JP4340058B2 - Method for producing hydrothermal solidified body - Google Patents

Method for producing hydrothermal solidified body Download PDF

Info

Publication number
JP4340058B2
JP4340058B2 JP2002353581A JP2002353581A JP4340058B2 JP 4340058 B2 JP4340058 B2 JP 4340058B2 JP 2002353581 A JP2002353581 A JP 2002353581A JP 2002353581 A JP2002353581 A JP 2002353581A JP 4340058 B2 JP4340058 B2 JP 4340058B2
Authority
JP
Japan
Prior art keywords
hydrothermal
raw material
preparation
sludge
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002353581A
Other languages
Japanese (ja)
Other versions
JP2004182559A (en
Inventor
洋輝 前浪
英昭 田中
紀文 井須
秀輝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2002353581A priority Critical patent/JP4340058B2/en
Publication of JP2004182559A publication Critical patent/JP2004182559A/en
Application granted granted Critical
Publication of JP4340058B2 publication Critical patent/JP4340058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Sludge (AREA)
  • Crushing And Grinding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Al23分を含む原料からなる水熱固化体の製造方法に関する。
【0002】
【従来の技術】
従来、CaO分とSiO2分とを含む原料から、水熱固化体を製造する方法は知られている(例えば、特許文献1参照。)。この製造方法では、まず調合工程として、CaO分とSiO2分とを含む原料により調合物を用意する。そして、成形工程として、調合物を成形して成形体とする。次いで、水熱工程として、その成形体を水熱処理し、ケイ酸カルシウムを生じて固化した水熱固化体を得る。こうして得られる水熱固化体は、タイル等の建材として実用価値がある。
【0003】
【特許文献1】
特許第3196611号公報
【0004】
【発明が解決しようとする課題】
しかし、種々の原料により水熱固化体を製造することができれば、原料の安定供給、製品コスト等の面で好ましいにもかかわらず、従来の技術ではAl23分を含む原料からは水熱固化体を製造することができなかった。
【0005】
本発明は、上記従来の実情に鑑みてなされたものであって、Al23分を含む原料から水熱固化体を製造することを特徴とする解決すべき課題としている。
【0006】
【課題を解決するための手段】
発明者らは、本発明の契機として、各種無機系廃棄物の水熱固化による再資源化を検討した。すなわち、各種無機系廃棄物のうち、排出量が多いものとして、汚泥が知られている。汚泥はその発生プロセスにおいて、ポリ塩化アルミニウム(PAC)による凝集沈殿が用いられる場合が多く、PACを中和する過程で生成する水酸化アルミニウム(Al(OH)3)を多量に含む場合が多い。水酸化アルミニウムは水熱反応性が高いことが知られているものの、汚泥中の水酸化アルミニウムが水熱固化に及ぼす影響は従来から明らかにされていない。このため、発明者らは、Al成分を多量に含む汚泥の再資源化を図るため、浄水場で発生する汚泥である浄水汚泥の水熱固化について検討し、本発明を完成させるに至った。
【0007】
本発明の水熱固化体の製造方法は、SiO2、A23及びCaO分を含む原料からなる調合物を用意する調合工程と、該調合物を成形して成形体とする成形工程と、該成形体を水熱処理して固化した水熱固化体を得る水熱工程とを有し、
前記調合工程では、SiO 2 分及びAl 2 3 分を含む第1原料と、CaO分を含む第2原料とを混合した調合物を用意し、該第1原料はポリ塩化アルミニウムを用いて処理され、水酸化アルミニウムを含む汚泥であり、該第2原料は消石灰であり、
前記調合物は、10質量%以下の前記第2原料と残部の前記第1原料とが混合されたものであり、
前記水熱固化体は、数〜数十nmサイズの微細な細孔を形成するAl/Si(モル比)=0.9〜1.5の組織を有することを特徴とする。
また、本発明の水熱固化体の製造方法は、SiO 2 分及びAl 2 3 分を含む原料からなる調合物を用意する調合工程と、
該調合物を成形して成形体とする成形工程と、
該成形体を水熱処理して固化した水熱固化体を得る水熱工程とを有し、
前記調合工程では、SiO 2 分及びAl 2 3 分を含む第1原料を用意し、該第1原料はポリ塩化アルミニウムを用いて処理され、水酸化アルミニウムを含む汚泥であり、
前記水熱固化体は、数〜数十nmサイズの微細な細孔を形成するAl/Si(モル比)=0.9〜1.5の組織を有することを特徴とする。
【0008】
本発明の製造方法では、Al23分を含む原料から水熱固化体を製造することができる。このため、従来にも増して種々の原料により水熱固化体を製造することができ、原料の安定供給、製品コスト等の面で好ましい。
【0009】
調合物は、Al23分の一部又は全てが水酸化アルミニウムであることが好ましい。水酸化アルミニウムは水への溶解度が高く、水熱処理時の反応性が高いためである。また、これにより汚泥の再資源化を実現することができる。
【0010】
SiO2分は、珪砂、ガラス粉、石英粉、シリカフューム、廃鋳物砂、籾殻灰、珪藻土、ホワイトカーボン、コンクリート屑、シラス、白土等により構成することができる。Al23分は、長石、粘土、キラ、陶磁器屑、石炭灰、下水汚泥焼却灰、アルミサッシ工場等で発生する水酸化アルミニウムスラッジ、赤泥、スラグ、釉汚泥、メタカオリン、アロフェン、ゼオライト等により構成することができる。また、SiO2分及びAl23分を含む原料としては、長石、粘土、ガラス粉、廃鋳物砂、コンクリート屑、シラス、白土、キラ、陶磁器屑、石炭灰、下水汚泥焼却灰、赤泥、スラグ、釉汚泥、メタカオリン、アロフェン、ゼオライト等の他、PACを用いて処理された汚泥を採用することができる。第1原料として、PACを用いて処理された汚泥を採用すれば、再資源化を実現することができる。
【0011】
調合物はCaO分を含み得る。CaO分は消石灰(Ca(OH)2)等により構成することができる。発明者らは、調合工程では、SiO2分及びAl23分を含む第1原料と、CaO分を含む第2原料とを混合した調合物を用意し、第1原料はPACを用いて処理された汚泥であり、第2原料は消石灰である場合に本発明の効果を確認した。
【0012】
第1原料は、PACを用いて処理された汚泥を加熱処理したものであることが好ましい。加熱処理により水熱固化に不必要な有機分を除去することができる。また、加熱処理により水分量がほとんどないものになるため、成形及び水熱固化に必要な水分を調整し易く、水熱固化体をより製造し易いからである。加熱処理後の汚泥を湿式粉砕すれば、汚泥中のアルミナ分が再水和し、成形及び水熱固化に必要な水分の調整をより行い易くなる。また、粉砕により汚泥の粒径が小さくなり、反応性が向上する。
【0013】
発明者らは、調合物が10質量%以下の第2原料と残部の第1原料とが混合されたものである場合に本発明の効果を確認した。
【0014】
成形工程を乾式プレス法により行なうことが好ましい。これにより、原料の搬送、保管が容易になる。また、水熱固化に必要な水分を調整した成形体を成形することができ、成形体の乾燥を行なうことなく水熱固化体を製造することができる。これらのため、製造コストの低廉化を実現できる。また、乾式プレス法により成形すれば、原料粒子間の距離が小さくなり、水熱処理で生成する組織を数〜数十nmサイズにして強度発現を効率よく行うことができる。
【0015】
発明者らは、水熱固化体がAl/Si(モル比)=0.9〜1.5の組織を有して固化していることを確認している。この組織は、数〜数十nmサイズの微細なものであり、アモルファスの可能性もある。このため、Al/Si(モル比)=0.9〜1.5になるように調合工程を行なうことが好ましいこともわかる。
【0016】
【発明の実施の形態】
以下、本発明を具体化した実施形態を図面を参照しつつ説明する。
【0017】
この実施形態では、浄水場で発生する汚泥である浄水汚泥の水熱固化について、調合及び水熱処理温度が水熱固化体の強度発現に及ぼす影響を検討する。
【0018】
まず、図1に示す調合工程S10として、PACを用いて処理された浄水汚泥と、宇部マテリアル(株)製の消石灰とを用意する。浄水汚泥は、浄水場で発生した汚泥をフィルタープレスにより脱水した後、乾燥したものである。この浄水汚泥の化学組成を表1に示す。また、この浄水汚泥の構成相をXRDチャートにより図2に示す。図2において、Qはquartz(SiO2)であり、Mはmuscovite(KAl2(Si3Al)O10(OF,F)2)であり、Aはalbite(NaAlSi38)であり、Clはclinochlore((Mg,Al)6(Si,Al)410(OH)8)であり、Kはkaolinite(Al2Si25(OH)4)である(以下、同様。)。なお、浄水汚泥はPACを用いて処理されているため、PACを中和する過程で生成する水酸化アルミニウムを含むが、水酸化アルミニウムは非晶質であるため、XRDチャートでは、15〜35°のハロー(ブロードなバックグラウンドの盛り上がり)として認められる。
【0019】
【表1】

Figure 0004340058
【0020】
浄水汚泥の有機分除去のための前処理として、浄水汚泥を600°Cで10時間加熱処理する。加熱処理後の浄水汚泥をポットミルで4時間湿式粉砕し、乾燥する。これにより浄水汚泥中のアルミナ分が再水和し、成形及び水熱固化に必要な水分の調整が容易になる。また、粉砕により浄水汚泥の粒径が小さくなり、反応性が向上する。前処理前の浄水汚泥と、600°Cで10時間加熱処理後の浄水汚泥と、4時間の湿式粉砕及び乾燥後の浄水汚泥との構成相をXRDチャートにより図3に示す。図2及び図3より、600°Cの加熱処理でkaoliniteが分解したものの、その他の鉱物はほとんど変化しないことがわかる。
【0021】
湿式粉砕及び乾燥後の浄水汚泥を第1原料とし、この第1原料に第2原料としての消石灰が0〜20質量%となるように加えるとともに、外割で30質量%の蒸留水を加えて混合する。こうして各調合物を得る。
【0022】
図1に示す成形工程S20として、各調合物を乾式プレス法により成形圧力30MPaで10mm×15mm×40mmの直方体に一軸加圧成形し、各成形体を得る。成形体の曲げ強度は1MPa、成形体の嵩密度は1.07(g/cm3)であった。
【0023】
そして、水熱工程S30として、各成形体に対し、160〜220°Cで6時間又は220°Cで10時間の水熱処理を行なう。こうして、水熱固化体である各試験体を得る。各試験体の嵩密度は1.08〜1.09(g/cm3)であった。
【0024】
こうして、この製造方法では、Al23分を含む原料から水熱固化体を製造することができる。このため、従来にも増して種々の原料により水熱固化体を製造することができ、原料の安定供給、製品コスト等の面で好ましいことが明らかである。
【0025】
各試験体を80°Cで2日間乾燥後、各試験体について、曲げ強度(3点曲げ試験法)、生成相(粉末X線回折)及び微構造(SEM、水銀圧入法による細孔分布測定)を評価した。
【0026】
220°Cで10時間水熱処理した場合における消石灰の添加量(質量%)と曲げ強度(MPa)との関係を図4に示す。図4より、消石灰の添加量が5質量%の調合物を用いた試験体が最大の曲げ強度である13.0MPaを示すことがわかる。消石灰をこれより減少させたり、増加させたりした試験体は曲げ強度が低下している。消石灰が10質量%以下(0質量%を含み、10質量%以下)であれば、インターロッキングブロックの規格値である5MPa以上の曲げ強度の水熱固化体が得られている。このため、10質量%以下の消石灰と残部の浄水汚泥焼却灰とが混合された調合物により、実用的な水熱固化体を製造できることがわかる。なお、用途によっては、10MPa程度の高い曲げ強度の水熱固化体を得る必要があり、消石灰を3〜8質量%にすることがより好ましい。
