KR100450281B1 - A method for manufacturing high strength building materials using slag created during steel making processes - Google Patents

A method for manufacturing high strength building materials using slag created during steel making processes Download PDF

Info

Publication number
KR100450281B1
KR100450281B1 KR10-2001-0085670A KR20010085670A KR100450281B1 KR 100450281 B1 KR100450281 B1 KR 100450281B1 KR 20010085670 A KR20010085670 A KR 20010085670A KR 100450281 B1 KR100450281 B1 KR 100450281B1
Authority
KR
South Korea
Prior art keywords
slag
weight
building material
building materials
manufacturing
Prior art date
Application number
KR10-2001-0085670A
Other languages
Korean (ko)
Other versions
KR20030055633A (en
Inventor
전병세
윤존도
이상진
남성헌
이상훈
Original Assignee
학교법인 한마학원
전병세
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한마학원, 전병세 filed Critical 학교법인 한마학원
Priority to KR10-2001-0085670A priority Critical patent/KR100450281B1/en
Publication of KR20030055633A publication Critical patent/KR20030055633A/en
Application granted granted Critical
Publication of KR100450281B1 publication Critical patent/KR100450281B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 제강공정에서 발생한 슬래그를 이용해 건축용자재를 제조하는 방법에 관한 것으로서, 상기 슬래그의 평균입도를 11㎛보다 작게 분쇄하는 단계와, 상기 분쇄된 제강슬래그에 CaO/SiO2의 배합비를 (35~45)중량% :(55~65)중량%로 조절하기 위해 추가되는 규석분말과 수화반응 촉진재인 소석회(Ca(OH)2) 분말을 함께 섞어 혼합물을 만드는 단계와, 상기 혼합물을 가압성형하여 판 형태의 성형체로 가압성형하는 단계와, 상기 성형체를 오토클레이브 내에서 수열합성하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a building material using the slag generated in the steelmaking process, the step of grinding the average particle size of the slag smaller than 11㎛, and the mixing ratio of CaO / SiO 2 to the pulverized steelmaking slag (35 45% by weight: mixing the silica powder and calcined lime (Ca (OH) 2 ) powder, which is added to adjust to (55-65)% by weight, to form a mixture, and press-molding the mixture Press molding into a plate-shaped molded body, and hydrothermally synthesized in the autoclave.

Description

제강공정에서 발생한 슬래그를 이용한 고강도 건축용자재의 제조방법{A METHOD FOR MANUFACTURING HIGH STRENGTH BUILDING MATERIALS USING SLAG CREATED DURING STEEL MAKING PROCESSES}Manufacturing method of high strength building materials using slag generated in steelmaking process {A METHOD FOR MANUFACTURING HIGH STRENGTH BUILDING MATERIALS USING SLAG CREATED DURING STEEL MAKING PROCESSES}

본 발명은 제강공정에서 발생된 슬래그를 이용하여 건축용자재를 제조하는 방법에 관한 것으로서, 더 상세하게는 제강공정에서 발생되는 전로 또는 래들슬래그를 수열합성법을 통해 고강도의 건축용자재로 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing building materials using the slag generated in the steelmaking process, and more particularly to a method for producing a high-strength building material through the hydrothermal synthesis method of the converter or ladle slag generated in the steelmaking process. will be.

제선 및 제강공정에서는 CaO, SiO2, FeO 등을 주성분으로 하는 다량의 슬래그가 발생되는데, 그 중 제선공정의 고로 수쇄 슬래그는 수경성이 크므로 초조양식에 의해 성형, 양생 및 건조를 통해 건축용자재로 만들어질 수 있다.In the steelmaking and steelmaking process, a large amount of slag mainly containing CaO, SiO 2 , FeO, etc. is generated. Among them, the blast furnace chain slag of the steelmaking process has a large hydraulicity, so it is formed as a building material by forming, curing, and drying in an agitated manner. Can be made.

하지만, 전로슬래그 또는 래들슬래그와 같은 제강슬래그는 그 내부의 결정상으로 인해 강도 발현을 위한 수경성이 작으므로 고로 슬래그와 같이 건자재등에 이용하는데 한계가 있었다. 따라서, 전로 또는 레들 슬래그와 같은 제강슬래그는 주로 도로 건설등의 골재 등에 이용되는 그쳤다.However, steelmaking slag, such as converter slag or ladle slag, has a limitation in using it for building materials such as blast furnace slag because the hydrophobicity for strength development is small due to its internal crystal phase. Therefore, steelmaking slag such as converter or ladle slag is mainly used for aggregates such as road construction.

