KR20030000137A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR20030000137A
KR20030000137A KR1020010035797A KR20010035797A KR20030000137A KR 20030000137 A KR20030000137 A KR 20030000137A KR 1020010035797 A KR1020010035797 A KR 1020010035797A KR 20010035797 A KR20010035797 A KR 20010035797A KR 20030000137 A KR20030000137 A KR 20030000137A
Authority
KR
South Korea
Prior art keywords
photoresist layer
layer pattern
photoresist pattern
forming
polymer solution
Prior art date
Application number
KR1020010035797A
Other languages
Korean (ko)
Inventor
최재성
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010035797A priority Critical patent/KR20030000137A/en
Publication of KR20030000137A publication Critical patent/KR20030000137A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for fabricating a semiconductor device is provided to form a photoresist layer pattern whose etch tolerance is improved, by performing a bake process after polymer solution including radical initiator is applied on a photoresist layer pattern in a self-align dual damascene process. CONSTITUTION: The first interlayer dielectric(11) is formed on a semiconductor substrate(10). A lower metal interconnection(13) is formed on the first interlayer dielectric. The second interlayer dielectric(15) is formed on the resultant structure. The first photoresist layer pattern exposing a portion reserved for a via contact is formed on the second interlayer dielectric. Water-soluble polymer solution containing radial initiator is applied on the resultant structure. The radical initiator in the water-soluble polymer solution is diffused to the first photoresist layer pattern by a bake process. The water-soluble polymer solution is removed. The second photoresist layer pattern exposing a portion reserved for an upper metal interconnection is formed on the resultant structure. The second interlayer dielectric is etched to form a via contact hole by using the first and second photoresist layer patterns as an etch mask. The first photoresist layer pattern is etched by using the second photoresist layer pattern as an etch mask. The second photoresist layer pattern is removed. The second interlayer dielectric is etched to form a trench by using the first photoresist layer pattern as an etch mask. The first photoresist layer pattern is eliminated.

Description

반도체소자의 제조방법{Manufacturing method for semiconductor device}Manufacturing method for semiconductor device

본 발명은 반도체소자의 제조방법에 관한 것으로서, 보다 상세하게 자기 정렬 듀얼 다마신 공정에서 감광막 패턴 상부에 라디칼 개시제(radical initiator)를 포함하는 고분자용액을 도포한 후 베이크(bake) 공정을 실시하여 식각 내성이 향상된 감광막패턴을 형성하는 반도체소자의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, by applying a polymer solution containing a radical initiator on the photoresist pattern in a self-aligned dual damascene process and then performing a bake process. A method of manufacturing a semiconductor device for forming a photoresist pattern having improved resistance.

집적회로에서 소자와의 접촉, 소자간의 연결, 칩과 외부회로와의 연결기능을갖는 금속배선을 형성시키는 공정은 반도체소자의 동작 속도 및 신뢰성에 큰 영향을 미친다.In an integrated circuit, a process of forming a metal wiring having a function of contacting devices, connecting devices, and connecting a chip and an external circuit has a great influence on the operation speed and reliability of a semiconductor device.

최근 들어 반도체 제조 기술의 발전과 더불어 금속배선 공정에 있어서 미세화로 인하여 소자의 크기가 감소되고 있다. 그리고, 이에 대응하는 전기적 성능 및 신뢰성을 갖는 금속배선재료 및 공정 기술에 대한 요구가 증대하고 있다. 현재 금속배선재료로서 알루미늄을 주원료로 하는 합금 또는 구리가 사용되고 있거나 연구 중에 있다. 또한, 스텝 커버리지(step coverage) 특성이 우수한 MOCVD(metal organic chemical vapor deposition)법에 대한 연구가 활발히 이루어지고 있다.Recently, with the development of semiconductor manufacturing technology, the size of devices has been reduced due to miniaturization in the metallization process. In addition, there is an increasing demand for metallization materials and process technologies having corresponding electrical performance and reliability. Currently, alloys or copper based on aluminum are used or are being studied as metal wiring materials. In addition, research on the metal organic chemical vapor deposition (MOCVD) method having excellent step coverage characteristics has been actively conducted.

지금까지 반도체 회로의 금속배선 재료는 주로 알루미늄 소재를 사용해 왔다. 그러나, 상기 알루미늄은 기가 DRAM(giga DRAM) 이상에서 사용하기에는 저항이 높고 선폭(line width)을 줄이는데 한계가 있다. 이를 해결하기 위하여 기판 표면의 산소와 질소 성분의 함량을 낮추고, 플라즈마 전처리 공정을 실시하여 초전도성을 갖는 구리의 증착 속도를 크게 개선하였다.Until now, the metal wiring material of semiconductor circuits has mainly used aluminum. However, the aluminum is high in resistance to use over giga DRAMs and has a limitation in reducing line width. In order to solve this problem, the oxygen and nitrogen components on the surface of the substrate were lowered, and a plasma pretreatment process was performed to greatly improve the deposition rate of copper having superconductivity.

그러나, 상기 구리는 식각하기 어려운 단점이 있다. 이를 해결하기 위하여 구리배선으로 예정되는 부분의 층간절연막을 식각하여 트렌치(trench)를 형성하고, 구리막을 매립한 다음, 상기 구리막을 화학적 기계적 연마(chemical mechanical polishing, 이하 CMP 라 함)방법으로 평탄화시켜 구리배선을 형성하는 다마신(damascene) 방법을 사용하였다.However, the copper has a disadvantage of being difficult to etch. In order to solve this problem, a trench is formed by etching the interlayer insulating film, which is supposed to be a copper wiring, and the copper film is embedded, and then the copper film is planarized by chemical mechanical polishing (hereinafter referred to as CMP). The damascene method of forming copper wiring was used.

또한, 초기의 다마신공정에서는 절연물질로 플루오르 실리카 유리물질 및SiLK 반도체 절연체 등의 SiO2막이 사용되었다.In the initial damascene process, SiO 2 films such as fluorine silica glass material and SiLK semiconductor insulator were used as the insulating material.

그러나, RC 지연(delay)으로 인한 반도체소자의 동작 속도를 향상시키기 위해 Cu막과 저유전 물질에 대한 연구가 활발히 진행되고 있다. 특히, R값의 감소를 위하여 구리막을 사용하고, C값을 감소시키기 위하여 저유전 물질을 사용하고 있다.However, in order to improve the operation speed of semiconductor devices due to RC delay, studies on Cu films and low dielectric materials have been actively conducted. In particular, a copper film is used to reduce the R value, and a low dielectric material is used to reduce the C value.

상기와 같이 종래기술에 따른 반도체소자의 제조방법은, 리소그래피 측면에서 보면 이러한 듀얼 다마신공정의 경우 비아콘택홀과 금속배선 패턴을 모두 절연막 위에 형성한 후 구리막의 증착을 수행하기 때문에 중첩(overlay) 등의 문제가 비교적 쉬운 실정이다. 그러나, 비아콘택홀 패턴과 금속배선 패턴에서 어쩔 수 없이 발생하게 되는 미스얼라인먼트(misalignment)가 구리막 증착 공정 시 보이드(void) 발생의 원인으로 작용할 수밖에 없고, 이러한 보이드 발생은 비아콘택 저항 특성을 저하시키는 문제점이 있다. 이를 해결하기 위하여 질화막 등을 하드마스크로 이용한 자기 정렬 듀얼 다마신(self aligned dual damascene)공정이 사용되고 있지만, 이러한 자기 정렬 듀얼 다마신공정의 경우 공정이 복잡해지고, 유전 상수(dielectric constant)가 큰 질화막 등의 물질을 하드마스크로 사용하기 때문에 소자의 동작 속도를 감소시키는 문제점이 있다.As described above, in the method of manufacturing a semiconductor device according to the related art, in the dual damascene process, since the via contact hole and the metal wiring pattern are both formed on the insulating film and then the copper film is deposited, the overlay is performed. The problem is relatively easy. However, misalignment, which is inevitably generated in the via contact hole pattern and the metal wiring pattern, may cause voids in the copper film deposition process, and the void generation may lower the via contact resistance characteristics. There is a problem. In order to solve this problem, a self aligned dual damascene process using a nitride film or the like as a hard mask is used. Since the material of the hard mask is used, there is a problem of reducing the operation speed of the device.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 하부 금속배선을 형성하고, 전체표면 상부에 층간절연막을 형성한 다음, 상기 층간절연막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성한 후, 상기 제1감광막패턴을 라디칼 개시제(radical initiator)를 함유한 수용성 고분자 용액에 의해 가교시켜 경화시킨 후 그 상부에 상부 금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴을 형성함으로써 상기 제1감광막패턴과 제2감광막패턴을 식각마스크로 사용하는 자기 정렬 듀얼 다마신 공정을 용이하게 할 수 있는 반도체소자의 제조방법을 제공하는데 그 목적이 있다.The present invention provides a first photoresist pattern for forming a lower metal interconnection, forming an interlayer insulating film on the entire surface, and exposing a portion intended as a via contact on the interlayer insulating film. After forming the cross-linking of the first photoresist pattern with a water-soluble polymer solution containing a radical initiator (curable), by forming a second photoresist pattern for exposing a portion of the upper portion of the metal wiring to the upper portion An object of the present invention is to provide a method for fabricating a semiconductor device which can facilitate a self-aligned dual damascene process using the first photoresist pattern and the second photoresist pattern as an etching mask.

도 1 내지 도 8 은 본 발명에 따른 반도체소자의 제조방법을 도시하는 공정 단면도.1 to 8 are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

10 : 반도체기판 11 : 제1층간절연막10 semiconductor substrate 11: first interlayer insulating film

13 : 하부금속배선 15 : 제2층간절연막13: lower metal wiring 15: second interlayer insulating film

17 : 제1감광막패턴 19 : 고분자용액17: first photosensitive film pattern 19: polymer solution

20 : 경화된 제1차감광막패턴 21 : 제2감광막패턴20: cured first photosensitive film pattern 21: second photosensitive film pattern

23 : 비아콘택홀 25 : 트렌치23: via contact hole 25: trench

이상의 목적을 달성하기 위하여 본 발명에 따른 반도체소자의 제조방법은,In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention,

반도체기판 상부에 제1층간절연막을 형성하는 공정과,Forming a first interlayer insulating film on the semiconductor substrate;

상기 제1층간절연막 상부에 하부 금속배선을 형성하는 공정과,Forming a lower metal wiring on the first interlayer insulating film;

전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface;

상기 제2층간절연막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성하는 공정과,Forming a first photoresist pattern on the second interlayer insulating layer, the first photoresist layer pattern exposing a portion intended as a via contact;

전체표면 상부에 라디칼 개시제를 함유하는 수용성 고분자 용액을 도포하는 공정과,Applying a water-soluble polymer solution containing a radical initiator over the entire surface,

상기 수용성 고분자용액 내의 라디칼 개시제를 상기 제1감광막패턴으로 확산시키는 베이크공정과,A baking step of diffusing the radical initiator in the water-soluble polymer solution into the first photoresist film pattern;

상기 수용성 고분자용액을 제거하는 공정과,Removing the water-soluble polymer solution;

전체표면 상부에 상부 금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴을 형성하는 공정과,Forming a second photoresist film pattern exposing a portion, which is intended as an upper metal wiring, over the entire surface;

상기 제1감광막패턴과 제2감광막패턴을 식각마스크로 상기 제2층간절연막을 식각하여 비아콘택홀을 형성하는 공정과,Forming a via contact hole by etching the second interlayer insulating layer using the first photoresist pattern and the second photoresist pattern as an etching mask;

상기 제2감광막패턴을 식각마스크로 상기 제1감광막패턴을 식각하는 공정과,Etching the first photoresist pattern using the second photoresist pattern as an etching mask;

상기 제2감광막패턴을 제거하는 공정과,Removing the second photoresist pattern;

상기 제1감광막패턴을 식각마스크로 상기 제2층간절연막을 식각하여 트렌치를 형성하는 공정과,Forming a trench by etching the second interlayer dielectric layer using the first photoresist pattern as an etch mask;

상기 제1감광막패턴을 제거하는 공정을 포함하는 것을 특징으로 한다.And removing the first photoresist pattern.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 8 는 본 발명에 따른 반도체소자의 제조방법을 도시하는 공정 단면도이다.1 to 8 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention.

먼저, 반도체기판(10) 상부에 제1층간절연막(11)을 형성한다.First, a first interlayer insulating film 11 is formed on the semiconductor substrate 10.

다음, 상기 제1층간절연막(11) 상부에 하부금속배선(13)을 형성한다.Next, a lower metal wiring 13 is formed on the first interlayer insulating film 11.

그 다음, 전체표면 상부에 제2층간절연막(15)을 형성한다.Next, a second interlayer insulating film 15 is formed over the entire surface.

다음, 상기 제2층간절연막(15) 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴(17)을 형성한다. (도 1 참조)Next, a first photoresist pattern 17 is formed on the second interlayer insulating layer 15 to expose a portion of the via contact. (See Figure 1)

그 다음, 전체표면 상부에 라디칼 개시제가 함유되어 있는 고분자 용액(19)을 도포한다. 이때, 상기 고분자용액(19)은 사진식각공정에서 일반적으로 사용되는 탑 ARC(top anti reflecting coating)막과 비슷한 수용성(water soluble) 고분자용액이고, 용매는 물이다. 그리고, 상기 라디칼 개시제로 사용되는 물질은 AIBN(2,2'-Azobisisobutyronitrile)이다. (도 2 참조)Next, a polymer solution 19 containing a radical initiator is applied over the entire surface. In this case, the polymer solution 19 is a water soluble polymer solution similar to the top anti reflecting coating (ARC) film commonly used in the photolithography process, and the solvent is water. In addition, the material used as the radical initiator is AIBN (2,2'-Azobisisobutyronitrile). (See Figure 2)

그 다음, 상기 구조를 베이크한다. 상기 베이크공정으로 생성된 라디칼을 상기 제1감광막패턴(17)으로 확산시켜 경화시킨다. 이때, 상기 베이크공정은 오븐 또는 핫 플레이트 가열방식으로 실시되고, 상기 오븐 또는 핫 플레이트의 온도는 50 - 250℃이다.The structure is then baked. Radicals generated by the baking process are diffused into the first photoresist layer pattern 17 to be cured. At this time, the baking process is carried out by the oven or hot plate heating method, the temperature of the oven or hot plate is 50-250 ℃.

상기 베이크공정으로 경화된 제1감광막패턴(20)은 후속공정으로 형성되는 제2감광막패턴에 대하여 저항력을 갖는다.The first photoresist pattern 20 cured by the baking process has a resistance to the second photoresist pattern formed by a subsequent process.

다음, 상기 고분자용액(19)을 제거한다. (도 3 참조)Next, the polymer solution 19 is removed. (See Figure 3)

그 다음, 전체표면 상부에 상부금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴(21)을 형성한다. 이때, 상기 제2감광막패턴(21)은 실리콘을 함유하고 있다. (도 4 참조)Next, a second photoresist pattern 21 is formed on the entire surface to expose a portion of the upper metal wiring. In this case, the second photoresist pattern 21 contains silicon. (See Figure 4)

다음, 상기 경화된 제1감광막패턴(20)과 제2감광막패턴(21)을 식각마스크로 상기 제2층간절연막(15)을 식각하여 비아콘택홀(23)을 형성한다. 이때, 상기 식각공정 시 상기 제2감광막패턴(21)이 일부 제거되면서 플라즈마 에천트로 인해 표면이 실리콘 산화막으로 변하게 된다. 이후 O2플라즈마를 이용한 식각공정을 거치면 실리콘을 함유하지 않는 상기 경화된 제1감광막패턴(20)이 제거된다. (도 5, 도 6 참조)Next, the via contact hole 23 is formed by etching the second interlayer insulating layer 15 using the cured first photoresist pattern 20 and the second photoresist pattern 21 as an etching mask. In this case, a portion of the second photoresist layer pattern 21 is removed during the etching process, thereby changing the surface into a silicon oxide layer due to plasma etchant. After the etching process using O 2 plasma, the cured first photoresist pattern 20 containing no silicon is removed. (See Figs. 5 and 6)

그 다음, 상기 제2감광막패턴(21)을 식각마스크로 상기 제2층간절연막(15)을 식각하여 트렌치(25)를 형성한다. 상기 식각공정 후 상기 제2감광막패턴(21)이 손실되고, 경화된 제1감광막패턴(20)만 남게 된다. 된다. (도 7 참조)Next, the second interlayer insulating layer 15 is etched using the second photoresist pattern 21 as an etch mask to form a trench 25. After the etching process, the second photoresist pattern 21 is lost and only the hardened first photoresist pattern 20 remains. do. (See Figure 7)

다음, 상기 경화된 제1감광막패턴(20)을 제거한다. (도 8 참조)Next, the cured first photoresist pattern 20 is removed. (See Figure 8)

그 후, 후속공정을 실시하여 상기 트렌치(25) 및 비아콘택홀(23)을 통하여 상기 하부금속배선(13)에 접속되는 비아콘택플러그 및 상부금속배선을 형성한다.Subsequently, a subsequent process is performed to form a via contact plug and an upper metal wiring connected to the lower metal wiring 13 through the trench 25 and the via contact hole 23.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 구리배선 제조방법은, 자기 정렬 듀얼 다마신(self aligned dual damascene)공정을 진행하는 경우, 반도체기판 상부에 하부금속배선을 형성하고, 전체표면 상부에 층간절연막을 형성한 다음, 상기 층간절연막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성하고, 전체표면 상부에 라디칼 개시제(radical initiator)를 함유하는 고분자용액을 도포한 후 베이크공정을 실시하여 상기 고분자용액 내의 라디칼을 생성시켜 상기 제1감광막패턴에 확산시켜 경화시킴으로써 상기 제1감광막패턴이 후속공정으로 형성되는 상부금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴에 대한 식각내성을 갖도록 하여 공정을 단순하게 하고 그로 인하여 안정적으로 공정을 조절하고 그에 따른 소자의 공정 수율 및 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, in the method of manufacturing a copper wiring of a semiconductor device according to the present invention, when a self aligned dual damascene process is performed, a lower metal wiring is formed on an upper surface of a semiconductor substrate, and an upper surface of the entire surface is formed. After forming the interlayer dielectric layer, a first photoresist layer pattern is formed on the interlayer dielectric layer to expose a predetermined portion as a via contact, and a polymer solution containing a radical initiator is applied on the entire surface, followed by baking. Etching to generate a radical in the polymer solution, diffuse the first photoresist pattern, and harden it by exposing the first photoresist pattern to a portion of the second photoresist pattern in which the first photoresist pattern is formed by a subsequent metal wiring. To simplify the process and thereby stably control the process and There is an advantage that can improve the process yield and reliability of the device.

Claims (3)

반도체기판 상부에 제1층간절연막을 형성하는 공정과,Forming a first interlayer insulating film on the semiconductor substrate; 상기 제1층간절연막 상부에 하부 금속배선을 형성하는 공정과,Forming a lower metal wiring on the first interlayer insulating film; 전체표면 상부에 제2층간절연막을 형성하는 공정과,Forming a second interlayer insulating film over the entire surface; 상기 제2층간절연막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성하는 공정과,Forming a first photoresist pattern on the second interlayer insulating layer, the first photoresist layer pattern exposing a portion intended as a via contact; 전체표면 상부에 라디칼 개시제를 함유하는 수용성 고분자 용액을 도포하는 공정과,Applying a water-soluble polymer solution containing a radical initiator over the entire surface, 상기 수용성 고분자용액 내의 라디칼 개시제를 상기 제1감광막패턴으로 확산시키는 베이크공정과,A baking step of diffusing the radical initiator in the water-soluble polymer solution into the first photoresist film pattern; 상기 수용성 고분자용액을 제거하는 공정과,Removing the water-soluble polymer solution; 전체표면 상부에 상부 금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴을 형성하는 공정과,Forming a second photoresist film pattern exposing a portion, which is intended as an upper metal wiring, over the entire surface; 상기 제1감광막패턴과 제2감광막패턴을 식각마스크로 상기 제2층간절연막을 식각하여 비아콘택홀을 형성하는 공정과,Forming a via contact hole by etching the second interlayer insulating layer using the first photoresist pattern and the second photoresist pattern as an etching mask; 상기 제2감광막패턴을 식각마스크로 상기 제1감광막패턴을 식각하는 공정과,Etching the first photoresist pattern using the second photoresist pattern as an etching mask; 상기 제2감광막패턴을 제거하는 공정과,Removing the second photoresist pattern; 상기 제1감광막패턴을 식각마스크로 상기 제2층간절연막을 식각하여 트렌치를 형성하는 공정과,Forming a trench by etching the second interlayer dielectric layer using the first photoresist pattern as an etch mask; 상기 제1감광막패턴을 제거하는 공정을 포함하는 반도체소자의 제조방법.And removing the first photosensitive film pattern. 제 1 항에 있어서,The method of claim 1, 상기 베이크 공정은 50 ∼ 250℃의 온도의 오븐 또는 핫 플레이트(hot plate)를 이용한 가열 방식으로 실시되는 것을 특징으로 하는 반도체소자의 제조방법.The baking process is a method of manufacturing a semiconductor device, characterized in that carried out by a heating method using an oven or a hot plate of a temperature of 50 ~ 250 ℃. 제 1 항에 있어서,The method of claim 1, 상기 라디칼 개시제는 AIBN(2,2'-Azobisisobutyronitrile)인 것을 특징으로 하는 반도체소자의 제조방법.The radical initiator is AIBN (2,2'-Azobisisobutyronitrile) characterized in that the manufacturing method of the semiconductor device.
KR1020010035797A 2001-06-22 2001-06-22 Manufacturing method for semiconductor device KR20030000137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010035797A KR20030000137A (en) 2001-06-22 2001-06-22 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010035797A KR20030000137A (en) 2001-06-22 2001-06-22 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
KR20030000137A true KR20030000137A (en) 2003-01-06

Family

ID=27710609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010035797A KR20030000137A (en) 2001-06-22 2001-06-22 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR20030000137A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959250B2 (en) 2013-06-05 2015-02-17 SK Hynix Inc. Electronic device and method for fabricating the same
US9502639B2 (en) 2013-09-30 2016-11-22 SK Hynix Inc. Electronic device for improving characteristic of variable resistance element and method of fabricating the same
KR20170015790A (en) * 2015-07-31 2017-02-09 삼성전자주식회사 Methods of manufacturing interconnects for semiconductor devices
US9859490B2 (en) 2015-04-14 2018-01-02 SK Hynix Inc. Electronic device including a semiconductor memory having multi-layered structural free layer
US9865806B2 (en) 2013-06-05 2018-01-09 SK Hynix Inc. Electronic device and method for fabricating the same
US9865319B2 (en) 2014-12-17 2018-01-09 SK Hynix Inc. Electronic device and method for fabricating the same
US10205089B2 (en) 2014-02-28 2019-02-12 SK Hynix Inc. Electronic device and method for fabricating the same
US10367137B2 (en) 2014-12-17 2019-07-30 SK Hynix Inc. Electronic device including a semiconductor memory having a variable resistance element including two free layers
US10490741B2 (en) 2013-06-05 2019-11-26 SK Hynix Inc. Electronic device and method for fabricating the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305030B2 (en) 2013-06-05 2019-05-28 SK Hynix Inc. Electronic device and method for fabricating the same
US9786840B2 (en) 2013-06-05 2017-10-10 SK Hynix Inc. Electronic device and method for fabricating the same
US9865806B2 (en) 2013-06-05 2018-01-09 SK Hynix Inc. Electronic device and method for fabricating the same
US8959250B2 (en) 2013-06-05 2015-02-17 SK Hynix Inc. Electronic device and method for fabricating the same
US10490741B2 (en) 2013-06-05 2019-11-26 SK Hynix Inc. Electronic device and method for fabricating the same
US10777742B2 (en) 2013-06-05 2020-09-15 SK Hynix Inc. Electronic device and method for fabricating the same
US9502639B2 (en) 2013-09-30 2016-11-22 SK Hynix Inc. Electronic device for improving characteristic of variable resistance element and method of fabricating the same
US10205089B2 (en) 2014-02-28 2019-02-12 SK Hynix Inc. Electronic device and method for fabricating the same
US9865319B2 (en) 2014-12-17 2018-01-09 SK Hynix Inc. Electronic device and method for fabricating the same
US10134458B2 (en) 2014-12-17 2018-11-20 SK Hynix Inc. Electronic device and method for fabricating the same
US10367137B2 (en) 2014-12-17 2019-07-30 SK Hynix Inc. Electronic device including a semiconductor memory having a variable resistance element including two free layers
US9859490B2 (en) 2015-04-14 2018-01-02 SK Hynix Inc. Electronic device including a semiconductor memory having multi-layered structural free layer
KR20170015790A (en) * 2015-07-31 2017-02-09 삼성전자주식회사 Methods of manufacturing interconnects for semiconductor devices

Similar Documents

Publication Publication Date Title
US6358842B1 (en) Method to form damascene interconnects with sidewall passivation to protect organic dielectrics
KR20020002058A (en) Method for forming fine patterns and method for forming gate electrodes in semiconductor device using the same
KR20030000137A (en) Manufacturing method for semiconductor device
KR100419021B1 (en) Method of fabricating Copper line of semiconductor device
KR100374228B1 (en) Method for forming a metal line
KR20030054175A (en) A method for manufacturing semiconductor device using dual damascene process
KR100909174B1 (en) How to form a dual damascene pattern
KR20040058955A (en) Method of forming a dual damascene pattern
KR100421278B1 (en) Fabricating method for semiconductor device
KR100935188B1 (en) Method for manufacturing metal line in semiconductor device
KR100372770B1 (en) A method of manufacturing self align contact of semiconductor device
KR19990004947A (en) METHOD FOR FORMING METAL WIRING IN SEMICONDUCTOR
KR100365936B1 (en) Method for forming via contact in semiconductor device
KR20040056110A (en) Method of forming a dual damascene pattern
KR100420416B1 (en) Method for forming metal interconnection of semiconductor device
KR100395907B1 (en) Method for forming the line of semiconductor device
KR100917099B1 (en) Method of forming a dual damascene pattern
KR100338092B1 (en) Method for manufacturing semiconductor device
KR20040057579A (en) Method of forming a dual damascene pattern in a semiconductor device
KR20000015122A (en) Via contact formation method of semiconductor devices
KR100369483B1 (en) Method for forming metal wiring in semiconductor device
KR20060113276A (en) Method for forming via hole using dual damascene process
KR20010004188A (en) Method of fabricating of dual damascene of semiconductor device
KR20020008614A (en) Method for forming metal line of semiconductor devices utilizing dual damascene process
KR20000044854A (en) Method for forming interlayer dielectric of semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination