쇄 또는 미분산 처리를 할 수 있다.In the present invention, a buffer solution for neutralization titration was used by mixing ammonium hydroxide (NH 4 OH) and ammonium chloride (NH 4 Cl) in a 1: 1 ratio. The antimicrobial metal is selected from chloride, nitrate, sulfide, and acetate of the antimicrobial metal, added to the inorganic salt aqueous solution, mixed sufficiently, neutralized and titrated, and the metal hydroxide containing antimicrobial metal. Produced. In more detail, the alkali component is diluted in ion-exchanged water at a predetermined ratio to make an aqueous solution, and various components are added with ice-cooling stirring, and the aqueous alkali solution is slowly added dropwise so that the pH is 7 so that the metal hydroxide contains the antibacterial metal component. Form and hold for about 12 hours after stopping stirring. Thereafter, the mixture was sufficiently washed with ion-exchanged water, mixed with a predetermined amount of water, and treated with water (1 nm to 100 nm of sol). As an example of water dispersion treatment, a chemical method of colloidation using an acid or an alkali, a ball mill, a glass bead mill, an attrition mill, or a homomixer is used. The pulverization or microdispersion treatment can be performed by physical methods.

다음 공정에서는 TiCl4, Ti(SO4)2, TiOSO4중에서 1종을 선택하여 이온교환수에 일정량을 용해하고 암모니아수(NH4OH), 탄산소다(HaCO3), 수산화나트륨(NaOH) 등에서 1종을 선택하고, 완충용액으로서 NH4OH와 NH4Cl을 1:1 비율로 혼합하여 사용하여 중화적정법으로 Ti(OH)4침전물을 얻고 이를 이온교환수로 충분히 세척(chloride를 사용하였을 경우 은거울 반응으로 치 이온의 잔류를 확인)한 다음 일정량의 이온교환수에 분산하였다. 여기에 과산화수소(H2O2)를 첨가하고 50℃로 가열하고 교반을 계속하여 진노랑색의 투명용액인 과산화티타늄산용액을 만든다. 여기에 항균성금속수산화물을 1nm내지 100nm 입자크기로 분산시키고, 냉각사관이 부착된 환류장치를 이용하여 80℃내지 100℃에서 3시간동안 유지하여 과산화수소를 분해한 다음 이어서 100℃내지 200℃에서 8시간 내지 30시간 동안 수열합성을 하게되면 항균성금속성분을 안정하게 함유(주로 화합물 형성)하는 아나타제형(anatase type)의 TiO2콜로이드를 얻게된다. 이것을 상온으로 냉각한 후 수세 후 100℃내지 120℃에서 5시간동안 건조하고 450℃에서 3시간동안 열처리하여 항균성금속이 함유된 anatase type의 TiO2광촉매분말을 얻게된다.(2단계)In the next process, one of TiCl 4 , Ti (SO 4 ) 2 , and TiOSO 4 is selected to dissolve a certain amount in ion-exchanged water, and 1 in ammonia water (NH 4 OH), sodium carbonate (HaCO 3 ), sodium hydroxide (NaOH), and the like. Select the species and mix the NH 4 OH and NH 4 Cl in a 1: 1 ratio as a buffer solution to obtain Ti (OH) 4 precipitate by neutralization titration and wash it sufficiently with ion-exchanged water. The residual reaction of chi ions was confirmed by wool reaction) and then dispersed in a predetermined amount of ion-exchanged water. Hydrogen peroxide (H 2 O 2 ) is added thereto, heated to 50 ° C., and stirring is continued to form a dark yellow transparent solution, titanium peroxide solution. Disperse the antimicrobial metal hydroxide in the particle size of 1nm to 100nm, using a reflux device attached to the cooling pipe for 3 hours at 80 ℃ to 100 ℃ to decompose hydrogen peroxide and then 8 hours at 100 ℃ to 200 ℃ When hydrothermal synthesis is carried out for 30 to 30 hours, an anatase type TiO 2 colloid containing a stable antimicrobial metal component (mainly compound formation) is obtained. After cooling to room temperature, the resultant was washed with water, dried at 100 ° C. to 120 ° C. for 5 hours, and heat treated at 450 ° C. for 3 hours to obtain an anatase type TiO 2 photocatalyst powder containing antibacterial metal.