이에 대해, 전로 또는 래들슬래그를 탈철선광하고 이를 일정비율로 혼합한 후, 오토클레이브에서 2Kg/cm2의 압력으로 수 시간 동안 처리하여 건축용자재를 제조하는 방법이 1993년 출원된 국내특허 제 101842호에 개시되어 있다.On the other hand, Korean Patent No. 101842, filed in 1993, describes a method for manufacturing building materials by de-energizing a converter or ladle slag, mixing them in a constant ratio, and then treating the autoclave at a pressure of 2 Kg / cm 2 for several hours. Is disclosed.

하지만, 이와 같은 건축용자재의 제조방법은 탈철선광과 같은 환원공정을 통해 슬래그 내부의 광물 결정상을 비정질로 바꾸어주는 공정이 추가되므로 많은 비용이 드는 문제점이 있다.However, the manufacturing method of such building materials has a problem that it costs a lot because the process of changing the mineral crystal phase in the slag to amorphous through a reduction process such as iron fertilization.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 제강슬래그를 환원처리하지 않고 이용함으로써 종래의 환원처리에 따른 비용을 절감하는 건자재 제조방법을 제공하는 것이다.Therefore, the present invention has been made to solve the above problems, an object of the present invention is to provide a construction material manufacturing method for reducing the cost according to the conventional reduction treatment by using the steelmaking slag without reducing treatment.

도 1은 본 발명의 실시예에 따라 제강슬래그를 이용해 건축용자재를 제조하는 공정을 도시한 블록도.1 is a block diagram showing a process for manufacturing a building material using steelmaking slag according to an embodiment of the present invention.

도 2는 도 1의 공정에 의해 전로슬래그 및 래들슬래그를 이용해 제조된 건축용자재의 꺽임강도를 나타내는 그래프.Figure 2 is a graph showing the bending strength of the building material manufactured using the converter slag and ladle slag by the process of Figure 1;

도 3은 도 2 건축용자재의 흡수율을 나타내는 그래프.Figure 3 is a graph showing the absorption rate of the building material of Figure 2;

도 4는 도 2 및 도 3의 건축용자재의 기공률을 나타내는 그래프.Figure 4 is a graph showing the porosity of the building material of Figures 2 and 3.

상술한 본 발명의 목적을 달성하기 위해, 제강슬래그를 이용한 본 발명에 따른 건자재 제조방법은 제강슬래그를 11㎛ 미만의 초미립자로 분쇄하는 분쇄 단계와, 상기 분쇄된 제강슬래그 40~80 중량%에 CaO/SiO2의 비율을 (35~45)중량% :(55~65) 중량%로 맞추기 위한 규석분말을 CaO 함량에 대해 20~60 중량% 첨가하고, 수화반응촉진재인 소석회(Ca(OH)2) 분말을 CaO 함량에 대해 10 중량% 첨가하여 혼합물을 만드는 혼합 단계와, 상기 혼합물을 가압성형하여 성형체로 가압성형하는 성형 단계와, 상기 성형체를 오토클레이브 내에서 수열합성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object of the present invention, the construction material manufacturing method according to the present invention using steelmaking slag is a grinding step of grinding the steelmaking slag into ultra-fine particles of less than 11㎛, and the crushed steelmaking slag 40 ~ 80% by weight CaO 20 to 60% by weight of silica powder is added to the CaO content to adjust the ratio of / SiO 2 to (35 to 45) weight%: (55 to 65) weight%, and calcined lime (Ca (OH) 2 ) A) mixing the powder by adding 10% by weight to the CaO content to form a mixture, forming the mixture by press molding the mixture into a molded body, and hydrothermally synthesizing the molded body in an autoclave. It is done.

여기서, 제강슬래그는 제강공정 중 발생하는 전로 또는 래들에서 발생하는 슬래그를 의미한다.Here, the steelmaking slag means slag generated in the converter or ladle generated during the steelmaking process.