【0027】
また、消石灰の添加量が5質量%の試験体を各水熱処理温度で6時間水熱処理した場合における水熱処理温度(°C)と曲げ強度(MPa)との関係を図5に示す。図5より、水熱処理温度が高くなれば、徐々に大きな曲げ強度が得られることがわかる。
【0028】
消石灰の添加量に伴う構成相の変化をXRDチャートにより図6に示す。また、消石灰の添加量が5質量%の試験体における水熱処理温度(°C)に伴う構成相の変化をXRDチャートにより図7に示す。また、消石灰の添加量が20質量%の試験体における水熱処理前後の構成相の変化をXRDチャートにより図8に示す。図6〜8において、Q、M、A、Cl及びKは図2に示した場合と同様であり、Pはportlandite(Ca(OH)2)、Cはcalcite(CaCO3)、Hはhydrogarnet(Ca3Al2(SiO4)(OH)8)、Anはanhdrite(CaSO4)、●はCa4Al2CO9・11H2Oである(以下、同様。)。図6より、消石灰の添加量が20質量%の試験体では、hydrogarnetが生成したものの、消石灰の添加量が20質量%未満の試験体では、hydrogarnetの生成が認められないことがわかる。
【0029】
消石灰の添加量に伴う水熱処理した各試験体の細孔径分布を図9に示す。また、消石灰の添加量が5質量%で水熱処理温度を変化させた試験体における細孔径分布を図10に示す。図9及び図10より、消石灰の添加量が15質量%以下の試験体で強度発現し、消石灰の添加量が20質量%の試験体で強度発現しなかった原因は、消石灰の添加量が15質量%以下の試験体では、10nm(0.01μm)を中心とする数〜数十nmサイズの微細な細孔が形成されて強度が発現しているのに対し、消石灰の添加量が20質量%の試験体では水熱処理の前後で細孔径分布にほとんど変化が認められなかったためであると考えられる。
【0030】
また、消石灰の添加量が0質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真を図11に示し、消石灰の添加量が2質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真を図12に示し、消石灰の添加量が5質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真を図13に示し、消石灰の添加量が10質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真を図14に示し、消石灰の添加量が20質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真を図15に示す。
【0031】
最大の曲げ強度を示した消石灰の添加量が5質量%の試験体は、成形体においてはhydrogarnetの生成は認められなかったものの、水熱処理することで約10nmの細孔が形成されている。図11〜15に示すSEM観察から、消石灰の添加量が15質量%以下の試験体では、水熱処理により数〜数10nmサイズの生成物が認められ、強度発現に寄与していると推察される。一方、消石灰の添加量が20質量%の試験体では、数〜数十nmサイズの微細組織の形成は認められなかった。
【0032】
また、EDS分析から、各試験体の数〜数十nmサイズの微細組織は主にSiO2とAl23成分から構成され、Al/Si(モル比)=0.9〜1.5であることが判明した。また、各試験体のXRD結果より、Ca(OH)2の添加量が5質量%の試験体のみ、kaolonite(Al2Si25(OH)4)と疑われるピークが認められた。以上の結果から、数〜数十nmサイズの生成物はkaolonit若しくはその前駆体であると推測している。
【図面の簡単な説明】
【図1】実施形態の製造方法を示す工程図である。
【図2】前処理前の浄水汚泥の構成相を示すXRDチャートである。
【図3】前処理前の浄水汚泥と、600°Cで10時間加熱処理後の浄水汚泥と、4時間の湿式粉砕及び乾燥後の浄水汚泥との構成相を示すXRDチャートである。
【図4】220°Cで10時間水熱処理した場合における消石灰の添加量と曲げ強度との関係を示すグラフである。
【図5】消石灰の添加量が5質量%の試験体を各水熱処理温度で6時間水熱処理した場合における水熱処理温度と曲げ強度との関係を示すグラフである。
【図6】消石灰の添加量に伴う構成相の変化を示すXRDチャートである。
【図7】消石灰の添加量が5質量%の試験体における水熱処理温度に伴う構成相の変化をXRDチャートである。
【図8】消石灰の添加量が20質量%の試験体における水熱処理前後の構成相の変化を示すXRDチャートである。
【図9】消石灰の添加量に伴う水熱処理した試験体の細孔径分布を示すグラフである。
【図10】消石灰の添加量が5質量%で水熱処理温度を変化させた試験体における細孔径分布を示すグラフである。
【図11】消石灰の添加量が0質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真である。
【図12】消石灰の添加量が2質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真である。
【図13】消石灰の添加量が5質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真である。
【図14】消石灰の添加量が10質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真である。
【図15】消石灰の添加量が20質量%の成形体を220°Cで10時間水熱処理した試験体のSEM写真である。
【符号の説明】
S10…調合工程
S20…成形工程
S30…水熱工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrothermal solid body comprising a raw material containing Al 2 O 3 .
[0002]
[Prior art]
Conventionally, a method for producing a hydrothermal solid from a raw material containing a CaO component and a SiO 2 component has been known (see, for example, Patent Document 1). In this manufacturing method, first, as a blending step, a blend is prepared from raw materials containing a CaO component and a SiO 2 component . And as a forming process, the preparation is formed into a formed body. Next, as a hydrothermal process, the compact is hydrothermally treated to obtain a hydrothermal solidified body that is solidified by generating calcium silicate. The hydrothermal solidified body thus obtained has practical value as a building material such as a tile.
[0003]
[Patent Document 1]
Japanese Patent No. 3196611 [0004]
[Problems to be solved by the invention]
However, if a hydrothermal solidified body can be produced from various raw materials, it is preferable from the viewpoint of stable supply of raw materials, product costs, etc., but in the conventional technology, hydrothermal heat is generated from raw materials containing Al 2 O 3. A solidified body could not be produced.
[0005]
The present invention was made in view of the above conventional circumstances, and a problem to be solved, characterized in that to produce a hydrothermally solidified body from a raw material containing Al 2 O 3 minutes.
[0006]
[Means for Solving the Problems]
The inventors studied the recycling of various inorganic wastes by hydrothermal solidification as an opportunity of the present invention. That is, among various inorganic wastes, sludge is known as having a large emission amount. In the generation process of sludge, coagulation precipitation by polyaluminum chloride (PAC) is often used, and a large amount of aluminum hydroxide (Al (OH) 3 ) generated in the process of neutralizing PAC is often included. Although aluminum hydroxide is known to have high hydrothermal reactivity, the influence of aluminum hydroxide in sludge on hydrothermal solidification has not been clarified. Therefore, the inventors have studied hydrothermal solidification of purified water sludge, which is sludge generated at a water purification plant, in order to recycle sludge containing a large amount of Al component, and have completed the present invention.
[0007]
The method for producing a hydrothermal solidified body of the present invention comprises a preparation step of preparing a preparation comprising a raw material containing SiO 2 part , Al 2 O 3 part and CaO part , and molding the preparation into a molded body. a molding step, the molded article and a hydrothermal process to obtain a hydrothermal treatment to solidified hydrothermally solidified body possess,
In the preparation step, a preparation is prepared by mixing a first raw material containing SiO 2 and Al 2 O 3 and a second raw material containing CaO, and the first raw material is treated with polyaluminum chloride. Sludge containing aluminum hydroxide, the second raw material is slaked lime,
The preparation is a mixture of 10% by mass or less of the second raw material and the remaining first raw material,
The hydrothermal solidification body, characterized in that have a Al / Si (molar ratio) = 0.9 to 1.5 of the tissue to form fine pores of several to several tens of nm size.
Moreover, the method for producing the hydrothermal solidified body of the present invention comprises a preparation step of preparing a preparation comprising a raw material containing SiO 2 minutes and Al 2 O 3 minutes,
A molding step of molding the preparation to form a molded body;
A hydrothermal step of obtaining a hydrothermal solidified body obtained by hydrothermally treating the molded body,
In the preparation step, a first raw material containing SiO 2 and Al 2 O 3 is prepared, and the first raw material is sludge treated with polyaluminum chloride and containing aluminum hydroxide,
The hydrothermal solidified body has a structure of Al / Si (molar ratio) = 0.9 to 1.5 forming fine pores having a size of several to several tens of nm.
[0008]
In the production method of the present invention, a hydrothermal solidified product can be produced from a raw material containing Al 2 O 3 . For this reason, a hydrothermal solidification body can be manufactured with various raw materials more than before, and it is preferable in terms of stable supply of raw materials, product costs, and the like.