상기와 같이 얻어진 항균금속성분을 함유하는 TiO2광촉매 분말을 일정량의 이온교환수와 함께 glass bead mill에 투입한 후 1000내지 2000rpm으로 30분간 고속 회전하여 수분산 시킨다. 이렇게 하여 얻어진 수분산체의 고형분 농도는 약 0.1내지 30wt% 더욱 적합하게는 0.8내지 20wt%정도로 조정한다. 그런 후 다른 용기에 옮긴 후 silica 코팅 작업을 행하게 된다. 여기서 silica 코팅 방법은 졸겔 법을 이용하여 가수분해의 반응을 이용하여 퍼복작업을 하게된다. 먼저 silica의 전구체로 Tetraethoxysilane(Si(OC2H5)4를 사용하였으며, 가수분해 반응의 촉매로서는 염산(HCl), 질산(HNO3), 초산(CH3COOH) 중 선정한 1종의 산(acid)을 사용하였고, 가수분해액의 용매로는 물과 탄소수가 1내지 4의 저급알코올 즉, 메틸알코올, 에틸알코올 이소프로필알코올 등에서 1종을 선택하여 사용하였다. 먼저 상기의 일정량의 알콜에 Tetraethoxysilane을 혼합교반하여 둔다. 다른 용기에 알콜과 이온교환수혼합용액을 만들고 이를 상기의 Tetraethoxysilane용액에 서서히 첨가하고 30℃정도를 유지하면서 30분 내지 3시간동안 교반하여 부분 가수분해반응이 이루어지도록 한 다음 60℃내지 90℃정도로 가열하여 종량의 절반을 증발시킨다. 한편 이온교환수에 본 발명의 항균금속성분 함유 TiO2광촉매 수분산 colloid 용액을 20℃ 내지 40℃를 유지하면서 교반한다. 여기에 상기의 가수분해 반응산물을 서서히 적하 하면서 교반을 계속한다. 적하가 끝난 후 약 3시간동안 동일온도에서 교반을 계속하여 silica coating 항균광촉매 수분산 colloid를 완성한다. 이때 본 발명의 조성물은 고형분이 1중량부 내지 30중량부이고 더욱 적절하게는 5중량부 내지 20중량부이다. 본 발명의 조성물을 기재(substrate) 표면에 코팅하고 상온에서 건조한 다음 30℃ 내지 200℃의 저온소성에 의해 도막화가 가능하다. 코팅방법은 기재의 형상에 따라 다르지만 일반적인 방법으로는 스핀코팅(spin coating), 스프레이코팅(spraycoating), 바코드법, 딥코팅(deep coating) 등이 이용되어진다.The TiO 2 photocatalyst powder containing the antimicrobial metal component obtained as described above was added to a glass bead mill with a predetermined amount of ion-exchanged water, and then rotated at a high speed at 1000 to 2000 rpm for 30 minutes for water dispersion. The solid content concentration of the aqueous dispersion thus obtained is adjusted to about 0.1 to 30 wt%, more preferably about 0.8 to 20 wt%. It is then transferred to another container and silica coated. Here, the silica coating method is subjected to the fuzzy work using the reaction of hydrolysis using the sol-gel method. Tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was used as a precursor of silica, and one type of acid selected from hydrochloric acid (HCl), nitric acid (HNO 3 ), and acetic acid (CH 3 COOH) was used as a catalyst for the hydrolysis reaction. As a solvent of the hydrolyzate, one kind of water and a lower alcohol having 1 to 4 carbon atoms, that is, methyl alcohol, ethyl alcohol isopropyl alcohol, etc. were selected and used. Mix and stir the mixture of alcohol and ion-exchange water in another container, add it slowly to the Tetraethoxysilane solution and stir for 30 minutes to 3 hours while maintaining the temperature at about 30 ℃ to allow partial hydrolysis reaction. and heated to about 90 ℃ ℃ to evaporate half the Meter-Rate, while T and an antimicrobial metal-containing TiO 2 photocatalyst dispersed colloid solution of the present invention in ion exchange water to maintain the 20 ℃ 40 ℃ Stirring is continued while the above hydrolysis reaction product is slowly added dropwise, and stirring is continued at the same temperature for about 3 hours after the addition is completed to complete the silica coating antibacterial photocatalyst aqueous dispersion colloid. The solid content of silver is 1 to 30 parts by weight, and more preferably 5 to 20 parts by weight, The composition of the present invention is coated on a substrate surface, dried at room temperature, and then subjected to low temperature baking of 30 ° C to 200 ° C. The coating method is different depending on the shape of the substrate, but spin coating, spray coating, barcode, deep coating, etc. are used as a general method.

또한 상기의 수산화물 또는 산화물의 수분산시 분산의 안정성을 부여하기 위하여 계면활성제를 사용할 수 있다. 사용이 가능한 계면활성제로는 술폰산폴리옥시에틸렌알킬페닐에테르, 지방산나트륨비누, 디옥틸술포석신산나트륨, 알킬설페이트, 폴리카르복실산, 디소듐라우릴폴리옥시에틸렌술포석시네이트, 아미드에테르설페이트, 소듐알킬에테르설페이트, 아실메틸타우린산나트륨, 도데실벤젠술폰산나트륨 등의 음이온성 계면활성제, 폴리옥시에틸렌솔비탄알킬에테르, 폴리옥시에틸렌알킬에스테르, 폴리옥시에틸렌노닐폐닐에테르, 폴리옥시에틸렌라우릴에테르, 솔비탄스테아레이트, 폴리에테르변성실리콘, 옥시에틸렌도데실아민, 폴리에스테르변성실리콘, 솔비탄라우레이트, 폴리옥시에틸렌옥틸폐닐에테르, 솔비탄세스퀴올리에이트 등의 비이온성계면활성제, 디메틸알콜베타인, 알킬글리신, 이미다졸린 등의 양성계면활성제, 알킬디메틸벤질클로라이드, 테트라데실디메틸벤질암모늄클로라이드, 핵사데실트리메틸암모늄클로라이드, 베헤닐트리메틸암모늄클로라이드, 알킬프로필렌디아민아세테이트, 옥타데실아민이세테이트, 테트라데실아민아세테이트, 디데실디메틸암모늄클로라이드, 옥타데실디메틸벤질암모늄클로라이드 등의 양이온성계면활성제 등을 들수 있으며 이들의 첨가량은 0.1 중량부 내지 2중량부 정도가 적합하다.In addition, a surfactant may be used to impart stability of the dispersion when the hydroxide or oxide is dispersed. Surfactants that can be used include sulfonic acid polyoxyethylene alkyl phenyl ether, fatty acid sodium soap, sodium dioctyl sulfosuccinate, alkyl sulfate, polycarboxylic acid, disodium lauryl polyoxyethylene sulfosuccinate, amide ether sulfate, sodium Anionic surfactants such as alkyl ether sulfate, sodium acyl methyl taurate, sodium dodecyl benzene sulfonate, polyoxyethylene sorbitan alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene nonyl pentyl ether, polyoxyethylene lauryl ether, Nonionic surfactants, such as sorbitan stearate, polyether modified silicone, oxyethylene dodecylamine, polyester modified silicone, sorbitan laurate, polyoxyethylene octyl pentyl ether, sorbitan sesqui oleate, dimethyl alcohol betaine Amphoteric surfactants such as alkylglycine, imidazoline, alkyldimethylbenzyl chloride , Tetradecyldimethylbenzyl ammonium chloride, nuxadecyltrimethylammonium chloride, behenyltrimethylammonium chloride, alkylpropylenediamine acetate, octadecylamine acetate, tetradecylamine acetate, didecyldimethylammonium chloride, octadecyldimethylbenzyl ammonium chloride, etc. And cationic surfactants. The addition amount thereof is preferably about 0.1 part by weight to about 2 parts by weight.

광촉매인 TiO2와 항균금속고정화입자를 코팅하는 2가지목적은 첫째, TiO2입자의 표면을 다공성실리카(porous silica) 또는 다공성티타니아(porous titania)로 코팅함으로서 급격한 산화반응을 조절, 항균금속성분의 안정화 그리고 2차 응집현상 등을 방지할 수 있는 효과. 둘째는 실리카가 바인더로서의 기능으로 본 발명의 항균 광촉매를 다른 종류의 표면에 코팅할 수 있게 된다.Two purposes of coating TiO 2 photocatalyst and antimicrobial metal-fixed particles are to control the rapid oxidation reaction by coating the surface of TiO 2 particles with porous silica or porous titania. Stabilization and secondary flocculation can be prevented. Secondly, silica can function as a binder to coat the antibacterial photocatalyst of the present invention on other kinds of surfaces.

(실시예 1)(Example 1)

1. 항균금속을 고정화하는 무기수산화물 수분산체의 제조1. Preparation of inorganic hydroxide water dispersion which immobilizes antibacterial metal

증류수 또는 이온교환수 1000ml를 0℃가 유지되도록 빙냉 교반 하면서 황산티타늄 {Ti(SO4)2} 15ml를 서서히 적하한다. 적하가 끝난 후 10분 동안 서서히 교반, 혼합한다. 교반을 계속하면서 질산구리 {Cu(NO3)2·3H2O} 0.5g과 질산은(AgNO3) 0.3g을 차례로 서서히 투입하고 30분 동안 교반한다. 그런 후 이 혼합 용액에 암모니아수(NH4OH, 0.5mol/l)를 서서히 적하하고, 교반하여 pH 7이 될 때까지 계속한다. 그러면 유백색의 침전 생성물을 얻을 수 있게 되는데 그 상태에서 교반을 멈추고 12시간 동안 유지시킨다. 이어서 침전물을 filtering 한 후 이온교환수로 충분히 세척함으로써 Cu와 Ag성분이 포함된 수산화티타늄겔을 얻게된다. 여기에 이온교환수를 첨가하여 적정농도(TiO2로 환산하여 약 0.9wt%)의 혼합액을 만든다. 그런 후 여기에 암모니아수(28%)를 첨가하여 pH가 9.5가 되도록 한 후 유화믹서(homo. mixer)를 이용하여 3시간동안 분산 처리하여 미립자 상태(1nm 내지100nm)의 colloid를 형성하도록 한다. 이로서 Cu와 Ag 항균금속성분이 고정화, 즉 화합물 형태로된 수산화티타늄 콜로이드 용액이 만들어진다.15 ml of titanium sulfate {Ti (SO 4 ) 2 } is slowly added dropwise while ice-cooling stirring 1000 ml of distilled or ion-exchanged water to maintain 0 ° C. After the dropping is completed, the mixture is slowly stirred and mixed for 10 minutes. While continuing to stir, 0.5 g of copper nitrate {Cu (NO 3 ) 2 .3H 2 O} and 0.3 g of silver nitrate (AgNO 3 ) were gradually added and stirred for 30 minutes. Then, ammonia water (NH 4 OH, 0.5 mol / l) was slowly added dropwise to the mixed solution, and the mixture was stirred until the pH reached 7. This yields a milky white precipitate that stops stirring and holds for 12 hours. Subsequently, the precipitate is filtered and washed sufficiently with ion-exchanged water to obtain a titanium hydroxide gel containing Cu and Ag components. Ion-exchanged water is added thereto to make a mixed liquid having an appropriate concentration (about 0.9 wt% in terms of TiO 2 ). Then, ammonia water (28%) was added thereto to pH 9.5, followed by dispersion treatment for 3 hours using a homo mixer to form colloids in the particulate state (1 nm to 100 nm). This creates a titanium hydroxide colloidal solution in which the Cu and Ag antibacterial metal components are immobilized, i.e., in the form of a compound.

2. 항균금속이 함유된 TiO2(anatase) 광촉매 분말의 제조2. Preparation of TiO 2 (anatase) Photocatalyst Powder Containing Antibacterial Metal

증류수 또는 이온교환수 1000ml를 0℃의 온도가 유지되도록 빙냉 교반하면서 사염화티타늄(TiCl4) 10ml를 서서히 적하한 후 10분 이상 충분하게 혼합하여 둔다. 그런 후 다른 용기에서 암모니아수 용액(NH4OH, 0.5mol/l)을 제조한 후 사염화티타늄용액에 서서히 적하 하면서 교반하여 pH 7이 될 때까지 계속하여 중화적정을 행한다. 이로서 유백색의 침전 생성물이 얻어지면 교반을 멈추고 그 상태에서 12시간 동안 유지시킨다. 그런 후 침전물을 filtering하고 이온교환수로 충분히 수세한후 질산은 수용액을 이용하여 은거울 반응으로 염소이온의 잔량 여부를 확인한다. 이상이 없으면 이온교환수를 첨가하여 총량 700ml가 되도록 하고 유화기를 이용하여 1시간 정도 교반을 계속하여 수중에 고르게 침전물이 분산이 될 수 있도록 한다. 따라서 Ti(OH)4수분산액을 얻을 수 있다. 여기에 과산화수소(H2O2)28%, 20m1를 약 30분에 걸쳐 적하하면서 교반한다. 이어서 50℃로 가열하면서 완전 투명의 진노랑색으로 용해되면 온도를 80℃로 가본하고 propeller mixer를 이용하여 80℃를 유지하면서 100rpm 내지 500rpm으로 1시간 동안 교반한다. 이때 상당량의 과산화수소가 분해하여 산소기포가 발생되어 제거되고 동시에 진노랑색의 투명용액이 만들어지게 되는데 이는 과산화티탄산용액으로 수 nm크기의 colloid 용액이다. 여기에 이온교환수를 첨가하여 900ml가 되도록 한 다음 30℃로 유지하면서 서서히 교반하고 여기에 상기의 항균금속이 고정화된 수산화티타늄 수분산액, 300ml를 30분에 걸쳐 서서히 첨가하고 propeller mixer를 이용하여 700rpm으로 1시간 동안 계속 교반한다. 이와 같이 충분히 혼합된 상태에서 autoclave 반응기에 투입하고 800rpm으로propeller agitation을 계속하면서 200℃에서 3시간 동안 수열합성반응이 이루어지도록 한다.10 ml of titanium tetrachloride (TiCl 4 ) is slowly added dropwise while ice-cooling stirring 1000 ml of distilled or ion-exchanged water to maintain a temperature of 0 ° C., followed by sufficient mixing for 10 minutes or more. Thereafter, ammonia water solution (NH 4 OH, 0.5 mol / l) was prepared in another vessel, and the mixture was slowly added dropwise to the titanium tetrachloride solution, stirred, and neutralized titration was continued until pH 7 was obtained. As a result, a milky white precipitate product was stopped and the stirring was stopped for 12 hours. After that, the precipitate is filtered and washed with ion-exchanged water sufficiently to check the remaining amount of chlorine ions in a silver mirror reaction using an aqueous solution of silver nitrate. If there is no problem, add ion-exchanged water so that the total amount is 700 ml, and continue stirring for about 1 hour using an emulsifier to evenly disperse the precipitate in water. Thus, a Ti (OH) 4 aqueous dispersion can be obtained. It is stirred while dropping 28% hydrogen peroxide (H 2 O 2 ) and 20 m 1 over about 30 minutes. Subsequently, when heated to 50 ° C. and completely dissolved in deep yellow color, the temperature was moved to 80 ° C. and stirred at 100 rpm to 500 rpm for 1 hour while maintaining 80 ° C. using a propeller mixer. At this time, a considerable amount of hydrogen peroxide is decomposed to generate and remove oxygen bubbles, and at the same time, a dark yellow transparent solution is produced, which is a colloidal solution of several nm size with titanium peroxide solution. Add ion-exchanged water to 900 ml, and then stir slowly while maintaining at 30 ° C. Then, slowly add 300 ml of an aqueous titanium hydroxide dispersion having the antimicrobial metal immobilized thereto over 30 minutes, and then use 700 rpm using a propeller mixer. Continue stirring for 1 hour. In such a sufficiently mixed state, the mixture was introduced into an autoclave reactor and hydrothermal synthesis was performed at 200 ° C. for 3 hours while continuing propeller agitation at 800 rpm.

그리고 상온으로 냉각한 후 filtering하고 이온교환수로 충분히 세척하였으며 이때의 생성물을 X선회절분석기(XRD)를 이용하여 분산입자가 anatase 임을 확인하였고, X선형광분석기(XRF)를 이용하여 아연(Zn)과 은(Ag)성분의 존재를 확인하였다. 이어서 100℃에서 8시간동안 건조한 후 450℃에서 3시간 동안 열처리하여 항균금속고정화 TiO2광촉매 분말을 제조하였다.After cooling to room temperature, the product was filtered and washed with ion-exchanged water, and the product was confirmed to be anatase by using an X-ray diffractometer (XRD) and zinc (Zn) using an X-ray fluorescence analyzer (XRF). ) And the presence of silver (Ag) component was confirmed. Subsequently, the resultant was dried at 100 ° C. for 8 hours and then heat treated at 450 ° C. for 3 hours to prepare an antimicrobial metal-fixed TiO 2 photocatalyst powder.

3. 다공성 silica coating3. Porous silica coating

냉각사관이 부착된 반응 용기에 ethanol 200ml와 tetraethoxysilane {Si(OC2H5)4} , 7ml를 첨가하고 30℃를 유지하면서 10분 동안 교반한다. 여기에 ethanol 100ml, 이온교환수 20ml 그리고 HNO32ml를 혼합한 용액을 서서히 첨가하고 1시간동안 교반을 계속하면서 30℃를 유지한다. 냉각사관을 제거하고 대기 중에서 온도를 80℃로 상승하고 교반 속도를 빨리 하여 전체 용량의 절반이 줄어들면 정지하고 상온으로 냉각하여 silica 코팅용액으로 만들어 둔다.200 ml of ethanol, 7 ml of tetraethoxysilane {Si (OC 2 H 5 ) 4 }, and 7 ml are added to the reaction vessel to which the cooling tube is attached, and the mixture is stirred for 10 minutes while maintaining at 30 ° C. A solution of 100 ml of ethanol, 20 ml of ion-exchanged water and 2 ml of HNO 3 was slowly added thereto, and the mixture was kept at 30 ° C. for 1 hour while stirring was continued. Remove the cooling pipe, raise the temperature to 80 ℃ in the air, and increase the stirring speed to stop when half of the total capacity is reduced, and then cool it to room temperature and make it as a silica coating solution.

이와 달리 이미 만들어진 항균금속고정화 TiO2광촉매 분말과 이온교환수 300ml를 혼합한 후 glass bead mill(glass bead의 크기는 2mmØ)에 투입하고 rpm을 1000 내지 3000으로 30분 동안 milling하여 입자크기가 10내지 100nm의 무기산화물 분산졸(sol)을 제조한다. 이어서 여기에 상기의 silica 코팅용액을 첨가하고 80rpm의 속도로 2시간 동안 교반을 계속한다. 그 후 이온교환수를 200ml를 첨가하고rotary evaporator를 이용하여 감압 증류하여 알콜 성분을 제거함으로써 다공성 silica가 코팅된 항균금속함유 광촉매분산 colloid 용액을 얻게된다.On the other hand, after mixing the antimicrobial metal immobilized TiO 2 photocatalyst powder and 300ml of ion-exchanged water, it is added to a glass bead mill (glass bead size is 2mmØ) and milled at 30 to 1000 to 3000 for 30 minutes. 100 nm inorganic oxide dispersion sol is prepared. Subsequently, the silica coating solution was added thereto and stirring was continued for 2 hours at a speed of 80 rpm. Thereafter, 200 ml of ion-exchanged water was added and the distillation under reduced pressure was carried out using a rotary evaporator to remove alcohol. Thus, a porous silica coated photocatalyst dispersion colloid solution was obtained.

(실시예 2)(Example 2)

실시예 1에서 질산구리 {Cu(NO3)2·3H2O} 1g과 질산은(AgNO3) 0.3g 대신에 질산아연 {Zn(NO3)2·6H2O} 2g과 질산동 {Cu(NO3)2·3H2O} 1g을 첨가한다.Example 1 Copper nitrate in the {Cu (NO 3) 2 · 3H 2 O} 1g and silver nitrate (AgNO 3) of nitric acid in place of 0.3g of zinc {Zn (NO 3) 2 · 6H 2 O} 2g and copper nitrate Cu {( 1 g of NO 3 ) 2 · 3H 2 O} is added.

(실시예 3)(Example 3)

실시예 1에서 질산구리 {Cu(NO3)2·3H2O} 1g과 질산은(AgNO3) 0.3g 대신에 질산은(AgNO3) 0.5g 만을 첨가한다.Example 1 Copper nitrate in the {Cu (NO 3) 2 · 3H 2 O} is 1g and silver nitrate (AgNO 3) was added only silver nitrate (AgNO 3) 0.5g to 0.3g instead.

(실시예 4)(Example 4)

항균력 시험을 다음과 같이 행하였다. 시험 균주는 Staphylococcus aureus(황색포도상구균)와 Escherichia coli(대장균)으로 증균용 배지에서 35℃, 18시간 동안 배양하고 균수를 측정해본 결과 도면 1과 같다. 그리고 실시예 1을 이용한 항균도 시험 사진을 도면 2와 도면 3에 나타냈다.The antimicrobial test was done as follows. Test strains were incubated with Staphylococcus aureus (Staphylococcus aureus) and Escherichia coli (E. coli) at 35 ° C. for 18 hours in the enrichment medium, and the number of bacteria was measured as shown in FIG. 1. And the antimicrobial test photograph using Example 1 was shown in FIG. 2 and FIG.

본 발명의 항균금속함유 광촉매 수분산 colloid 용액은 광촉매 활성도를 보다 향상시키고 광조사가 부족한 상태에서도 지속적으로 강력한 항균 작용을 나타낼 수 있는 특징이 있다. colloid상태가 장기간 안정하며 함유된 항균금속의 변질 또는 변색을 방지할 수 있다. 박테리아에 대한 강력한 항균성과 유기물질에 대하여 산화환원반응을 나타내고, 박막가공시 표면이 초친수성을 나타내는 특징 등으로 그용도는 항균, 탈취, 방오, 유해가스의 제거, 자정(self cleaning) 작용 등의 목적으로 그 용도는 광범위하며, 특히 인체에 대한 안정성이 높아 환경친화적 측면에서 한층 효과적인 환경 정화재료로 기대된다.The antimicrobial metal-containing photocatalytic water dispersion colloid solution of the present invention has a feature that can further enhance the photocatalytic activity and exhibit a strong antimicrobial activity even in a state in which light irradiation is insufficient. The colloidal state is stable for a long time and can prevent the deterioration or discoloration of the contained antibacterial metal. It has strong antibacterial activity against bacteria and redox reaction to organic materials and super hydrophilicity on the surface of thin film. Its use is antibacterial, deodorization, antifouling, removal of harmful gas, self cleaning, etc. For this purpose, its use is extensive, and in particular, it is expected to be a more effective environmental purification material in terms of environment friendliness due to its high stability to the human body.

Claims (5)

항균금속성분을 포함하는 광촉매 수분산체 또는 광촉매 분말로 수열합성반응(hydrothermal reaction)을 통하여 제조된 것Photocatalytic water dispersion or photocatalyst powder containing antibacterial metal component prepared by hydrothermal reaction 청구항 1에서 수열합성반응은 티타늄수산화물과 과산화수소의 반응으로 만들어진 투명의 과산화티탄산용액과 항균금속성분을 함유하는 무기수산화물 간의 분산 혼합물을 100℃ 이상의 온도에서 구조의 결정화 반응을 유도한 것The hydrothermal synthesis reaction of claim 1 is to induce a crystallization reaction of the structure of the dispersion mixture between the transparent titanium peroxide solution made from the reaction of titanium hydroxide and hydrogen peroxide and inorganic hydroxide containing antibacterial metal components at a temperature of 100 ℃ or more 청구항 1의 항균금속은 Ag, Cu, Zn중 1종이상이고, 청구항2의 무기수산화물은 Ti, Al, Zr, Ce, Zn 수산화물 중 1종 이상 인 것.The antimicrobial metal of claim 1 is at least one of Ag, Cu, Zn, the inorganic hydroxide of claim 2 is at least one of Ti, Al, Zr, Ce, Zn hydroxide. 청구항 1의 광촉매는 산화티타늄(anatase) 와 산화아연 중 1종 이상이고, 입자크기는 1nm 내지 100nm 범위의 것.The photocatalyst of claim 1 is at least one of titanium oxide and zinc oxide, and has a particle size in the range of 1 nm to 100 nm. 청구항 1의 광촉매는 이산화규소(SiO2) 또는 산화티타늄으로 다공성 코틱처리 또는 microcapsule 화 한 것.The photocatalyst of claim 1 is porous coticized or microcapsule with silicon dioxide (SiO 2 ) or titanium oxide.
KR10-2001-0068034A 2001-11-01 2001-11-01 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof KR100436240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0068034A KR100436240B1 (en) 2001-11-01 2001-11-01 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0068034A KR100436240B1 (en) 2001-11-01 2001-11-01 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof

Publications (2)

Publication Number Publication Date
KR20030037050A true KR20030037050A (en) 2003-05-12
KR100436240B1 KR100436240B1 (en) 2004-06-16

Family

ID=29567641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0068034A KR100436240B1 (en) 2001-11-01 2001-11-01 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof

Country Status (1)

Country Link
KR (1) KR100436240B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511935B1 (en) * 2002-05-03 2005-09-21 우리켐테크(주) Deodorizing agent for removing stink
KR20050103602A (en) * 2004-04-26 2005-11-01 (주) 엔피씨 Photocatalyst coating agent for indoor and preparation method thereof
KR100654299B1 (en) * 2004-10-21 2006-12-05 유시정 Antifouling Functional Ceramic Coating Composition
KR100693333B1 (en) * 2005-08-22 2007-03-09 구창모 Nanometer-sized-silver capsulated with porous silica, method thereof and dyeing method of fabric using thereof
KR100742379B1 (en) * 2005-04-13 2007-07-24 김영남 Antibiotic nano metal composite
US8673331B2 (en) 2011-11-18 2014-03-18 Gp&E Composition with sterilizing activity against bacteria, fungus and viruses, application thereof and method for preparation thereof
KR20140093236A (en) * 2011-11-17 2014-07-25 사까이가가꾸고오교가부시끼가이샤 Surface-treated zinc oxide powder, anti-bacterial agent, and anti-bacterial composition
CN111296416A (en) * 2018-12-12 2020-06-19 韩国绿水滴(株) Antibacterial, antifungal and antiviral composition with enhanced deodorizing function and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599532B1 (en) 2004-10-15 2006-07-13 나노폴리(주) Manufacture of high concentration plastic masterbatch chip and the mouldings manufacture method use of metallic nano particle that have antibiotic, sterilization and smell exclusion function
KR100862754B1 (en) * 2008-04-21 2008-10-10 문강인 Photocatalyst filter process of manufacture and photocatalyst filter and ultraviolet lamp that use photocatalyst filter
KR101789296B1 (en) 2015-07-02 2017-11-21 서울시립대학교 산학협력단 Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby
KR200491232Y1 (en) 2019-07-15 2020-03-06 (주)송학 Rolling powder structure for application of cosmetic liquid
KR102382296B1 (en) 2020-04-28 2022-04-01 충남대학교산학협력단 Visible-light active tiO2-based photocatalyst for antibacterial and antiviral
KR20220113066A (en) 2021-02-05 2022-08-12 (주)그린시스템 Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method
CN117836104A (en) * 2021-08-20 2024-04-05 (株)邰琳生物科技 Nose hair scraper with antibacterial function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JP2864251B2 (en) * 1989-07-19 1999-03-03 富田製薬株式会社 Antibacterial titanium oxide and method for producing the same
JPH08131834A (en) * 1994-11-09 1996-05-28 Toto Ltd Titanium oxide sol for photocatalyst and multifunctional member having photocatalytic action
US5961843A (en) * 1994-10-05 1999-10-05 Toto Ltd. Antimicrobial solid material, process for producing the same, and method of utilizing the same
JP2938376B2 (en) * 1995-08-31 1999-08-23 佐賀県 Liquid for forming titania film, titania film and method for producing the same
KR100430405B1 (en) * 1999-04-23 2004-05-03 주식회사 나노 manufacturing method of titanium dioxide powder for photocatalyst
JP3689754B2 (en) * 1999-05-14 2005-08-31 シャープ株式会社 Photocatalyst material and air purification film
KR100385903B1 (en) * 2000-08-07 2003-06-02 동아전기부품 주식회사 Method for making titanium dioxide powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511935B1 (en) * 2002-05-03 2005-09-21 우리켐테크(주) Deodorizing agent for removing stink
KR20050103602A (en) * 2004-04-26 2005-11-01 (주) 엔피씨 Photocatalyst coating agent for indoor and preparation method thereof
KR100654299B1 (en) * 2004-10-21 2006-12-05 유시정 Antifouling Functional Ceramic Coating Composition
KR100742379B1 (en) * 2005-04-13 2007-07-24 김영남 Antibiotic nano metal composite
KR100693333B1 (en) * 2005-08-22 2007-03-09 구창모 Nanometer-sized-silver capsulated with porous silica, method thereof and dyeing method of fabric using thereof
KR20140093236A (en) * 2011-11-17 2014-07-25 사까이가가꾸고오교가부시끼가이샤 Surface-treated zinc oxide powder, anti-bacterial agent, and anti-bacterial composition
US8673331B2 (en) 2011-11-18 2014-03-18 Gp&E Composition with sterilizing activity against bacteria, fungus and viruses, application thereof and method for preparation thereof
CN111296416A (en) * 2018-12-12 2020-06-19 韩国绿水滴(株) Antibacterial, antifungal and antiviral composition with enhanced deodorizing function and preparation method thereof

Also Published As

Publication number Publication date
KR100436240B1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
KR100436240B1 (en) Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof
Nikazar et al. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst
CN1331400C (en) Method for preparing composite photocatalytic germicide
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
AU2007211536B2 (en) Method for the preparation of aqueous dispersions of TiO2 in the form of nanoparticles, and dispersions obtainable with this method
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
US11597657B2 (en) Nitrogen-doped TiO2 nanoparticles and the use thereof in photocatalysis
TW201526987A (en) Method of producing titania sol with nano silver particle, photo-catalyst coating solution, photo-catalyst component and the use
JP2022539320A (en) Antimicrobial coating composition
Nikazara et al. Using TiO 2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water
CN102380366A (en) Bismuth and silicon doped nano titanium dioxide photocatalyst, its preparation and its application
TWI665015B (en) Antibacterial photocatalyst material, method for manufacturing the same, and photocatalyst component using the same
EP2133311A1 (en) Zirconium oxalate sol
KR102562529B1 (en) Transition Metal Doped Complex Photocatalyst and Manufacturing Method thereof
KR100403275B1 (en) Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same
KR20050103602A (en) Photocatalyst coating agent for indoor and preparation method thereof
JP2011240246A (en) Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same
JP2005318999A (en) Antibacterial deodorant and its manufacturing method
TW201902353A (en) Method of producing nano ceria-titania binary oxide sol and its application in antibacteria
JP3885248B2 (en) Photocatalyst composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130604

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150526

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160604

Year of fee payment: 13