상술된 제강슬래그를 이용한 건자재 제조공정에서, 제강슬래그를 약 11㎛ 미만, 바람직하게는 7 내지 11㎛의 미립자로 분쇄하는 단계는 수열합성시 반응을 촉진시키는데, 이러한 분쇄단계에서, 제강슬래그를 11㎛이상으로 처리할 경우 수열합성반응이 일어나지 않거나 그 반응성이 떨어지게 된다.In the dry material manufacturing process using the steelmaking slag described above, the step of grinding the steelmaking slag into fine particles of less than about 11 μm, preferably 7 to 11 μm, promotes the reaction during hydrothermal synthesis. In this grinding step, the steelmaking slag is In the case of treatment with a thickness of more than μm, the hydrothermal reaction does not occur or its reactivity is reduced.

상기 분쇄단계후, 초미립자로 분쇄된 제강슬래그에 규석분말과 수화반응촉진재인 소석회를 추가하고 이를 혼합하는 단계가 수행되는데, 여기서, 규석분말은 제강슬래그의 CaO:SiO2의 배합비를 (35~45) 중량% :(55~65) 중량%, 바람직하게는 40 중량%: 60 중량%의 정량비로 맞추어주는 역할을 하며, 상기 규석분말은 2 내지 3.5㎛, 바람직하게는 2.97㎛ 크기의 미립자 분말인 것이 바람직하다. 제강슬래그의 CaO:SiO2의 배합비를 (35~45)중량% :(55~65), 바람직하게는 40 중량%:60 중량%의 정량비로 배합함으로써 우수한 특성의 건자재가 얻어질 수 있다. 또한, 상기 혼합단계에서 첨가되는 소석회는 후술될 수화반응을 촉진시키는 촉진재의 역할을 하며,약 10 중량%정도가 첨가되는 것이 바람직하다. 이렇게 혼합된 혼합물은 약 8시간 건식 볼밀 과정을 거친다.After the pulverizing step, the step of adding the silica powder and hydrated lime as a hydration reaction accelerator to the steelmaking slag crushed into ultra-fine particles is carried out, where the silica powder is a mixture ratio of CaO: SiO 2 of the steelmaking slag (35 ~ 45 ) Wt%: (55 ~ 65) wt%, preferably 40 wt%: 60% by weight to adjust the ratio, the silica powder is 2 to 3.5㎛, preferably 2.97㎛ size particulate powder It is preferable. By combining the compounding ratio of CaO: SiO 2 in the steelmaking slag in a quantitative ratio of (35 to 45) wt%: (55 to 65), preferably 40 wt%: 60 wt%, a building material having excellent properties can be obtained. In addition, the slaked lime added in the mixing step serves as a facilitating agent to promote the hydration reaction to be described later, preferably about 10% by weight is added. The mixed mixture is subjected to a dry ball mill for about 8 hours.

그 후, 상기 혼합물은 판형태로 압축성형되며, 상기 성형된 성형체는 약 100 내지 400℃, 바람직하게는 약 200℃의 온도의 오토클레이브 내에서 약 150 내지 약 250psi의 압력으로 수열합성된다.The mixture is then compression molded into a plate, and the shaped compact is hydrothermally synthesized at a pressure of about 150 to about 250 psi in an autoclave at a temperature of about 100 to 400 ° C., preferably about 200 ° C.

본 발명의 수열합성 반응은 상술한 바와 같이 약 100 내지 400℃의 온도범위에서 이루어지므로, 높은 온도에서 분해하는 상, 즉 토버모라이트(tobermorite)를 성장시킬수 있다. 상기 토버모라이트는 화학식이 C5S6HX인 C-S-H계 화합물로서 (SiO3)n2-를 기본으로 하는 섬유 결정질로서, CaO/SiO2의 배합비가 약 0.8 내지 1.5일 때 오토클레이브 내에서 60 내지 450℃에서 생성된다.Since the hydrothermal synthesis reaction of the present invention is carried out at a temperature range of about 100 to 400 ° C. as described above, it is possible to grow a phase that decomposes at a high temperature, that is, tobermorite. The tobermorite has the formula a C 5 S 6 H X as a CSH-based compound (SiO3) n 2- as the crystalline fiber to the base, when the blending ratio of CaO / SiO 2 of about 0.8 to 1.5 days in the autoclave 60 To 450 ° C.

따라서, 본 발명의 수열합성반응은 저온인 동시에 등방압하에서 행해지기 때문에 변형이 없는 토버모라이트 결정을 보다 용이하게 성장시키며, 그 결정상태가 침상형이므로 성형체의 강도를 증진시킨다.Therefore, the hydrothermal synthesis reaction of the present invention is carried out at low temperature and under isotropic pressure, thereby making it easier to grow tobermorite crystals without deformation. Since the crystal state is acicular, the strength of the molded body is enhanced.

이하, 본 발명의 바람직한 실시예를 도면을 참조로 하여 상세히 설명하고자 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

이후에 기술될 실시예 1 및 2를 포함하는, 제강용 슬래그를 이용한 고강도 건축용자재의 제조공정에 대한 순서도는 도 1에 도시되어 있다.A flowchart of a manufacturing process of a high strength building material using steelmaking slag, which includes Examples 1 and 2 to be described later, is shown in FIG. 1.

<실시예 1><Example 1>

수열합성의 반응성을 높이기 위해, 성분이 분석된 래들슬래그를 800rpm에서2시간동안 어트리션밀로 초미분화하여 평균 입자 크기가 약 10㎛ 정도인 래들슬래그 분말을 제조한다. 수열합성시 CaO/SiO2비를 조절하기 위하여 SiO2원료로서 입자 크기가 약 2.97 ㎛인 규석 분말을 사용하였으며, 수화반응 촉진제로 공업용 소석회(Ca(OH)2)를 사용하였다. 50 ∼ 80 중량%의 래들슬래그에 CaO함량에 대해 20~50 중량%의 규석분말과 수화반응 촉진제로 공업용 소석회 분말 10 중량%를 넣고 8시간 동안 건식 볼밀한 후, 7 톤/cm2의 압력으로 일축 가압성형하여 판형태의 성형체를 건식성형하고, 건식성형에 의해 제조된 성형체를 오토클레이브 내에서 200℃(202psi)의 온도(압력) 조건으로 20시간 동안 수열처리를 행하여 고강도 건축용자재를 제조하였다.In order to increase the reactivity of hydrothermal synthesis, the ladle slag from which the components were analyzed was ultra-differentiated with an attrition mill at 800 rpm for 2 hours to prepare a ladle slag powder having an average particle size of about 10 μm. To control the CaO / SiO 2 ratio during hydrothermal synthesis, silica powder having a particle size of about 2.97 μm was used as a raw material of SiO 2 , and industrial calcined lime (Ca (OH) 2 ) was used as a hydration accelerator. 50 to 80% by weight of ladle slag is added to 20 to 50% by weight of silica powder and 10% by weight of industrial calcined lime powder as a hydration accelerator, and dry ball milled for 8 hours, followed by a pressure of 7 tons / cm 2 . The plate-shaped molded product was dry-molded by uniaxial pressure molding, and the molded product produced by dry molding was subjected to hydrothermal treatment for 20 hours at a temperature (pressure) of 200 ° C. (202 psi) in an autoclave to prepare a high strength building material. .

<실시예 2><Example 2>

환원처리 또는 용융처리 하지 않은 전로슬래그를 이용하여 건자재를 제조하는 방법에서, 반응성을 높이기 위해 성분이 분석된 전로슬래그를 800rpm에서 2시간동안 어트리션밀하여 초미분화하여 평균 입자 크기가 약 10㎛ 정도인 전로슬래그 분말을 제조한다. 수열합성시, CaO/SiO2비를 조절하기 위하여 SiO2원료로서 입자 크기가 2.97 ㎛인 규석 분말을 사용하였으며, 수화반응 촉진제로 공업용 소석회(Ca(OH)2)를 사용하였다. 40 ∼ 60 중량%의 전로슬래그와 CaO 함량에 대해 60 ∼ 40중량%의 규석분말과 수화반응 촉진제로 공업용 소석회 분말 10 중량%를 넣고 8시간 동안 건식 볼밀하여 7 톤/cm2의 압력으로 일축 가압성형하여 판형태의 성형체를 건식성형하고, 건식성형에 의해 제조된 성형체를 오토클레이브 내에서 200℃(202psi)의 온도(압력) 조건으로 20시간 동안 수열처리를 행하여 고강도 건축용자재를 제조하였다.In the method of manufacturing dry materials using converter slag that has not been reduced or melted, the converter slag from which components have been analyzed is subjected to ultrafine micronization at 800 rpm for 2 hours in order to increase the reactivity, and the average particle size is about 10 μm. Phosphorus converter slag powder is prepared. In hydrothermal synthesis, in order to control the CaO / SiO 2 ratio, silica powder having a particle size of 2.97 μm was used as a raw material of SiO 2 , and industrial calcined lime (Ca (OH) 2 ) was used as a hydration accelerator. 60 to 40% by weight of silica slag and CaO content of 40 to 60% by weight, and 10% by weight of industrial slaked lime powder as a hydration accelerator, and dry ball milling for 8 hours to uniaxially pressurize at a pressure of 7 tons / cm 2 . The molded article in the form of a plate was dry-molded, and the molded article produced by dry molding was subjected to hydrothermal treatment for 20 hours at a temperature (pressure) of 200 ° C. (202 psi) in an autoclave to prepare a high strength building material.

<비교예 1>Comparative Example 1

미분화하지 않은 래들슬래그 분말을 상기 실시예 1과 동일한 조건으로 수열합성을 시도하였다.Hydrothermal synthesis was attempted under the same conditions as in Example 1 of the ladle slag powder which was not micronized.

<비교예 2>Comparative Example 2

미분화하지 않은 전로슬래그 분말을 상기 실시예 2와 동일한 조건으로 수열합성을 시도하였다.Hydrothermal synthesis was attempted under the same conditions as those of Example 2 of the undifferentiated converter slag powder.

<실험예>Experimental Example

비교예 1 및 2에서 제조한 시편은 수열합성이 거의 이루어지지 않아 꺽임강도, 흡수율 및 기공률을 측정하기 어려울 정도였으므로, 상기 실시예 1 및 2에서 제조한 시편에 대해서만 다음과 같은 방법으로 꺾임강도, 흡수율 및 기공률을 측정하였고, 그 결과는 다음 도 2 내지 4에 막대그래프로 도시되어 있다.Since the specimens prepared in Comparative Examples 1 and 2 were hardly hydrothermally synthesized to measure bending strength, water absorption, and porosity, the bending strengths of the specimens prepared in Examples 1 and 2 were as follows. Absorption rate and porosity were measured, and the results are shown as bar graphs in the following FIGS. 2 to 4.

⑴ 꺾임강도 측정측정 Bending strength measurement

상기 실험예 1 및 2의 방법으로 얻어진 시편의 꺾임강도를 측정하기 위해, 3×4×40㎜인 꺽임강도 시험편을 제작하여 만능시험기(Instron 4489)를 통해 4점꺾임강도를 측정하였다.In order to measure the bending strength of the specimens obtained by the methods of Experimental Examples 1 and 2, a bending strength test piece having a size of 3 × 4 × 40 mm was produced and four-point bending strength was measured through an universal testing machine (Instron 4489).

측정결과, 도 2에 도시된 바와 같이 래들슬래그를 이용해 제조된 건축용자재의 꺽임강도는 약 240kgf/cm2였으며, 전로슬래그를 이용해 제조된 건축용자재의 꺽임강도는 약 285kgf/cm2였다.As a result, as shown in FIG. 2, the bending strength of the building material manufactured using the ladle slag was about 240 kgf / cm 2 , and the bending strength of the building material manufactured using the converter slag was about 285 kgf / cm 2 .

따라서, 상기 래들슬래그 및 전로슬래그를 이용한 건축용자재의 꺽임강도는 모두 한국산업규격(ks)이 정하는 건축용자재의 꺽임강도 규정인 102kg/cm2보다 컸다.Accordingly, the bending strength of the building material using the ladle slag and converter slag was greater than 102kg / cm 2, which is the bending strength regulation of the building material defined by the Korean Industrial Standard (ks).

⑵ 흡수율 측정⑵ Absorption rate measurement

상기 실시예 1 및 2의 방법으로 얻어진 시편의 흡수율을 측정하기 위해, 한국산업규격(KS 3114)을 참고하여 표준규격에 따라 측정하였다.In order to measure the absorption rate of the specimen obtained by the method of Examples 1 and 2, it was measured according to the standard specification with reference to the Korean Industrial Standards (KS 3114).

측정결과, 도 3에 도시된 바와 같이 래들슬래그를 이용해 제조된 건축용자재의 흡수율은 약 24%이었고, 전로슬래그를 이용해 제조된 건축용자재의 흡수율은 약 20% 이었으며, 두 제강슬래그 모두 흡수율이 모두 양호하였다.As a result, as shown in FIG. 3, the absorption rate of the building material manufactured using the ladle slag was about 24%, the absorption rate of the building material manufactured using the converter slag was about 20%, and both steelmaking slag had good absorption rates. It was.