[0009]
Formulation is preferably Al 2 O 3 minutes of part or all is aluminum hydroxide. This is because aluminum hydroxide has high solubility in water and high reactivity during hydrothermal treatment. This also makes it possible to recycle sludge.
[0010]
The SiO 2 component can be composed of silica sand, glass powder, quartz powder, silica fume, waste casting sand, rice husk ash, diatomaceous earth, white carbon, concrete scrap, shirasu, white clay, and the like. Al 2 O 3 component is feldspar, clay, glitter, ceramic scrap, coal ash, sewage sludge incineration ash, aluminum hydroxide sludge generated in aluminum sash factories, red mud, slag, straw sludge, metakaolin, allophane, zeolite, etc. Can be configured. In addition, raw materials containing SiO 2 and Al 2 O 3 include feldspar, clay, glass powder, waste casting sand, concrete scrap, shirasu, white clay, glitter, ceramic scrap, coal ash, sewage sludge incinerated ash, red mud In addition to sludge, soot sludge, metakaolin, allophane, zeolite, etc., sludge treated with PAC can be employed. If sludge treated with PAC is employed as the first raw material, recycling can be realized.
[0011]
The formulation may contain CaO content. The CaO component can be composed of slaked lime (Ca (OH) 2 ) or the like. We, the compounding process, providing a formulation comprising a mixture of a first material containing SiO 2 minutes and Al 2 O 3 minutes, and a second raw material containing CaO content, the first feedstock with a PAC The effect of the present invention was confirmed when the sludge was treated and the second raw material was slaked lime.
[0012]
It is preferable that the 1st raw material is what heat-processed the sludge processed using PAC. Organic components unnecessary for hydrothermal solidification can be removed by heat treatment. Moreover, since there will be almost no moisture content by heat processing, it is easy to adjust the water | moisture content required for shaping | molding and hydrothermal solidification, and it is easier to manufacture a hydrothermal solidified body. If the heat-treated sludge is wet pulverized, the alumina content in the sludge is rehydrated, and it becomes easier to adjust the moisture necessary for molding and hydrothermal solidification. Moreover, the particle size of sludge becomes small by grinding | pulverization, and the reactivity improves.
[0013]
The inventors confirmed the effect of the present invention when the preparation was a mixture of 10% by mass or less of the second raw material and the remaining first raw material.
[0014]
It is preferable to perform the forming step by a dry press method. Thereby, conveyance and storage of a raw material become easy. Moreover, the molded object which adjusted the water | moisture content required for hydrothermal solidification can be shape | molded, and a hydrothermal solidified body can be manufactured, without drying a molded object. For these reasons, the manufacturing cost can be reduced. Moreover, if it shape | molds by a dry press method, the distance between raw material particles will become small, and the structure | tissue produced | generated by a hydrothermal treatment can be made into several to several tens nm size, and intensity | strength expression can be performed efficiently.
[0015]
The inventors have confirmed that the hydrothermal solidified body has a structure of Al / Si (molar ratio) = 0.9 to 1.5 and is solidified. This structure is a fine one having a size of several to several tens of nanometers, and may be amorphous. For this reason, it turns out that it is preferable to perform a preparation process so that Al / Si (molar ratio) = 0.9-1.5.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
[0017]
In this embodiment, about the hydrothermal solidification of the purified water sludge which is the sludge which generate | occur | produces in a water purification plant, the influence which mixing and hydrothermal treatment temperature exert on the strength expression of a hydrothermal solidified body is examined.
[0018]
First, as the blending step S10 shown in FIG. 1, purified water sludge processed using PAC and slaked lime manufactured by Ube Material Co., Ltd. are prepared. The purified water sludge is obtained by dewatering sludge generated at a water purification plant using a filter press and then drying it. Table 1 shows the chemical composition of this purified water sludge. Moreover, the constituent phase of this purified water sludge is shown in FIG. 2 by an XRD chart. In FIG. 2, Q is quartz (SiO 2 ), M is musclecovite (KAl 2 (Si 3 Al) O 10 (OF, F) 2 ), A is albite (NaAlSi 3 O 8 ), and Cl Is clolinochlore ((Mg, Al) 6 (Si, Al) 4 O 10 (OH) 8 ), and K is kaolinite (Al 2 Si 2 O 5 (OH) 4 ) (the same applies hereinafter). In addition, since purified water sludge is processed using PAC, it contains aluminum hydroxide produced in the process of neutralizing PAC. However, since aluminum hydroxide is amorphous, it is 15 to 35 ° in the XRD chart. Halo (broad background climax).
[0019]
[Table 1]
Figure 0004340058
[0020]
As a pretreatment for removing organic components from the purified water sludge, the purified water sludge is heated at 600 ° C. for 10 hours. The purified water sludge after the heat treatment is wet pulverized in a pot mill for 4 hours and dried. As a result, the alumina content in the purified water sludge is rehydrated, and the adjustment of moisture necessary for molding and hydrothermal solidification becomes easy. In addition, the particle size of the purified water sludge is reduced by pulverization, and the reactivity is improved. The constituent phases of the purified water sludge before pretreatment, the purified water sludge after heat treatment at 600 ° C. for 10 hours, and the purified water sludge after wet grinding and drying for 4 hours are shown in FIG. 3 by XRD chart. 2 and 3, it can be seen that although kaolinite was decomposed by heat treatment at 600 ° C., other minerals hardly changed.
[0021]
The purified water sludge after wet pulverization and drying is used as the first raw material, and the slaked lime as the second raw material is added to the first raw material so that it is 0 to 20% by mass, and 30% by mass of distilled water is added as an external split Mix. Each formulation is thus obtained.
[0022]
As molding process S20 shown in FIG. 1, each formulation is uniaxially press-molded into a 10 mm × 15 mm × 40 mm rectangular parallelepiped at a molding pressure of 30 MPa by a dry press method to obtain each molded body. The bending strength of the molded body was 1 MPa, and the bulk density of the molded body was 1.07 (g / cm 3 ).
[0023]
And as hydrothermal process S30, the hydrothermal treatment of 160 to 220 degreeC for 6 hours or 220 degreeC for 10 hours is performed with respect to each molded object. In this way, each test body which is a hydrothermal solidified body is obtained. The bulk density of each specimen was 1.08 to 1.09 (g / cm 3 ).
[0024]
Thus, in this production method, a hydrothermal solidified body can be produced from the raw material containing Al 2 O 3 . For this reason, it is clear that hydrothermal solidified bodies can be produced from various raw materials as compared with the prior art, which is preferable in terms of stable supply of raw materials and product costs.
[0025]
After each specimen was dried at 80 ° C for 2 days, the bending distribution (three-point bending test method), product phase (powder X-ray diffraction) and microstructure (SEM, measurement of pore distribution by mercury intrusion method) were used for each specimen. ) Was evaluated.
[0026]
FIG. 4 shows the relationship between the amount of slaked lime added (mass%) and the bending strength (MPa) when hydrothermally treated at 220 ° C. for 10 hours. From FIG. 4, it can be seen that the test body using the preparation in which the amount of slaked lime added is 5% by mass shows 13.0 MPa which is the maximum bending strength. The test body in which the amount of slaked lime is reduced or increased is lower in bending strength. If slaked lime is 10 mass% or less (including 0 mass% and 10 mass% or less), the hydrothermal solidified body of the bending strength of 5 MPa or more which is the standard value of an interlocking block is obtained. For this reason, it turns out that a practical hydrothermal solidification body can be manufactured with the formulation with which 10 mass% or less of slaked lime and the remainder purified water sludge incineration ash were mixed. In addition, depending on a use, it is necessary to obtain a hydrothermal solidified body having a high bending strength of about 10 MPa, and it is more preferable to make slaked lime 3 to 8% by mass.
[0027]
Further, FIG. 5 shows the relationship between hydrothermal treatment temperature (° C.) and bending strength (MPa) when a test specimen having a slaked lime addition amount of 5 mass% is hydrothermally treated for 6 hours at each hydrothermal treatment temperature. From FIG. 5, it can be seen that as the hydrothermal treatment temperature is increased, a large bending strength can be obtained gradually.
[0028]
FIG. 6 shows the change of the constituent phase with the amount of slaked lime by XRD chart. Moreover, the change of the structural phase accompanying the hydrothermal treatment temperature ((degreeC)) in the test body with the addition amount of slaked lime 5 mass% is shown in FIG. 7 with an XRD chart. Moreover, the change of the structural phase before and behind hydrothermal treatment in the test body with the addition amount of slaked lime 20 mass% is shown in FIG. 8 with an XRD chart. 6 to 8, Q, M, A, Cl, and K are the same as those shown in FIG. 2, P is portlandite (Ca (OH) 2 ), C is calcite (CaCO 3 ), and H is hydrogarnet ( Ca 3 Al 2 (SiO 4 ) (OH) 8 ), An is anhdrite (CaSO 4 ), and ● is Ca 4 Al 2 CO 9 .11H 2 O (the same applies hereinafter). From FIG. 6, it can be seen that hydrogarnet was generated in the test specimen with the slaked lime addition amount of 20% by mass, but no hydrogarnet formation was observed in the test specimen with the slaked lime addition amount of less than 20% by mass.
[0029]
FIG. 9 shows the pore size distribution of each test specimen hydrothermally treated with the amount of slaked lime added. Moreover, the pore diameter distribution in the test body which changed the hydrothermal treatment temperature when the addition amount of slaked lime is 5 mass% is shown in FIG. From FIG. 9 and FIG. 10, the amount of slaked lime added is 15% by mass or less, and the strength of the slaked lime added is 20% by mass. In specimens of less than mass%, fine pores with a size of several to several tens of nm centering on 10 nm (0.01 μm) are formed and the strength is expressed, whereas the addition amount of slaked lime is 20 mass. % Of the specimens were considered to show little change in the pore size distribution before and after hydrothermal treatment.
[0030]
Moreover, the SEM photograph of the test body which hydrothermally processed the molded object with the addition amount of slaked lime 0 mass% at 220 degreeC for 10 hours is shown in FIG. 11, and the molded object with the addition amount of slaked lime 2 mass% at 220 degreeC The SEM photograph of the test specimen hydrothermally treated for 10 hours is shown in FIG. 12, the SEM photograph of the specimen subjected to hydrothermal treatment at 220 ° C. for 10 hours is shown in FIG. FIG. 14 shows an SEM photograph of a test body obtained by hydrothermally treating a molded body with an addition amount of 10% by mass at 220 ° C. for 10 hours, and a molded body with an addition amount of slaked lime of 20% by mass is hydrothermally treated at 220 ° C. for 10 hours. An SEM photograph of the test specimen is shown in FIG.
[0031]
In the test body with the addition amount of slaked lime showing the maximum bending strength of 5% by mass, the formation of hydrogarnet was not observed in the molded body, but pores of about 10 nm were formed by hydrothermal treatment. From the SEM observation shown in FIGS. 11 to 15, in the test body in which the addition amount of slaked lime is 15% by mass or less, a product of several to several tens of nanometers in size is recognized by hydrothermal treatment, and it is assumed that it contributes to strength development. . On the other hand, in the test body in which the amount of slaked lime added was 20% by mass, formation of a fine structure having a size of several to several tens of nm was not recognized.
[0032]
Further, from the EDS analysis, the microstructure of several to several tens of nanometers in each specimen is mainly composed of SiO 2 and Al 2 O 3 components, and Al / Si (molar ratio) = 0.9 to 1.5. It turned out to be. Moreover, from the XRD result of each test body, the peak suspected to be kaolonite (Al 2 Si 2 O 5 (OH) 4 ) was recognized only in the test body in which the added amount of Ca (OH) 2 was 5 mass%. From the above results, it is estimated that a product having a size of several to several tens of nm is kaolonit or a precursor thereof.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a production method of an embodiment.
FIG. 2 is an XRD chart showing a constituent phase of purified water sludge before pretreatment.
FIG. 3 is an XRD chart showing constituent phases of purified water sludge before pretreatment, purified water sludge after heat treatment at 600 ° C. for 10 hours, and purified water sludge after wet grinding and drying for 4 hours.
FIG. 4 is a graph showing the relationship between the amount of slaked lime added and the bending strength when hydrothermally treated at 220 ° C. for 10 hours.
FIG. 5 is a graph showing the relationship between hydrothermal treatment temperature and bending strength when a test specimen with 5% by mass of slaked lime is hydrothermally treated for 6 hours at each hydrothermal treatment temperature.
FIG. 6 is an XRD chart showing the change of the constituent phase with the addition amount of slaked lime.
FIG. 7 is an XRD chart showing the change of the constituent phase with the hydrothermal treatment temperature in a test body in which the amount of slaked lime added is 5 mass%.
FIG. 8 is an XRD chart showing changes in constituent phases before and after hydrothermal treatment in a test specimen with a slaked lime addition amount of 20 mass%.
FIG. 9 is a graph showing the pore size distribution of a hydrothermally treated specimen according to the amount of slaked lime added.
FIG. 10 is a graph showing the pore size distribution in a test specimen in which the amount of slaked lime added is 5% by mass and the hydrothermal treatment temperature is changed.
FIG. 11 is an SEM photograph of a test body that was hydrothermally treated for 10 hours at 220 ° C. with a shaped body having an added amount of slaked lime of 0% by mass.
FIG. 12 is an SEM photograph of a test body obtained by hydrothermally treating a molded body having a slaked lime addition amount of 2% by mass at 220 ° C. for 10 hours.
FIG. 13 is an SEM photograph of a test body that was hydrothermally treated for 10 hours at 220 ° C. with a shaped body having an added amount of slaked lime of 5 mass%.
FIG. 14 is an SEM photograph of a test body that was hydrothermally treated for 10 hours at 220 ° C. with a shaped body having an added amount of slaked lime of 10 mass%.
FIG. 15 is an SEM photograph of a test body obtained by hydrothermally treating a molded body having a slaked lime addition amount of 20% by mass at 220 ° C. for 10 hours.
[Explanation of symbols]
S10 ... Preparation step S20 ... Molding step S30 ... Hydrothermal step

Claims (5)

SiO2、A23及びCaO分を含む原料からなる調合物を用意する調合工程と、
該調合物を成形して成形体とする成形工程と、
該成形体を水熱処理して固化した水熱固化体を得る水熱工程とを有し、
前記調合工程では、SiO 2 分及びAl 2 3 分を含む第1原料と、CaO分を含む第2原料とを混合した調合物を用意し、該第1原料はポリ塩化アルミニウムを用いて処理され、水酸化アルミニウムを含む汚泥であり、該第2原料は消石灰であり、
前記調合物は、10質量%以下の前記第2原料と残部の前記第1原料とが混合されたものであり、
前記水熱固化体は、数〜数十nmサイズの微細な細孔を形成するAl/Si(モル比)=0.9〜1.5の組織を有することを特徴とする水熱固化体の製造方法。
A preparation step of preparing a preparation comprising raw materials containing SiO 2 minutes , Al 2 O 3 minutes and CaO content ;
A molding step of molding the preparation to form a molded body;
The molded article possess a hydrothermal process to obtain a hydrothermal treatment to solidified hydrothermal solidified body,
In the preparation step, a preparation is prepared by mixing a first raw material containing SiO 2 and Al 2 O 3 and a second raw material containing CaO, and the first raw material is treated with polyaluminum chloride. Sludge containing aluminum hydroxide, the second raw material is slaked lime,
The preparation is a mixture of 10% by mass or less of the second raw material and the remaining first raw material,
The hydrothermal solidification body, several to several tens nm to form a fine pore size Al / Si (molar ratio) = 0.9 to 1.5 hydrothermal solidification body which is characterized in that chromatic tissue Manufacturing method.
SiOSiO 22 分及びAlMinute and Al 22 O 3Three 分を含む原料からなる調合物を用意する調合工程と、A preparation step of preparing a preparation made of raw materials including
該調合物を成形して成形体とする成形工程と、  A molding step of molding the preparation to form a molded body;
該成形体を水熱処理して固化した水熱固化体を得る水熱工程とを有し、  A hydrothermal step of obtaining a hydrothermal solidified body obtained by hydrothermally treating the molded body,
前記調合工程では、SiO  In the preparation step, SiO 22 分及びAlMinute and Al 22 O 3Three 分を含む第1原料を用意し、該第1原料はポリ塩化アルミニウムを用いて処理され、水酸化アルミニウムを含む汚泥であり、A first raw material containing a portion, the first raw material is a sludge treated with polyaluminum chloride and containing aluminum hydroxide;
前記水熱固化体は、数〜数十nmサイズの微細な細孔を形成するAl/Si(モル比)=0.9〜1.5の組織を有することを特徴とする水熱固化体の製造方法。  The hydrothermal solidified body has a structure of Al / Si (molar ratio) = 0.9 to 1.5 forming fine pores having a size of several to several tens of nanometers. Production method.
前記第1原料は、有機分を除去するために加熱処理したものであることを特徴とする請求項1又は2記載の水熱固化体の製造方法。The method for producing a hydrothermal solid according to claim 1 or 2 , wherein the first raw material is heat-treated in order to remove organic components. 前記第1原料は、有機分を除去するために加熱処理した後に湿式粉砕したものであることを特徴とする請求項記載の水熱固化体の製造方法。4. The method for producing a hydrothermal solid according to claim 3 , wherein the first raw material is heat-treated to remove organic components and then wet pulverized. 成形工程を乾式プレス法により行なうことを特徴とする請求項1乃至のいずれか1項記載の水熱固化体の製造方法。The method for producing a hydrothermal solid body according to any one of claims 1 to 4 , wherein the forming step is performed by a dry press method.
JP2002353581A 2002-12-05 2002-12-05 Method for producing hydrothermal solidified body Expired - Fee Related JP4340058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353581A JP4340058B2 (en) 2002-12-05 2002-12-05 Method for producing hydrothermal solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353581A JP4340058B2 (en) 2002-12-05 2002-12-05 Method for producing hydrothermal solidified body

Publications (2)

Publication Number Publication Date
JP2004182559A JP2004182559A (en) 2004-07-02
JP4340058B2 true JP4340058B2 (en) 2009-10-07

Family

ID=32754839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353581A Expired - Fee Related JP4340058B2 (en) 2002-12-05 2002-12-05 Method for producing hydrothermal solidified body

Country Status (1)

Country Link
JP (1) JP4340058B2 (en)

Also Published As

Publication number Publication date
JP2004182559A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
Waijarean et al. Strength and microstructure of water treatment residue-based geopolymers containing heavy metals
Penilla et al. Zeolite synthesized by alkaline hydrothermal treatment of bottom ash from combustion of municipal solid wastes
Zhang et al. Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt
JP5776749B2 (en) Cement-based solidified concrete sludge heat-dried powder and method for producing the same
JP4827045B2 (en) Water purification material and method for producing water purification material
JP4988187B2 (en) Method for producing zeolite
JP3750269B2 (en) Solidification method of industrial waste and solidified body of industrial waste
JP4340058B2 (en) Method for producing hydrothermal solidified body
JP2002320952A (en) Method for treating contaminated soil and treated matter
DE60127095D1 (en) POROUS INORGANIC MACROSTRUCTURES AND METHOD FOR THE PRODUCTION THEREOF
JP4664462B2 (en) Method for producing carbonated cured body
Lee Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue
JP2001205241A (en) Method for solidifying incineration ash
JP4426752B2 (en) Method for producing calcium silicate hydrate
JP4340057B2 (en) Method for producing hydrothermal solidified body
KR20100088237A (en) The construction material utilizing sludge and its manufacturing method
JP4317391B2 (en) Eco lime cement, method for producing the same and method for producing eco lime cement solidified body
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JP2004123471A (en) Process for preparing hydrothermally solidified product
Saharudin et al. Synthesis of hydroxyapatite from cockle shell wastes
JP2003275730A (en) Method for suppressing elution of harmful substance from sewage sludge incineration ash
JP2684163B2 (en) Sintered material made of calcium phosphite and zeolite powder and its manufacturing method
JP4072366B2 (en) Manufacturing method of solidified body
KR101822852B1 (en) Cement-binder mixed with paper sludge ash, manufacturing method of the same, cement mortar mixed with paper sludge ash and cement concrete mixed with paper sludge ash
JP4251723B2 (en) Crushed stone by-product processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees