JP3750269B2 - Solidification method of industrial waste and solidified body of industrial waste - Google Patents

Solidification method of industrial waste and solidified body of industrial waste Download PDF

Info

Publication number
JP3750269B2
JP3750269B2 JP09575797A JP9575797A JP3750269B2 JP 3750269 B2 JP3750269 B2 JP 3750269B2 JP 09575797 A JP09575797 A JP 09575797A JP 9575797 A JP9575797 A JP 9575797A JP 3750269 B2 JP3750269 B2 JP 3750269B2
Authority
JP
Japan
Prior art keywords
industrial waste
waste
active
source
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09575797A
Other languages
Japanese (ja)
Other versions
JPH10296205A (en
Inventor
洋輝 前浪
博人 進
秀輝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP09575797A priority Critical patent/JP3750269B2/en
Publication of JPH10296205A publication Critical patent/JPH10296205A/en
Application granted granted Critical
Publication of JP3750269B2 publication Critical patent/JP3750269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は産業廃棄物の固化方法及び産業廃棄物の固化体に係り、特に、陶磁器廃棄物、釉薬汚泥、生素地廃棄物、鋳物砂廃棄物、都市ゴミ焼却灰、下水汚泥焼却灰、石炭灰、フライアッシュ、スラグ等の産業廃棄物を固化して、舗装材等の建設材料として利用可能な固化体を製造する方法及びこの方法で得られた固化体に関する。
【0002】
【従来の技術】
近年、各種産業分野から排出される産業廃棄物量は増々増加する傾向にあり、一方でその処分地たる埋立地の確保は増々困難になってきている。
【0003】
そこで、これらの産業廃棄物を再利用する試みがなされるようになり、例えば、ガラス屑に水酸化カルシウム等の無機質補助剤と水を添加して得られる泥漿状の混合物を水熱合成し、その後脱水、乾燥した後、カオリン等を加えて加圧成形する方法が提案されている(特公昭58−6705号公報)。
【0004】
また、製紙工場から排出されるペーパースラッジを200〜1000℃で前処理した後、酸化珪素、水酸化ナトリウム及び酸化カルシウムを添加した後水熱合成することにより、イオン交換体として有用なトバモライト混合物を製造する方法も提案されている(特開平3−159913号公報)。
【0005】
【発明が解決しようとする課題】
泥漿状の混合物を水熱合成した後成形する特公昭58−6705号公報記載の方法では、得られる固化体の強度が十分に上がらず、その用途が制約される。
【0006】
また、特開平3−159913号公報記載の方法では、単にスラリー反応から粉末状の生成物を得るものであるため、固化体を得ることはできない。
【0007】
ところで、産業廃棄物を固化して再利用するに当っては、固化体の強度が十分に高いことのみならず、産業廃棄物中に含有される重金属、アルカリ金属、窒素、リン等の有害成分の固化体からの溶出を防止することが重要となるが、従来においては、産業廃棄物から、高強度でしかも有害成分の溶出の問題のない固化体を製造する有効な方法が提供されていないのが現状である。
【0008】
本発明は上記従来の問題点を解決し、産業廃棄物から十分な強度を有すると共に有害成分の溶出の問題が殆どない固化体を製造する産業廃棄物の固化方法及び産業廃棄物の固化体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の産業廃棄物の固化方法は、産業廃棄物に活性カルシウム源と活性アルカリ源とを添加して混合し、得られた混合物を成形した後水熱合成して固化体を製造する方法において、活性カルシウム源が生石灰及び/又は消石灰であり、活性カルシウム源と活性アルカリ源を、前記混合物中の(活性カルシウム源)/SiO2モル比が0.05〜1.0で、(酸化物換算の活性アルカリ源)/SiO2モル比が0.01〜1.0となるように添加し、ゼオライトが含有された固化体を製造することを特徴とする。
【0010】
上記混合物を成形した後水熱合成することにより、成形体中で生成した水熱合成反応生成物が未反応原料同士の間でこれらを強固に結合するバインダとしての役割を担い、高強度な固化体を得ることができる。
【0011】
しかも、この混合物中の(活性カルシウム源)/SiO2モル比及び(酸化物換算の活性アルカリ源)/SiO2モル比を上記範囲とすることで、得られる固化体中に、有害成分を構造中に取り込むことのできるゼオライト系鉱物が生成し、これにより有害成分の溶出を抑制できる。
【0012】
本発明の産業廃棄物の固化体は、このような本発明の産業廃棄物の固化方法により製造されたものであり、高強度で有害成分の溶出の問題が殆どなく、舗装材等の各種建設材料等として極めて有用である。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0014】
本発明で処理する産業廃棄物としては特に制限はなく、陶磁器廃棄物(例えば、タイル廃棄物、衛生陶器廃棄物等)、釉薬汚泥、生素地廃棄物、鋳物砂廃棄物、都市ゴミ焼却灰、下水汚泥焼却灰、石炭灰、フライアッシュ、スラグ等の各種産業廃棄物が挙げられる。
【0015】
本発明においては、これらの産業廃棄物を必要に応じて平均粒径1mm以下に粉砕した後、活性カルシウム源と活性アルカリ源とを、得られる混合物中の(活性カルシウム源)/SiO2モル比が0.05〜1.0で、(酸化物換算の活性アルカリ源)/SiO2モル比が0.01〜1.0となるように添加混合した後、成形し、成形体を水熱合成する。
【0016】
ここで、活性カルシウム源とは、生石灰(CaO)及び/又は消石灰(Ca(OH)2)である。また、活性アルカリ源とは、例えば、NaOH,KOH,Na2CO3 及び2CO 3 りなる群から選ばれる1種又は2種以上であるが、本発明では、これらを酸化物、即ち、Na2O及び/又はK2Oで換算し、それとSiO2とのモル比で(酸化物換算の活性アルカリ源)/SiO2(即ち、Na2O/SiO2,K2O/SiO2又は(Na2O+K2O)/SiO2)モル比で調整する。
【0017】
本発明において、混合物中の(活性カルシウム源)/SiO2 モル比が0.05未満であると十分な強度発現が得られず、1.0を超えると未反応の活性カルシウム源が残存するためそれ以上の添加効果が期待できない。従って、混合物中の(活性カルシウム源)/SiO2 モル比は0.05〜1.0、好ましくは0.1〜0.5とする。
【0018】
また、混合物中の(酸化物換算の活性アルカリ源)/SiO2 モル比が0.01未満であるとゼオライト系鉱物が生成せず、1.0を超えると未反応の活性アルカリ源が残存するため、それ以上の添加効果が期待できないばかりかアルカリ金属の溶出が顕著となる。従って、混合物中の(酸化物換算の活性アルカリ源)/SiO2 モル比は0.01〜1.0、好ましくは0.05〜0.5とする。
【0019】
なお、本発明では、得られる混合物中の(活性カルシウム源)/SiO2 モル比及び(酸化物換算の活性アルカリ源)/SiO2 モル比を上記範囲に調整するために、処理する産業廃棄物中にこの活性カルシウム源や活性アルカリ源が含有されている場合には、この産業廃棄物由来の活性カルシウム源や活性アルカリ源を上記モル比の調整に考慮して、その分、活性カルシウム源や活性アルカリ源の添加量を減らす必要がある。
【0020】
この混合物を成形する方法としては、一軸加圧成形等の加圧成形や押出成形等の各種成形方法を採用することができ、例えば、加圧成形の場合、成形圧力は10〜40MPa程度であることが好ましい。
【0021】
成形体の水熱合成は、通常の場合、オートクレーブ中にて行われ、水熱合成条件は、処理する産業廃棄物によっても異なるが、飽和水蒸気圧下、温度110〜200℃、時間0.5〜168時間、特に2〜24時間が好ましい。
【0022】
水熱合成後は必要に応じて乾燥を行って製品とされる。
【0023】
このようにして得られる本発明の固化体は、曲げ強度3MPa以上、好ましくは5MPa以上であり、ゼオライト系鉱物 (analcime, phillipsite,ゼオライトNa-P, cancrinite, vishnevite, davyne等)、更に好ましくはケイ酸カルシウム水和物 (トバモライト,ジャイロライト,katoite 等)の生成相を有し、これらの生成物により産業廃棄物由来の有害成分(重金属,アルカリ金属,窒素,リン等)の溶出が抑制される。
【0024】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0025】
なお、実施例及び比較例において原料として用いたフライアッシュ、都市ゴミ焼却灰及び下水汚泥焼却灰の化学組成は下記表1に示す通りである。
【0026】
下記化学組成のうち、フライアッシュ中のCaO含有量は7重量%であるが、そのうち3重量%相当分は消石灰又は生石灰としてのCaOであるため、混合物中の(活性カルシウム源)/SiO2 モル比の調整に当り、フライアッシュ由来の活性カルシウム源量を考慮したが、都市ゴミ焼却灰及び下水汚泥焼却灰中のCaOは活性カルシウム源ではないため考慮しなかった。また、フライアッシュ,都市ゴミ焼却灰、下水汚泥焼却灰はいずれも、含有されるK2 O及びNa2 Oは活性アルカリ源として存在しないため、(酸化物換算の活性アルカリ源)/SiO2 モル比の調整には考慮しなかった。
【0027】
【表1】