⑶ 기공률 측정⑶ porosity measurement

상기 실시예 1 및 2의 방법으로 얻어진 시편의 기공률을 측정하기 위해, 한국산업규격(KS 3114)을 참고하여 표준규격에 따라 측정하였다.In order to measure the porosity of the specimen obtained by the method of Examples 1 and 2, it was measured according to the standard specification with reference to the Korean Industrial Standards (KS 3114).

그 결과, 도 4에 도시된 바와 같이 래들슬래그를 이용해 제조된 건축용자재의 기공률은 약 39% 이었고, 전로슬래그를 이용해 제조된 건축용자재의 흡수율은 약 35% 이었으며, 두 제강슬래그 모두 기공률이 모두 양호하였다.As a result, as shown in FIG. 4, the porosity of the building material manufactured using the ladle slag was about 39%, and the absorption rate of the building material manufactured using the converter slag was about 35%. Both of the steelmaking slag had good porosity. It was.

이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 정의되는 본 발명의 취지와 범위에 포함된다.The present invention is not limited to the embodiments described above, and various modifications and changes can be made by those skilled in the art, which are included in the spirit and scope of the present invention as defined in the appended claims.

이상에서 살펴본 바와 같이, 본 발명은 수경성을 가진 제강슬래그를 미립자로 분쇄한 후 환원처리하지 않고 수열합성하여 건축용자재를 제조하므로, 환원처리에 따른 비용을 절감할 뿐 아니라, 상기 수열합성반응이 비교적 저온에서 이루어지므로 침상형의 토버모라이트 결정을 성장시켜 고강도의 건축용자재를 얻을 수 있는 효과를 갖는다.As described above, the present invention manufactures building materials by hydrothermal synthesis without grinding after grinding the steelmaking slag having hydraulic properties into fine particles, thereby reducing the cost of the reduction treatment, and the hydrothermal reaction is relatively Since it is made at a low temperature, it has the effect of obtaining a high-strength building material by growing acicular tobermorite crystals.

Claims (3)

제강공정에서 발생한 슬래그를 이용해 건축용자재를 제조하는 방법에 있어서,In the method of manufacturing building materials using slag generated in the steelmaking process, 상기 슬래그의 평균입도를 11㎛보다 작게 분쇄하는 단계와,Grinding the slag with an average particle size smaller than 11 μm, 상기 분쇄된 제강슬래그 40~80 중량%에 CaO/SiO2의 배합비를 (35~45) 중량% :(55~65) 중량%로 조절하기 위한 규석분말을 CaO 함량에 대해 20~60 중량% 첨가하고, 수화반응촉진재인 소석회(Ca(OH)2) 분말을 CaO 함량에 대해 10 중량% 첨가하여 혼합물을 만드는 단계와,40 to 80% by weight of the pulverized steel slag added to the CaO content 20 to 60% by weight of the silica powder to adjust the mixing ratio of CaO / SiO 2 to (35 to 45) weight%: (55 to 65)% by weight And adding hydrated lime (Ca (OH) 2 ) powder, which is a hydration reaction accelerator, to 10% by weight based on the CaO content to make a mixture, 상기 혼합물을 가압성형하여 성형체로 가압성형하는 단계와,Press molding the mixture to press molding the molded body; 상기 성형체를 오토클레이브 내에서 수열합성하는 단계를 포함하는 것을 특징으로 하는 슬래그를 이용한 건축용자재의 제조방법.Method for producing a building material using a slag, characterized in that it comprises the step of hydrothermally synthesized in the autoclave the molded body. 제 1항에 있어서, 상기 슬래그는 전로슬래그인 것을 특징으로 하는 슬래그를 이용한 건축용자재의 제조방법.The method of manufacturing a building material using a slag according to claim 1, wherein the slag is a converter slag. 제 1항에 있어서, 상기 슬래그는 래들슬래그인 것을 특징으로 하는 슬래그를 이용한 건축용자재의 제조방법.The method of claim 1, wherein the slag is a ladle slag.
KR10-2001-0085670A 2001-12-27 2001-12-27 A method for manufacturing high strength building materials using slag created during steel making processes KR100450281B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085670A KR100450281B1 (en) 2001-12-27 2001-12-27 A method for manufacturing high strength building materials using slag created during steel making processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085670A KR100450281B1 (en) 2001-12-27 2001-12-27 A method for manufacturing high strength building materials using slag created during steel making processes

Publications (2)

Publication Number Publication Date
KR20030055633A KR20030055633A (en) 2003-07-04
KR100450281B1 true KR100450281B1 (en) 2004-09-24

Family

ID=32213897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0085670A KR100450281B1 (en) 2001-12-27 2001-12-27 A method for manufacturing high strength building materials using slag created during steel making processes

Country Status (1)

Country Link
KR (1) KR100450281B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744272B1 (en) 2015-04-20 2017-06-08 주식회사 케이알티 Admixture composition for autoclave-cured concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819712B1 (en) * 2007-03-29 2008-04-04 최준옥 The vegetation block making for soil-mortar composites of non-heating with

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778523A (en) * 1985-11-20 1988-10-18 Nippon Magnetic Dressing Co., Ltd. Process for using steelmaking slag
JPH02239138A (en) * 1989-03-11 1990-09-21 Nippon Jiryoku Senko Kk Method for reforming steel making slag
KR940014146A (en) * 1992-12-04 1994-07-16 석강봉 Method for producing calcium silicate molded body
KR950003207A (en) * 1993-07-02 1995-02-16 조말수 Manufacturing method of building materials using slag
JPH082949A (en) * 1994-06-17 1996-01-09 Joho Sogo Kenkyusho:Kk Method for modifying steelmaking slag
JPH10296205A (en) * 1997-02-27 1998-11-10 Inax Corp Method for solidifying industrial waste and solidified body of industrial waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778523A (en) * 1985-11-20 1988-10-18 Nippon Magnetic Dressing Co., Ltd. Process for using steelmaking slag
JPH02239138A (en) * 1989-03-11 1990-09-21 Nippon Jiryoku Senko Kk Method for reforming steel making slag
KR940014146A (en) * 1992-12-04 1994-07-16 석강봉 Method for producing calcium silicate molded body
KR950003207A (en) * 1993-07-02 1995-02-16 조말수 Manufacturing method of building materials using slag
JPH082949A (en) * 1994-06-17 1996-01-09 Joho Sogo Kenkyusho:Kk Method for modifying steelmaking slag
JPH10296205A (en) * 1997-02-27 1998-11-10 Inax Corp Method for solidifying industrial waste and solidified body of industrial waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744272B1 (en) 2015-04-20 2017-06-08 주식회사 케이알티 Admixture composition for autoclave-cured concrete

Also Published As

Publication number Publication date
KR20030055633A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
Heikal et al. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag
Zhang et al. Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials
CN111630020B (en) Non-fired monolithic material
CN101555531B (en) Method for activating and modifying steel slag by residual heat of converter steel slag
JP2014210709A (en) Cementitious formulations
CN112010581B (en) Calcium silicate hydrate nanocrystal core suspension and preparation method thereof
JP2004518605A (en) Cement material
Balaguera et al. Characterization of steel slag for the production of chemically bonded phosphate ceramics (CBPC)
Yang et al. Properties and microstructure of CO2 activated binder produced by recycling phosphorous slag
EP1565406A1 (en) Method and apparatus for producing calcium silicate hydrate
CN111153610A (en) Method for comprehensively utilizing high-iron high-calcium high-silicon waste magnesite and boron mud
AU2014363056B2 (en) Improved alkaline-activated slag (AAS) composition
KR20100002710A (en) Slag cement composition
KR100450281B1 (en) A method for manufacturing high strength building materials using slag created during steel making processes
KR100808359B1 (en) Method for solidifying sewage sludge
CA2438283C (en) Fluidized reaction for producing synthetic silicates
EP1149047B1 (en) Procedure for preparing silica from calcium silicate
CN108558246A (en) A kind of electroslag base mineral admixture and the preparation method and application thereof
KR0169528B1 (en) Method and manufacturing brick using steel making slags and brick manufactured therefrom
CN114409366A (en) Aerated concrete plate beneficial to recycling and preparation method thereof
CN105884235A (en) Method for preparing superhigh-strength binding material from granulated blast-furnace slag
JPH01126246A (en) Blast-furnace cement using converter slag as modifier
JPS62253737A (en) Production of binder
KR101744272B1 (en) Admixture composition for autoclave-cured concrete
KR20040056626A (en) Binder for cement concrete using AOD slag

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120914

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee