KR20020043386A - Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon - Google Patents

Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon Download PDF

Info

Publication number
KR20020043386A
KR20020043386A KR1020000073042A KR20000073042A KR20020043386A KR 20020043386 A KR20020043386 A KR 20020043386A KR 1020000073042 A KR1020000073042 A KR 1020000073042A KR 20000073042 A KR20000073042 A KR 20000073042A KR 20020043386 A KR20020043386 A KR 20020043386A
Authority
KR
South Korea
Prior art keywords
zeolite
hours
coal ash
type zeolite
fly ash
Prior art date
Application number
KR1020000073042A
Other languages
Korean (ko)
Inventor
백일현
류완호
김동표
명흥식
이병노
박구현
Original Assignee
손재익
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구원 filed Critical 손재익
Priority to KR1020000073042A priority Critical patent/KR20020043386A/en
Publication of KR20020043386A publication Critical patent/KR20020043386A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: A dry preparation method of A-type zeolite for wastewater adsorbent using fly ash containing highly unburned carbon is provided. CONSTITUTION: The preparation method comprises: mixing 100 wt.% of fly ash or furnace slag with 10-50 wt.% of CaO and Na2CO3 in their mole ratio of 0.3-4 and carrying out hydrothermal reaction by heating at 20-200°C for 1-8 hours; and putting into molds, drying for 7 hours at room temperature or drying and reacting at 50-200°C for more than 24 hours in order to prepare molded A-type zeolite for treatment of polluted and wastewater.

Description

고탄소 석탄회를 이용한 오폐수 처리용 A타입 제올라이트의 건식 제조방법{Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon}Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon}

본 발명은 고탄소 석탄회(flyash)를 이용한 오폐수 처리용 A타입의 제올라이트 흡착제의제올라이트의 건식 제조방법에 관한 것이다.The present invention relates to a dry production method of a zeolite of an A type zeolite adsorbent for wastewater treatment using high carbon flyash.

최근 산업활동의 증가와 에너지 소비의 증가에 따라 아황산 가스, 질소 산화물, 암모니아 등의 대기 및 수질 오염물질이 오염도를 심화시켜 환경기준을 위협하는 상황에 이르렀다. 따라서 폐수에 포함되어 있는 NHx 및 독성 유기물 화합물을 줄이고, 공기 중 배연탈황, 탈질 기술을 위한 기술 및 공정개발에 대한 필요성이 요구되고 있는 시점이다.Recently, with the increase of industrial activities and the increase of energy consumption, air and water pollutants such as sulfurous acid gas, nitrogen oxide, and ammonia have deepened the pollution level, threatening environmental standards. Therefore, there is a need to reduce the NHx and toxic organic compounds contained in the wastewater, and to develop technologies and processes for the flue gas desulfurization and denitrification in the air.

석탄을 에너지원으로 하는 화력발전소에서 원료인 석탄은 무기질 분을 함유하기 때문에 연소 후에 무기질 분이 석탄회(fly ash)로 남게 된다. 현재 우리나라 전력공급의 상당부분을 화력발전소에 의지하고 있으며 이에 따라 화력발전소에서 사용하는 석탄의 사용에 따라 연소 후 생성된 석탄회가 증가하므로 이에 관한 처리가 문제시되고 있다. 이러한 관점에서 석탄회를 이용하기 위한 처리 방법이 여러 가지 제안되고 있는데 석탄회는 점토와 유사한 성상을 가지고 있어서 시멘트 첨가제, 건축용 벽돌, 제올라이트제조, 안료, 절연물질, 고분자 충진제 등으로 응용되어 왔다. 특히 석탄회는 주성분이 SiO2와 Al2O3로 구성되어 있으며, 최대 5% 이하의 미연탄소(unburned carbon)를 포함한 저탄소 석탄회만이 상기의 재활용 소재로서사용될 수 있고, 5% 이상의 미연탄소를 포함한 고탄소(highly unburned carbon) 석탄회는 어떠한 활용공정도 전혀 개발되지 않고 있어 발생 전량을 매립처리하고 있는 실정이다. 특히 석탄회는 수산화나트륨과 반응하여 제올라이트화가 가능하다고 오래 전부터 알려졌으며, 이에 대한 연구결과 흡착제로서 재활용될 수 있음이 밝혀졌다. 물유리로부터 제조되는 합성 제올라이트 혹은 천연 제올라이트는 흡착 및 이온교환특성이 우수하므로 건조, 이온교환, 폐수처리 및 각종 첨가제 등으로 활용되고 있다. 석탄회를 이용하여 제올라이트를 합성하는 기술은 주로 NaOH 수용액을 사용하여 고온에서 일정시간 반응시켜 제조하는데, NaOH는 유해한 독성을 함유하고 있어 사용시 주의를 요하며 대량의 폐수가 방출되어 2차 오염이 일으키는 단점이 있다. 또한 분말 형태로만 얻어지는 제올라이트는 응용공정상에서 많은 제한이 있다. 상기의 분말 제올라이트는 폴리비닐알콜, 물유리 등 각종 결합재와 혼합시킨 후 각종(N2, Ar, 대기중) 분위기의 100℃ 이상에서 열처리하여 성형체를 제조하는 추가공정이 필요하게 된다.In coal-fired power plants, coal, which is a raw material, contains inorganic powder, and thus, mineral powder remains as fly ash after combustion. Currently, much of Korea's power supply is relied on thermal power plants, and as a result, the amount of coal ash produced after combustion increases according to the use of coal used in thermal power plants. In view of this, various treatment methods for using coal ash have been proposed. Since coal ash has properties similar to clay, it has been applied to cement additives, building bricks, zeolite manufacturing, pigments, insulating materials, and polymer fillers. In particular, coal ash is composed mainly of SiO 2 and Al 2 O 3 , and only low-carbon coal ash containing up to 5% of unburned carbon can be used as the recycled material, and containing 5% or more of unburned carbon. Highly unburned carbon coal ash has not been developed at all, so the entire amount of landfill is being disposed of. In particular, coal ash has been known for a long time that zeolite can be reacted with sodium hydroxide, and research has shown that it can be recycled as an adsorbent. Synthetic zeolites or natural zeolites prepared from water glass have excellent adsorption and ion exchange characteristics, and thus are used for drying, ion exchange, wastewater treatment, and various additives. The technology of synthesizing zeolite using coal ash is mainly produced by reacting with NaOH aqueous solution for a certain time at high temperature. However, NaOH contains harmful toxicity. There is this. In addition, zeolites obtained only in powder form have many limitations in the application process. The powder zeolite may be mixed with various binders such as polyvinyl alcohol and water glass, and then heat-treated at 100 ° C. or higher in various (N 2 , Ar, atmospheric) atmospheres to produce a molded article.

본 발명은 현재까지 매립 처리되고 있는 고탄소 석탄회(flyash)를 이용한 오폐수 처리용 제올라이트 흡착제의 제조방법에 관한 것으로, 더욱 구체적으로는 폐수발생이 전혀 없는 건식법에 의해 A타입 제올라이트를 제조할 수 있을 뿐만 아니라 분말 혹은 특정형태로 성형하여 다양한 수처리용 흡착제로 사용함으로써, 단순하고 환경친화적인 방법으로 석탄회를 부가가치가 높은 수처리용 흡착제로 재활용하고자 하였다.The present invention relates to a method for preparing a zeolite adsorbent for wastewater treatment using high carbon flyash, which has been landfilled to date, and more specifically, it is possible to manufacture A-type zeolite by a dry method with no wastewater generation. Instead, it was molded into a powder or a specific form and used as an adsorbent for various water treatments, thereby recycling coal ash into an adsorbent for high value-added water treatment in a simple and environmentally friendly manner.

본 발명은 상기에서의 착안으로 도출된 것으로서, 석탄회를 석회질의 결합제와 혼합 반응시키는 건식법에 의한 제올라이트 성형체의 제조방법으로서 석탄회에 중금속 및 총유기탄소(TOC) 흡착능 뿐만 아니라 암모니아성 질소흡착 특성이 부여된 기능자원으로 재활용하여 현재 각종 산업 및 환경분야에서 이용되고 있는 기존의 활성탄 및 합성 제올라이트의 대체 물질로 이용할 수 있음은 물론 석탄회 처리 문제를 획기적으로 해결하고 기초원료인 석탄회가 원가 부담이 없는 장점을 최대한 활용하여 경제성을 확보하는데 그 목적이 있다. 본 발명은 석탄회를 수산화나트륨 용액으로 처리하는 기존의 습식 제조방법에 비해 폐수발생이 전혀 없어 환경친화적인 공정일 뿐만 아니라 최종 응용분야에 적합하도록 각종 형체로 성형할 수 있다는 점에서 더욱 우수한 방법이라 할 수 있다. 또한 석회질 결합제로서 고로슬래그 등 다른 산업폐기물을 활용함으로서 그 부가가치를 높였다.The present invention has been derived from the above-mentioned concept, and is a method for producing a zeolite molded body by a dry method in which coal ash is mixed with a lime binder. It can be used as a substitute for existing activated carbon and synthetic zeolite which is currently used in various industries and environmental fields by reusing it as a functional resource, and it solves the problem of coal ash processing drastically, and the raw material, coal ash, has no cost burden. Its purpose is to secure economic feasibility by making the most of it. Compared to the conventional wet manufacturing method of treating coal ash with sodium hydroxide solution, the present invention is not only an environmentally friendly process, but also an excellent method in that it can be molded into various shapes to be suitable for the final application field. Can be. In addition, by utilizing other industrial wastes such as blast furnace slag as a lime binder, the added value was increased.

본 발명으로 제조한 제올라이트는 오니류 탈취, 재취 재습, 건조, 폐유처리, 중금속, 암모니아성 질소 흡착과 촉매기능, 토양개량, 폐수처리제 등으로서 현재 사용되고 있는 각종 재료의 대체가 가능하며 단순하고 환경친화적인 공정으로 제조되기 때문에 그 경제성이 우수하다.The zeolite prepared according to the present invention is capable of replacing various materials currently used as deodorization, reodorization, drying, waste oil treatment, heavy metal, ammonia nitrogen adsorption and catalytic function, soil improvement, waste water treatment agent, etc. Since it is manufactured by the process, the economics are excellent.

도 1은 본 발명에 따른 성형체 제올라이트의 건식 제조공정과 기존의 분말 제올라이트의 습식 제조공정의 비교도이다.1 is a comparative view of the dry manufacturing process of the molded zeolite according to the present invention and the wet manufacturing process of the conventional powder zeolite.

도 2(a)(b)(c)(d)(e)(f)는 석탄회를 이용하여 건식법으로 제조한 제올라이트의 전자현미경 (Scanning Electron Microscope, SEM) 분석사진이다.Figure 2 (a) (b) (c) (d) (e) (f) is a scanning electron microscope (Scanning Electron Microscope, SEM) analysis photograph of the zeolite prepared by dry method using coal ash.

도 3은 몰드로 성형한 본 발명의 제올라이트이다.3 is a zeolite of the present invention molded into a mold.

도 4는 건식법으로 제조한 제올라이트의 X선 회절분석 결과를 나타낸 것이다.Figure 4 shows the results of X-ray diffraction analysis of the zeolite prepared by the dry method.

본 발명의 오폐수 처리용 A타입 고강도 제올라이트 제조공정은 석탄회를 석회질 원료와 알칼리 성분을 50-200℃에서 1시간부터 8시간까지 수열반응시켜 고점도의 슬러리 혼합물을 제조하는 수열반응공정, 이를 특정형태로 성형하고자 몰드에 넣어 50-200℃에서 24시간 이상 또는 상온에서 7일 이상 성형시키는 반응·건조공정을 거쳐 고강도 제올라이트를 제조하도록 구성되어 있다.A type high-strength zeolite manufacturing process for wastewater treatment of the present invention is a hydrothermal reaction process for producing a high viscosity slurry mixture by hydrothermally reacting coal ash with a lime raw material and an alkaline component at 50-200 ° C. for 1 hour to 8 hours, and in a particular form It is configured to produce a high-strength zeolite through a reaction and drying process, which is put in a mold to be molded at 50-200 ° C. for at least 24 hours or at room temperature for at least 7 days.

이하, 도 1에 도시된 각 제조공정을 구체적으로 설명하면 다음과 같다.Hereinafter, each manufacturing process illustrated in FIG. 1 will be described in detail.

(1) 수열반응공정(1) hydrothermal reaction process

석탄회 100 중량부, 석회질원료와 알칼리성분의 혼합물 10∼50 중량부를 물 200ml에 첨가하여 50∼200℃ 온도에서 1-8시간 동안 수열반응시킨다. 이때 석회질원료로는 CaO를, 알칼리 성분으로는 Na2CO3를 사용할 수 있으며 이들의 몰비는 0.3∼4인 것이 바람직하다. 또한, 석회질과 알칼리성분을 모두 함유한 고로 슬래그를 활용함으로써 또 다른 폐자원을 재활용 할 수 있다.100 parts by weight of coal ash, 10 to 50 parts by weight of a mixture of lime and an alkali component are added to 200 ml of water and subjected to hydrothermal reaction at a temperature of 50 to 200 ° C. for 1-8 hours. At this time, CaO may be used as the lime raw material, and Na 2 CO 3 may be used as the alkali component, and their molar ratio is preferably 0.3 to 4. In addition, by utilizing the blast furnace slag containing both calcareous and alkali components, it is possible to recycle another waste resources.

(2) 반응·건조공정(2) reaction and drying process

일정한 형태의 성형체 제올라이트를 얻기 위하여 각종 크기의 몰드에 수열반응을 거친 슬러리 혼합물을 넣은 다음 50∼200℃ 이상의 온도에서 24시간 이상 또는 상온에서 7일 이상 반응·건조공정을 거쳐 고화시킨다. 이때 점도를 조절하여 각종 압출 및 사출 성형기법으로 다양한 형태의 성형체도 제조할 수 있다.In order to obtain a molded zeolite of a certain form, a slurry mixture subjected to hydrothermal reaction is put into molds of various sizes, and then solidified through a reaction and drying process for at least 24 hours at a temperature of 50 to 200 ° C. or at least 7 days at room temperature. At this time, by controlling the viscosity it can be produced in a variety of forms by various extrusion and injection molding techniques.

상기의 (1),(2) 연식 건식공정에 의해 폐수의 발생이 전혀 없이 각종 형상의 성형체 제올라이트의 제조가 가능하며, 제조된 제올라이트 성형체(5×5×5 ㎝3기준)의 강도는 100∼360 ㎏f/㎠의 높은 압축강도를 갖는다.The above-mentioned (1) and (2) soft dry process enables the production of molded zeolites of various shapes without any generation of waste water, and the strength of the manufactured zeolite molded body (based on 5 × 5 × 5 cm 3 ) is 100 to It has a high compressive strength of 360 kgf / cm 2.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

<석탄회의 대표적인 조성 및 열적물성><Representative Composition and Thermal Properties of Coal Ash>

본 발명에 사용한 석탄회는 서천화력발전소에서 생산되는 것으로 SiO2(41.23%), Al2O3(27.99%), Fe2O3(4.10%), K2O(3.50%)의 함량을 갖고 있다. 주성분은 SiO2와 Al2O3로서 무기물질만이 존재함을 알 수 있다. 석탄회의 온도에 따른 변화를 알아보기 위하여 열중량분석기(TGA 2050, TA Instruments)를 사용하여 질소 분위기하에서 1,000℃(10℃/min)까지 측정하였다. 본 실험에서 사용한 석탄회는 미연 탄소분이 5% 함유하고 있는 것을 확인하였다. 그러나 석탄회의 조성 및 물리적 성질은 석탄의 생산지와 화력발전소의 연소조건에 따라 달라질 수 있다.The coal ash used in the present invention is produced at Seocheon Thermal Power Plant, and contains SiO 2 (41.23%), Al 2 O 3 (27.99%), Fe 2 O 3 (4.10%), and K 2 O (3.50%). . It can be seen that only inorganic materials exist as main components SiO 2 and Al 2 O 3 . In order to determine the change according to the temperature of the ash, it was measured up to 1,000 ° C. (10 ° C./min) under a nitrogen atmosphere using a thermogravimetric analyzer (TGA 2050, TA Instruments). It was confirmed that the coal ash used in this experiment contained 5% of unburned carbon content. However, the composition and physical properties of coal ash may vary depending on the location of coal production and the combustion conditions of thermal power plants.

<실시예 1><Example 1>

상기의 석탄회 100 중량부, CaO 1몰, Na2CO31몰을 물 200ml에 첨가하여 500∼200℃ 온도에서 5시간 수열반응시킨다. 5x5x5cm크기의 스테인레스 스틸 몰드에 수열반응을 거친 슬러리 혼합물을 넣은 다음 100℃에서 24시간 동안 반응·건조시켜 고화를 일으켜 제올라이트 성형체를(도 5) 제조하였다. 위와 같이 제조한 제올라이트의 압축강도는 대체로 100 kgf/㎠을 나타냈으며, BET 표면적과 기공크기는수열반응 온도에 따라 약간의 차이(표 1 참조)를 나타냈다. 또한 표면적은 활성탄에 비해서는 아주 낮았으나, 상업용 제올라이트와는 거의 유사한 값을 나타냄을 확인하였다. 주사전자현미경분석(도 4)과 X선 회절분석기를 통하여 결정상을 분석하였는데 주로 A타입 제올라이트가 생성됨을 확인하였다. 이는 기존의 습식법으로 제조한 제올라이트의 결정상과 일치하는 결과를 보였다.100 parts by weight of the coal ash, 1 mol of CaO, and 1 mol of Na 2 CO 3 are added to 200 ml of water, followed by hydrothermal reaction at a temperature of 500 to 200 ° C for 5 hours. A slurry mixture subjected to hydrothermal reaction was placed in a 5 × 5 × 5 cm size stainless steel mold, and then reacted and dried at 100 ° C. for 24 hours to cause solidification to prepare a zeolite molded body (FIG. 5). The compressive strength of the zeolite prepared as described above was generally 100 kgf / ㎠, BET surface area and pore size showed a slight difference depending on the hydrothermal reaction temperature (see Table 1). In addition, the surface area was very low compared to the activated carbon, but showed a similar value to commercial zeolites. The crystal phases were analyzed by scanning electron microscopy (FIG. 4) and X-ray diffractometer. It was confirmed that A-type zeolite was mainly produced. This was consistent with the crystal phase of the zeolite prepared by the conventional wet method.

한편 도 2는 석탄회를 이용하여 건식법으로 제조한 제올라이트의 전자현미경 (Scanning Electron Microscope, SEM) 분석사진으로서 도 2(a)는 수열반응의 온도가 100℃(x2000)인 경우, 도 2(b)는 120℃(x2000)인 경우, 도 2(c)는 140℃(x750)인 경우, 도 2(d)는 160℃(x750)인 경우, 도 2(e)는 180℃(x2000)인 경우, 도 2(f)는 200℃(x1000)인 경우의 사진이다.On the other hand, Figure 2 is a scanning electron microscope (Scanning Electron Microscope, SEM) analysis photograph of the zeolite prepared by dry method using coal ash, Figure 2 (a) is a hydrothermal reaction temperature of 100 ℃ (x2000), Figure 2 (b) Is 120 ° C (x2000), FIG. 2 (c) is 140 ° C (x750), FIG. 2 (d) is 160 ° C (x750), and FIG. 2 (e) is 180 ° C (x2000). 2 (f) is a photograph in the case of 200 ° C (x1000).