Figure 0003750269
【0028】
実施例1〜15,比較例1〜4
フライアッシュ、都市ゴミ焼却灰又は下水汚泥焼却灰に表2〜4に示す(活性カルシウム源)/SiO2 モル比(=Ca/Si)及び(酸化物換算の活性アルカリ源)/SiO2 モル比(=Na2 O/Si)となるようにCa(OH)2 とNa2 CO3 の必要量を添加して混合し(比較例ではNa2 CO3 添加せず)、得られた混合物を30MPaで一軸加圧成形して10mm×15mm×40mmの成形体を得た。
【0029】
この成形体の曲げ強度及び嵩密度は表2〜4に示す通りであった(ただし、測定試料数2個)。
【0030】
得られた成形体をオートクレーブ中に入れ、飽和水蒸気圧下、200℃(フライアッシュ及び下水汚泥焼却灰の場合)又は150℃(都市ゴミ焼却灰の場合)で表2〜4に示す時間水熱合成した後、80℃で2日間乾燥した。
【0031】
得られた固化体の曲げ強度及び嵩密度は表2〜4に示す通りであった(ただし、測定試料数5個)。また、この固化体中の生成相を粉末X線回折により調べたところ、表2〜4に示す生成相が認められた。
【0032】
表2〜4より、本発明による固化体は高強度で、しかも、有害成分を構造中に取り込むことのできるゼオライト系鉱物の生成、更にはケイ酸カルシウムによる吸着作用で有害成分の溶出が抑制されることがわかる。
【0033】
【表2】
Figure 0003750269
【0034】
【表3】
Figure 0003750269
【0035】
【表4】
Figure 0003750269
【0036】
【発明の効果】
以上詳述した通り、本発明の産業廃棄物の固化方法及び産業廃棄物の固化体によれば、産業廃棄物中の有害成分を溶出させない固定化工程と、産業廃棄物を再利用可能な十分な強度を有する固化体とする固化工程とを1度の処理で行って、産業廃棄物から高強度で有害成分の溶出の問題が殆どなく、舗装材等の建設材料等として有用な固化体を容易かつ効率的に製造することができる。
【0037】
本発明によれば、産業廃棄物の有効再利用が図れ、本発明の工業的価値は極めて大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for solidifying industrial waste and a solidified body of industrial waste, and in particular, ceramic waste, glaze sludge, raw material waste, foundry sand waste, municipal waste incineration ash, sewage sludge incineration ash, coal ash The present invention relates to a method of solidifying industrial waste such as fly ash and slag to produce a solidified body that can be used as a construction material such as a paving material, and a solidified body obtained by this method.
[0002]
[Prior art]
In recent years, the amount of industrial waste discharged from various industrial fields has tended to increase. On the other hand, it has become increasingly difficult to secure a landfill site as a disposal site.
[0003]
Therefore, an attempt to reuse these industrial wastes has been made, for example, hydrothermal synthesis of a slurry-like mixture obtained by adding inorganic auxiliary agents such as calcium hydroxide and water to glass waste, Then, after dehydrating and drying, a method of pressure-molding by adding kaolin or the like has been proposed (Japanese Patent Publication No. 58-6705).
[0004]
Moreover, after pre-treating paper sludge discharged from a paper mill at 200 to 1000 ° C., hydrothermal synthesis after adding silicon oxide, sodium hydroxide and calcium oxide, a tobermorite mixture useful as an ion exchanger is obtained. A manufacturing method has also been proposed (Japanese Patent Laid-Open No. 3-159913).
[0005]
[Problems to be solved by the invention]
In the method described in Japanese Examined Patent Publication No. 58-6705, in which a slurry-like mixture is molded after hydrothermal synthesis, the strength of the solidified product obtained is not sufficiently increased, and its use is restricted.
[0006]
Further, in the method described in JP-A-3-159913, a powdered product is simply obtained from a slurry reaction, and thus a solidified product cannot be obtained.
[0007]
By the way, when solidifying and reusing industrial waste, not only the strength of the solidified body is sufficiently high, but also harmful components such as heavy metals, alkali metals, nitrogen, phosphorus, etc. contained in industrial waste Although it is important to prevent elution from the solidified product, there has not been provided an effective method for producing a solidified product from industrial waste that has high strength and does not have the problem of elution of harmful components. is the current situation.
[0008]
The present invention solves the above-mentioned conventional problems, and provides a solidification method for industrial waste and a solidified body for industrial waste that produce a solidified body that has sufficient strength from industrial waste and has almost no problem of elution of harmful components. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The solidification method of the industrial waste of the present invention is a method for producing a solidified product by adding an active calcium source and an active alkali source to industrial waste and mixing them, forming the resulting mixture and then hydrothermally synthesizing the mixture. The active calcium source is quick lime and / or slaked lime, and the active calcium source and the active alkali source are (active calcium source) / SiO 2 molar ratio in the mixture of 0.05 to 1.0 (in terms of oxide) And a solidified body containing zeolite is produced by adding so that the molar ratio of active alkali source) / SiO 2 is 0.01 to 1.0.
[0010]
By hydrothermal synthesis after molding the above mixture, the hydrothermal synthesis reaction product generated in the molded body plays a role as a binder that binds these unreacted raw materials firmly together, and solidifies with high strength You can get a body.
[0011]
In addition, by setting the (active calcium source) / SiO 2 molar ratio and the (oxide-converted active alkali source) / SiO 2 molar ratio in the mixture to the above ranges, harmful components are structured in the obtained solidified body. Zeolite-based minerals that can be taken in are produced, which can suppress the elution of harmful components.
[0012]
The solidified product of the industrial waste of the present invention is produced by such a solidified method of the industrial waste of the present invention, has high strength and has almost no problem of elution of harmful components, and various constructions such as pavement materials. It is extremely useful as a material.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0014]
The industrial waste to be treated in the present invention is not particularly limited, and ceramic waste (for example, tile waste, sanitary ware waste, etc.), glaze sludge, green waste, foundry sand waste, municipal waste incineration ash, Various industrial wastes such as sewage sludge incineration ash, coal ash, fly ash, slag, etc. can be mentioned.
[0015]
In the present invention, it was ground to below these industrial wastes average particle diameter 1mm, if necessary, the active calcium source and the active alkali source, in the resulting mixture (active calcium source) / SiO 2 molar ratio but with 0.05 to 1.0, (active alkali source of oxide) / after SiO 2 molar ratio was added and mixed so that 0.01 to 1.0, molded, a molded body hydrothermal synthesis To do.
[0016]
Here, the active calcium source is quick lime (CaO) and / or slaked lime (Ca (OH) 2 ). In addition, the active alkalinity sources, for example, NaOH, KOH, although Na 2 CO 3 and one or more selected from K 2 CO 3 O Li Cheng group, in the present invention, these oxides, i.e. , Na 2 converted at O and / or K 2 O, at the same molar ratio (active alkaline source in terms of oxide) of SiO 2 / SiO 2 (i.e., Na 2 O / SiO 2, K 2 O / SiO 2 or (Na 2 O + K 2 O ) / SiO 2) to adjust the molar ratio.
[0017]
In the present invention, if the (active calcium source) / SiO 2 molar ratio in the mixture is less than 0.05, sufficient strength cannot be obtained, and if it exceeds 1.0, an unreacted active calcium source remains. No additional effect can be expected. Therefore, the (active calcium source) / SiO 2 molar ratio in the mixture is 0.05 to 1.0, preferably 0.1 to 0.5.
[0018]
Further, when the (oxide-based active alkali source) / SiO 2 molar ratio in the mixture is less than 0.01, no zeolitic mineral is formed, and when it exceeds 1.0, an unreacted active alkali source remains. Therefore, not only the addition effect cannot be expected, but the elution of alkali metal becomes remarkable. Therefore, the (active alkali source in terms of oxide) / SiO 2 molar ratio in the mixture is 0.01 to 1.0, preferably 0.05 to 0.5.
[0019]
In the present invention, (active calcium source) in the resulting mixture / SiO 2 molar ratio and (active alkali source of oxide) / the SiO 2 molar ratio in order to adjust the above range, processing industrial waste When the active calcium source or active alkali source is contained in the active calcium source or active alkali source derived from this industrial waste, the active calcium source or It is necessary to reduce the amount of active alkali source added.
[0020]
As a method for molding this mixture, various molding methods such as pressure molding such as uniaxial pressure molding and extrusion molding can be employed. For example, in the case of pressure molding, the molding pressure is about 10 to 40 MPa. It is preferable.
[0021]
Hydrothermal synthesis of the molded body is usually carried out in an autoclave, and hydrothermal synthesis conditions vary depending on the industrial waste to be treated, but under saturated water vapor pressure, a temperature of 110 to 200 ° C., a time of 0.5 to 168 hours, especially 2 to 24 hours are preferred.
[0022]
After hydrothermal synthesis, the product is dried as necessary to obtain a product.
[0023]
The solidified product of the present invention thus obtained has a bending strength of 3 MPa or more, preferably 5 MPa or more, zeolitic minerals (analcime, phillipsite, zeolite Na-P, cancrinite, vishnevite, davyne, etc.), more preferably silica. It has a product phase of calcium hydrate (tobermorite, gyrolite, katoite, etc.), and these products suppress the elution of harmful components (heavy metals, alkali metals, nitrogen, phosphorus, etc.) derived from industrial waste. .
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0025]
The chemical composition of fly ash, municipal waste incineration ash and sewage sludge incineration ash used as raw materials in the examples and comparative examples is as shown in Table 1 below.
[0026]
Among the following chemical compositions, the CaO content in fly ash is 7% by weight, but the equivalent of 3% by weight is CaO as slaked lime or quicklime, so (active calcium source) / SiO 2 mol in the mixture In adjusting the ratio, the amount of active calcium source derived from fly ash was considered, but CaO in municipal waste incineration ash and sewage sludge incineration ash was not considered because it was not an active calcium source. In addition, fly ash, municipal waste incineration ash, and sewage sludge incineration ash all contain K 2 O and Na 2 O as active alkali sources, so (active oxide source in terms of oxide) / SiO 2 mol The adjustment of the ratio was not considered.
[0027]
[Table 1]
Figure 0003750269
[0028]
Examples 1-15, Comparative Examples 1-4
Table 2-4 shows (active calcium source) / SiO 2 molar ratio (= Ca / Si) and (oxide-converted active alkali source) / SiO 2 molar ratio in fly ash, municipal waste incinerated ash or sewage sludge incinerated ash (= Na 2 O / Si) The required amount of Ca (OH) 2 and Na 2 CO 3 were added and mixed (in the comparative example, Na 2 CO 3 was not added), and the resulting mixture was added to 30 MPa. Was subjected to uniaxial pressure molding to obtain a molded body of 10 mm × 15 mm × 40 mm.
[0029]
The bending strength and bulk density of this molded body were as shown in Tables 2 to 4 (however, the number of measurement samples was 2).
[0030]
The obtained molded body is put in an autoclave and hydrothermal synthesis is carried out at 200 ° C. (in the case of fly ash and sewage sludge incineration ash) or 150 ° C. (in the case of municipal waste incineration ash) under saturated steam pressure as shown in Tables 2-4. And then dried at 80 ° C. for 2 days.
[0031]
The bending strength and bulk density of the obtained solidified body were as shown in Tables 2 to 4 (however, the number of measurement samples was 5). Moreover, when the production | generation phase in this solidified body was investigated by powder X-ray diffraction, the production | generation phases shown in Tables 2-4 were recognized.
[0032]
From Tables 2 to 4, the solidified product according to the present invention has high strength, and the formation of zeolitic minerals that can incorporate harmful components into the structure, and further the elution of harmful components is suppressed by the adsorption action of calcium silicate. I understand that
[0033]
[Table 2]
Figure 0003750269
[0034]
[Table 3]
Figure 0003750269
[0035]
[Table 4]
Figure 0003750269
[0036]
【The invention's effect】
As detailed above, according to the solidification method of industrial waste and the solidified product of industrial waste of the present invention, an immobilization process that does not elute harmful components in industrial waste, and sufficient reuse of industrial waste can be achieved. The solidification process to obtain a solidified body having a sufficient strength is carried out in a single treatment, and there is almost no problem of elution of harmful components from industrial waste with high strength, and a solidified body useful as a construction material such as a paving material is obtained. It can be manufactured easily and efficiently.
[0037]
According to the present invention, industrial waste can be effectively reused, and the industrial value of the present invention is extremely large.

Claims (5)

産業廃棄物に活性カルシウム源と活性アルカリ源とを添加して混合し、得られた混合物を成形した後水熱合成して固化体を製造する方法において、
活性カルシウム源が生石灰及び/又は消石灰であり、活性カルシウム源と活性アルカリ源を、前記混合物中の(活性カルシウム源)/SiO2モル比が0.05〜1.0で、(酸化物換算の活性アルカリ源)/SiO2モル比が0.01〜1.0となるように添加し、ゼオライトが含有された固化体を製造することを特徴とする産業廃棄物の固化方法。
In a method for producing a solidified body by adding and mixing an active calcium source and an active alkali source to industrial waste, forming the resulting mixture, and hydrothermally synthesizing the mixture,
The active calcium source is quick lime and / or slaked lime, and the active calcium source and the active alkali source are (active calcium source) / SiO 2 molar ratio in the mixture of 0.05 to 1.0 (in terms of oxide) An activated alkali source) / SiO 2 molar ratio is added so as to be 0.01 to 1.0 to produce a solidified product containing zeolite, which is a method for solidifying industrial waste.
請求項1の方法において、産業廃棄物が陶磁器廃棄物、釉薬汚泥、生素地廃棄物、鋳物砂廃棄物、都市ゴミ焼却灰、下水汚泥焼却灰、石炭灰、フライアッシュ、及びスラグよりなる群から選ばれる1種又は2種以上であることを特徴とする産業廃棄物の固化方法。  2. The method of claim 1 wherein the industrial waste is from the group consisting of ceramic waste, glaze sludge, green waste, foundry sand waste, municipal waste incineration ash, sewage sludge incineration ash, coal ash, fly ash, and slag. A method for solidifying industrial waste, which is one or more selected. 請求項1の方法において、活性アルカリ源がNaOH,KOH,Na2CO3 及び2CO 3 りなる群から選ばれる1種又は2種以上であることを特徴とする産業廃棄物の固化方法。Solidification of the method according to claim 1, industrial waste, wherein the active alkaline source is NaOH, KOH, Na 2 CO 3 and one or more selected from K 2 CO 3 by Li Cheng group Method. 請求項1ないし3のいずれか1項に記載の方法で得られた産業廃棄物の固化体。  A solidified product of industrial waste obtained by the method according to any one of claims 1 to 3. 請求項4の固化体において、曲げ強度が3MPa以上であることを特徴とする産業廃棄物の固化体。  5. The solidified body of industrial waste according to claim 4, wherein bending strength is 3 MPa or more.
JP09575797A 1997-02-27 1997-04-14 Solidification method of industrial waste and solidified body of industrial waste Expired - Fee Related JP3750269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09575797A JP3750269B2 (en) 1997-02-27 1997-04-14 Solidification method of industrial waste and solidified body of industrial waste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-43797 1997-02-27
JP4379797 1997-02-27
JP09575797A JP3750269B2 (en) 1997-02-27 1997-04-14 Solidification method of industrial waste and solidified body of industrial waste

Publications (2)

Publication Number Publication Date
JPH10296205A JPH10296205A (en) 1998-11-10
JP3750269B2 true JP3750269B2 (en) 2006-03-01

Family

ID=26383626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09575797A Expired - Fee Related JP3750269B2 (en) 1997-02-27 1997-04-14 Solidification method of industrial waste and solidified body of industrial waste

Country Status (1)

Country Link
JP (1) JP3750269B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299854B1 (en) 1998-06-12 2001-10-09 Teruo Henmi Method of producing artificial zeolite
KR100450281B1 (en) * 2001-12-27 2004-09-24 학교법인 한마학원 A method for manufacturing high strength building materials using slag created during steel making processes
CN100354052C (en) * 2004-12-21 2007-12-12 中国环境科学研究院 Additive for fusing fly ash in use for refuse burning process
JP5731944B2 (en) * 2011-10-20 2015-06-10 株式会社神戸製鋼所 Method for producing porous solidified body using steel slag powder
KR101687349B1 (en) * 2015-06-19 2016-12-16 한국과학기술원 Zeolite and Process for Preparing the Same
CN105251758A (en) * 2015-11-13 2016-01-20 广东省环境科学研究院 Complex flux for fusion of waste incineration fly ash
KR101984862B1 (en) * 2017-02-28 2019-06-04 한국과학기술원 High-Strength Zeolite and Simple One-step Process for Preparing the Same
JP2018158888A (en) * 2018-07-19 2018-10-11 一般財団法人電力中央研究所 Method for producing zeolite-containing cured body
CN117361915A (en) * 2023-08-16 2024-01-09 浙江大学 Method for preparing hydrothermal curing body based on relative content of active calcium and active silicon

Also Published As

Publication number Publication date
JPH10296205A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
LaRosa et al. Zeolite formation in class F fly ash blended cement pastes
AU2008281033B2 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
AU2008281032B2 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
EA000871B1 (en) Inorganic binder composition
CN110467368B (en) Active excitant for inorganic solid waste building material and preparation method thereof
JP3750269B2 (en) Solidification method of industrial waste and solidified body of industrial waste
Pachana et al. Alkali-activated material synthesized from palm oil fuel ash for Cu/Zn ion removal from aqueous solutions
JP4827045B2 (en) Water purification material and method for producing water purification material
Ikeda Preparation of fly ash monoliths consolidated with a sodium silicate binder at ambient temperature
JPH11263661A (en) Hydraulic silica-based binder, and water and heat resistant solidified body
Ma et al. Sequestration of cesium and strontium by tobermorite synthesized from fly ashes
JP3692443B2 (en) Production method of hydro-glossular using coal gasification slag
JP3420081B2 (en) Method for producing adsorbent from refuse incineration ash
JP2019006672A (en) Method for producing reproduced waste material composition and reproduced waste material composition
KR100375408B1 (en) Solidity material for reapplication of waste
AU785034B2 (en) Hydrothermal solidification preparation, hydrothermally solidified material, and process for producing hydrothermally solidified material
JP4340057B2 (en) Method for producing hydrothermal solidified body
JP3657703B2 (en) Method for producing hydrated cured product
JP4340058B2 (en) Method for producing hydrothermal solidified body
JP2021151947A (en) Method for producing inorganic industrial waste recycled product
JP2004123471A (en) Process for preparing hydrothermally solidified product
JP2002179424A (en) Method of manufacturing artificial zeolite and method of manufacturing foamed perlite
Paya et al. Chemistry in Building Materials Research Group (GIQUIMA), Concrete Science and Technology Institute (ICITECH), Universitat Politecnica de Valencia, Valencia, Spain
JPH10259052A (en) Production of inorganic hardened body
JP4251723B2 (en) Crushed stone by-product processing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees