JP2011240246A - Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same - Google Patents

Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same Download PDF

Info

Publication number
JP2011240246A
JP2011240246A JP2010114286A JP2010114286A JP2011240246A JP 2011240246 A JP2011240246 A JP 2011240246A JP 2010114286 A JP2010114286 A JP 2010114286A JP 2010114286 A JP2010114286 A JP 2010114286A JP 2011240246 A JP2011240246 A JP 2011240246A
Authority
JP
Japan
Prior art keywords
titanium oxide
visible light
particle dispersion
tin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114286A
Other languages
Japanese (ja)
Other versions
JP5447177B2 (en
Inventor
Manabu Furudate
学 古舘
Tomohiro Inoue
友博 井上
Kichiji Eikuchi
吉次 栄口
Tadashi Amano
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010114286A priority Critical patent/JP5447177B2/en
Priority to PCT/JP2011/055730 priority patent/WO2011145385A1/en
Priority to CN201180004728.6A priority patent/CN102639242B/en
Priority to KR1020127011649A priority patent/KR101685675B1/en
Priority to US13/503,132 priority patent/US8986580B2/en
Publication of JP2011240246A publication Critical patent/JP2011240246A/en
Application granted granted Critical
Publication of JP5447177B2 publication Critical patent/JP5447177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a visible light-responsive titanium oxide dispersion liquid in which the dispersion stability of the titanium oxide microparticle is excellent, and from which a photocatalyst having a visible light responsibility and a high transparency can simply be fabricated; and to provide a method for manufacturing the same.SOLUTION: The visible light-responsive titanium oxide dispersion liquid comprises the titanium oxide microparticle dispersed in an aqueous dispersion medium, a peroxotitanium component, a copper and a tin components, wherein the content of the peroxotitanium component is 0.1-20 mass% to the titanium oxide. The manufacturing method of a visible light-responsive titanium oxide dispersion liquid comprises the steps of: (1) manufacturing a peroxotitanic acid containing a tin compound from a titanium compound, the tin compound and hydrogen peroxide as raw materials; (2) heating the peroxotitanic acid aqueous solution containing the tin compound under high pressure at 80-250°C to obtain a titanium oxide microparticle dispersion liquid containing the peroxotitanium component and the tin component; and (3) adding a copper compound to the titanium oxide microparticle dispersion liquid to react those.

Description

本発明は、可視光応答型酸化チタン系微粒子分散液及びその製造方法に関し、更に詳細には、酸化チタン微粒子の分散安定性に優れ、また、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型酸化チタン系分散液及びその製造方法に関する。   The present invention relates to a visible light responsive titanium oxide fine particle dispersion and a method for producing the same, and more specifically, a highly transparent photocatalytic thin film having excellent dispersion stability of titanium oxide fine particles and having visible light responsiveness. The present invention relates to a visible light responsive titanium oxide dispersion that can be easily produced and a method for producing the same.

酸化チタンは種々の用途、例えば顔料、紫外線遮蔽剤、触媒、光触媒、触媒担体、吸着剤、イオン交換剤、充填剤、補強剤、セラミックス用原料、ペロブスカイト型複合酸化物などの複合酸化物の前駆体、及び磁気テープの下塗り剤等に使用されている。   Titanium oxide is a precursor for composite oxides such as pigments, UV shielding agents, catalysts, photocatalysts, catalyst carriers, adsorbents, ion exchangers, fillers, reinforcing agents, ceramic raw materials, and perovskite composite oxides. It is used as a primer for the body and magnetic tape.

中でも光触媒性酸化チタン微粒子は、その分散液を種々基材の表面にコーティングして形成した光触媒性コーティング膜が、酸化チタンの光触媒作用により有機物を分解し膜表面を親水性にすることから、基材表面の清浄化、脱臭、抗菌等の用途に多用されている。該光触媒活性を高めるためには、光触媒粒子と分解対象物質との接触面積を広くすることが必要であり、そのために該粒子の一次粒子径が50nm以下であることが要求される。さらに、基材の意匠性を失わないよう、膜の透明性も要求される。   Among them, the photocatalytic titanium oxide fine particles are based on the photocatalytic coating film formed by coating the dispersion on the surface of various substrates, which decomposes organic substances and makes the film surface hydrophilic by photocatalytic action of titanium oxide. It is widely used for cleaning the surface of materials, deodorizing, antibacterial and so on. In order to enhance the photocatalytic activity, it is necessary to increase the contact area between the photocatalyst particles and the substance to be decomposed, and for this purpose, the primary particle diameter of the particles is required to be 50 nm or less. Furthermore, the transparency of the film is also required so as not to lose the design properties of the substrate.

酸化チタン微粒子分散液の製造方法としては、1)酸化チタン微粉末を有機高分子分散剤などの分散助剤を用いて、湿式分散機により分散媒中に分散する方法(特許文献1〜3)、及び2)チタン含有化合物溶液の水熱処理により作製する液相法(特許文献4)が挙げられる。これらの製法の問題点は平均粒子径50nm以下の超微粒子が凝集を起こしやすいため、一次粒子まで分散するために多大な労力を必要とし、場合によっては一次粒子まで分散することが不可能な点である。   As a method for producing a titanium oxide fine particle dispersion, 1) a method in which a fine powder of titanium oxide is dispersed in a dispersion medium by a wet disperser using a dispersion aid such as an organic polymer dispersant (Patent Documents 1 to 3) And 2) a liquid phase method (Patent Document 4) prepared by hydrothermal treatment of a titanium-containing compound solution. The problem with these production methods is that ultrafine particles having an average particle diameter of 50 nm or less are likely to agglomerate, so that a great deal of labor is required to disperse to the primary particles, and in some cases it is impossible to disperse to the primary particles. It is.

また、酸化チタンは、太陽光などの比較的波長の短い紫外領域の光の照射下では良好な光触媒作用を示すものの、蛍光灯のように可視光が大部分を占める光源で照らされた室内空間では、十分な光触媒作用を発現しにくい場合がある。近年、可視光応答型光触媒として酸化タングステン光触媒体(特許文献4)が注目されているが、タングステンは希少元素であるため、汎用元素であるチタンを利用した光触媒の可視光活性向上が望まれている。   Titanium oxide exhibits good photocatalysis under the irradiation of light in the ultraviolet region with a relatively short wavelength, such as sunlight, but it is an indoor space illuminated by a light source that occupies most of the visible light, such as a fluorescent lamp. Then, it may be difficult to exhibit sufficient photocatalytic action. In recent years, a tungsten oxide photocatalyst (Patent Document 4) has attracted attention as a visible light responsive photocatalyst. However, since tungsten is a rare element, it is desired to improve the visible light activity of a photocatalyst using titanium which is a general-purpose element. Yes.

特開平01−003020号公報JP-A-01-003020 特開平06−279725号公報Japanese Patent Laid-Open No. 06-279725 特開平07−247119号公報Japanese Patent Laid-Open No. 07-247119 特開2009−148700号公報JP 2009-148700 A

本発明は上記事情に鑑みなされたもので、酸化チタン微粒子の分散安定性に優れ、また、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型酸化チタン系分散液及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of easily producing a highly transparent photocatalytic thin film having excellent dispersion stability of titanium oxide fine particles and having visible light responsiveness. It is an object to provide a system dispersion and a method for producing the same.

本発明者らは、上記目的を達成するため鋭意検討を行なった結果、原料チタン化合物とスズ化合物と過酸化水素を用いてスズ化合物を含有したぺルオキソチタン酸を製造した後、これを高圧下に水熱反応させて酸化チタン微粒子分散液を得た後、銅化合物を添加、反応させることにより、ぺルオキソチタン成分、銅成分、スズ成分を含む酸化チタン微粒子分散液が得られ、この酸化チタン分散液は、酸化チタン微粒子の分散安定性に優れ、またこの酸化チタン分散液から可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have produced peroxotitanic acid containing a tin compound using a raw material titanium compound, a tin compound and hydrogen peroxide, and then subjecting this to high pressure. After obtaining a titanium oxide fine particle dispersion by hydrothermal reaction, a titanium compound fine particle dispersion containing a peroxotitanium component, a copper component, and a tin component is obtained by adding and reacting a copper compound. This titanium oxide dispersion Has found that it is excellent in dispersion stability of titanium oxide fine particles, and that a highly transparent photocatalytic thin film having visible light responsiveness can be easily produced from this titanium oxide dispersion, and has led to the present invention. .

従って、本発明は、下記可視光応答型酸化チタン系分散液及びその製造方法を提供する。
請求項1:
水性分散媒中に、酸化チタン微粒子が分散していると共に、ペルオキソチタン成分、銅成分及びスズ成分が含有され、且つ該ペルオキソチタン成分の含有量が酸化チタンに対して0.1〜20質量%であることを特徴とする可視光応答型酸化チタン系微粒子分散液。
請求項2:
前記銅成分の金属銅換算での含有量が、酸化チタンに対して0.01〜5質量%であることを特徴とする請求項1に記載の可視光応答型酸化チタン系微粒子分散液。
請求項3:
前記スズ成分の含有量が、酸化チタンとのモル比(Ti/Sn)で1〜1000であることを特徴とする請求項1又は2に記載の可視光応答型酸化チタン系微粒子分散液。
請求項4:
前記酸化チタン微粒子が、動的散乱法により測定される50%累計分布径(D50)で50nm以下であることを特徴とする請求項1〜3のいずれか1項に記載の可視光応答型酸化チタン系微粒子分散液。
請求項5:
(1)原料チタン化合物とスズ化合物と過酸化水素から、スズ化合物を含有したペルオキソチタン酸を製造する工程、
(2)スズ化合物を含有したペルオキソチタン酸水溶液を高圧下、80〜250℃で加熱し、ペルオキソチタン成分及びスズ成分を含む酸化チタン微粒子分散液を得る工程、及び
(3)酸化チタン微粒子分散液に銅化合物を添加し、反応させる工程
を有することを特徴とする請求項1〜4のいずれか1項に記載の可視光応答型酸化チタン系微粒子分散液の製造方法。
Accordingly, the present invention provides the following visible light responsive titanium oxide dispersion and a method for producing the same.
Claim 1:
In the aqueous dispersion medium, fine particles of titanium oxide are dispersed, a peroxotitanium component, a copper component and a tin component are contained, and the content of the peroxotitanium component is 0.1 to 20% by mass with respect to titanium oxide. A visible light responsive titanium oxide-based fine particle dispersion.
Claim 2:
2. The visible light responsive titanium oxide fine particle dispersion according to claim 1, wherein the content of the copper component in terms of metallic copper is 0.01 to 5 mass% with respect to titanium oxide.
Claim 3:
3. The visible light responsive titanium oxide fine particle dispersion according to claim 1, wherein a content of the tin component is 1 to 1000 in terms of a molar ratio (Ti / Sn) to titanium oxide.
Claim 4:
The visible light responsive type according to any one of claims 1 to 3, wherein the titanium oxide fine particles have a 50% cumulative distribution diameter (D50) measured by a dynamic scattering method of 50 nm or less. Titanium oxide fine particle dispersion.
Claim 5:
(1) a step of producing peroxotitanic acid containing a tin compound from a raw material titanium compound, a tin compound and hydrogen peroxide;
(2) a step of heating a peroxotitanic acid aqueous solution containing a tin compound at 80 to 250 ° C. under high pressure to obtain a titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; and (3) a titanium oxide fine particle dispersion. The method for producing a visible light responsive titanium oxide fine particle dispersion according to any one of claims 1 to 4, further comprising a step of adding a copper compound to the reaction.

本発明によれば、酸化チタン微粒子の分散安定性に優れ、また、可視光応答性を有する透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型酸化チタン系分散液及びその製造方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, a visible light responsive titanium oxide dispersion and a production thereof that can easily produce a highly transparent photocatalytic thin film having excellent dispersion stability of titanium oxide fine particles and having visible light responsiveness. A method can be provided.

以下、本発明について更に詳細に説明する。
<可視光応答型酸化チタン系微粒子分散液>
本発明の可視光応答型酸化チタン系微粒子分散液においては、水性溶媒中に、酸化チタン微粒子が高度に分散し、更にペルオキソチタン成分、銅成分及びスズ成分が含まれているものである。
Hereinafter, the present invention will be described in more detail.
<Visible light responsive titanium oxide fine particle dispersion>
In the visible light responsive titanium oxide fine particle dispersion of the present invention, titanium oxide fine particles are highly dispersed in an aqueous solvent, and further a peroxotitanium component, a copper component and a tin component are contained.

・水性分散媒:
水性分散媒としては水性溶媒が使用される。水性溶媒としては、水、及び水と任意の割合で混合される親水性有機溶媒との混合溶媒が挙げられる。水としては、例えば脱イオン水、蒸留水、純水等が好ましい。親水性有機溶媒としては、例えばメタノール、エタノール、イソプロパノールなどのアルコールが好ましい。この場合、親水性有機溶媒の混合割合は、水性分散媒中0〜50質量%であることが好ましい。
・ Aqueous dispersion medium:
An aqueous solvent is used as the aqueous dispersion medium. Examples of the aqueous solvent include a mixed solvent of water and a hydrophilic organic solvent mixed with water at an arbitrary ratio. As water, for example, deionized water, distilled water, pure water and the like are preferable. As the hydrophilic organic solvent, alcohols such as methanol, ethanol and isopropanol are preferable. In this case, the mixing ratio of the hydrophilic organic solvent is preferably 0 to 50% by mass in the aqueous dispersion medium.

