JP4251723B2 - Crushed stone by-product processing method - Google Patents

Crushed stone by-product processing method Download PDF

Info

Publication number
JP4251723B2
JP4251723B2 JP19062199A JP19062199A JP4251723B2 JP 4251723 B2 JP4251723 B2 JP 4251723B2 JP 19062199 A JP19062199 A JP 19062199A JP 19062199 A JP19062199 A JP 19062199A JP 4251723 B2 JP4251723 B2 JP 4251723B2
Authority
JP
Japan
Prior art keywords
raw material
stone
crushed stone
solidified product
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19062199A
Other languages
Japanese (ja)
Other versions
JP2001017935A (en
Inventor
理貴 長谷川
徹 井田
毅 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earthtechnica Co Ltd
Original Assignee
Earthtechnica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earthtechnica Co Ltd filed Critical Earthtechnica Co Ltd
Priority to JP19062199A priority Critical patent/JP4251723B2/en
Publication of JP2001017935A publication Critical patent/JP2001017935A/en
Application granted granted Critical
Publication of JP4251723B2 publication Critical patent/JP4251723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
砕石プラントではシリカ(SiO2 )を含有する砕石副産物として濁水ケーキや石粉が発生し、これらの処理・処分を行う必要がある。本発明は、ともに砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合した原料混合物を処理することにより、高品質な固化品を得ることができ、かつ、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いることで有効に廃棄物の減少化を図ることができるとともに、濁水ケーキの水分調整にコストをかけなくてすみ、製造コストの低コスト化を図ることができるようにした、砕石副産物処理方法に関するものである。
【0002】
【従来の技術、及び発明が解決しようとする課題】
周知のように、砕石プラントは、道路や建築用などの砕石,砕砂を生産するもので、ほとんどの場合山間部に建設されている。一般に砕石プラントは、石切り場で発破した1m程度の大きさの石をプラント上流部分にある原料工場(破砕室)に投入し、破砕機により破砕し、篩で砕石の粒度別に篩分けし、規格外の大きな砕石については破砕と篩分け選別を繰り返して行き、最終的に規格粒度別に破砕選別された砕石,砕砂を製品として出荷するようにしたものであり、粒度5mm以下の細骨材(砕砂)を生産する製砂設備はプラント下流部分に設置されている。
【0003】
砕石プラントの前記製砂設備では、製品品質の向上を目的として付着泥分,不要微細石粒子などを除去すべく破砕品を水で洗浄するようにしている。特にコンクリート用細骨材(砕砂)では製品中に含まれる75μm以下の微細石粒子の含有量が制限されており、細骨材生産の際には、前記微細石粒子を除去するなどのために粒度5mmアンダーの破砕品の水洗が行われる。この水洗を行う湿式の設備での使用後の洗浄水は、75μm以下程度の微細な石粒子又は/及び泥分を重量で5〜10%程度含む泥水であり、「濁水」と呼ばれている。そして濁水は、シックナとフィルタプレス等の濃縮・脱水用の機械設備、あるいは沈殿池式設備により、水と分離された泥分が濃縮脱水されて、水分を含む脱水ケーキにされる。このような濁水処理による脱水ケーキは「濁水ケーキ」と呼ばれており、例えばコンクリート用細骨材(砕砂)を生産する場合、重量で砂生産量の約10%程度発生する。
【0004】
次に、石粉(乾燥石粉)について説明する。製砂設備では、粒度5mmアンダーの破砕品について、前述した75μm以下の微細石粒子を除去するためにエアセパレータ等の乾式分級機で分級し、しかる後、除去仕切れずに残った微細石粒子の除去を前述の水洗により行うという製砂工程を採用している設備もある。このような製砂工程の場合、前記エアセパレータ等による分級によって主に75μm以下の微細石粒子が副産物として発生する。この微細な石粒子は石粉(乾燥石粉)と呼ばれている。
【0005】
また、砕石プラントにおける製砂設備の上流部分には、前述したように粒度別に砕石を生産するための破砕機や篩装置などが備えられており、これらの装置では集塵機によって捕集される集塵ダストとして微細な石粒子(粒度:平均15μm)である石粉(乾燥石粉)が副産物として発生する。
【0006】
このように砕石プラントでは砕石副産物である濁水ケーキと石粉が発生する。そして環境保全の観点から廃棄物の減少を図るべく、従来、濁水ケーキについては、生石灰,セメント等と単に混合されて、埋立て材,盛土材などの低強度材として利用(活用)されている。しかしこの濁水ケーキ処理方法では、得られる製品強度(一軸圧縮強度)が10kg/cm2 程度以下と低く、用途が前記埋立て材,盛土材など低強度の資材に限られてしまい、常時安定的に大量需要がなく利用量の拡大が期待できず、有効な廃棄物低減になっていないのが実情である。また石粉については、従来、高流動コンクリートの混合材である石灰石粉の代替え品として利用(活用)すべく開発が進められているものの、これ以外には用途がなく、実質的に廃棄物となっているのが実情である。
【0007】
このため、濁水ケーキや石粉を出発原料とし、需要量が常時安定的に多い例えばコンクリート用細骨材などの原料となりうる高品質な固化品を開発することが考えられる。この場合、砕石プラントから供給される水分過剰の濁水ケーキについては、その水分を減らし適正化するための水分調整を行うことが必要となる。水分が多すぎる濁水ケーキの水分調整には、▲1▼フィルタープレス等の脱水機及び/又はドラムドライヤ等の乾燥機を使用する方法、▲2▼天日干し(天日乾燥)による方法、などが考えられるものの、前者の方法では脱水機や乾燥機の設備費とその運転コストが多大なものとなり、また後者の方法では濁水ケーキの乾燥に長時間を要するとともに、天日干し用ヤードの設置とその維持にコストがかかるいう不具合点が考えられる。このような背景において、本発明者らは、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いることに着目し、本発明を創案したものである。
【0008】
本発明は、ともに砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合した原料混合物を処理することにより、高品質な固化品を得ることができ、かつ、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いることで有効に廃棄物の減少化を図ることができるとともに、濁水ケーキの水分調整にコストをかけなくてすみ、製造コストの低コスト化を図ることができる、砕石副産物処理方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、本発明による砕石副産物処理方法は、ともに砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合した原料混合物を得る原料混合工程と、前記原料混合物を加圧成形して固化品素地を得る加圧成形工程と、前記固化品素地を水熱処理により固化して固化品を得る水熱固化工程とを備えていることを特徴とするものである。
【0010】
【発明の実施の形態】
前記のような特徴を有する本発明による砕石副産物処理方法においては、まず、原料混合物をつくる原料混合工程が実施される。この工程でつくられる原料混合物は、後述する加圧成形工程と水熱固化工程を経て固化品とされるものであり、加圧成形性及び固化品強度の点から、含水率が5〜35重量%のものがよい。この理由は、含水率が35重量%を上回ると該原料混合物の性状が軟弱すぎて、次の加圧成形工程において、成形型からもれ出るなど加圧成形性が悪く、圧力付与ができないことで緻密成形効果が得られず、そのため、水熱処理しても高強度の固化品が得られないためである。一方、5重量%を下回ると後工程で水熱処理されて得られる固化品の強度が低く、利用用途として有望な高強度材であるコンクリート用細骨材や建築用ブロック等に一般に要求される強度(一軸圧縮強度:150kg/cm2 (14.7MPa)以上)が達成できないためである。
【0011】
よって、原料混合工程においては、砕石プラントからの濁水ケーキが水分が多すぎてそのままでは加圧成形工程に供給する混合物の含水率が前記上限値35重量%を超えるような場合には、石粉を用いることにより、濁水ケーキと石粉とカルシウム化合物とを混合した原料混合物の含水率が前記5〜35重量%の範囲を満たすように水分調整が行われる。また、前記5〜35重量%の範囲は満たすものの、砕石プラントからの濁水ケーキが水分が多すぎて混合時に作業性が悪く混ぜ合わせ難いような場合には、石粉を用いることにより混合時の作業性を良好にすることができる。
【0012】
この原料混合工程で用いるカルシウム化合物としては、酸化カルシウム(生石灰),水酸化カルシウム(消石灰),セメントなどを挙げることができる。このようなカルシウム化合物の添加は、後述の水熱固化工程でトバモライト(5CaO・6SiO2 ・5H2 O)などのカルシウムシリケート(ケイ酸カルシウム)を生成させることにある。そして、トバモライトの結晶のCa/Si重量比が5/6であることから、カルシウム化合物は、原料混合物のCa/Si重量比が5/6以下となるように添加すればよい。この値を超えて添加しても余分で無駄となる。なお、Ca/Si重量比の下限値は、得ようとする固化品の強度にもよるが、一軸圧縮強度が200kg/cm2 以上という高強度の固化品を得るには1/6が適切である。
【0013】
次に、前記原料混合物を材料として成形機により加圧成形して成形物である固化品素地を得る(加圧成形工程)。例えばブリケッティング・マシンで豆炭状の固化品素地をつくる。水熱処理に先立ち、この加圧成形を行うことにより、粒子同士の密着性を高め空隙率を小さくして緻密化された性状の固化品素地が得られる。この場合、加圧成形圧力は、40〜1000kg/cm2 (3.92〜98.1MPa)の範囲が適切である。加圧成形圧力が40kg/cm2 を下回ると前記緻密成形効果が充分でなく、後述の水熱固化工程にて高強度で低吸水率の固化品が得られにくい。一方、1000kg/cm2 を超えて加圧成形を行っても固化品の強度,吸水率は飽和状態になり向上が見られず、それ以上の高い成形圧力での成形は無駄になる。
【0014】
次いで、固化品素地を水熱処理であるオートクレーブ養生する(水熱固化工程)。この飽和蒸気圧下でのオートクレーブ養生により、固化品素地中のSiO2 とCaO等のカルシウム化合物とが反応してカルシウムシリケート(ケイ酸カルシウム)が生成される。その結果、粒子同士が強固に固着し空隙率の小さい固化品となって、コンクリート用細骨材や建築用ブロックなどの建築資材の原料として利用可能な高強度で低吸水率の固化品を得ることができる。この水熱処理では、カルシウムシリケートのうちでも、130〜300℃程度の比較的低温で結晶が成長し強度の高いトバモライトを生成させることがよい。水熱処理条件としては、反応温度(オートクレーブ養生温度):130〜300℃、反応時間(養生時間):1〜24時間が適切である。代表的条件は温度180℃で5時間である。反応温度130〜300℃はトバモライトの結晶成長がよく促進される温度範囲であり、反応温度が高いほど反応速度は大きいので、同じ品質(強度、吸水率)のものであれば反応時間は短くてすむ。
【0015】
このように、ともに砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合した原料混合物を処理することにより、コンクリート用細骨材や建築用ブロックなどの建築資材の原料として利用可能な高強度・低吸水率の高品質な固化品を得ることができ、かつ、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いることで有効に廃棄物の減少化を図ることができるとともに、脱水機や乾燥機、あるいは天日干し用ヤード等による濁水ケーキの水分調整のためのコストが削減でき、製造コストの低コスト化を図ることができる。
【0016】
【実施例】
以下、本発明の実施例を説明する。図1は本発明による砕石副産物処理方法の工程を示す図である。
【0017】
図1に示すように、まず、砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合して所定含水率の原料混合物をつくる(原料混合工程11)。本実施例では、砕石プラントからの濁水ケーキが水分が多すぎてそのままでは後述の加圧成形工程12に供給する混合物の含水率が上限の35重量%を超えるので石粉を用いる場合について説明する。予め含水率が測定された含水率約45%の濁水ケーキと石粉とをそれぞれ各貯蔵槽から所定量切り出して混合機へ投入し、これらを所定時間かけて混合して含水率が約18%の予備混合物を得た。次いでこの予備混合物にカルシウム化合物を添加し、前記混合機によりこれらを所定時間かけて混合し含水率が約15%の原料混合物を得た。
【0018】
この実施例では、混合機として二軸パドル型ミキサーを用いた。また、前記カルシウム化合物として酸化カルシウム微粉末を使用し、その添加量は前記原料混合物のCa/Si重量比が1/4になるようにした。各材料の代表的な粒度分布については、濁水ケーキ:75μmアンダー、石粉:75μmアンダー、酸化カルシウム微粉末:150μmアンダー、である。
【0019】
この原料混合工程11における実施手順については、本実施例では前記予備混合物を得、しかる後に原料混合物を得るようにしたが、これに限定されるものではない。例えば、予め含水率が測定された含水率約45%の濁水ケーキ、石粉及び酸化カルシウム微粉末をそれぞれ各貯蔵槽から所定量切り出して混合機へ投入し、これらを混合して含水率が約15%の原料混合物をつくるようにしても差し支えなく、石粉の添加目的や添加量などに応じて適宜決めればよい。
【0020】
なお、供給される濁水ケーキの含水率が高く、混合時の作業性を良好にすべく水分調整のために石粉を用いる場合については、例えば、予め含水率が測定された含水率約30%の濁水ケーキと石粉とをそれぞれ各貯蔵槽から所定量切り出して混合機へ投入し、これらを所定時間かけて混合して含水率が約13%の予備混合物を得、次いでこの予備混合物に酸化カルシウム微粉末を添加し、前記混合機によりこれらを所定時間かけて混合し含水率が約10%の原料混合物を得るという例を挙げることができる。
【0021】
このように原料混合工程11では、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いて含水率を調整することにより、脱水機や乾燥機、あるいは天日干し用ヤードが不要であり、濁水ケーキの水分調整のためにコストをかけなくてもすむ。
【0022】
次に、得られた前記含水率約15%の原料混合物を成形機によって加圧成形圧力100kg/cm2 にて固化品素地に加圧成形する(加圧成形工程12)。実施例では、成形機としてブリケッティング・マシンを使用し、豆炭状の固化品素地を成形した。1個の豆炭状固化品素地の概略寸法は、30×40×25mmである。このようして加圧成形された固化品素地は、粒子同士の密着性が高く空隙率が小さくて緻密化されたものであった。
【0023】
次いで、これら豆炭状の固化品素地を水熱処理用反応容器にて水熱反応させて固化する(水熱固化工程13)。水熱処理条件は反応温度180℃で反応時間5時間とした。その結果、固化品素地中のSiO2 とCaOとが反応してトバモライトが生成されて、粒子同士が強固に固着し空隙率の小さい固化品となり、一軸圧縮強度:200kg/cm2 以上、比重:2.0以上、吸水率:15%以下の品質を有する豆炭状の固化品を得ることができた。このようにして得られた固化品は、コンクリート用細骨材や建築用ブロックなどの用途が広く需要の多い建築資材の原料として利用(活用)することができる。例えば、前記固化品を破砕・分級して粒度5mm以下の人工細骨材を生産し、砕石プラントの製砂設備で生産される天然細骨材に前記人工細骨材を重量比で天然細骨材:人工細骨材=10:1程度の比で混合することにより、JIS規格を満足するコンクリート用細骨材を得ることが可能である。
【0024】
【発明の効果】
以上述べたように、本発明による砕石副産物処理方法によると、ともに砕石副産物である濁水ケーキ及び石粉、並びにカルシウム化合物を混合した原料混合物を処理することにより、コンクリート用細骨材や建築用ブロックなどの用途が広く需要の多い建築資材の原料として利用しうる高強度・低吸水率の高品質な固化品を得ることができ、かつ、水分が多すぎる濁水ケーキと乾燥粉である石粉とをいっしょに用いることで有効に廃棄物の減少化を図ることができるとともに、脱水機や乾燥機、あるいは天日干し用ヤード等による濁水ケーキの水分調整のためのコストが削減でき、製造コストの低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明による砕石副産物処理方法の工程を示す図である。
【符号の説明】
11…原料混合工程 12…加圧成形工程 13…水熱固化工程
[0001]
BACKGROUND OF THE INVENTION
In a crushed stone plant, muddy water cake and stone powder are generated as a crushed stone by-product containing silica (SiO 2 ), and it is necessary to treat and dispose of them. The present invention is capable of obtaining a high-quality solidified product by treating a muddy water cake and stone powder, both of which are crushed stone byproducts, and a raw material mixture mixed with a calcium compound, and a muddy water cake and dry powder having too much water. By using together with this stone powder, it is possible to effectively reduce the waste, and it is possible to reduce the manufacturing cost by eliminating the cost of adjusting the water content of the muddy water cake. The present invention relates to a method for treating crushed stone by-products.
[0002]
[Background Art and Problems to be Solved by the Invention]
As is well known, a crushed stone plant produces crushed stone and crushed sand for roads and buildings, and is mostly constructed in mountainous areas. In general, in a crushed stone plant, stones of about 1m size blasted at a quarry are put into a raw material factory (crushing chamber) in the upstream part of the plant, crushed by a crusher, and sieved according to the particle size of the crushed stone. For non-standard large crushed stones, crushing and sieving and sorting are repeated, and finally crushed stones and crushed sand that have been crushed and sorted by standard particle size are shipped as products. Fine aggregates with a particle size of 5 mm or less ( Sand production facilities that produce (crushed sand) are installed in the downstream part of the plant.
[0003]
In the sand making facility of the crushed stone plant, the crushed product is washed with water in order to remove adhering mud and unnecessary fine stone particles for the purpose of improving product quality. In particular, in concrete fine aggregate (crushed sand), the content of fine stone particles of 75 μm or less contained in the product is limited. For the production of fine aggregate, the fine stone particles are removed. The crushed product having a particle size of 5 mm or less is washed with water. Wash water after use in a wet facility for performing this water wash is muddy water containing about 5 to 10% by weight of fine stone particles or / and mud of about 75 μm or less, and is called “turbid water”. . Then, the muddy water is concentrated and dehydrated from the water and the separated mud using a thickener and filter press or other mechanical or dehydrating machinery or settling basin equipment to form a dehydrated cake containing moisture. Such dewatered cake by muddy water treatment is called “turbid water cake”. For example, when producing fine aggregate (crushed sand) for concrete, about 10% of sand production is generated by weight.
[0004]
Next, stone powder (dry stone powder) will be described. In the sand making facility, a crushed product having a particle size of 5 mm or less is classified by a dry classifier such as an air separator in order to remove the fine stone particles of 75 μm or less, and then the fine stone particles remaining without separation are removed. Some facilities employ a sand making process in which removal is performed by washing with water. In such a sand making process, fine stone particles of 75 μm or less are mainly generated as a by-product by classification with the air separator or the like. These fine stone particles are called stone powder (dry stone powder).
[0005]
In addition, the upstream part of the sandmaking facility in the crushed stone plant is equipped with a crusher and a sieve device for producing crushed stone according to particle size as described above, and in these devices, the dust collection collected by the dust collector. Stone powder (dry stone powder) that is fine stone particles (particle size: average 15 μm) is generated as a by-product as dust.
[0006]
In this way, the crushed stone plant generates muddy water cake and stone powder which are crushed stone by-products. In order to reduce waste from the viewpoint of environmental conservation, muddy water cakes are conventionally used (utilized) as low-strength materials such as landfill materials and embankment materials by simply mixing them with quicklime and cement. . However, in this muddy water cake processing method, the product strength (uniaxial compressive strength) obtained is as low as about 10 kg / cm 2 or less, and the use is limited to low-strength materials such as landfill materials and embankment materials, and is always stable. In fact, there is no large amount of demand, and the expansion of usage cannot be expected. In addition, stone powder has been developed to be used (utilized) as a substitute for limestone powder, which is a mixture of high-fluidity concrete, but it has no other use and is essentially waste. It is the actual situation.
[0007]
For this reason, it is conceivable to develop a high-quality solidified product that can be used as a raw material such as a fine aggregate for concrete, which uses a muddy water cake or stone powder as a starting material, and whose demand is constantly stable. In this case, it is necessary to adjust the moisture for reducing the moisture of the muddy water cake with excess moisture supplied from the crushed stone plant. To adjust the water content of a muddy water cake with too much water, (1) a method using a dehydrator such as a filter press and / or a dryer such as a drum dryer, (2) a method using sun drying (sun drying), etc. Although it can be considered, the former method requires a large amount of equipment and operating costs for the dehydrator or dryer, and the latter method requires a long time to dry the muddy water cake. There is a problem that it is costly to maintain. In such a background, the present inventors have devised the present invention by paying attention to using a muddy water cake having too much water and stone powder as dry powder together.
[0008]
The present invention provides a turbid water cake and stone powder, both of which are crushed stone by-products, and a raw material mixture in which a calcium compound is mixed, whereby a high-quality solidified product can be obtained, and a turbid water cake and dry powder having too much water. By using together with this stone powder, it is possible to effectively reduce the waste, eliminate the need to adjust the water content of the muddy water cake, and reduce the manufacturing cost. The object is to provide a by-product processing method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for treating crushed stone by-products according to the present invention includes a raw material mixing step for obtaining a raw material mixture obtained by mixing muddy water cake and stone powder, both of which are crushed stone by-products, and a calcium compound, and press-molding the raw material mixture. And a hydroforming step of obtaining a solidified product by solidifying the solidified product base by hydrothermal treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the crushed stone by-product processing method according to the present invention having the above-described features, first, a raw material mixing step for forming a raw material mixture is performed. The raw material mixture produced in this step is a solidified product through a pressure molding step and a hydrothermal solidification step, which will be described later, and has a water content of 5 to 35 weight from the viewpoint of pressure moldability and solidified product strength. % Thing is good. The reason for this is that when the moisture content exceeds 35% by weight, the properties of the raw material mixture are too weak, and in the next pressure molding step, the pressure moldability is poor, such as escaping from the mold, and pressure cannot be applied. This is because a dense molding effect cannot be obtained, and a high-strength solidified product cannot be obtained even by hydrothermal treatment. On the other hand, if it is less than 5% by weight, the strength of the solidified product obtained by hydrothermal treatment in the subsequent process is low, and the strength generally required for fine aggregates for concrete and building blocks that are promising high-strength materials for use. This is because (uniaxial compressive strength: 150 kg / cm 2 (14.7 MPa) or more) cannot be achieved.
[0011]
Therefore, in the raw material mixing step, if the water content of the muddy water cake from the crushed stone plant is too much and the water content of the mixture supplied to the pressure forming step as it is exceeds the upper limit of 35% by weight, By using, moisture adjustment is performed so that the moisture content of the raw material mixture obtained by mixing muddy water cake, stone powder and calcium compound satisfies the range of 5 to 35% by weight. Moreover, although the said range of 5 to 35% by weight is satisfied, when the muddy water cake from the crushed stone plant has too much moisture and the workability is poor at the time of mixing, it is difficult to mix them, so the work at the time of mixing can be performed by using stone powder. Property can be improved.
[0012]
Examples of the calcium compound used in the raw material mixing step include calcium oxide (quick lime), calcium hydroxide (slaked lime), and cement. The addition of such a calcium compound is to generate calcium silicate (calcium silicate) such as tobermorite (5CaO · 6SiO 2 · 5H 2 O) in the hydrothermal solidification step described later. And since the Ca / Si weight ratio of the tobermorite crystal | crystallization is 5/6, a calcium compound should just be added so that the Ca / Si weight ratio of a raw material mixture may be 5/6 or less. Even if it exceeds this value, it will be extra and wasted. The lower limit of the Ca / Si weight ratio depends on the strength of the solidified product to be obtained, but 1/6 is appropriate for obtaining a high-strength solidified product having a uniaxial compressive strength of 200 kg / cm 2 or more. is there.
[0013]
Next, the raw material mixture is subjected to pressure molding by a molding machine to obtain a solidified product base which is a molded product (pressure molding process). For example, a briquetting machine is used to make a solid body like bean charcoal. By performing this pressure forming prior to the hydrothermal treatment, a solidified product base having a densified property can be obtained by increasing the adhesion between particles and decreasing the porosity. In this case, the pressure molding pressure is suitably in the range of 40 to 1000 kg / cm 2 (3.92 to 98.1 MPa). If the pressure molding pressure is less than 40 kg / cm 2 , the dense molding effect is not sufficient, and it is difficult to obtain a solid product with high strength and low water absorption rate in the hydrothermal solidification step described later. On the other hand, the strength and water absorption rate of the solidified product are saturated and are not improved even if pressure molding is performed at a pressure exceeding 1000 kg / cm 2 , and molding at a higher molding pressure is wasted.
[0014]
Next, the solidified product base is subjected to an autoclave curing which is a hydrothermal treatment (hydrothermal solidification step). By this autoclave curing under saturated vapor pressure, calcium silicate (calcium silicate) is generated by the reaction of SiO 2 in the solidified substrate with a calcium compound such as CaO. As a result, the particles firmly adhere to each other and become a solidified product with a low porosity, thereby obtaining a solidified product with high strength and low water absorption that can be used as a raw material for building materials such as fine aggregate for concrete and building blocks. be able to. In this hydrothermal treatment, among calcium silicates, it is preferable that crystals grow at a relatively low temperature of about 130 to 300 ° C. to produce high strength tobermorite. As hydrothermal treatment conditions, reaction temperature (autoclave curing temperature): 130 to 300 ° C., reaction time (curing time): 1 to 24 hours are appropriate. Typical conditions are 5 hours at a temperature of 180 ° C. The reaction temperature of 130 to 300 ° C. is a temperature range in which the crystal growth of tobermorite is well promoted, and the higher the reaction temperature, the higher the reaction rate. I'm sorry.
[0015]
In this way, by processing the raw material mixture mixed with turbid water cake and stone powder, both of which are crushed stone by-products, and calcium compounds, it has high strength and can be used as a raw material for building materials such as fine aggregate for concrete and building blocks. A high-quality solidified product with a low water absorption rate can be obtained, and waste water can be effectively reduced by using a muddy water cake with too much water and stone powder that is dry powder together. The cost for adjusting the water content of the muddy water cake by a dehydrator, a dryer, or a sun drying yard can be reduced, and the manufacturing cost can be reduced.
[0016]
【Example】
Examples of the present invention will be described below. FIG. 1 is a diagram showing the steps of a method for treating crushed stone by-products according to the present invention.
[0017]
As shown in FIG. 1, first, a muddy water cake and stone powder, which are crushed stone by-products, and a calcium compound are mixed to form a raw material mixture having a predetermined water content (raw material mixing step 11). In the present embodiment, the case where the turbid water cake from the crushed stone plant has too much water and the moisture content of the mixture supplied to the pressure forming step 12 described later exceeds 35% by weight, which is the upper limit, will be described. A predetermined amount of turbid water cake and stone powder having a moisture content of about 45%, whose moisture content has been measured in advance, is cut out from each storage tank and put into a mixer, and these are mixed for a predetermined time to have a moisture content of about 18%. A premix was obtained. Next, calcium compounds were added to the preliminary mixture, and these were mixed with the mixer over a predetermined time to obtain a raw material mixture having a water content of about 15%.
[0018]
In this example, a twin screw paddle type mixer was used as the mixer. In addition, calcium oxide fine powder was used as the calcium compound, and the amount added was such that the Ca / Si weight ratio of the raw material mixture was 1/4. About the typical particle size distribution of each material, muddy water cake: 75 μm under, stone powder: under 75 μm, fine calcium oxide powder: under 150 μm.
[0019]
About the implementation procedure in this raw material mixing process 11, although the said preliminary mixture was obtained and the raw material mixture was obtained after an appropriate time in a present Example, it is not limited to this. For example, a predetermined amount of turbid water cake, stone powder and calcium oxide fine powder having a moisture content of about 45%, whose moisture content has been measured in advance, is cut out from each storage tank and put into a mixer, and these are mixed to have a moisture content of about 15 % Of the raw material mixture may be made, and may be determined as appropriate according to the purpose and amount of addition of the stone powder.
[0020]
In addition, when the water content of the muddy water cake to be supplied is high and the stone powder is used for moisture adjustment to improve the workability at the time of mixing, for example, the water content is about 30% in which the water content is measured in advance. A predetermined amount of muddy water cake and stone powder are cut out from each storage tank and put into a mixer. These are mixed for a predetermined time to obtain a premix with a moisture content of about 13%. An example can be given in which powder is added and mixed with the mixer over a predetermined time to obtain a raw material mixture having a water content of about 10%.
[0021]
As described above, in the raw material mixing step 11, the dehydrator, the dryer or the sun drying yard is not required by adjusting the water content by using the turbid water cake having too much water and the stone powder as the dry powder together. , You don't have to spend money to adjust the water content of the muddy water cake.
[0022]
Next, the obtained raw material mixture having a water content of about 15% is pressure-molded into a solidified product base with a molding machine at a pressure molding pressure of 100 kg / cm 2 (pressure molding step 12). In the examples, a briquetting machine was used as a molding machine, and a solidified product base in the form of bean charcoal was molded. The approximate dimension of one bean-charcoal solidified product base is 30 × 40 × 25 mm. The solidified product substrate thus pressure-molded was densified with high adhesion between particles and low porosity.
[0023]
Subsequently, these bean-charcoal solidified product bodies are hydrothermally reacted in a hydrothermal treatment reaction vessel to be solidified (hydrothermal solidification step 13). Hydrothermal treatment conditions were a reaction temperature of 180 ° C. and a reaction time of 5 hours. As a result, SiO 2 and CaO in the solidified product substrate react to produce tobermorite, and the particles are firmly fixed to each other to become a solidified product having a small porosity, uniaxial compressive strength: 200 kg / cm 2 or more, specific gravity: A bean-charcoal solidified product having a quality of 2.0 or more and water absorption: 15% or less could be obtained. The solidified product thus obtained can be used (utilized) as a raw material for building materials that are widely used, such as fine aggregate for concrete and building blocks. For example, the solidified product is crushed and classified to produce an artificial fine aggregate having a particle size of 5 mm or less, and the artificial fine aggregate is mixed with the natural fine aggregate in a weight ratio to the natural fine aggregate produced by the sand making facility of the crushed stone plant. By mixing at a ratio of material: artificial fine aggregate = 10: 1, it is possible to obtain a fine aggregate for concrete that satisfies the JIS standard.
[0024]
【The invention's effect】
As described above, according to the method for treating crushed stone by-products according to the present invention, by treating the mixture of muddy water cake and stone powder, both of which are crushed stone by-products, and a calcium compound, fine aggregate for concrete, building blocks, etc. High-strength, low-water-absorption high-quality solidified product that can be used as a raw material for building materials that are widely used and demanded, together with turbid water cake with too much moisture and stone powder that is dry powder It is possible to effectively reduce the waste by using it in the wastewater, and also reduce the cost for adjusting the moisture of the muddy water cake using a dehydrator, dryer, sun drying yard, etc. Can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the steps of a method for treating crushed stone by-products according to the present invention.
[Explanation of symbols]
11 ... Raw material mixing process 12 ... Pressure molding process 13 ... Hydrothermal solidification process

Claims (2)

ともに砕石副産物である濁水ケーキ及び石粉に対してカルシウム化合物をカルシウム対シリコンの重量比が1/6以上となるように添加して混合し含水率が5〜35重量%の原料混合物を得る原料混合工程と、前記原料混合物を3.9〜98MPaで加圧成形して固化品素地を得る加圧成形工程と、前記固化品素地を水熱処理により固化して固化品を得る水熱固化工程とを備えていることを特徴とする砕石副産物処理方法。Both raw material mixing weight ratio of calcium to silicon calcium compound to a turbid water cake and stone powder is crushed stone products were mixed and added to a 1/6 or water content to obtain a 5 to 35 wt% of the raw material mixture A pressure forming step of obtaining a solidified product base by pressure-molding the raw material mixture at 3.9 to 98 MPa, and a hydrothermal solidifying step of solidifying the solidified product base by hydrothermal treatment to obtain a solidified product. A method for treating crushed stone by-products, comprising: 前記水熱処理では130℃から300℃の範囲でオートクレーブ養生を行うことを特徴とする請求項1記載の砕石副産物処理方法。2. The method for treating crushed stone by-products according to claim 1, wherein the hydrothermal treatment is performed in a range of 130 to 300 [deg.] C. for autoclave curing.
JP19062199A 1999-07-05 1999-07-05 Crushed stone by-product processing method Expired - Fee Related JP4251723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19062199A JP4251723B2 (en) 1999-07-05 1999-07-05 Crushed stone by-product processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19062199A JP4251723B2 (en) 1999-07-05 1999-07-05 Crushed stone by-product processing method

Publications (2)

Publication Number Publication Date
JP2001017935A JP2001017935A (en) 2001-01-23
JP4251723B2 true JP4251723B2 (en) 2009-04-08

Family

ID=16261128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19062199A Expired - Fee Related JP4251723B2 (en) 1999-07-05 1999-07-05 Crushed stone by-product processing method

Country Status (1)

Country Link
JP (1) JP4251723B2 (en)

Also Published As

Publication number Publication date
JP2001017935A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
CN109516703B (en) Recovery of aggregate and powdery mineral material from demolition waste
JPH078796A (en) Carbon dioxide consumption material wherein sludge discharged in producing ready-mixed concrete or precast concrete is used, production thereof and method for consuming carbon dioxide contained in exhaust gas
CN110357562A (en) Construction refuse resource processing method
KR100922375B1 (en) Manufacturing Method for Porous Material of Calcium Silicate Using Sludge and Stone Powder
JP2014152070A (en) Method for making good use of waste gypsum board
JP4251723B2 (en) Crushed stone by-product processing method
JP3840371B2 (en) Steelmaking slag and sand-washed sludge treatment method
KR100713686B1 (en) Porous material of calcium silicate used waste concrete powder
JP4006155B2 (en) How to use crushed stone by-products
KR101735094B1 (en) Method of preparing ciment binder from concret waste
JPH05238791A (en) Production of artificial aggregate for concrete and artificial aggregate for concrete
JP3847531B2 (en) Steelmaking slag aggregate processing method
CN113620670A (en) System and method for preparing baking-free bricks and co-producing potassium chloride by using biomass power plant ash
JP4664462B2 (en) Method for producing carbonated cured body
KR100378998B1 (en) Method of treating silica-containing mud sludges
JP2000256055A (en) Treatment of silica-containing mud sludge
JP4014400B2 (en) Soil treatment material composition and method for producing the same
JP4317391B2 (en) Eco lime cement, method for producing the same and method for producing eco lime cement solidified body
JP4340057B2 (en) Method for producing hydrothermal solidified body
JP2002137956A (en) Method of manufacturing hydrothermally solidified formed boyd consisting of crushed stone byproduct
JP2000327381A (en) Utilization of by-products in macadamization
JP4160467B2 (en) Artificial aggregate manufacturing method and artificial aggregate manufactured by the method
JP4763904B2 (en) Processing method of muddy water cake
KR100212032B1 (en) Lightweight concrete composition and production thereof
JP4514935B2 (en) Permeable block using single grain aggregate composed of silica-containing mud sludge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees