JPH0788362A - Gaseous carbon dioxide adsorbent - Google Patents

Gaseous carbon dioxide adsorbent

Info

Publication number
JPH0788362A
JPH0788362A JP21272193A JP21272193A JPH0788362A JP H0788362 A JPH0788362 A JP H0788362A JP 21272193 A JP21272193 A JP 21272193A JP 21272193 A JP21272193 A JP 21272193A JP H0788362 A JPH0788362 A JP H0788362A
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorbent
dioxide adsorbent
coal ash
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21272193A
Other languages
Japanese (ja)
Inventor
Tadashi Yamamoto
忠 山本
Yoshiharu Kondo
義春 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OZAWA CONCRETE KOGYO KK
Tohoku Electric Power Co Inc
Original Assignee
OZAWA CONCRETE KOGYO KK
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OZAWA CONCRETE KOGYO KK, Tohoku Electric Power Co Inc filed Critical OZAWA CONCRETE KOGYO KK
Priority to JP21272193A priority Critical patent/JPH0788362A/en
Publication of JPH0788362A publication Critical patent/JPH0788362A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE:To provide a low-cost gaseous CO2 adsorbent capable of efficiently fixing gaseous CO2 in the air. CONSTITUTION:Water is added to industrial waste made of coal ash or blast furnace slag and they are granulated or crushed to obtain the objective gaseous CO2 adsorbent made of a powdery, granular or crushed material contg. hydrate of a calcium compd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、炭酸ガス吸着体に係り、
特に原料として産業廃棄物を用いた炭酸ガス吸着体に関
する。
TECHNICAL FIELD The present invention relates to a carbon dioxide gas adsorbent,
In particular, it relates to a carbon dioxide adsorbent using industrial waste as a raw material.

【0002】[0002]

【従来技術】近年、大気中の炭酸ガス濃度の増加による
地球の温暖化について議論され、その危険が叫ばれてい
るが、その対策としては、化石燃料の消費量を減らして
炭酸ガスの発生を少なくすることとともに、大気中の炭
酸ガスを固定化するための以下の方法が各国において研
究されているが、未だ実用化には至っていない。
2. Description of the Related Art In recent years, global warming due to an increase in the concentration of carbon dioxide in the atmosphere has been discussed and its danger has been exclaimed. The following methods for fixing carbon dioxide in the atmosphere while reducing the amount have been studied in various countries, but have not yet been put to practical use.

【0003】(1)物理的吸収法、(2)化学的吸収
法、(3)物理的吸着法、(4)膜分離法、(5)蒸留
法、(6)光合成 一方、コンクリ−ト構造物が、長い年月を経て徐々に鉄
筋を錆びさせる、いわゆるコンクリ−トの中性化現象が
知られている。この現象は、コンクリ−ト中のカルシウ
ム分が大気中の炭酸ガスと反応することによるものであ
り、この現象を利用して大気中の炭酸ガスを固定化する
ことが考えられる。
(1) Physical absorption method, (2) Chemical absorption method, (3) Physical adsorption method, (4) Membrane separation method, (5) Distillation method, (6) Photosynthesis On the other hand, concrete structure A so-called concrete neutralization phenomenon is known in which an object gradually rusts a reinforcing bar over a long period of time. This phenomenon is due to the fact that calcium in concrete reacts with carbon dioxide in the atmosphere, and it is considered that carbon dioxide in the atmosphere is fixed by utilizing this phenomenon.

【0004】しかし、この現象は、10年〜100年と
いう極めて長い年月の間に生ずるものであって、このよ
うに遅くしか進行しない現象を利用することは、全く実
用的ではない。
However, this phenomenon occurs during an extremely long period of 10 to 100 years, and it is completely impractical to utilize such a phenomenon that progresses only slowly.

【0005】また、炭酸ガスの固定化速度の速い炭酸ガ
ス吸着体を用いることも考えられるが、大気中に大量に
存在する炭酸ガスを吸着体により固定化するには、大量
の吸着体が必要であり、そのためには、吸着体のコスト
が極めて低くなければならず、現在のところ、そのよう
な炭酸ガス吸着体は見出だされていない。
It is also conceivable to use a carbon dioxide adsorbent having a high carbon dioxide immobilization rate, but a large amount of adsorbent is required to immobilize carbon dioxide present in a large amount in the atmosphere by the adsorbent. Therefore, the cost of the adsorbent has to be extremely low, and at present, such a carbon dioxide adsorbent has not been found.

【0006】[0006]

【発明が解決しようとする課題】このように、大気中の
炭酸ガスの固定化のための実用的な方法を開発すること
は、その速度及びコストの点から非常に困難であって、
実用に耐える炭酸ガス吸着体を得ることが望まれてい
た。
As described above, it is very difficult to develop a practical method for immobilizing carbon dioxide in the atmosphere because of its speed and cost.
It has been desired to obtain a carbon dioxide adsorbent that can be put to practical use.

【0007】本発明は、かかる事情の下になされたもの
であって、大気中の炭酸ガスを効率良く固定化すること
を可能とする低コストの炭酸ガス吸着体を提供すること
を目的とする。
The present invention has been made under such circumstances, and an object of the present invention is to provide a low-cost carbon dioxide adsorbent capable of efficiently immobilizing carbon dioxide in the atmosphere. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の炭酸ガス吸着体は、石炭灰又は高炉スラグ
からなる産業廃棄物を主成分とし、かつカルシウム化合
物の水和物を含有する粉状物、粒状物、又は破砕状物か
らなることを特徴とする。
In order to achieve the above object, the carbon dioxide adsorbent of the present invention contains industrial waste consisting of coal ash or blast furnace slag as a main component and contains a hydrate of a calcium compound. It is characterized by comprising a powdery substance, a granular substance, or a crushed substance.

【0009】本発明の炭酸ガス吸着体の原料としては、
製鉄所から廃棄される高炉スラグ、火力発電所から廃棄
される石炭灰が使用される。これら廃棄物は、大量であ
ることと、アルカリ性であることから、その処理が困難
とされていたものである。即ち、高炉スラグは、現在、
年間約3,000万トン排出され、石炭灰は年間約50
0万トン排出されており、西暦2,000年には約1,
100万トンにも達するものと考えられている。
The raw material for the carbon dioxide adsorbent of the present invention is:
Blast furnace slag discarded from steelworks and coal ash discarded from thermal power plants are used. The large amount of these wastes and their alkaline nature make it difficult to dispose of them. That is, blast furnace slag is currently
About 30 million tons are discharged annually, and coal ash is about 50
It has emitted 100,000 tons, and in the year 2000, about 1,
It is estimated to reach 1 million tons.

【0010】吸着体の粒子サイズは、好ましくは数10
μm〜数10mm、より好ましくは0.1mm〜5mm
であるのがよい。数10mmを越えると、炭酸ガスの吸
着速度が遅くなり、数10μm未満では、その取扱いが
困難となる。
The particle size of the adsorbent is preferably several tens.
μm to several tens of mm, more preferably 0.1 mm to 5 mm
It should be If it exceeds several tens of mm, the adsorption rate of carbon dioxide will be slow, and if it is less than several tens of μm, its handling will be difficult.

【0011】本発明の炭酸ガス吸着体は、カルシウム化
合物の水和物を含有する限り、高炉スラグや石炭灰等の
産業廃棄物をそのまま、造粒又は破砕して使用すること
も可能である。しかし、通常は水和物を形成するために
水を加えて造粒することにより製造される。さらには破
砕カルシウム分を補充して吸着速度を促進するため、バ
インダ−としてセメント及び/又は消石灰を加え、更に
水を加えて混練し、造粒又は破砕することによって、好
ましい吸着体を得ることが出来る。
The carbon dioxide adsorbent of the present invention can be used by granulating or crushing industrial waste such as blast furnace slag or coal ash as it is, as long as it contains a hydrate of a calcium compound. However, it is usually produced by adding water and granulating to form a hydrate. Furthermore, in order to supplement the crushed calcium content and accelerate the adsorption rate, cement and / or slaked lime is added as a binder, and water is further added and kneaded to obtain a preferred adsorbent by granulating or crushing. I can.

【0012】造粒には、ペレタイザ−や高速混合造粒機
を用いることが出来る。造粒体は、そのまま放置するこ
とにより固化し、吸着体が得られる。産業廃棄物とセメ
ント及び/又は消石灰との混合割合は、95:5〜6
0:40であるのが好ましい。
For granulation, a pelletizer or a high speed mixing granulator can be used. The granulated product is solidified by leaving it as it is to obtain an adsorbent. The mixing ratio of industrial waste and cement and / or slaked lime is 95: 5-6
It is preferably 0:40.

【0013】造粒に際しては、ポリビニルアルコ−ル等
の増粘剤、メチルセルロ−ス、ふのり等の接着剤、さら
にはコンクリ−ト用の急結剤、防水剤、発泡剤等を少量
加えることも可能である。
At the time of granulation, a thickening agent such as polyvinyl alcohol, an adhesive agent such as methylcellulose, a shaving cloth, a quick-setting agent for concrete, a waterproofing agent, a foaming agent, etc. may be added in a small amount. It is possible.

【0014】本発明の炭酸ガス吸着体の実際の使用に際
しては、例えば発電所で使用する場合、単に煙道中に炭
酸ガス吸着体を配置することにより、容易にかつ短時間
で炭酸ガスの吸着が完了する。使用済みの吸着体は、既
に中性となっており、コンクリ−トの骨材、道路の舗装
材、人工海浜用の砂、濾過砂、人工土壌等の用途に幅広
く好適に用いることが可能である。
When the carbon dioxide adsorbent of the present invention is actually used, for example, when it is used in a power plant, the carbon dioxide adsorbent can be easily and quickly adsorbed by simply disposing the carbon dioxide adsorbent in the flue. Complete. The used adsorbent is already neutral and can be widely and suitably used for concrete aggregate, road paving, artificial beach sand, filter sand, artificial soil, etc. is there.

【0015】[0015]

【作用】産業廃棄物である高炉スラグ及び石炭灰は、多
量のカルシウム分を含有している。例えば、高炉スラグ
は30〜40重量%、石炭灰(流動床灰)は10〜35
重量%のCaOを含有している。セメントは更に多量の
CaOを含有している。これら高炉スラグ及び石炭灰、
セメントに水を加えると、以下の式によりCaOは水和
物となる。
[Function] Industrial waste, blast furnace slag and coal ash, contain a large amount of calcium. For example, blast furnace slag is 30 to 40% by weight, coal ash (fluid bed ash) is 10 to 35%.
It contains CaO by weight. Cement also contains a large amount of CaO. These blast furnace slag and coal ash,
When water is added to cement, CaO becomes a hydrate according to the following formula.

【0016】CaO + HO2 → Ca(OH)2 なお、消石灰はそれ自体Ca(OH)2 である。これら
水和物は、エトリンガイドの針状結晶であり、そのた
め、混練し、造粒することにより得た吸着体はポ−ラス
となっており、その結果、この吸着体による炭酸ガスの
吸着・固定の反応が短時間で進行する。
CaO + HO 2 → Ca (OH) 2 The slaked lime itself is Ca (OH) 2 . These hydrates are needle-shaped crystals of ethrin guide, and therefore the adsorbent obtained by kneading and granulating is porous, and as a result, the adsorption of carbon dioxide gas by this adsorbent. -The fixation reaction proceeds in a short time.

【0017】なお、本発明の炭酸ガス吸着体による炭酸
ガスの吸着・固定の反応は、以下の式で表される。 Ca(OH)2 + CO2 → CaCO3
The reaction of adsorption and fixation of carbon dioxide by the carbon dioxide adsorbent of the present invention is represented by the following equation. Ca (OH) 2 + CO 2 → CaCO 3

【0018】[0018]

【実施例】以下、本発明の種々の実施例を示し、本発明
の効果をより具体的に説明する。 (実施例1)混合比80:20の石炭灰とセメントに適
量の水を加えて混合し、ペレタイザ−により造粒し、2
4時間放置することにより粒径2.5〜0.3mmの吸
着体を得た。この吸着体を容量500ccのポリエチレ
ン容器に収容し、その中に炭酸ガスを満たして蓋を閉め
た。
EXAMPLES Hereinafter, various examples of the present invention will be shown to more specifically explain the effects of the present invention. (Example 1) Coal ash having a mixing ratio of 80:20 and cement were mixed with an appropriate amount of water, granulated by a pelletizer, and 2
By leaving it for 4 hours, an adsorbent having a particle size of 2.5 to 0.3 mm was obtained. This adsorbent was placed in a polyethylene container having a capacity of 500 cc, and carbon dioxide gas was filled therein, and the lid was closed.

【0019】約1分後にポリエチレン容器はしぼみ始
め、約15分後に完全につぶれ、殆どの炭酸ガスが吸着
体に吸着されたことが確認された。 (実施例2)混合比80:20の石炭灰とセメントに適
量の水を加えて混合し、ペレタイザ−により造粒し、2
4時間放置することにより粒径2.5〜0.3mmの吸
着体を得た。この吸着体を容量1000ccのガラス容
器に収容し、その中に炭酸ガスを満たして蓋を閉めた。
It was confirmed that the polyethylene container began to deflate after about 1 minute and completely collapsed after about 15 minutes, and most of the carbon dioxide gas was adsorbed by the adsorbent. (Example 2) Coal ash having a mixing ratio of 80:20 and cement were mixed with an appropriate amount of water, granulated with a pelletizer, and 2
By leaving it for 4 hours, an adsorbent having a particle size of 2.5 to 0.3 mm was obtained. This adsorbent was housed in a glass container having a capacity of 1000 cc, and carbon dioxide gas was filled therein, and the lid was closed.

【0020】24時間放置後、ガラス容器内の炭酸ガス
濃度を測定したところ、ほぼ0%であった。 (実施例3)実施例2において炭酸ガスを吸着した吸着
体を密封容器内に収容し、この容器を内部が真空の他の
密封容器と接続し、吸着体に吸着されている炭酸ガスを
分離しようと試みた。しかし、いずれの密封容器におい
ても炭酸ガスは検出されず、炭酸ガスは吸着体に完全に
固定化されていることが確認された。
After standing for 24 hours, the carbon dioxide concentration in the glass container was measured and found to be almost 0%. (Embodiment 3) The adsorbent in which the carbon dioxide gas is adsorbed in the embodiment 2 is housed in a hermetically sealed container, and this container is connected to another hermetically sealed container having a vacuum inside to separate the carbon dioxide gas adsorbed by the adsorbent. I tried to try. However, carbon dioxide was not detected in any of the sealed containers, confirming that the carbon dioxide was completely immobilized on the adsorbent.

【0021】また、吸着体のCaCO3 の含有量を分析
したところ、炭酸ガスを吸着する前には8.6%であっ
たものが、吸着後には13.4%と増加していた。この
ことも炭酸ガスが固定化されたことを示している。
When the content of CaCO 3 in the adsorbent was analyzed, it was 8.6% before the adsorption of carbon dioxide, but increased to 13.4% after the adsorption. This also indicates that carbon dioxide was fixed.

【0022】更に、炭酸ガスを吸着した吸着体を蒸留水
中に浸漬し、pHを測定したことろ、約8であった。吸
着前の吸着体も同様に蒸留水中に浸漬し、pHを測定し
たことろ、約12であった。このことも、アルカリ性を
示すCa(OH)2 がCO2と反応してCaCO3 が生
成されて中和したこと、即ち、炭酸ガスが固定化された
ことを示している。 (実施例4)混合比8:2の石炭灰とセメントに適量の
水を加えて混合し、ペレタイザ−により造粒し、24時
間放置することにより粒径2.5〜0.3mmの吸着体
を得た。この吸着体30gを容量1500ccのガラス
容器に収容し、その中に炭酸ガスを満たして蓋を閉め
た。
Further, the adsorbent having adsorbed carbon dioxide was immersed in distilled water and the pH was measured to be about 8. The adsorbent before adsorption was also immersed in distilled water in the same manner, and the pH was measured to be about 12. This also indicates that Ca (OH) 2 having alkalinity reacts with CO 2 to generate CaCO 3 and neutralize it, that is, carbon dioxide gas is immobilized. (Example 4) Coal ash having a mixing ratio of 8: 2 and an appropriate amount of water were added to cement and mixed, granulated by a pelletizer, and allowed to stand for 24 hours to obtain an adsorbent having a particle diameter of 2.5 to 0.3 mm. Got 30 g of this adsorbent was placed in a glass container having a capacity of 1500 cc, and carbon dioxide gas was filled therein, and the lid was closed.

【0023】120分後に蓋を開け、ガラス容器内の炭
酸ガス濃度を測定したところ、44%であった。これよ
り、本吸着体の炭酸ガス吸着速度は28cc/g・2h
rと求められた。 (実施例5)石炭灰とセメントの混合比を7:3及び
6:4と変えて実施例4と同様の試験をしたところ、混
合比を7:3のものは約2.5分後に、混合比6:4の
ものは約4分後にポリエチレン容器はしぼみ始めた。
After 120 minutes, the lid was opened and the carbon dioxide concentration in the glass container was measured and found to be 44%. From this, the carbon dioxide adsorption rate of this adsorbent is 28 cc / g · 2h.
It was calculated as r. (Example 5) The same test as in Example 4 was carried out by changing the mixing ratio of coal ash and cement to 7: 3 and 6: 4, and the mixing ratio of 7: 3 was about 2.5 minutes later, With a mixing ratio of 6: 4, the polyethylene container began to deflate after about 4 minutes.

【0024】実施例4と5の結果の比較により、石炭灰
とセメントの混合比が8:2の吸着体の炭酸ガス吸着性
能が優れていることがわかる。 (実施例6)混合比8:2の石炭灰とセメントの混合物
に水を加えて混合し、ペレタイザ−により造粒し、24
時間放置することにより、粒径を変えた4種の吸着体を
得た。この吸着体を容量500ccのポリエチレン容器
に収容し、その中に炭酸ガスを満たして蓋を閉めた。
Comparison of the results of Examples 4 and 5 shows that the carbon dioxide adsorption performance of the adsorbent having a mixture ratio of coal ash and cement of 8: 2 is excellent. (Example 6) Water was added to and mixed with a mixture of coal ash and cement having a mixing ratio of 8: 2, and granulated by a pelletizer.
By standing for 4 hours, four kinds of adsorbents having different particle diameters were obtained. This adsorbent was placed in a polyethylene container having a capacity of 500 cc, and carbon dioxide gas was filled therein, and the lid was closed.

【0025】ポリエチレン容器がしぼみ始めたてから2
時間以上経過した時点で再度炭酸ガスを満たして蓋を閉
め、同様の手順を10回繰り返し、そのつどポリエチレ
ン容器がしぼみ始める時間を測定した。また、10回目
の吸着体を蒸留水中に浸漬し、pHを測定した。それら
の結果を下記表1に示す。
2 after polyethylene container starts to deflate
After a lapse of time or more, carbon dioxide gas was filled again and the lid was closed. The same procedure was repeated 10 times, and the time when the polyethylene container started to deflate was measured each time. Further, the adsorbent for the 10th time was immersed in distilled water to measure the pH. The results are shown in Table 1 below.

【0026】[0026]

【表1】 [Table 1]

【0027】上記表1から、粒径が小さい吸着体のほう
が吸着スピ−ドが速いことがわかる。特に、粒径が0.
3〜0.6mmのものは、9回目以降、吸着スピ−ドが
極端に低下し、8回目までで吸着量が飽和していること
がわかる。また、pHは中性となっている。 (実施例7)実施例6と同様の手順により、原料を種々
変えて7種の吸着体を製造し、実施例6と同様にしてポ
リエチレン容器がしぼみ始める時間を測定した。その結
果を下記表2に示す。
From Table 1 above, it can be seen that the adsorption speed of the adsorbent having a smaller particle size is faster. In particular, the particle size is 0.
It can be seen that in the case of 3 to 0.6 mm, the adsorption speed was extremely reduced after the 9th time and the adsorption amount was saturated up to the 8th time. The pH is neutral. (Example 7) By the same procedure as in Example 6, 7 kinds of adsorbents were produced by changing various raw materials, and in the same manner as in Example 6, the time for the polyethylene container to start deflating was measured. The results are shown in Table 2 below.

【0028】[0028]

【表2】 [Table 2]

【0029】上記表2から、セメント量の多い吸着体の
方がCaOの含有量が多いにもかかわらず、炭酸ガスの
吸着スピ−ドが遅いことがわかる。これは、セメントの
量が多いことにより、造粒砂の組織が緻密となったため
と考えられる。即ち、吸着スピ−ドを速くするために
は、吸着体粒子がポ−ラスである方がよい。なおセメン
ト量が20%のものについては、他の原料が変わっても
吸着スピ−ドはそれほど変わらないことがわかる。
From Table 2 above, it can be seen that the adsorbent having a large amount of cement has a slower adsorption speed of carbon dioxide gas although the content of CaO is larger. It is considered that this is because the structure of the granulated sand became dense due to the large amount of cement. That is, in order to accelerate the adsorption speed, it is preferable that the adsorbent particles are porous. It should be noted that for the cement content of 20%, the adsorption speed does not change so much even if the other raw materials change.

【0030】[0030]

【発明の効果】以上、説明したように、本発明による
と、その処理が困難であった産業廃棄物を原料として用
いることにより、炭酸ガス吸着体を極めて簡単な方法で
かつ低コストで得ることが可能である。
As described above, according to the present invention, a carbon dioxide adsorbent can be obtained by an extremely simple method and at low cost by using industrial waste, which was difficult to treat, as a raw material. Is possible.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 18/10 ZAB A 18/14 ZAB A 28/02 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 18/10 ZAB A 18/14 ZAB A 28/02 ZAB

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石炭灰又は高炉スラグからなる産業廃棄
物を主成分とし、かつカルシウム化合物の水和物を含有
する粉状物、粒状物、又は破砕状物からなる炭酸ガス吸
着体。
1. A carbon dioxide adsorbent composed of a powdery material, a granular material, or a crushed material containing, as a main component, an industrial waste composed of coal ash or blast furnace slag and containing a hydrate of a calcium compound.
【請求項2】 前記産業廃棄物に水を加え、造粒又は破
砕することにより得た請求項1に記載の炭酸ガス吸着
体。
2. The carbon dioxide adsorbent according to claim 1, which is obtained by adding water to the industrial waste and granulating or crushing it.
【請求項3】 更にセメントが添加された請求項1また
は2に記載の炭酸ガス吸着体。
3. The carbon dioxide adsorbent according to claim 1, further comprising cement.
【請求項4】 数10μm〜数10mmの平均粒径を有
する請求項1ないし3のいずれか1項に記載の炭酸ガス
吸着体。
4. The carbon dioxide adsorbent according to claim 1, which has an average particle diameter of several tens of μm to several tens of mm.
JP21272193A 1993-08-27 1993-08-27 Gaseous carbon dioxide adsorbent Pending JPH0788362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21272193A JPH0788362A (en) 1993-08-27 1993-08-27 Gaseous carbon dioxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21272193A JPH0788362A (en) 1993-08-27 1993-08-27 Gaseous carbon dioxide adsorbent

Publications (1)

Publication Number Publication Date
JPH0788362A true JPH0788362A (en) 1995-04-04

Family

ID=16627339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21272193A Pending JPH0788362A (en) 1993-08-27 1993-08-27 Gaseous carbon dioxide adsorbent

Country Status (1)

Country Link
JP (1) JPH0788362A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025899A1 (en) * 1998-10-29 2000-05-11 Nkk Corporation Method of reducing discharged carbon dioxide
KR20000049962A (en) * 2000-01-27 2000-08-05 김진범 Adsorbent manufacturing method using the municipal solid waste incinerator fly ash
GB2356194A (en) * 1999-11-12 2001-05-16 Univ Greenwich Silicate/aluminate materials
KR100383657B1 (en) * 2000-12-20 2003-05-14 한일시멘트 (주) The method for manufacturing of alkali absorbent
CN100354029C (en) * 1998-10-29 2007-12-12 杰富意钢铁株式会社 Method for reducing exhaust carbon dioxide
KR101105506B1 (en) * 2009-11-04 2012-01-13 고려대학교 산학협력단 Method for sequestrating co2 with concrete and high alkaline water and apparatus of sequestrating co2 using thereof
US8110523B2 (en) 2005-01-04 2012-02-07 Korea Electric Power Corporation Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR101312341B1 (en) * 2011-03-11 2013-09-27 한국건설기술연구원 Carbon dioxide absorbent using recycled waste and concrete including the same
KR101528549B1 (en) * 2013-09-10 2015-06-12 세종대학교산학협력단 Carbon dioxide absorbent, preparing method thereof, and alkali cement including the same
EP2799130A4 (en) * 2011-12-27 2015-07-22 Posco Method for manufacturing a carbon dioxide adsorbent, method for reducing carbon dioxide and apparatus for same
WO2020166174A1 (en) * 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
KR20210079587A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Method and apparatus for refining flue gas using steel making slag
CN113660997A (en) * 2019-04-01 2021-11-16 三菱动力株式会社 Device and method for gas purification treatment and/or combustion ash neutralization treatment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550127B2 (en) 1998-10-29 2009-06-23 Jfe Steel Corporation Method for reducing exhaust carbon dioxide
EP1142629A4 (en) * 1998-10-29 2002-06-12 Nippon Kokan Kk Method of reducing discharged carbon dioxide
WO2000025899A1 (en) * 1998-10-29 2000-05-11 Nkk Corporation Method of reducing discharged carbon dioxide
KR100430331B1 (en) * 1998-10-29 2004-05-04 제이에프이 스틸 가부시키가이샤 Method of reducing discharged carbon dioxide
US6843843B2 (en) 1998-10-29 2005-01-18 Nkk Corporation Underwater immersion block and method to produce the same
CN100354029C (en) * 1998-10-29 2007-12-12 杰富意钢铁株式会社 Method for reducing exhaust carbon dioxide
GB2356194A (en) * 1999-11-12 2001-05-16 Univ Greenwich Silicate/aluminate materials
KR20000049962A (en) * 2000-01-27 2000-08-05 김진범 Adsorbent manufacturing method using the municipal solid waste incinerator fly ash
KR100383657B1 (en) * 2000-12-20 2003-05-14 한일시멘트 (주) The method for manufacturing of alkali absorbent
US8110523B2 (en) 2005-01-04 2012-02-07 Korea Electric Power Corporation Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR101105506B1 (en) * 2009-11-04 2012-01-13 고려대학교 산학협력단 Method for sequestrating co2 with concrete and high alkaline water and apparatus of sequestrating co2 using thereof
KR101312341B1 (en) * 2011-03-11 2013-09-27 한국건설기술연구원 Carbon dioxide absorbent using recycled waste and concrete including the same
EP2799130A4 (en) * 2011-12-27 2015-07-22 Posco Method for manufacturing a carbon dioxide adsorbent, method for reducing carbon dioxide and apparatus for same
KR101528549B1 (en) * 2013-09-10 2015-06-12 세종대학교산학협력단 Carbon dioxide absorbent, preparing method thereof, and alkali cement including the same
WO2020166174A1 (en) * 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
CN113660997A (en) * 2019-04-01 2021-11-16 三菱动力株式会社 Device and method for gas purification treatment and/or combustion ash neutralization treatment
KR20210079587A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Method and apparatus for refining flue gas using steel making slag

Similar Documents

Publication Publication Date Title
US5502021A (en) Highly reactive reagents and compositions for purifying exhaust gases and wastewater, production and use thereof
JPH0788362A (en) Gaseous carbon dioxide adsorbent
US4865761A (en) Compositions and method for control and clean-up of hazardous acidic spills
CA2668249A1 (en) Carbon dioxide sequestration in foamed controlled low strength materials
JPH06198126A (en) Method for treating exhaust gas
Qian et al. Characterization of mercury-and zinc-doped alkali-activated slag matrix: Part I. Mercury
JPH0761842A (en) Solidification of caco3
JP3684410B2 (en) Sewage sludge treatment method and treated sewage sludge
JPS58166932A (en) Removing agent for acidic material in waste gas
JP2013202463A (en) Phosphorus recovery material, phosphorus recovery method and producing method of fertilizer
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JP4259633B2 (en) Method for producing smoke treatment agent
JP3764757B2 (en) Sewage sludge treatment method
JPH08182999A (en) Treatment of sewerage sludge and sewerage sludge-treated material
JP2007204294A (en) Solidifying material and solidified body utilizing the solidifying material
JP2002079081A (en) Porous powder, and method for manufacturing and using the same
JPH0669477B2 (en) Deodorant
JPH068198B2 (en) Granulation method of coal ash
JP2001149743A (en) Waste gas treating agent and waste gas treating method
JP2547901B2 (en) Mud treatment agent and treatment method
JP2753194B2 (en) Ground improvement material and ground improvement method
JP3559904B2 (en) Environmental purification composition
JP5024654B2 (en) Wastewater treatment method
JPH0154111B2 (en)
JP3345607B2 (en) Method for regenerating hydrogrossular reacting with acid gas