KR20020049815A - The method for manufacturing of alkali absorbent - Google Patents
The method for manufacturing of alkali absorbent Download PDFInfo
- Publication number
- KR20020049815A KR20020049815A KR1020000079110A KR20000079110A KR20020049815A KR 20020049815 A KR20020049815 A KR 20020049815A KR 1020000079110 A KR1020000079110 A KR 1020000079110A KR 20000079110 A KR20000079110 A KR 20000079110A KR 20020049815 A KR20020049815 A KR 20020049815A
- Authority
- KR
- South Korea
- Prior art keywords
- alkali
- weight
- parts
- slurry
- csh
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
본 발명은 알칼리 흡착재의 제조방법에 관한 것으로서, 상세히 설명하면, 건축재료로 쓰이는 시멘트 2차제품 또는 콘크리트 구조물 등에서 용출되는 알칼리 이온을 효과적으로 흡착하여 건축물 표면의 미관상태는 물론 다량 누출에 따른 지하수 오염을 방지하고 내구성을 향상시키는 알칼리 흡착재의 제조방법에 관한 것이다.The present invention relates to a method for producing an alkali adsorbent, which will be described in detail, by effectively adsorbing alkali ions eluted from cement secondary products or concrete structures used as a building material, to prevent groundwater contamination due to a large amount of leakage as well as the appearance of the building surface. It relates to a method for producing an alkali adsorbent that prevents and improves durability.
본 발명은 각종 시멘트 2차제품에 함유되어 있는 알칼리를 안정적으로 흡착하여 고정하기 위한 알칼리 흡착재의 제조기술에 관한 것이다. 더욱 상세하게는 몰비가 조절칼슘실리케이트수화물(이하 C-S-H)에 알루미나 등 3가 양이온이 구조적으로 치환되어 알칼리 등에 의한 백화방지에 매우 효과적인 알칼리 흡착재의 제조방법에 관한 것이다.The present invention relates to a technique for producing an alkali adsorbent for stably adsorbing and fixing alkali contained in various cement secondary products. More specifically, the present invention relates to a method for producing an alkaline adsorbent, which has a molar ratio such that a trivalent cation such as alumina is structurally substituted with a controlled calcium silicate hydrate (hereinafter, C-S-H).
일반적으로 건축미장 마감재 및 시멘트 2차제품 등의 주재료로 사용되는 시멘트계 재료는 고농도의 알칼리를 함유하고 있으며 이는 대부분 수용성으로서 수분의 유입과 동시에 모세기공을 통하여 재료표면에 석출, 제품의 표면미관을 크게 손상시키고 나아가서는 제품의 내구성을 저하시키는 요인 및 주변환경을 오염시키는 원인으로도 작용한다.In general, cement-based materials used as main materials for building finishing and cement secondary products contain high concentrations of alkalis. Most of them are water-soluble and precipitate water on the surface of the material through capillary pores and increase the surface aesthetics of products. It also acts as a factor that damages and further reduces the durability of the product and pollutes the surrounding environment.
국내등록특허공보 등록번호 특1985-0000255에는 규산소다와 고로슬래그를 이용한 C-S-H 경화체의 제조방법에 관한 기술이 기재되어 있으나 이 방법은 C-S-H의 생성속도는 빠르나 다량의 알칼리를 자체 내에 함유하는 단점이 있고 국내공개특허공보 공개번호 95-18360에는 콜로이달실리카와 콜로이달 알루미나와 같은 무기결합제에 실란화합물로 처리한 반응물에 내후성 첨가제 등을 혼합하여 제조하는 무기질피복제 조성물에 관한 기술이 기재되어 있으며 이는 알칼리 함량이 적거나 없는 재료를 사용하여 표면에 코팅처리를 함으로서 알칼리 용출통로를 차단하는 방법으로서 모재와 다른 재료구성으로 인한 박리현상 및 고가의 재료라는 단점을 지니고 있어 큰 효과를 얻지 못하고 있다.Korean Patent Publication No. 1985-0000255 describes a technique for producing a CSH cured product using sodium silicate and blast furnace slag, but this method has a disadvantage in that it generates a high amount of CSH but contains a large amount of alkali in itself. Korean Laid-Open Patent Publication No. 95-18360 describes a technique related to an inorganic coating composition prepared by mixing weatherproof additives and the like with an inorganic binder, such as colloidal silica and colloidal alumina, treated with a silane compound. As a method of blocking the alkali elution passage by coating the surface using a material having a low or no content, it has a disadvantage of exfoliation phenomenon and expensive material due to the base material and other material composition, and has not obtained a great effect.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 효과적인 흡착을 통해 알칼리의 용출을 현저히 감소시키는 무기질계 흡착재의 제조방법을 제공하는 것을 그 목적으로 하는 것이다.In order to solve the problems as described above, an object of the present invention is to provide a method for producing an inorganic-based absorbent material that significantly reduces the elution of alkali through effective adsorption.
도1 C-S-H의29Si NMR 분석결과 29 Si NMR analysis of the Fig. 1 CSH
도2 C-(A)-S-H의 알칼리 흡착기구Alkali adsorption mechanism of C- (A) -S-H
상기와 같은 목적을 달성하기 위하여, 본 발명은 C-S-H의 주성분이 되는 CaO 와 SiO2의 몰비가 0.5 내지 1.2 되도록 적정재료를 선정하여 조절하고 충분한 슬러리 상태를 유지하기 위하여 물/고체비를 10내지 15 상태로 조절한다.In order to achieve the above object, the present invention selects and adjusts the appropriate material so that the molar ratio of CaO and SiO 2 , which are the main components of CSH, is 0.5 to 1.2, and the water / solid ratio is 10 to 15 to maintain a sufficient slurry state. Adjust to the state.
3가 양이온이 치환된 C-M3+-S-H를 제조함에 있어 상기 C-S-H에 대하여 Al 이온을 조성물의 5 내지 20 중량부 되도록 적정재료를 선정하여 첨가한 후 교반상태를 유지한다. Al 함량이 5 중량부 이하가 되면 알칼리이온 흡착효과가 저하되고 20 중량부 이상일 경우 CAHx의 화합물이 생성되어 C-A-S-H의 생성에 제한을 받는다.In preparing a CM 3+ -SH substituted with a trivalent cation, a suitable material is selected to add 5 to 20 parts by weight of Al ions to the CSH, and then the stirring is maintained. When the Al content is 5 parts by weight or less, the alkali ion adsorption effect is lowered. When the Al content is 20 parts by weight or more, a compound of CAHx is formed, thereby limiting the production of CASH.
상기 방법에 의한 C-M3+-S-H는 화학적 평형에 도달하기 위한 시간이 상당히 소요되기 때문에 보다 빠른 제조방법으로서 C-M3+-S-H를 제조하기 위하여 소석회 20 중량부를 전항의 조성물 중에 일률적으로 첨가하여 전체 시스템의 초기 pH를 12이상으로 상승시켜 주는 것이 필요하다. 또한 슬러리 온도를 60-80oC로 유지하여 반응을 촉진시킨다. 슬러리의 반응온도는 80oC 이상에서는 C-S-H의 결정화로 인한 비표면적의 감소 및 알칼리흡착능 저하의 위험이 있으며 60oC 이하에서는 C-A-S-H 의 생성반응율이 저하되는 단점이 있다. 제조된 C-M3+-S-H는 고속회전믹서에서 강제교반하여 깨끗한 물에서 2회 세척해내어 공업용 원료 중에 함유될 수 있는 미량성분을 제거한다. 제조된 C-M3+-S-H를 여과하고 건조과정을 거친 후 가볍게 응어리진 입자들을 밀링 등을 이용하여 풀어준다. 이때 건조온도는 상기와 같은 이유에서 80oC 를 넘지 않도록 하여 무기질계 흡착재를 제조하는 방법에 관한 것이다.Since CM 3 + -SH by this method takes a long time to reach the chemical equilibrium, as a faster manufacturing method, 20 parts by weight of slaked lime is added uniformly in the composition of the preceding paragraph to produce CM 3+ -SH. It is necessary to raise the initial pH of to 12 or more. In addition, the slurry temperature is maintained at 60-80 ° C. to facilitate the reaction. When the reaction temperature of the slurry is higher than 80 o C, there is a risk of decrease of specific surface area and lower alkali adsorption capacity due to CSH crystallization, and lower than 60 o C has a disadvantage of lowering reaction rate of CASH formation. The prepared CM 3+ -SH is forcibly stirred in a high speed rotary mixer to be washed twice in clean water to remove trace components that may be contained in industrial raw materials. The prepared CM 3+ -SH is filtered and dried to loosen the lightly coagulated particles by milling or the like. At this time, the drying temperature relates to a method for producing an inorganic absorbent material so as not to exceed 80 o C for the same reason.
시멘트수화물은 C-S-H로 대변될 수 있을 정도로 시멘트의 완전한 수화시 전체 수화물의 약 60%를 차지한다. C-S-H는 나노미터사이즈의 높은 비표면적, 수분 및 기타 환경에 대한 장기적 안정성을 갖는 물질로서 시멘트의 특성을 좌우하는 중요한 요소이다. 특히 높은 비표면적은 시멘트계 재료내의 중금속 이온 및 방사능물질을 흡착하거나 격자치환 등을 가능케 하는 등 고화재로서의 기본특성에 대한 주요원인이 된다. 그러나 실제 C-S-H의 알칼리 흡착능은 그리 우수하지 못한 실정으로서 시멘트중의 약 1%를 차지하는 알칼리는 약 90%가 수용성으로서 그 대부분이 수화물에 흡착 또는 결합되어 안정화되지 못하고 pore solution내에 용해되어 모세기공을 통하여 표면에 석출된다.Cement hydrate accounts for about 60% of the total hydrate upon complete hydration of the cement to the extent that it can be represented by C-S-H. C-S-H is a nanometer-sized material with high specific surface area, long-term stability against moisture and other environments, and is an important factor in determining the properties of cement. In particular, the high specific surface area is the main cause for the basic characteristics as a solidifying material, such as adsorption of heavy metal ions and radioactive materials in cement-based materials, lattice replacement, and the like. However, the alkali adsorption capacity of CSH is not very good. Alkali, which occupies about 1% of cement, is about 90% water-soluble, and most of it is not adsorbed or bonded to the hydrate, so that it is not stabilized and dissolved in the pore solution. Precipitates on the surface.
시멘트수화물인 C-S-H가 알칼리흡착성능을 발휘하지 못하는 원인은 C-S-H의 높은 CaO/SiO2값에 기인한다. 즉 시멘트로부터 완전히 수화된 경화체중 C-S-H의 평균몰비는 1.8 수준으로서29Si NMR 분석(도 1) 에 의하면 모노머(Q1)가 그 구성의 대부분을 차지하고 다이머(Q2)는 매우 미량 존재한다. 알칼리 흡착기구를 Q1및 Q2에 의거 설명하면 다음과 같다(도 2-a).The reason that CSH, a cement hydrate, does not exhibit alkali adsorption performance is due to the high CaO / SiO 2 value of CSH. That is, the average molar ratio of CSH in the cured body completely hydrated from cement is 1.8, and according to 29 Si NMR analysis (FIG. 1), monomer (Q 1 ) occupies most of its configuration and very small amount of dimer (Q 2 ) exists. The alkali adsorption mechanism will be described based on Q 1 and Q 2 as follows (Fig. 2-a).
C-S-H의 구조는 SiO4사면체 단위구조의 반복형태로 나타나며 보통 2개의 paired SiO4(Q1)와 1개의 bridging SiO4(Q2) 사면체의 구성으로 긴 체인을 형성하여 이루어지는데 특히 Q2자리의 양전하 부족현상에 의해 이 자리에 알칼리 금속이 전기적 균형을 이루며 흡착하게 된다. 따라서 알칼리이온의 C-S-H내 흡착을 위해서는 다이머(Q2)의 양이 증가되어야 하며 이는 C-S-H의 몰비 즉 CaO/SiO2가 상당히 낮게 조절되어야 함을 의미한다. 따라서 C-S-H의 알칼리이온 흡착효과를 증진시키기 위해서는 CaO/SiO2의 값을 현재수준 (∼1.8)에서 최대 1.2 이하로 낮추어야 하며 이는 기존 시멘트재료 시스템에서는 얻을 수 없는 조건이다.Structure of the CSH is makin made to form a long chain structure of a SiO 4 appears as a repeated form of tetrahedron unit structures usually two paired SiO 4 (Q 1) and one bridging SiO 4 (Q 2) tetrahedra in particular Q of the two-digit Due to the lack of positive charge, the alkali metal is adsorbed in this position in electrical balance. Therefore, for the adsorption of alkali ions in the CSH, the amount of dimer (Q 2 ) must be increased, which means that the molar ratio of CSH, that is, CaO / SiO 2 , should be controlled to a very low level. Therefore, in order to enhance the alkali ion adsorption effect of CSH, the value of CaO / SiO 2 should be lowered to 1.2 or less at the current level (∼1.8), which is not obtained in the existing cement material system.
알칼리흡착 효과를 극대화하기 위해서는 C-S-H의 몰비 저감만으로는 충분치 않다. 일반적으로 시멘트내의 3이 양이온 즉 Al 등은 C-S-H 내의 Si 자리에 치환고용 될 수 있다. 3이 양이온이 치환될 경우 C-S-H 구조는 결합구조상 1개의 양이온 부족현상을 일으켜 전하의 균형을 위하여 더욱 많은 알칼리 이온을 흡착할 수 있게 된다. (도 2-b). 다만 시멘트의 완전한 수화 및 Al 이온의 C-S-H내 격자고용에 필요한 반응시간은 통상의 조건 즉 낮은 몰비의 사용 및 상온하에서는 수십년 단위로 길기 때문에 C-S-H의 충분한 형성도 어려울 뿐만 아니라, Al 등의 3가 이온도 용이하게 C-S-H의 격자내에 고용되기 어렵다. 따라서 C-S-H 구조내부에 3이 양이온의 고용을 위한 새로운 수단이 필요하다.In order to maximize the alkali adsorption effect, it is not enough to reduce the molar ratio of C-S-H. In general, trivalent cations in cement, ie, Al, may be substituted and employed at Si sites in C-S-H. When the trivalent cation is substituted, the C-S-H structure causes one cation deficiency in the bonding structure to adsorb more alkali ions for balance of charge. (Figure 2-b). However, the reaction time required for complete hydration of cement and lattice employment of Al ions in CSH is long for several decades under normal conditions, i.e., low molar ratio use, and sufficient formation of CSH is difficult, as well as trivalent ions such as Al. It is also difficult to be easily employed in the lattice of CSH. Thus, new means for the solid solution of trivalent cations within the C-S-H structure are needed.
본 발명은 C-S-H의 본질적 알칼리흡착 성능을 개선하기 위하여 필요한 기술적 요소중 가장 중요한 CaO/SiO2의 몰비 조절, Al 이온의 C-S-H내 효과적인 고용제어를 통한 개량 C-S-H의 제조방법에 관한 내용이다.The present invention relates to a method for producing improved CSH through controlling the molar ratio of CaO / SiO 2, the effective solution control of Al ions in CSH, which is the most important technical element necessary for improving the intrinsic alkali adsorption performance of CSH.
본 발명에서 CaO 원으로는 소석회 및 제철산업부산물인 고로수재슬래그 등을, Si원으로는 비정질 형태의 fly ash 및 실리카퓸 등을 이용하는 것이 바람직하다. 3가 양이온으로는 슬래그 및 fly ash에 함유되어 있는 Al을 이용한다. 각 원료의 분말도는 반응성을 높이기 위해서 3000cm2/g 이상 되도록 분쇄하여 사용하는 것이 바람직하다.In the present invention, as the CaO source, it is preferable to use slag lime and blast furnace slag as a by-product of the steel industry, and as an Si source, fly ash and silica fume in an amorphous form. As the trivalent cation, Al contained in slag and fly ash is used. In order to improve the reactivity of the powder of each raw material, it is preferable to use it by grinding so that it may be 3000 cm <2> / g or more.
가볍게 분쇄된 C-A-S-H는 그 비표면적이 나노미터스케일로서 매우 미세하여 시멘트와 혼합시 시멘트 2차제품 표면마감층의 알칼리 뿐 아니라 구체로부터 용출되어 나오는 알칼리 및 환경 유해이온을 흡착하는 기능을 가지며 미세입자에 의한 공극충진 효과를 발휘하여 치밀한 구조를 이루므로 내구성 증진효과도 개선된다.Lightly crushed CASH has a specific surface area of nanometer scale and is very fine, and when mixed with cement, it has the function of adsorbing alkali and environmental harmful ions eluted from the sphere as well as alkali of surface finish layer of cement secondary products. Due to the pore filling effect to achieve a compact structure, the durability enhancement effect is also improved.
이하 실시예를 들어 본 발명을 더욱 상세히 설명한다.The present invention will be described in more detail with reference to the following Examples.
실시예 (1내지 4)Examples (1-4)
소석회 20중량부와 고로수재슬래그 30 내지 50 중량부, 미연카본 함량이 적은 fly ash 30 내지 50 중량부로 이루어진 조성물 100 중량부에 대하여 상기에서 제시된 제조방법에 의해 표 1과 같이 C-A-S-H를 제조하였다. 또한 생석회 50 중량부와 비정질 실리카 50중량부로 이루어진 조성물 100중량부에 대하여 Al(OH)310중량부를 첨가하여 상기에서 제시된 제조방법에 의해 표 1과 같이 C-A-S-H를 제조하였다.CASH was prepared according to the preparation method shown in Table 1 with respect to 100 parts by weight of the composition consisting of 20 parts by weight of lime, 30 to 50 parts by weight of blast furnace slag, and 30 to 50 parts by weight of fly ash having a small amount of unburned carbon. In addition, 10 parts by weight of Al (OH) 3 with respect to 100 parts by weight of the composition consisting of 50 parts by weight of quicklime and 50 parts by weight of amorphous silica to prepare a CASH as shown in Table 1 by the preparation method shown above.
비교예 (1내지 3)Comparative Example (1 to 3)
생석회 50 내지 70 중량부와 비정질 실리카 30 내지 50 중량부로 이루어진 조성물 100중량부에 대하여 Al(OH)310중량부를 첨가하여 상기에서 제시된 제조방법에 의해 표 1과 같이 C-(A)-S-H를 제조하였다.10 parts by weight of Al (OH) 3 was added to 100 parts by weight of the composition consisting of 50 to 70 parts by weight of quicklime and 30 to 50 parts by weight of amorphous silica to prepare C- (A) -SH as shown in Table 1 by the preparation method shown above. Prepared.
시험방법Test Methods
실시예 및 비교예에서 제조된 C-(A)-S-H 1g을 300 mM/l의 초기농도를 갖는 Na(K)OH 용액 20ml 중에 분산시켜 3일간 교반상태로 방치한 후 여과하고 여과액의 알칼리(Na,K)농도를 측정하여 다음식에 의해 C-(A)-S-H에 의한 흡착정도를 평가한다. 그 결과는 표 2, 3에 나타내었다.1 g of C- (A) -SH prepared in Examples and Comparative Examples was dispersed in 20 ml of Na (K) OH solution having an initial concentration of 300 mM / l, left to stir for 3 days, filtered, and the alkali of the filtrate. The concentration of (Na, K) was measured and the degree of adsorption by C- (A) -SH was evaluated by the following equation. The results are shown in Tables 2 and 3.
C-(A)-S-H 내에 흡착된 알칼리 농도(mM/g)Alkali concentration adsorbed in C- (A) -S-H (mM / g)
Rd (Distribution ratio) = ---------------------------------------------Rd (Distribution ratio) = -------------------------------------------- -
용액중에 잔존하는 알칼리농도(mM/l)Alkali concentration remaining in solution (mM / l)
Rd계수가 높을수록 제조된 C-A-S-H의 알칼리 흡착효과가 높은 것으로서 용액중의 알칼리가 고체, 즉 C-A-S-H 내부의 구조속으로 흡착이동된 것을 의미한다.The higher the R d coefficient, the higher the alkali adsorption effect of the prepared CASH, which means that the alkali in the solution is adsorbed and moved into the solid, ie, the structure inside the CASH.
표 1.Table 1.
표 2.Table 2.
표 3.Table 3.
상기와 같은 본 발명은 값이 싸며 쉽게 생산하는 장점을 가지고 있다. 알칼리흡착재에 의해 처리된 시멘트 2차제품은 다음과 같은 장점을 지니고 있다.The present invention as described above has the advantage of low cost and easy production. Cement secondary products treated with alkali adsorbent have the following advantages.
첫째, 건축구조물 또는 콘크리트구조물의 표면미관을 향상시킨다. 둘째, 흡착재와 알칼리 이온과의 화학적 결합으로 그 흡착효과가 우수하다. 셋째, 건축구조물 등의 추가적인 보수공정을 생략할 수 있다. 넷째, 흡착재 자체의 재료구성이 사용되는 기재와 유사하여 들뜸현상 없는 일체화를 이룰 수 있다.First, it improves the surface aesthetics of building structures or concrete structures. Second, the chemical bonding between the adsorbent and alkali ions is excellent in the adsorption effect. Third, additional repair processes such as building structures can be omitted. Fourth, the material configuration of the adsorbent itself is similar to that of the substrate used, thereby achieving integration without lifting phenomenon.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0079110A KR100383657B1 (en) | 2000-12-20 | 2000-12-20 | The method for manufacturing of alkali absorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0079110A KR100383657B1 (en) | 2000-12-20 | 2000-12-20 | The method for manufacturing of alkali absorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020049815A true KR20020049815A (en) | 2002-06-26 |
KR100383657B1 KR100383657B1 (en) | 2003-05-14 |
Family
ID=27683765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0079110A KR100383657B1 (en) | 2000-12-20 | 2000-12-20 | The method for manufacturing of alkali absorbent |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100383657B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105214608A (en) * | 2015-09-23 | 2016-01-06 | 哈尔滨理工大学 | Coal ash for manufacturing is for the method without templet of petal-shaped sodalite and white carbon composite balls bunch |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0255060A (en) * | 1988-08-19 | 1990-02-23 | Sumitomo Metal Ind Ltd | Deodorant |
JPH0788362A (en) * | 1993-08-27 | 1995-04-04 | Tohoku Electric Power Co Inc | Gaseous carbon dioxide adsorbent |
JP3438545B2 (en) * | 1997-08-07 | 2003-08-18 | 三浦工業株式会社 | Adsorbent for exhaust gas treatment and method for treating the adsorbent |
KR100261041B1 (en) * | 1998-01-06 | 2000-07-01 | 김동태 | Production method of artificial granular zeolite for waste water purification |
KR20000049962A (en) * | 2000-01-27 | 2000-08-05 | 김진범 | Adsorbent manufacturing method using the municipal solid waste incinerator fly ash |
KR20020043386A (en) * | 2000-12-04 | 2002-06-10 | 손재익 | Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon |
-
2000
- 2000-12-20 KR KR10-2000-0079110A patent/KR100383657B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR100383657B1 (en) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12098104B2 (en) | Carbonatable calcium silicate-based cements and concretes having mineral additives, and methods thereof | |
CN110698227B (en) | Antibacterial ceramic tile and preparation method thereof | |
CA2180483C (en) | Zeolite-based lightweight concrete products | |
CN108129051A (en) | A kind of long-term efficiently concrete admixture of curing of chloride ion and application | |
CN104310843A (en) | Clay-resistant concrete function additive and preparation method thereof | |
Barger et al. | Production and use of calcined natural pozzolans in concrete | |
CN112194440B (en) | Alkali-resistant and anti-permeability waterproof slurry and construction process thereof | |
CN104817272A (en) | Use of metal ion-adsorption adsorbent as coloring agent, coloring agent and preparation method and use of coloring agent | |
KR100383657B1 (en) | The method for manufacturing of alkali absorbent | |
CN1260161C (en) | Dry powder mortar composition | |
CN115650664A (en) | Multifunctional environment-friendly ecological concrete and preparation method thereof | |
KR101345203B1 (en) | Low alkali non-cement concrete composition with tannin and block unit comprising the same | |
KR101225500B1 (en) | Room temperature curing type water-soluable inorganic painting composition having excellent water-resistance and method for preparing the same | |
KR100276795B1 (en) | Manufacturing method of waterproofing agent for concrete with excellent waterproofing | |
CN114772976A (en) | Anti-freezing anti-cracking concrete waterproofing agent and preparation method thereof | |
Janotka | The influence of zeolitic cement and sand on resistance of mortar subjected to hydrochloric acid solution attack | |
KR101111635B1 (en) | Low alkali concrete composition with tannin and block unit comprising the same | |
KR102014282B1 (en) | A composite of artificial aggregates improved water absorption and specific gravity comprising mine powder with high specific gravity and fluidized-bed boiler ash, and an artificial aggregates manufactured by using the same, and a mehtod for manufacturing it | |
KR102307019B1 (en) | Hydration heat reducer with improved durability and usability | |
KR100333347B1 (en) | Method of producing self waterproof agents | |
JPS6247827B2 (en) | ||
JP4933095B2 (en) | Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement | |
CN117447143B (en) | Anti-whiskering ground stone and preparation method thereof | |
KR102314761B1 (en) | Binder compositon containing nitrate salts and hardened product thereof | |
CN109704699B (en) | Ceramic sheet synthesized by ceramic non-polishing waste at low temperature and having humidity regulating function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120423 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130416 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20141020 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20150423 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20160426 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20170512 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20180510 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20190410 Year of fee payment: 17 |