표 1. BET법에 의한 비표면적 및 BJH법에 의한 평균기공 분석Table 1. Specific surface area by BET method and mean pore analysis by BJH method

시료명Sample name 표면적(Surface Area, m2/g)Surface Area (m 2 / g) 공극크기(Pore Size, Å)Pore Size (Å) Fly ashFly ash 5.95.9 36.636.6 100℃*100 ℃ * 12.312.3 103.2103.2 120℃120 ℃ 6.36.3 66.466.4 140℃140 ℃ 18.118.1 85.985.9 160℃160 ℃ 27.127.1 95.495.4 180℃180 ℃ 8.38.3 90.290.2 200℃200 ℃ 28.628.6 97.797.7 제올라이트(4A)Zeolite (4A) 7.07.0 41.441.4 활성탄(Calgon)Activated Carbon 10009.510009.5 23.023.0

* 수열반응시 온도에 따른 제올라이트* Zeolite according to temperature during hydrothermal reaction

<실시예 2><Example 2>

CaO 대신 고로슬래그를 사용한 것을 제외하고 실시예 2과 동일하며, 이와 같이 제조된 결정상을 X선 회절분석의 결과 A타입 제올라이트가 생성됨을 확인하였다. 이때 제올라이트 성형체의 압축강도는 150kgf/㎠를 나타내었다.Except for using blast furnace slag instead of CaO and the same as in Example 2, it was confirmed that the A-type zeolite was produced as a result of the X-ray diffraction analysis of the crystal phase thus prepared. At this time, the compressive strength of the zeolite molded body was 150kgf / cm 2.

<실시예 3><Example 3>

석탄회 100 중량부, CaO 2몰, Na2CO32몰을 100℃에서 5시간동안 수열반응시킨 후 100℃에서 24시간 동안 반응 건조시켜 실시예 1과 동일한 방법으로 제올라이트 성형체를 제조하였다. 이때의 압축강도는 300kgf/㎠을 나타냈고, 얻어진 결정상은 X선 회절 분석의 결과를 통하여 A타입 제올라이트와 액정(Quartz)상이 존재함을(도 4) 확인하였다.100 parts by weight of coal ash, 2 mol of CaO, 2 mol of Na 2 CO 3 was hydrothermally reacted at 100 ° C. for 5 hours, and then dried at 100 ° C. for 24 hours to prepare a zeolite molded body in the same manner as in Example 1. At this time, the compressive strength was 300 kgf / cm 2, and the obtained crystal phase confirmed that the A-type zeolite and the liquid crystal (Quartz) phase existed through the results of X-ray diffraction analysis (FIG. 4).

<실시예 4><Example 4>

실시예 1에서 CaO의 양만을 각각 3배, 4배로 첨가하여 제조한 제올라이트의 강도를 측정하였다. 3배의 CaO를 첨가하였을 때는 강도가 360 kgf/㎠로 증가하였는데 4배의 CaO를 첨가하였을 때는 더 이상 증가하지 않고 360 kgf/㎠를 나타내었다.In Example 1, the strength of the zeolite prepared by adding only three times the amount of CaO and four times, respectively, was measured. When 3 times CaO was added, the strength increased to 360 kgf / cm 2, but when 4 times CaO was added, the strength did not increase any more, indicating 360 kgf / cm 2.

<시험예 1>;NH4-N 흡착특성 <Test Example 1>; NH 4 -N Adsorption Characteristics

표준용액은 1000 ppm 암모니아 표준용액(Ammonia Standard Solution)을 이용하여 10 ㎖를 1000 ㎖에 희석하여 10 ppm 표준용액을 제조하였다. 상기의 실시예1, 2에서(암모니아흡착 전체 실험 동일조건) 제조한 제올라이트 2g을 각각 표준 암모늄 용액(농도 10 ppm) 100 ㎖를 250 ㎖ 삼각플라스크에 넣은 후 교반속도 250min-1으로 혼련시키면서 30분 간격으로 6시간까지 흡착한 후 0.45㎛ 멤브레인 필터(membrane filter)로 여과한 후 여액을 채취하여 네슬러(Nesler)법에 의해 자외선 흡광기로 측정하였다(표 2 참조). 실시예 2와 같이 제조한 (고로 슬래그)제올라이트는 pH는 10을 유지하였고 제거율은 2시간일 때 87%의 최대 제거율을 보였다. 이후 시간이 지나면서 탈착과정이 진행되어 50%이상의 제거율을 유지하였다. 천연 제올라이트와 비교한 결과 천연 제올라이트는 3시간일 때 최대 77 %, 12 시간일 때 64 %의 제거율을 보였다. 실시예 1로 제조한 (CaO)제올라이트는 pH 11을 유지하였고 제거율은 51∼71 %로 30분일 때 최대 71%의 제거율을 보였다. 반면에 고탄소 석탄회를 활용하여 기존의 습식법으로 제조한 제올라이트는 pH 12를 유지하였고 제거율은 15∼22 %로서 상대적으로 매우 낮은 수치를 나타내었다.The standard solution was prepared by diluting 10 ml in 1000 ml using a 1000 ppm ammonia standard solution to prepare a 10 ppm standard solution. 2 g of the zeolite prepared in Examples 1 and 2 (the same conditions for the entire ammonia adsorption) were put into a 250 ml Erlenmeyer flask with 100 ml of a standard ammonium solution (concentration of 10 ppm), and then kneaded at a stirring speed of 250 min −1 for 30 minutes. After 6 hours of adsorbing at intervals, the resultant was filtered with a 0.45 μm membrane filter, and the filtrate was collected and measured by an ultraviolet absorber by the Nessler method (see Table 2). The (blast furnace slag) zeolite prepared as in Example 2 maintained a pH of 10 and exhibited a maximum removal rate of 87% when the removal rate was 2 hours. Afterwards, the desorption process proceeded to maintain a removal rate of more than 50%. Compared with natural zeolites, natural zeolites had a maximum removal rate of 77% at 3 hours and 64% at 12 hours. The (CaO) zeolite prepared in Example 1 was maintained at pH 11 and the removal rate was 51 to 71%, showing a maximum removal rate of 71% at 30 minutes. On the other hand, the zeolite prepared by the conventional wet method using high carbon coal ash maintained pH 12 and the removal rate was 15-22%, which was relatively low.

표 2. 실시예1, 2의 NH4-N 흡착(%)Table 2. NH 4 -N adsorption (%) of Examples 1 and 2

흡착시간Adsorption time 실시예 1 시료Example 1 Sample 실시예 2 시료Example 2 Sample 0.5시간0.5 hours 7171 2020 1시간1 hours 6565 4545 2시간2 hours 6868 8787 3시간3 hours 6060 6060 4시간4 hours 5151 5050

<시험예 2>; 총유기탄소(TOC)의 흡착특성 <Test Example 2> ; Adsorption Characteristics of Total Organic Carbon (TOC)

건식법으로 제조한 제올라이트를 총유기탄소(TOC) 농도가 300 ppm인 하수처리장 유입수나 혹은 0.3g의 부식산을 물 1ℓ에 녹여 제조한 300ppm 표준용액에 첨가하여 흡착능을 측정하였다. 이때는 약 150㎖의 크기로 분쇄된 1∼7g의 제올라이트 분말시료를 250 ㎖ 삼각플라크스에 넣어 자동교반기로 250min-1으로 3시간 교반하여 흡착실험을 하였다(표 3 참조). 흡착성능을 분석하기 위하여 혼합용액을 0.45㎛ 멤브레인 필터로 여과한 다음 100배 희석하여 총유기탄소(TOC)를 측정하였다. 실시예 2로 제조한 (고로슬래그) 제올라이트 분말 7g을 첨가하였을때 53%의 제거율을 나타내었다.The zeolite prepared by the dry method was added to a sewage treatment plant having a total organic carbon (TOC) concentration of 300 ppm or 0.3 g of humic acid in 1 L of water to measure the adsorption capacity. At this time, 1 to 7 g of zeolite powder sample ground to a size of about 150 ml was put in 250 ml Erlenmeyer flasks and stirred for 3 hours at 250 min −1 using an automatic stirrer (see Table 3). In order to analyze the adsorption performance, the mixed solution was filtered through a 0.45㎛ membrane filter and then diluted 100-fold to measure total organic carbon (TOC). When 7 g of (blast furnace slag) zeolite powder prepared in Example 2 was added, the removal rate was 53%.

표 3. 실시예2 시료의 총유기탄소 흡착(%)Table 3. Example 2 Total Organic Carbon Adsorption of Samples

시료무게Sample weight 실시예2 시료Example 2 Sample 1g1 g 3333 3g3 g 4747 5g5 g 5050 7g7 g 5353

<시험예 3>; 중금속 측정 <Test Example 3> ; Heavy metal measurement

각각 1000 ppm Pb와 Cd를 10 ppm으로 희석한 용액 100ml을 250 ㎖ 삼각플라스크에 건식법으로 제조한 제올라이트 2 g을 넣은 후, 상온에서 자동교반기로 4, 8, 24시간 동안 250 min-1로 혼련하여 흡착시킨 다음 각각의 pH를 측정한 후 여과한 여액을 채취하여 원자 분석기(AA)로 잔여농도를 측정하였다. 이때 실시예 1, 실시예 3로 제조한 제올라이트들은 모두 90%이상의 우수한 제거율을 나타내었다.100 ml of 1000 ppm Pb and 10 ppm diluted Cd were added to a 250 ml Erlenmeyer flask with 2 g of zeolite prepared by the dry method, and then kneaded at 250 min −1 for 4, 8 and 24 hours using an autostirrer at room temperature. After the adsorption, each pH was measured, and the filtrate was collected and the residual concentration was measured by an atomic analyzer (AA). At this time, the zeolites prepared in Examples 1 and 3 all exhibited excellent removal rates of 90% or more.

표 4. 실시예1, 3의 중금속 흡착(%)Table 4. Heavy metal adsorption (%) of Examples 1 and 3

흡착시간Adsorption time Pb2+ Pb 2+ Cd2+ Cd 2+ 실시예 1 시료Example 1 Sample 실시예 3 시료Example 3 Sample 실시예 1 시료Example 1 Sample 실시예 3 시료Example 3 Sample 4시간4 hours 9595 9595 9595 9595 8시간8 hours 9595 9595 9090 9090 24시간24 hours 9595 9595 9595 9595

<시험예 4>;양이온 교환능 <Test Example 4>; Cation exchange capacity

건식법으로 제조된 제올라이트의 양이온 교환능은 하라다 방법으로 실험하였다. 시료 2g을 칼슘이온으로 완전히 치환한 후 80% 에틸알콜로 결정간극에 남아있던 칼슘이온을 제거한 후 이온 선택성이 큰 암모늄이온으로 치환하여 치환된 칼슘의 양을 ICP(Inductively Coupled Plasma Spectroscopy)로 분석하여 이온교환능을 평가하였다.석탄회 자체는 1meq/100g, 실시예 1로 제조한 제올라이트는 38meq/100g, 실시예 2로 제조한 제올라이트는 41.2meq/100g, 상업용 5A 제올라이트는 82.4meq/g을 나타내었다.The cation exchange capacity of the zeolite prepared by the dry method was tested by the Harada method. After completely replacing 2 g of the sample with calcium ions, the calcium ions remaining in the crystal gap were removed with 80% ethyl alcohol, and then replaced with ammonium ions having high ion selectivity, and the amount of calcium was analyzed by ICP (Inductively Coupled Plasma Spectroscopy). Ion exchange capacity was evaluated . The coal ash itself showed 1 meq / 100 g, the zeolite prepared in Example 1 was 38 meq / 100 g, the zeolite prepared in Example 2 was 41.2 meq / 100 g, and the commercial 5A zeolite was 82.4 meq / g.

본 발명의 A타입 성형체 제올라이트는 중금속 및 암모니아성 질소흡착 특성이 우수함을 알 수 있다. 이는 석탄회를 재활용하고 현재 각종 산업 및 환경분야에서 이용되고 있는 기존의 활성탄 및 합성 제올라이트의 대체 소재화하고 기초원료인 석탄회의 원가 부담이 없는 장점을 최대한 활용하여 경제성을 확보할 수 있음을입증할 수 있다. 또한, 본 발명은 석탄회를 수산화나트륨 용액으로 처리하는 기존의 습식 제조방법에 비해 폐수발생이 전혀 없어 환경친화적인 공정일 뿐 만아니라 최종 응용분야에 적합하도록 각종 형체로 성형할 수 있다는 점에서 더욱 우수한 방법이라 할 수 있다. 또한 석회질 결합제로서 고로슬래그 등 다른 산업폐기물을 활용함으로서 그 부가가치를 높였다.It can be seen that the A-type molded zeolite of the present invention is excellent in heavy metal and ammonia nitrogen adsorption characteristics. This proves that economic efficiency can be secured by recycling coal ash, replacing material of existing activated carbon and synthetic zeolite, which is currently used in various industries and environmental fields, and making full use of the cost-free cost of coal ash, which is a basic raw material. have. In addition, the present invention is more environmentally friendly than the conventional wet manufacturing method for treating coal ash with sodium hydroxide solution, which is not only an environmentally friendly process, but also more excellent in that it can be molded into various shapes suitable for the final application. It can be called a method. In addition, by utilizing other industrial wastes such as blast furnace slag as a lime binder, the added value was increased.

Claims (3)

석탄회에 석회질 원료와 알칼리 성분을 혼합하여 50∼200℃의 온도로 1-8시간 수열반응시켜 슬러리 상태의 혼합물을 얻는 단계와,A step of obtaining a slurry mixture by mixing the calcined raw material and the alkaline component with coal ash and hydrothermally reacting at a temperature of 50 to 200 ° C. for 1 to 8 hours; 상기의 슬러리 혼합물을 몰드에 넣어 50-200℃에서 24시간 이상 또는 상온에서 7시간 이상 반응·건조하는 것을 특징으로 하는 석탄회를 이용한 오폐수 처리용 A타입 성형체 제올라이트의 제조방법.A method for producing A-type molded zeolite for wastewater treatment using coal ash, wherein the slurry mixture is put into a mold and reacted and dried at 50-200 ° C. for at least 24 hours or at room temperature for 7 hours. 제 1항에 있어서, 석탄회 100 중량부에 석회질 원료와 알칼리 성분 10∼50 중량부를 혼합하거나 또는 고로슬래그를 혼합하여 수열반응시킴을 특징으로 하는 석탄회를 이용한 오폐수 처리용 A타입 성형체 제올라이트의 제조방법.The method for producing A-type molded zeolite for wastewater treatment according to claim 1, wherein the calcined raw material and 10 to 50 parts by weight of an alkali component are mixed with 100 parts by weight of coal ash or blast furnace slag is mixed to hydrothermally react. 제 1항 또는 제 2항에 있어서, 석회질 원료는 CaO 이며, 알칼리 성분은 Na2CO3로서 석회질 원료와 알칼리 성분의 몰비가 0.3∼4임을 특징으로 하는 석탄회를 이용한 오폐수 처리용 A타입 성형체 제올라이트의 제조방법.The calcined raw material is CaO, and the alkali component is Na 2 CO 3 , wherein the molar ratio of the calcareous raw material and the alkaline component is 0.3 to 4. Manufacturing method.
KR1020000073042A 2000-12-04 2000-12-04 Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon KR20020043386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000073042A KR20020043386A (en) 2000-12-04 2000-12-04 Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000073042A KR20020043386A (en) 2000-12-04 2000-12-04 Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon

Publications (1)

Publication Number Publication Date
KR20020043386A true KR20020043386A (en) 2002-06-10

Family

ID=27679419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000073042A KR20020043386A (en) 2000-12-04 2000-12-04 Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon

Country Status (1)

Country Link
KR (1) KR20020043386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383657B1 (en) * 2000-12-20 2003-05-14 한일시멘트 (주) The method for manufacturing of alkali absorbent
KR20180100008A (en) * 2017-02-28 2018-09-06 한국과학기술원 High-Strength Zeolite and Simple One-step Process for Preparing the Same
CN111482159A (en) * 2020-04-20 2020-08-04 中国矿业大学(北京) Preparation method of porous carbon-loaded analcite composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383657B1 (en) * 2000-12-20 2003-05-14 한일시멘트 (주) The method for manufacturing of alkali absorbent
KR20180100008A (en) * 2017-02-28 2018-09-06 한국과학기술원 High-Strength Zeolite and Simple One-step Process for Preparing the Same
CN111482159A (en) * 2020-04-20 2020-08-04 中国矿业大学(北京) Preparation method of porous carbon-loaded analcite composite material

Similar Documents

Publication Publication Date Title
Kuwahara et al. A novel conversion process for waste slag: synthesis of calcium silicate hydrate from blast furnace slag and its application as a versatile adsorbent for water purification
Quina et al. Treatment and use of air pollution control residues from MSW incineration: an overview
LaRosa et al. Zeolite formation in class F fly ash blended cement pastes
Querol et al. Synthesis of zeolites from coal fly ash: an overview
Bumanis et al. Metals removal from aqueous solutions by tailored porous waste-based granulated alkali-activated materials
CA2767740A1 (en) Process for enhanced remediation of contaminated wastewaters, soils and wasteforms
KR20010000709A (en) adsorbent for water treatment
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
AU2020351421A1 (en) Phosphorus adsorbent
Wajima et al. Removal of fluoride ions using calcined paper sludge
Noor-ul-Amin A multi-directional utilization of different ashes
Wajima et al. Synthesis of zeolite X from waste sandstone cake using alkali fusion method
KR20020043386A (en) Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon
JP3750269B2 (en) Solidification method of industrial waste and solidified body of industrial waste
WO2023122032A1 (en) Methods of producing a building material
Latosińska Zeolitization of sewage sludge ash with a fusion method
KR20050020096A (en) Process for dirty water/waste water high adsorption and high microorganism immobilyzatiom of capacity biocube and a manufacturing process method
KR100358888B1 (en) The multi-pore ceramic using the slag of the by-products from iron-steel-industry and waste casting sand dust and method of making the same
Ngoc Minh et al. Firing‐Associated Recycling of Coal‐Fired Power Plant Fly Ash
Wu et al. In situ synthesis of zeolites by geopolymerization with NaOH/KOH mixed solution and their potential application for Cd (II) immobilization in paddy soil
KR100324967B1 (en) High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method
Karatepe et al. Activation of Ca (OH) 2 using different siliceous materials
KR100421469B1 (en) Manufacturing Method of Phillipsite Type Zeolite for Removing Ammonia from Waste Water Using Fly Ash
Li et al. Removal of NH+ 4-N from aqueous solution by ceramsite coated with Mg (OH) 2 combined with air stripping.
Gonzalez et al. Conversion of nonconventional aluminosiliceous sources into microporous adsorbents for water remediation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application