・酸化チタン微粒子:
水性分散媒に分散される酸化チタン微粒子は、レーザー光を用いた動的散乱法により測定される体積基準の50%累積分布径(D50)(以下、「平均粒子径」とする。)が50nm以下であることが好ましく、より好ましくは30nm以下である。通常、その下限値は特に限定されないが、5nm以上であることが好ましい。
・ Titanium oxide fine particles:
The titanium oxide fine particles dispersed in the aqueous dispersion medium have a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) measured by a dynamic scattering method using laser light. The thickness is preferably 50 nm or less, and more preferably 30 nm or less. Usually, the lower limit is not particularly limited, but is preferably 5 nm or more.

酸化チタン微粒子の濃度は、所要の厚さの光触媒薄膜を作製し易い点で、分散液中、0.01〜20質量%が好ましく、特に0.5〜10質量%が好ましい。   The concentration of the titanium oxide fine particles is preferably from 0.01 to 20% by mass, and particularly preferably from 0.5 to 10% by mass in the dispersion, in that a photocatalytic thin film having a required thickness can be easily produced.

・ペルオキソチタン成分:
ここで、「ペルオキソチタン成分」とは、Ti−O−O−Ti結合を含む酸化チタン系化合物を意味し、ペルオキソチタン酸及びTi(VI)と過酸化水素との反応によって生成するペルオキソチタン錯体を含包する。
Peroxotitanium component:
Here, the “peroxotitanium component” means a titanium oxide-based compound containing a Ti—O—O—Ti bond, and a peroxotitanium complex formed by the reaction of peroxotitanic acid and Ti (VI) with hydrogen peroxide. Include.

本発明の酸化チタン系微粒子分散液において、ペルオキソチタン成分は酸化チタンを良好に分散させる作用を有する。ペルオキソチタン成分の濃度は、酸化チタン微粒子に対して0.1〜20質量%であり、好ましくは0.1〜5質量%である。該濃度が0.1質量%未満では酸化チタン微粒子が凝集し易くなる。一方、20質量%を超えると、該分散液から得られる光触媒薄膜の光触媒効果が不十分となることがある。   In the titanium oxide-based fine particle dispersion of the present invention, the peroxotitanium component has a function of favorably dispersing titanium oxide. The density | concentration of a peroxotitanium component is 0.1-20 mass% with respect to a titanium oxide fine particle, Preferably it is 0.1-5 mass%. When the concentration is less than 0.1% by mass, the titanium oxide fine particles tend to aggregate. On the other hand, if it exceeds 20% by mass, the photocatalytic effect of the photocatalytic thin film obtained from the dispersion may be insufficient.

・銅成分:
銅成分は得られる光触媒薄膜の分解活性を高める作用を有する。該銅成分の存在状態は限定されず、例えば金属銅、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、及び錯化合物のいずれであってもよい。該銅成分は少なくともその一部は酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。
・ Copper component:
A copper component has the effect | action which improves the decomposition activity of the photocatalyst thin film obtained. The presence state of the copper component is not limited, and may be any of, for example, metallic copper, oxide, hydroxide, nitrate, sulfate, halide, and complex compound. It is preferable that at least a part of the copper component is supported on the surface of the titanium oxide fine particles, and the other part is preferably dissolved and / or dispersed in the dispersion.

該銅成分の金属銅換算の含有量は、酸化チタン微粒子に対して0.01〜5質量%が好ましく、特には0.1〜2質量%が好ましい。銅成分の含有量が多すぎると、光触媒活性が十分に発揮されないことがある。   The content of the copper component in terms of metallic copper is preferably 0.01 to 5% by mass, particularly preferably 0.1 to 2% by mass with respect to the titanium oxide fine particles. When there is too much content of a copper component, photocatalytic activity may not fully be exhibited.

・スズ成分:
スズ成分は得られる光触媒薄膜の可視光応答性を高める作用を有する。該スズ成分の存在状態は限定されず、例えば金属スズ、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、及び錯化合物のいずれであってもよい。該スズ成分は少なくともその一部は酸化チタン微粒子内部にドープ、もしくは酸化チタン微粒子表面に担持されていることが好ましく、他の部分は分散液中に溶解及び/又は分散していることが好ましい。
-Tin component:
A tin component has the effect | action which improves the visible light responsiveness of the photocatalyst thin film obtained. The presence state of the tin component is not limited, and may be any of metal tin, oxide, hydroxide, nitrate, sulfate, halide, and complex compound, for example. It is preferable that at least a part of the tin component is doped inside the titanium oxide fine particles or supported on the surface of the titanium oxide fine particles, and the other part is preferably dissolved and / or dispersed in the dispersion.

該スズ成分は、酸化チタンとのモル比(Ti/Sn)で1〜1000含有されていることが好ましく、特には5〜200が好ましく、より好ましくは10〜100である。該モル比が1000を超えると効果が不十分である。一方、1より小さいと、酸化チタン含有割合が低下し、光触媒効果が十分発揮されないことがある。   The tin component is preferably contained in a molar ratio (Ti / Sn) with titanium oxide of 1 to 1000, particularly preferably 5 to 200, and more preferably 10 to 100. When the molar ratio exceeds 1000, the effect is insufficient. On the other hand, if it is smaller than 1, the content ratio of titanium oxide is lowered, and the photocatalytic effect may not be sufficiently exhibited.

<可視光応答型酸化チタン系微粒子分散液の製造方法>
上記の酸化チタン微粒子分散液は、
(1)原料チタン化合物とスズ化合物と過酸化水素から、スズ化合物を含有したペルオキソチタン酸を製造する工程、
(2)スズ化合物を含有したペルオキソチタン酸水溶液を高圧下、80〜250℃で加熱し、酸化チタン微粒子分散液に転換する工程、及び
(3)酸化チタン微粒子分散液に銅化合物を添加し、反応させる工程
を有する製造方法により製造することができる。
<Production Method of Visible Light Responsive Titanium Oxide Fine Particle Dispersion>
The titanium oxide fine particle dispersion is
(1) a step of producing peroxotitanic acid containing a tin compound from a raw material titanium compound, a tin compound and hydrogen peroxide;
(2) A step of heating a peroxotitanic acid aqueous solution containing a tin compound under high pressure at 80 to 250 ° C. to convert it into a titanium oxide fine particle dispersion, and (3) adding a copper compound to the titanium oxide fine particle dispersion, It can manufacture with the manufacturing method which has the process made to react.

・工程(1):
工程(1)では、原料チタン化合物とスズ化合物と過酸化水素とを反応させることでスズ化合物を含有したペルオキソチタン酸を製造する。反応方法としては、原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後にスズ化合物を添加して、スズ含有ペルオキソチタン酸とする方法でも、原料チタン化合物にスズ化合物を添加した後に塩基性物質を添加してスズ含有水酸化チタンとし、含有する不純物イオンを除去し、過酸化水素を添加してスズ含有ペルオキソチタン酸とする方法でもよい。
-Process (1):
In step (1), peroxotitanic acid containing a tin compound is produced by reacting a raw material titanium compound, a tin compound, and hydrogen peroxide. As a reaction method, a basic substance is added to a raw material titanium compound to form titanium hydroxide, impurity ions contained are removed, hydrogen peroxide is added to form peroxotitanic acid, a tin compound is added, and tin is added. Even in the method of containing peroxotitanic acid, a tin compound is added to the raw material titanium compound, then a basic substance is added to form tin-containing titanium hydroxide, impurity ions contained are removed, and hydrogen peroxide is added to contain tin. A method using peroxotitanic acid may also be used.

工程(1)で原料として使用される原料チタン化合物としては、例えばチタンの塩酸塩、硝酸塩、硫酸塩などの無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸などの有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化チタンなどが挙げられ、これらのうち2種類以上を組み合わせて使用してもよい。この原料チタン化合物の水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。なお、濃度の下限は適宜選定されるが、1質量%以上であることが好ましい。   Examples of the raw material titanium compound used as the raw material in the step (1) include inorganic acid salts such as titanium hydrochloride, nitrate and sulfate, organic acid salts such as formic acid, citric acid, oxalic acid, lactic acid and glycolic acid, and the like. Examples thereof include titanium hydroxide precipitated by adding an alkali to the aqueous solution and hydrolyzing it, and two or more of these may be used in combination. The concentration of the aqueous solution of the raw material titanium compound is preferably 60% by mass or less, particularly preferably 30% by mass or less. In addition, although the minimum of a density | concentration is selected suitably, it is preferable that it is 1 mass% or more.

上記スズ化合物含有ペルオキソチタン酸水溶液は、pH調整などのために、アルカリ性又は酸性物質を含んでいてよい。アルカリ性物質としては、アンモニア、水酸化ナトリウム、水酸化カルシウムなどが挙げられ、酸性物質としては、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素などの無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸などの有機酸が挙げられる。
この工程(1)において、スズ化合物の使用量は上述した通りであるが、過酸化水素の使用量は、TiとSnの合計モル数の1.5〜5倍モルとすることが好ましい。また、この過酸化水素を添加して原料チタン化合物乃至水酸化チタンをぺルオキソチタン酸にする反応における反応温度は、5〜60℃とすることが好ましく、反応時間は、30分〜24時間とすることが好ましい。
なお、原料チタン化合物を水酸化チタンにするために添加する塩基性物質としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、アルカノールアミン、アルキルアミン等が挙げられ、原料チタン化合物の水溶液のpHを7以上になるような量で添加、使用される。
また、得られたスズ化合物含有ぺルオキソ酸水溶液のpHは、1〜7、特に4〜7であることが取り扱いの安全性の点で好ましい。
The tin compound-containing peroxotitanic acid aqueous solution may contain an alkaline or acidic substance for pH adjustment and the like. Examples of the alkaline substance include ammonia, sodium hydroxide, and calcium hydroxide, and examples of the acidic substance include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, phosphoric acid, and hydrogen peroxide, formic acid, citric acid, oxalic acid, Examples include organic acids such as lactic acid and glycolic acid.
In this step (1), the amount of tin compound used is as described above, but the amount of hydrogen peroxide used is preferably 1.5 to 5 times the total number of moles of Ti and Sn. The reaction temperature in the reaction of adding hydrogen peroxide to the raw material titanium compound or titanium hydroxide to peroxotitanic acid is preferably 5 to 60 ° C., and the reaction time is 30 minutes to 24 hours. It is preferable.
The basic substance added to make the raw material titanium compound titanium hydroxide includes alkali metal or alkaline earth metal hydroxide such as sodium hydroxide and potassium hydroxide, ammonia, alkanolamine, alkylamine, etc. And is added and used in such an amount that the pH of the aqueous solution of the raw material titanium compound becomes 7 or more.
Moreover, it is preferable from the point of the safety | security of handling that the pH of the obtained tin compound containing peroxo acid aqueous solution is 1-7, especially 4-7.

・工程(2):
工程(2)では、スズ化合物を含有したペルオキソチタン酸水溶液を高圧下、80〜250℃、好ましくは120〜250℃の温度において水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80〜250℃が適切である。その結果、ペルオキソチタン酸は、酸化チタン微粒子に変換されていく。
この場合、圧力は、0.01〜4.5MPa程度の高圧、特に0.15〜4.5MPa程度の高圧であることが好ましく、反応時間は、1分〜24時間であることが好ましい。
この工程(2)により、ぺルオキソチタン成分及びスズ成分を含む酸化チタン微粒子分散液が得られる。
-Process (2):
In the step (2), a peroxotitanic acid aqueous solution containing a tin compound is subjected to a hydrothermal reaction under high pressure at a temperature of 80 to 250 ° C, preferably 120 to 250 ° C. The reaction temperature is suitably 80 to 250 ° C. from the viewpoint of reaction efficiency and reaction controllability. As a result, peroxotitanic acid is converted into titanium oxide fine particles.
In this case, the pressure is preferably about 0.01 to 4.5 MPa, particularly about 0.15 to 4.5 MPa, and the reaction time is preferably 1 minute to 24 hours.
By this step (2), a titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component is obtained.

・工程(3):
工程(3)では、工程(2)で得られた酸化チタン微粒子分散液に銅化合物を添加し、反応させる。反応方法としては、酸化チタン微粒子分散液に銅化合物を添加して常温で撹拌する方法でも、酸化チタン微粒子分散液に銅化合物を添加して80〜250℃の温度において水熱処理する方法でもよい。この場合、反応時間は、1分〜3時間であることが好ましい。
-Process (3):
In step (3), a copper compound is added to the titanium oxide fine particle dispersion obtained in step (2) and allowed to react. The reaction method may be a method of adding a copper compound to the titanium oxide fine particle dispersion and stirring at room temperature, or a method of adding a copper compound to the titanium oxide fine particle dispersion and hydrothermally treating at a temperature of 80 to 250 ° C. In this case, the reaction time is preferably 1 minute to 3 hours.

工程(3)で原料として使用される銅化合物としては、例えば銅の塩酸塩、硝酸塩、硫酸塩などの無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸などの有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化銅、銅テトラアンミン錯体などの錯体が挙げられ、これらのうち2種類以上を組み合わせて使用してもよい。
このようにして得られる酸化チタン系微粒子分散液は、各種基材、例えば、ガラスのような無機基材やポリエステルフィルムのような有機基材などの表面に光触媒膜を形成させるために使用することができる。この場合、光触媒膜の形成方法としては、公知の方法を採用して塗布、乾燥すればよく、光触媒膜の厚さも種々選定されるが、通常50nm〜10μmの範囲である。形成された光触媒膜は、透明であり、従来のように紫外領域において良好な光触媒作用を与えると共に、可視光応答性にも優れたものである。
Examples of the copper compound used as a raw material in the step (3) include inorganic acid salts such as copper hydrochloride, nitrate and sulfate, organic acid salts such as formic acid, citric acid, oxalic acid, lactic acid and glycolic acid, and the like. Examples include complexes such as copper hydroxide and copper tetraammine complexes deposited by adding an alkali to an aqueous solution to cause hydrolysis, and two or more of these may be used in combination.
The titanium oxide-based fine particle dispersion thus obtained is used for forming a photocatalytic film on the surface of various substrates, for example, an inorganic substrate such as glass or an organic substrate such as a polyester film. Can do. In this case, as a method for forming the photocatalyst film, a known method may be adopted and dried, and the thickness of the photocatalyst film may be variously selected, but is usually in the range of 50 nm to 10 μm. The formed photocatalyst film is transparent, provides a good photocatalytic action in the ultraviolet region as in the prior art, and has excellent visible light response.

以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、本発明における各種の測定は次のようにして行った。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. Various measurements in the present invention were performed as follows.

(1)分散液中の酸化チタン微粒子の平均粒子径(D50
分散液中の酸化チタン微粒子の平均粒子径(D50)は、粒度分布測定装置(商品名“ナノトラック粒度分析計UPA−EX”、日機装(株))を用いて測定した。
(1) Average particle diameter of fine titanium oxide particles in the dispersion (D 50 )
The average particle diameter (D 50 ) of the titanium oxide fine particles in the dispersion was measured using a particle size distribution measuring device (trade name “Nanotrack particle size analyzer UPA-EX”, Nikkiso Co., Ltd.).

(2)光触媒薄膜の透明性
基材であるガラス板のHAZE値(%)を測定する。次に、分散液を該ガラス上に塗布、乾燥することで光触媒薄膜を作製し、該薄膜を作製した状態のガラス板のHAZE値を測定する。その差から光触媒薄膜のHAZE値を求める。HAZE値の測定はHAZEメーター(商品名“デジタルヘイズメーターNDH−200”、日本電色工業(株))を用いた。光触媒薄膜の透明性を求められたHAZE値の差から次の基準で評価した。
(2) Transparency of the photocatalytic thin film The HAZE value (%) of the glass plate as the substrate is measured. Next, a photocatalyst thin film is produced by applying and drying the dispersion on the glass, and the HAZE value of the glass plate in the state of producing the thin film is measured. From the difference, the HAZE value of the photocatalytic thin film is obtained. The HAZE value was measured using a HAZE meter (trade name “Digital Haze Meter NDH-200”, Nippon Denshoku Industries Co., Ltd.). The transparency of the photocatalytic thin film was evaluated according to the following criteria from the difference in the HAZE value obtained.

良好(○と表示) ・・・・ 差が+1%以下。
やや不良(△と表示)・・・・ 差が+1%を超え、+3%以下。
不良(×と表示) ・・・・ 差が+3%を超える。
Good (displayed as ○) ··· The difference is + 1% or less.
Slightly poor (displayed as △) ··· The difference exceeds + 1% and is less than + 3%.
Defect (displayed as x) ··· The difference exceeds + 3%.

(3)光触媒薄膜のアセトアルデヒドガス分解性能試験(可視光照射下)
分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、アセトアルデヒドガスの分解反応により評価した。評価は流通式ガス分解性能評価法により行った。具体的には、容積12.5cm3の石英ガラス製セル内に5cm角のガラスからなる基板上に光触媒薄膜を形成した評価用サンプルを設置し、該セルに湿度50%に調湿した濃度250ppmのアセトアルデヒドガスを流量5mL・s-1で流通させながら、セル上部に設置した蛍光灯で照度8000LUXになるように光を照射した。薄膜上の光触媒によりアセトアルデヒドガスが分解すると、該セルから流出するガス中のアセトアルデヒドガス濃度が低下する。そこで、その濃度を測定することで、アセトアルデヒドガス分解量を求めることができる。アセトアルデヒドガス濃度はガスクロマトグラフ(商品名“GC−8A”、(株)島津製作所)を用いて測定した。
(3) Acetaldehyde gas decomposition performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalyst thin film produced by applying and drying the dispersion was evaluated by the decomposition reaction of acetaldehyde gas. The evaluation was performed by a flow-type gas decomposition performance evaluation method. Specifically, a sample for evaluation in which a photocatalytic thin film is formed on a substrate made of 5 cm square glass is placed in a quartz glass cell having a volume of 12.5 cm 3 , and the concentration is adjusted to 250% in the cell at a concentration of 250 ppm. The acetaldehyde gas was circulated at a flow rate of 5 mL · s −1 , and light was irradiated with a fluorescent lamp installed at the top of the cell so that the illuminance was 8000 LUX. When the acetaldehyde gas is decomposed by the photocatalyst on the thin film, the concentration of acetaldehyde gas in the gas flowing out from the cell decreases. Therefore, the amount of acetaldehyde gas decomposition can be determined by measuring the concentration. The acetaldehyde gas concentration was measured using a gas chromatograph (trade name “GC-8A”, Shimadzu Corporation).

(4)光触媒薄膜のセルフクリーニング性能試験(可視光照射下)
スライドガラス上に分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、オレイン酸の分解反応により評価した。
(4) Self-cleaning performance test of photocatalytic thin film (under visible light irradiation)
The activity of the photocatalytic thin film prepared by applying the dispersion liquid on a slide glass and drying was evaluated by the decomposition reaction of oleic acid.

具体的には、薄膜表面にディップコーターで0.5質量%オレイン酸を塗布、乾燥させ光触媒活性評価用サンプルを得る。該サンプルに、蛍光灯の光を照度10,000LUXで照射する。薄膜表面上のオレイン酸が分解すると、それに伴って薄膜表面の親水化が起こり、水接触角が徐々に小さくなる。そこで、1時間おきにサンプル表面の水接触角を測定する。水接触角は接触角計(商品名“CA−A”、協和界面科学(株))を用いて測定した。   Specifically, 0.5% by mass of oleic acid is applied to the surface of the thin film with a dip coater and dried to obtain a sample for photocatalytic activity evaluation. The sample is irradiated with light from a fluorescent lamp at an illuminance of 10,000 LUX. When the oleic acid on the surface of the thin film is decomposed, the thin film surface becomes hydrophilic and the water contact angle gradually decreases. Therefore, the water contact angle on the sample surface is measured every other hour. The water contact angle was measured using a contact angle meter (trade name “CA-A”, Kyowa Interface Science Co., Ltd.).

[実施例1]
(1)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、その後室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(a)(固形分濃度1質量%)を得た。
[Example 1]
(1) Tin (IV) chloride is added to a 36 mass% titanium chloride (IV) aqueous solution so that the Ti / Sn (molar ratio) is 20, and this is diluted 10 times with pure water, and then the aqueous solution. 10% by mass of ammonia water was gradually added to neutralize and hydrolyze to obtain a precipitate of titanium hydroxide. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. To this titanium hydroxide precipitate after deionization treatment, 30% by mass hydrogen peroxide water was added so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and then stirred at room temperature all day and night. It was made to react sufficiently. Thereafter, pure water was added to adjust the concentration, thereby obtaining a yellow transparent tin-containing peroxotitanic acid solution (a) (solid content concentration 1% by mass).

(2)硫酸銅を純水で溶解し、1質量%の硫酸銅水溶液(b)を得た。   (2) Copper sulfate was dissolved in pure water to obtain a 1% by mass copper sulfate aqueous solution (b).

(3)容積500mLのオートクレーブに、(1)で得られたスズ含有ペルオキソチタン酸水溶液(a)400mLを仕込み、これを圧力1.6MPa、200℃、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液を得た。   (3) A 500 mL volume autoclave was charged with 400 mL of the tin-containing peroxotitanic acid aqueous solution (a) obtained in (1), and this was hydrothermally treated at a pressure of 1.6 MPa and 200 ° C. for 120 minutes. Thereafter, the reaction mixture in the autoclave was discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction was stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion.

(3)で得られた酸化チタン系微粒子分散液に(2)で得られた硫酸銅水溶液(b)を酸化チタンに対して金属銅が0.2質量%となるように添加混合して150℃で30分水熱処理することにより、酸化チタンを1質量%含み、ぺルオキソチタン成分を酸化チタンに対し1質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(A)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、12nmであった。   To the titanium oxide fine particle dispersion obtained in (3), the aqueous copper sulfate solution (b) obtained in (2) was added and mixed so that the metal copper was 0.2% by mass with respect to titanium oxide. A visible light response type titanium oxide fine particle dispersion (A) of the present invention containing 1% by mass of titanium oxide and 1% by mass of peroxotitanium component with respect to titanium oxide was obtained by hydrothermal treatment at 30 ° C. for 30 minutes. It was 12 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.

[実施例2]
(4)36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が5となるように添加し、これを純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは9であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、その後室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のスズ含有ペルオキソチタン酸溶液(c)(固形分濃度1質量%)を得た。
[Example 2]
(4) Tin (IV) chloride is added to a 36% by mass titanium chloride (IV) aqueous solution so that Ti / Sn (molar ratio) is 5, and this is diluted 10 times with pure water, and then the aqueous solution. 10% by mass of ammonia water was gradually added to neutralize and hydrolyze to obtain a precipitate of titanium hydroxide. The pH of the solution at this time was 9. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. To this titanium hydroxide precipitate after deionization treatment, 30% by mass hydrogen peroxide water was added so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and then stirred at room temperature all day and night. It was made to react sufficiently. Thereafter, pure water was added to adjust the concentration to obtain a yellow transparent tin-containing peroxotitanic acid solution (c) (solid content concentration 1% by mass).

(5)硝酸銅を純水で溶解し、1質量%の硝酸銅水溶液(d)を得た。   (5) Copper nitrate was dissolved in pure water to obtain a 1% by mass copper nitrate aqueous solution (d).

(6)容積500mLのオートクレーブに、(4)で得られたスズ含有ペルオキソチタン酸水溶液(c)400mLを仕込み、これを圧力0.5MPa、150℃、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液を得た。   (6) A 500 mL volume autoclave was charged with 400 mL of the tin-containing peroxotitanic acid aqueous solution (c) obtained in (4) and hydrothermally treated at a pressure of 0.5 MPa and 150 ° C. for 120 minutes. Thereafter, the reaction mixture in the autoclave was discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction was stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion.

(6)で得られた酸化チタン系微粒子分散液に(5)で得られた硫酸銅水溶液(d)を酸化チタンに対して金属銅が0.25質量%となるように添加し、混合して酸化チタンを1質量%含み、ぺルオキソチタン成分を酸化チタンに対し2質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(B)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、10nmであった。   Add the copper sulfate aqueous solution (d) obtained in (5) to the titanium oxide fine particle dispersion obtained in (6) so that the metal copper is 0.25% by mass with respect to titanium oxide, and mix. Thus, a visible light responsive titanium oxide fine particle dispersion (B) of the present invention containing 1% by mass of titanium oxide and 2% by mass of the peroxotitanium component with respect to titanium oxide was obtained. The average particle size of the titanium oxide fine particles in the obtained dispersion was measured and found to be 10 nm.

[実施例3]
(7)36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、この水溶液に10質量%のアンモニア水を徐々に添加して中和、加水分解することにより水酸化チタンの沈殿物を得た。このときの溶液のpHは10であった。得られた水酸化チタンの沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の水酸化チタン沈殿物に過酸化水素/水酸化チタン(モル比)が2.5以上となるように30質量%過酸化水素水を添加し、その後室温で一昼夜撹拌して十分に反応させた。その後、純水を添加して濃度調整を行うことにより、黄色透明のペルオキソチタン酸溶液(e)(固形分濃度1質量%)を得た。
[Example 3]
(7) After diluting a 36 mass% titanium chloride (IV) aqueous solution 10 times with pure water, 10 mass% ammonia water is gradually added to the aqueous solution to neutralize and hydrolyze the titanium hydroxide. A precipitate was obtained. The pH of the solution at this time was 10. The resulting titanium hydroxide precipitate was deionized by repeatedly adding pure water and decanting. To this titanium hydroxide precipitate after deionization treatment, 30% by mass hydrogen peroxide water was added so that the hydrogen peroxide / titanium hydroxide (molar ratio) was 2.5 or more, and then stirred at room temperature all day and night. It was made to react sufficiently. Thereafter, pure water was added to adjust the concentration to obtain a yellow transparent peroxotitanic acid solution (e) (solid content concentration 1 mass%).

(8)塩化スズ五水和物を純水で溶解し、10質量%の塩化スズ水溶液(f)を得た。   (8) Tin chloride pentahydrate was dissolved in pure water to obtain a 10% by mass tin chloride aqueous solution (f).

(9)容積500mLのオートクレーブに、(7)で得られたペルオキソチタン酸水溶液(e)350mLと、(8)で得た塩化スズ水溶液(f)10mLを仕込み、これを150℃、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液を得た。   (9) An autoclave having a volume of 500 mL was charged with 350 mL of the peroxotitanic acid aqueous solution (e) obtained in (7) and 10 mL of the tin chloride aqueous solution (f) obtained in (8). Heat treated. Thereafter, the reaction mixture in the autoclave was discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction was stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion.

(9)で得られた酸化チタン系微粒子分散液に(5)で得られた硫酸銅水溶液(d)を酸化チタンに対して金属銅が0.3質量%となるように添加し、混合して酸化チタンを1質量%含み、ぺルオキソチタン成分を酸化チタンに対し2質量%含む本発明の可視光応答型酸化チタン系微粒子分散液(C)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、25nmであった。   Add the copper sulfate aqueous solution (d) obtained in (5) to the titanium oxide fine particle dispersion obtained in (9) so that the metal copper is 0.3% by mass with respect to titanium oxide, and mix. Thus, a visible light responsive titanium oxide fine particle dispersion (C) of the present invention containing 1% by mass of titanium oxide and 2% by mass of the peroxotitanium component with respect to titanium oxide was obtained. It was 25 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.

[比較例1]
(10)硫酸銅水溶液を添加しなかったこと以外は実施例1と同様にして、酸化チタン系微粒子分散液(D)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、9nmであった。
[Comparative Example 1]
(10) A titanium oxide fine particle dispersion (D) was obtained in the same manner as in Example 1 except that the aqueous copper sulfate solution was not added. It was 9 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.

[比較例2]
(11)容積500mLのオートクレーブに実施例3で得られたペルオキソチタン酸水溶液(e)400mLを仕込み、これを150℃、120分間水熱処理した。その後、オートクレーブ内の反応混合物を、サンプリング管を経由して、25℃の水浴中に保持した容器に排出し、急速に冷却することで反応を停止させ、酸化チタン系微粒子分散液を得た。
[Comparative Example 2]
(11) 400 mL of the peroxotitanic acid aqueous solution (e) obtained in Example 3 was placed in an autoclave having a volume of 500 mL and hydrothermally treated at 150 ° C. for 120 minutes. Thereafter, the reaction mixture in the autoclave was discharged into a container held in a water bath at 25 ° C. via a sampling tube, and the reaction was stopped by rapidly cooling to obtain a titanium oxide fine particle dispersion.

(11)で得られた酸化チタン系微粒子分散液に(5)で得られた硫酸銅水溶液(d)を酸化チタンに対して金属銅が0.25質量%となるように添加し、混合して酸化チタン系微粒子分散液(E)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径を測定したところ、25nmであった。   Add the copper sulfate aqueous solution (d) obtained in (5) to the titanium oxide fine particle dispersion obtained in (11) so that the metal copper is 0.25% by mass with respect to titanium oxide, and mix. Thus, a titanium oxide-based fine particle dispersion (E) was obtained. It was 25 nm when the average particle diameter of the titanium oxide microparticles | fine-particles in the obtained dispersion liquid was measured.

[比較例3]
水熱処理温度を60℃とした以外は実施例1と同様にして、酸化チタン微粒子分散液(F)を得た。得られた分散液中の酸化チタン微粒子の平均粒子径は粒子生成量が少なかったため、測定できなかった。本比較例では、酸化チタン微粒子の生成量が極微量であったため、その他の特性の測定は行わなかった。
[Comparative Example 3]
A titanium oxide fine particle dispersion (F) was obtained in the same manner as in Example 1 except that the hydrothermal treatment temperature was 60 ° C. The average particle size of the titanium oxide fine particles in the obtained dispersion could not be measured because the amount of particles produced was small. In this comparative example, since the amount of titanium oxide fine particles produced was extremely small, other characteristics were not measured.

実施例1〜3、及び比較例1及び2で作製した分散液にシリカ系のバインダー(コロイダルシリカ、商品名:スノーテックス20(日産化学工業(株)製)をTiO2/SiO2比1.5で添加した後、ガラス板状にディップコーターで塗布、乾燥させ、膜厚が150nmの光触媒薄膜を形成し、評価用サンプルを得た。 A silica-based binder (colloidal silica, trade name: Snowtex 20 (manufactured by Nissan Chemical Industries, Ltd.)) was added to the dispersions prepared in Examples 1 to 3 and Comparative Examples 1 and 2 with a TiO 2 / SiO 2 ratio of 1. After adding in step 5, it was applied to a glass plate with a dip coater and dried to form a photocatalytic thin film having a thickness of 150 nm to obtain a sample for evaluation.

表1に、実施例、比較例の反応条件および平均粒子径、光触媒薄膜の透明性評価、セルフクリーニング性能試験における蛍光灯による照射5時間後の水接触角測定結果、アセトアルデヒドガス分解試験における蛍光灯照射90分後のガス分解率をまとめて示す。   Table 1 shows the reaction conditions and average particle diameters of the examples and comparative examples, the evaluation of the transparency of the photocatalytic thin film, the results of water contact angle measurement after 5 hours of irradiation with a fluorescent lamp in a self-cleaning performance test, and the fluorescent lamp in an acetaldehyde gas decomposition test. The gas decomposition rate 90 minutes after irradiation is shown collectively.

比較例1の結果から分かるように、銅成分を添加しないと十分な可視光活性が得られない。   As can be seen from the results of Comparative Example 1, sufficient visible light activity cannot be obtained unless a copper component is added.

比較例2の結果から分かるように、スズ成分を添加しないと十分な可視光活性が得られない。   As can be seen from the results of Comparative Example 2, sufficient visible light activity cannot be obtained unless a tin component is added.

比較例3の結果から分かるように、反応温度が低すぎると酸化チタンへの転化が非常に遅くなる。   As can be seen from the results of Comparative Example 3, if the reaction temperature is too low, the conversion to titanium oxide is very slow.

実施例1〜3の結果から分かるように、分散液に銅成分、スズ成分を含有することにより、蛍光灯照射下でのアセトアルデヒド及びオレイン酸の分解(即ち、光触媒活性)が良好になることが分かる。   As can be seen from the results of Examples 1 to 3, by containing a copper component and a tin component in the dispersion, it is possible to improve the decomposition of acetaldehyde and oleic acid (that is, photocatalytic activity) under irradiation with a fluorescent lamp. I understand.

Figure 2011240246
Figure 2011240246

本発明の酸化チタン系微粒子分散液は、バインダーを添加することで、ガラス、金属等の無機物質、及び高分子フィルム(PETフィルム等)等の有機物質からなる種々の基材に施与して光触媒薄膜を作製するのに有用であり、特に高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。   The titanium oxide-based fine particle dispersion of the present invention can be applied to various substrates composed of inorganic substances such as glass and metal, and organic substances such as polymer films (PET film, etc.) by adding a binder. It is useful for producing a photocatalytic thin film, and particularly useful for producing a transparent photocatalytic thin film on a polymer film.

Claims (5)

水性分散媒中に、酸化チタン微粒子が分散していると共に、ペルオキソチタン成分、銅成分及びスズ成分が含有され、且つ該ペルオキソチタン成分の含有量が酸化チタンに対して0.1〜20質量%であることを特徴とする可視光応答型酸化チタン系微粒子分散液。   In the aqueous dispersion medium, fine particles of titanium oxide are dispersed, a peroxotitanium component, a copper component and a tin component are contained, and the content of the peroxotitanium component is 0.1 to 20% by mass with respect to titanium oxide. A visible light responsive titanium oxide-based fine particle dispersion. 前記銅成分の金属銅換算での含有量が、酸化チタンに対して0.01〜5質量%であることを特徴とする請求項1に記載の可視光応答型酸化チタン系微粒子分散液。   2. The visible light responsive titanium oxide fine particle dispersion according to claim 1, wherein the content of the copper component in terms of metallic copper is 0.01 to 5 mass% with respect to titanium oxide. 前記スズ成分の含有量が、酸化チタンとのモル比(Ti/Sn)で1〜1000であることを特徴とする請求項1又は2に記載の可視光応答型酸化チタン系微粒子分散液。   3. The visible light responsive titanium oxide fine particle dispersion according to claim 1, wherein a content of the tin component is 1 to 1000 in terms of a molar ratio (Ti / Sn) to titanium oxide. 前記酸化チタン微粒子が、動的散乱法により測定される50%累計分布径(D50)で50nm以下であることを特徴とする請求項1〜3のいずれか1項に記載の可視光応答型酸化チタン系微粒子分散液。 The visible light responsive type according to any one of claims 1 to 3, wherein the titanium oxide fine particles have a 50% cumulative distribution diameter (D50) measured by a dynamic scattering method of 50 nm or less. Titanium oxide fine particle dispersion. (1)原料チタン化合物とスズ化合物と過酸化水素から、スズ化合物を含有したペルオキソチタン酸を製造する工程、
(2)スズ化合物を含有したペルオキソチタン酸水溶液を高圧下、80〜250℃で加熱し、ペルオキソチタン成分及びスズ成分を含む酸化チタン微粒子分散液を得る工程、及び
(3)酸化チタン微粒子分散液に銅化合物を添加し、反応させる工程
を有することを特徴とする請求項1〜4のいずれか1項に記載の可視光応答型酸化チタン系微粒子分散液の製造方法。
(1) a step of producing peroxotitanic acid containing a tin compound from a raw material titanium compound, a tin compound and hydrogen peroxide;
(2) a step of heating a peroxotitanic acid aqueous solution containing a tin compound at 80 to 250 ° C. under high pressure to obtain a titanium oxide fine particle dispersion containing a peroxotitanium component and a tin component; and (3) a titanium oxide fine particle dispersion. The method for producing a visible light responsive titanium oxide fine particle dispersion according to any one of claims 1 to 4, further comprising a step of adding a copper compound to the reaction.
JP2010114286A 2010-05-18 2010-05-18 Visible light responsive titanium oxide fine particle dispersion and method for producing the same Active JP5447177B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010114286A JP5447177B2 (en) 2010-05-18 2010-05-18 Visible light responsive titanium oxide fine particle dispersion and method for producing the same
PCT/JP2011/055730 WO2011145385A1 (en) 2010-05-18 2011-03-11 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
CN201180004728.6A CN102639242B (en) 2010-05-18 2011-03-11 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
KR1020127011649A KR101685675B1 (en) 2010-05-18 2011-03-11 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
US13/503,132 US8986580B2 (en) 2010-05-18 2011-03-11 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114286A JP5447177B2 (en) 2010-05-18 2010-05-18 Visible light responsive titanium oxide fine particle dispersion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011240246A true JP2011240246A (en) 2011-12-01
JP5447177B2 JP5447177B2 (en) 2014-03-19

Family

ID=45407471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114286A Active JP5447177B2 (en) 2010-05-18 2010-05-18 Visible light responsive titanium oxide fine particle dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5447177B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083504A (en) * 2012-10-24 2014-05-12 Ohara Inc Photocatalyst component and method for manufacturing the same
JP2016041429A (en) * 2012-09-19 2016-03-31 信越化学工業株式会社 Method for producing visible light-responsive photocatalyst fine particle dispersion liquid
JP2016120483A (en) * 2014-12-25 2016-07-07 太陽工業株式会社 Titanium oxide-containing composition, method for producing titanium oxide-containing composition, and photocatalyst structure
US10737241B2 (en) * 2017-09-29 2020-08-11 Shin-Etsu Chemical Co., Ltd. Photocatalyst/alloy fine-particle dispersion having anitbacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface
CN115874170A (en) * 2022-12-07 2023-03-31 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041429A (en) * 2012-09-19 2016-03-31 信越化学工業株式会社 Method for producing visible light-responsive photocatalyst fine particle dispersion liquid
KR101868674B1 (en) * 2012-09-19 2018-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
JP2014083504A (en) * 2012-10-24 2014-05-12 Ohara Inc Photocatalyst component and method for manufacturing the same
JP2016120483A (en) * 2014-12-25 2016-07-07 太陽工業株式会社 Titanium oxide-containing composition, method for producing titanium oxide-containing composition, and photocatalyst structure
US10737241B2 (en) * 2017-09-29 2020-08-11 Shin-Etsu Chemical Co., Ltd. Photocatalyst/alloy fine-particle dispersion having anitbacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface
CN115874170A (en) * 2022-12-07 2023-03-31 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof
CN115874170B (en) * 2022-12-07 2024-03-26 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP5447177B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
TWI732752B (en) Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface
KR102170489B1 (en) Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
KR101822528B1 (en) Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion
KR102436684B1 (en) Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion thereof, method for producing dispersion, photocatalyst thin film, and member having photocatalyst thin film on the surface
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
CN113544094B (en) Titanium oxide fine particles, dispersion thereof, and method for producing the dispersion
JP5633571B2 (en) Method for producing rutile type titanium oxide fine particle dispersion
TW202102442A (en) Titanium oxide fine particle mixture, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing titanium oxide fine particle dispersion
JP7362224B2 (en) Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion
WO2022059520A1 (en) Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles
JP2021175697A (en) Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion
WO2022059512A1 (en) Titanium oxide particles, dispersion liquid of same, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing dispersion liquid of titanium oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5447177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150