JP4072366B2 - Manufacturing method of solidified body - Google Patents
Manufacturing method of solidified body Download PDFInfo
- Publication number
- JP4072366B2 JP4072366B2 JP2002092063A JP2002092063A JP4072366B2 JP 4072366 B2 JP4072366 B2 JP 4072366B2 JP 2002092063 A JP2002092063 A JP 2002092063A JP 2002092063 A JP2002092063 A JP 2002092063A JP 4072366 B2 JP4072366 B2 JP 4072366B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- glass
- solidified body
- producing
- hydrothermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固化体の製造方法に関し、詳細には、ガラス瓶、窓ガラスなどのガラス製品を廃棄したガラス材から、高強度な固化体を製造する固化体の製造方法に関するものである。
【0002】
【従来の技術】
ガラス瓶、窓ガラスなどのガラス製品を廃棄したガラス材は、ガラス質原材料としてリサイクル使用が可能であるが、実際にリサイクルに供されるのはその一部でしかなく、残りは産業廃棄物として廃棄処理されているのが実情であって、新たな用途開発が望まれている。
【0003】
そこで、このような要望に応えるべく、例えば特開2000−327397号公報には、ガラス瓶、窓ガラス、その他ガラス製品の破砕物等の廃ガラスと、CaO又はCa(OH)2の少なくとも一方を含むカルシウム原料とを主原料とし、これに骨材を配合した混合物を用いて成形体を形成し、当該成形体を加熱加圧することにより製造する水熱固化体が提案されている。そして、前記水熱固化体においては、骨材を配合することで製品ごとの強度のばらつきが小さくできるとされ、10〜25%の骨材を配合する例が述べられている。また、実施例においては、骨材の配合割合を20%とした場合に、Ca(OH)220%、廃ガラス60%の配合の時が最も強度が高く、廃ガラスの配合割合が60%を超えて多くなるに伴い強度が大きく低下していく例が説明されている。
【0004】
【発明が解決しようとする課題】
ところで、上記公報に提案されている水熱固化体の製造方法では、廃ガラスを比較的多く配合すると共に骨材を配合することにより、強度が高く且つ強度のばらつきの小さい水熱固化体を得ることができ、有用な製造方法と思われるが、骨材を使用して強度をコントロールする分、廃ガラスの配合量は自ずと制限を受ける。
【0005】
そこで、本発明の目的は、骨材の配合を極力少なくしガラス材の配合を多くして強度の高い水熱固化体を製造し得る固化体の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者等も、これまでにガラス瓶、窓ガラスなどのガラス製品を廃棄したガラス材を強度の高い固化体に形成してリサイクル使用の可能性を研究してきた。その際、これまでのように骨材を配合すると強度の確保はし易いがその分ガラス材の配合割合が低くなるので、骨材を極力少なくしてより多くのガラス材を配合して効率的にリサイクル使用することに重点を置いて研究して来た。
【0007】
その研究過程で、例えば特開平11−157910号公報や特開2000−335955号公報等で提案されているような水熱固化体の製造方法と同様の要領で、珪酸質物質や破砕集塵粉(SiO2分に富む微粉)に代えてガラス材のみを用い、石灰質物質と混合して水熱固化体を製造しても必ずしも高強度な固化体が得られないことが判明した。
【0008】
そこで、更に研究を重ねた結果、ガラス材を多量に用いる場合には水熱処理を施す前の加圧成形体において、水分含有量がある範囲に有る場合にのみ高強度な水熱固化体が得られることが分かり、本発明を完成するに至ったもので、その要旨は、下記の通りである。
【0009】
すなわち、請求項1に係る発明は、高強度な固化体を製造する固化体の製造方法であって、ガラス材とカルシウム化合物と水を混合して混合物とする工程と、前記混合物を加圧成形して加圧成形体とする工程と、前記加圧成形体を水熱固化処理して固化体を製造する工程とを含むとともに、前記混合物のガラス材とカルシウム化合物の質量比が80:20〜95:5の範囲にあり、前記水熱固化処理する前の加圧成形体の水分含有量が10〜40質量%に調整されてなる固化体の製造方法を要旨とするものである。
【0010】
上記本発明では、水熱固化処理する前の加圧成形体の水分含有量を10〜40質量%に調整するが、従来は、通常、カルシウム化合物を配合して混合する際に所望量の水を加えて混合が行われ、水熱固化処理する前の加圧成形体の状態では水分含有量の調整は行われていない。そして、水熱固化処理する前の加圧成形体の水分含有量が10質量%未満では、水熱処理後の固化体の強度が低い。その原因は、まだ充分に解明されていないが、水熱反応中の結晶性ケイ酸カルシウム生成に対して水分が不足し、充分な結晶成長ができなかったためと考えられる。一方、水熱固化処理する前の加圧成形体の水分含有量が40質量%を超えると、水熱反応中の結晶性ケイ酸カルシウム生成に対する水分は充分なものの、余分な水分が必要以上に残り、蒸気となって抜けるため気孔が生じ強度が低下することが懸念されるためである。
【0011】
上記のようなことから上記請求項1に係る発明においては、更に水分含有量が10〜20質量%に調整されることが好ましい(請求項2)。
【0012】
また、上記請求項1又は2に係る発明においては、ガラス材が粉砕されたガラス材であってもよい(請求項3)。本発明で用いるガラス材の形態は、特に限定されるものではないが、廃棄されたガラス瓶、窓ガラスなどのガラス製品の破砕物、粉砕物である回収カレットや、ガラス製造で発生する工場カレットなど、より粒径が細かく粉砕されたガラス材が好適に使用できる。粉砕されたガラス材であれば、水熱反応において結晶性ケイ酸カルシウムが均一により多く生成されることが期待され好ましい。
【0013】
【発明の実施の形態】
まず、混合工程において、細かく破砕されたガラス材に、このガラス材との質量比が80:20〜95:5の範囲にあるようにカルシウム化合物と、水を加え混合機により混合し、前記各物質が均一に混合された混合物を製造する。
【0014】
次いで、加圧成形工程において、加圧成形装置により上記混合物を所定量の大きさ(製品形状)に加圧成形して加圧成形体を製造する。この加圧成形で水分が押し出されるので、この加圧成形後の水分含有量が10〜40質量%、好ましくは10〜20質量%となるように調整して加圧成形する。水分含有量が10質量%未満になることが懸念される場合には、上記混合時に水分含有量を測定し、予め多めに加水するようにしてもよい。なお、本発明においては、水分含有量の測定を次の要領で行った。すなわち、加圧成形体を試験片とし、その試験片を乾燥機に入れて110℃、16時間で完全に乾燥させ、乾燥前と後の重量差から計算して求めた。また、混合中の混合物の水分含有量も、混合物より10〜100g程度のサンプルを採取して前記要領で求めることができる。
【0015】
水熱固化工程において、水熱固化装置(オートクレーブ)により上記加圧成形体を常法により水熱固化処理して水熱固化体を製造する。なお、一般的な水熱固化処理条件としては、処理温度:130〜300℃、処理時間:1〜24時間であるが、好ましい処理温度は150〜200℃であり、好ましい処理時間は2〜8時間である。また、代表的な処理条件としては温度180℃で5時間である。
【0016】
【実施例】
以下、本発明の実施例を比較例と併せて説明する。
(実施例1)
板ガラスを粉砕し1mm以下の粒径が95%であるガラス材を原料として用い、固化材として生石灰(CaO)をガラス材配合量に対して5質量%配合し、更にガラス材配合量に対して20%の水を加えた後、万能攪拌機で均一に混合した。次いで、均一に混合して得られた混合原料を加圧成形機により50MPaの圧力で加圧成形し、寸法(直径:25mm×長さ:49mm)の加圧成形体を製造した。その加圧成形体をオートクレーブ中で温度180℃の飽和蒸気圧条件下で5時間の水熱処理を施した。その水熱処理後の3個の固化体を用いて一軸圧縮強度を測定した。また、前記加圧成形体より5個のサンプルを抽出して加圧成形体の水分含有量(5個の平均)を測定した。これらの測定結果を表1に示す。
【0017】
(実施例2)
上記の実施例1の生石灰に代えて固化材としてセメントを用い、そのセメントの配合量を20質量%とした他は、上記実施例1と同じ要領で処理及び測定を行った。測定結果を表1に併せて示す。
【0018】
(比較例1)
板ガラスを粉砕し1mm以下の粒径が95%であるガラス材を原料として用い、固化材として生石灰(CaO)をガラス材配合量に対して10質量%配合し、更に適当量の水を加えた後、万能攪拌機で均一に混合した。次いで、均一に混合して得られた混合原料を加圧成形機により50MPaの圧力で加圧成形し、寸法(直径:25mm×長さ:51mm)の加圧成形体を製造した。その加圧成形体をオートクレーブ中で温度180℃の飽和蒸気圧条件下で5時間の水熱処理を施した。その水熱処理後の3個の固化体を用いて一軸圧縮強度を測定した。また、前記加圧成形体より5個のサンプルを抽出して加圧成形体の水分含有量(5個の平均)を測定した。これらの測定結果を併せて表1に示す。
【0019】
【表1】
【0020】
上記表1の測定結果から明らかなように、実施例1ではガラス材の配合量が95質量%と多く配合したにもかかわらず、水熱処理前の水分含有量が14.2%と高かったことで、一軸圧縮強度が25.3〜29.1MPaと高いものとなった。また、実施例2ではガラス材の配合量が80質量%と多く配合したにもかかわらず、水熱処理前の水分含有量が13.9%と高かったことで、一軸圧縮強度が33.8〜47.9MPaと極めて高いものとなった。これに対して、比較例1は、ガラス材の配合量が90質量%と多く配合したものの、水熱処理前の水分含有量が8.3%と10%未満であったため、一軸圧縮強度が2.1〜3.4MPaと極めて低いものとなった。
【0021】
比較例1で強度が低くなった理由は、水熱処理前の水分含有量が8.3%と低かったためと考えられる。その原因は、まだ充分に解明されていないが、水熱反応中の結晶性ケイ酸カルシウム生成に対して水分が不足し、充分な結晶成長ができなかったためと考えられる。
【0022】
【発明の効果】
以上説明したように、本発明に係る固化体の製造方法によれば、ガラス瓶、窓ガラスなどのガラス製品を廃棄したガラス材を多量に用い、必ずしも骨材を配合しなくても強度の高い固化体に形成することができる。また、このようにガラス材が多く且つ強度が高いことから、従来の用途例はもとより新たなリサイクル使用例も期待できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solidified body, and more particularly to a method for producing a solidified body for producing a high-strength solidified body from a glass material in which glass products such as glass bottles and window glass are discarded.
[0002]
[Prior art]
Glass materials such as glass bottles and window glass that are discarded can be recycled as glassy raw materials, but only a part of them are actually recycled, and the rest is discarded as industrial waste. The actual situation is being processed, and a new application development is desired.
[0003]
Therefore, in order to meet such a demand, for example, Japanese Patent Application Laid-Open No. 2000-327397 includes waste glass such as glass bottles, window glass, and other crushed glass products, and at least one of CaO or Ca (OH) 2. There has been proposed a hydrothermal solidified body produced by forming a molded body using a mixture of calcium raw material as a main raw material and blending the aggregate with the calcium raw material, and heating and pressing the molded body. And in the said hydrothermal solidification body, the dispersion | variation in the intensity | strength for every product can be made small by mix | blending an aggregate, and the example which mix | blends 10-25% aggregate is described. In the examples, when the blending ratio of aggregate is 20%, the strength is highest when 20% Ca (OH) 2 and 60% waste glass are blended, and the blending ratio of waste glass is 60%. An example has been described in which the strength is greatly reduced as the amount increases beyond the range.
[0004]
[Problems to be solved by the invention]
By the way, in the manufacturing method of the hydrothermal solidified body proposed in the above publication, a hydrothermal solidified body having high strength and small variation in strength is obtained by blending a relatively large amount of waste glass and blending aggregate. Although it seems to be a useful production method, the amount of waste glass is naturally limited by the amount of strength control using aggregates.
[0005]
Therefore, an object of the present invention is to provide a method for producing a solidified body that can produce a hydrothermal solidified body having a high strength by reducing the blending of aggregates as much as possible and increasing the blending of glass materials.
[0006]
[Means for Solving the Problems]
The present inventors have also studied the possibility of recycling by forming a glass material in which glass products such as glass bottles and window glass are discarded into a solid body having high strength. At that time, it is easy to ensure the strength by mixing the aggregate as before, but the mixing ratio of the glass material is reduced accordingly, so it is efficient to mix more glass materials with as little aggregate as possible. Has been researching with emphasis on recycling use.
[0007]
In the course of the research, for example, silicic substances and crushed dust collecting powder in the same manner as the method for producing a hydrothermal solidified body as proposed in JP-A-11-157910 and JP-A-2000-335955. It turned out that a high-strength solidified body cannot always be obtained even if a hydrothermal solidified body is produced by using only a glass material instead of (fine powder rich in SiO 2 ) and mixing with a calcareous substance.
[0008]
As a result of further research, when a large amount of glass material is used, a high-strength hydrothermal solidified body is obtained only when the moisture content is within a certain range in the pressure-formed body before hydrothermal treatment. As a result, the present invention has been completed, and the gist thereof is as follows.
[0009]
That is, the invention according to claim 1 is a method for producing a solidified body for producing a high-strength solidified body, comprising a step of mixing a glass material, a calcium compound and water to form a mixture, and press-molding the mixture. And a step of producing a solidified body by hydrothermally solidifying the pressure- molded body, and the mass ratio of the glass material to the calcium compound in the mixture is 80:20 to The gist of the present invention is a method for producing a solidified body in which the moisture content of the pressure-molded body before the hydrothermal solidification treatment is adjusted to 10 to 40% by mass.
[0010]
In the present invention, the water content of the pressure-formed body before hydrothermal solidification treatment is adjusted to 10 to 40% by mass, but conventionally, a desired amount of water is usually added when a calcium compound is blended and mixed. In the state of the pressure-molded body before hydrothermal solidification treatment, the water content is not adjusted. And if the moisture content of the press-molded body before hydrothermal solidification treatment is less than 10% by mass, the strength of the solidified body after hydrothermal treatment is low. The cause is not yet fully understood, but it is thought that sufficient crystal growth was not possible due to insufficient water for the production of crystalline calcium silicate during the hydrothermal reaction. On the other hand, when the water content of the pressure-molded body before hydrothermal solidification treatment exceeds 40% by mass, the water for generating crystalline calcium silicate during the hydrothermal reaction is sufficient, but excess water is more than necessary. This is because there is a concern that pores are generated and the strength is lowered because the remaining steam is discharged.
[0011]
In view of the above, in the invention according to claim 1, it is preferable that the water content is further adjusted to 10 to 20% by mass (invention 2).
[0012]
Moreover, in the invention which concerns on the said Claim 1 or 2, the glass material by which the glass material was grind | pulverized may be sufficient (Invention 3). The form of the glass material used in the present invention is not particularly limited, but is a crushed product of glass products such as discarded glass bottles and window glass, a recovered cullet that is a pulverized product, and a factory cullet that is generated in glass production. A glass material pulverized more finely can be preferably used. A ground glass material is preferred because it is expected that more crystalline calcium silicate is uniformly produced in the hydrothermal reaction.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, in the mixing step, a calcium compound and water are added to a finely crushed glass material so that the mass ratio with the glass material is in the range of 80:20 to 95: 5, and the mixture is mixed with a mixer. A mixture in which the substances are uniformly mixed is produced.
[0014]
Next, in the pressure molding step, the mixture is pressure-molded into a predetermined amount of size (product shape) by a pressure molding apparatus to produce a pressure-molded body. Since water is extruded by this pressure molding, the water content after this pressure molding is adjusted to 10 to 40% by mass, preferably 10 to 20% by mass, and pressure molded. If there is a concern that the water content will be less than 10% by mass, the water content may be measured during the above mixing and pre-added in a large amount. In the present invention, the moisture content was measured as follows. That is, the pressure-molded body was used as a test piece, and the test piece was put into a dryer and completely dried at 110 ° C. for 16 hours, and calculated from the weight difference before and after drying. Also, the water content of the mixture during mixing can be determined in the above manner by collecting a sample of about 10 to 100 g from the mixture.
[0015]
In the hydrothermal solidification step, a hydrothermal solidified body is produced by hydrothermal solidification of the above-mentioned pressure-formed body by a conventional method using a hydrothermal solidification apparatus (autoclave). In addition, as general hydrothermal solidification processing conditions, although processing temperature: 130-300 degreeC and processing time: 1-24 hours, preferable processing temperature is 150-200 degreeC, and preferable processing time is 2-8. It's time. Typical processing conditions are a temperature of 180 ° C. and 5 hours.
[0016]
【Example】
Examples of the present invention will be described below together with comparative examples.
Example 1
The glass material which grind | pulverizes plate glass and has a particle size of 1 mm or less is 95% is used as a raw material. After adding 20% water, it was mixed uniformly with a universal stirrer. Subsequently, the mixed raw material obtained by uniformly mixing was pressure-molded with a pressure molding machine at a pressure of 50 MPa to produce a pressure-molded body having dimensions (diameter: 25 mm × length: 49 mm). The pressure-molded body was hydrothermally treated for 5 hours in an autoclave under a saturated vapor pressure condition at a temperature of 180 ° C. Uniaxial compressive strength was measured using the three solidified bodies after the hydrothermal treatment. Further, five samples were extracted from the pressure molded body, and the water content (average of 5) of the pressure molded body was measured. These measurement results are shown in Table 1.
[0017]
(Example 2)
Treatment and measurement were performed in the same manner as in Example 1 except that cement was used as a solidifying material instead of quicklime in Example 1 and the blending amount of the cement was 20% by mass. The measurement results are also shown in Table 1.
[0018]
(Comparative Example 1)
A glass material having a particle size of 1% or less and having a particle diameter of 95% is used as a raw material, quick lime (CaO) is mixed as a solidifying material in an amount of 10% by mass, and an appropriate amount of water is added. Then, it mixed uniformly with the universal stirrer. Subsequently, the mixed raw material obtained by uniformly mixing was pressure-molded with a pressure molding machine at a pressure of 50 MPa to produce a pressure-molded body having a size (diameter: 25 mm × length: 51 mm). The pressure-molded body was hydrothermally treated for 5 hours in an autoclave under a saturated vapor pressure condition at a temperature of 180 ° C. Uniaxial compressive strength was measured using the three solidified bodies after the hydrothermal treatment. Further, five samples were extracted from the pressure molded body, and the water content (average of 5) of the pressure molded body was measured. These measurement results are shown together in Table 1.
[0019]
[Table 1]
[0020]
As is apparent from the measurement results in Table 1 above, in Example 1, the moisture content before hydrothermal treatment was as high as 14.2%, even though the glass material was incorporated in a large amount of 95% by mass. Thus, the uniaxial compressive strength was as high as 25.3 to 29.1 MPa. Moreover, in Example 2, although the compounding amount of the glass material was as much as 80% by mass, the water content before hydrothermal treatment was as high as 13.9%, so that the uniaxial compressive strength was 33.8 to It was extremely high at 47.9 MPa. In contrast, in Comparative Example 1, although the blending amount of the glass material was as large as 90% by mass, the water content before hydrothermal treatment was 8.3% and less than 10%, so the uniaxial compressive strength was 2 .1 to 3.4 MPa and extremely low.
[0021]
The reason why the strength was lowered in Comparative Example 1 is considered to be because the moisture content before hydrothermal treatment was as low as 8.3%. The cause is not yet fully understood, but it is thought that sufficient crystal growth was not possible due to insufficient water for the production of crystalline calcium silicate during the hydrothermal reaction.
[0022]
【The invention's effect】
As described above, according to the method for producing a solidified body according to the present invention, a large amount of glass material discarded from glass products such as glass bottles and window glass is used, and high-strength solidification is possible without necessarily adding aggregate. Can be formed on the body. In addition, since there are many glass materials and high strength in this way, not only conventional applications but also new recycling examples can be expected.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002092063A JP4072366B2 (en) | 2002-03-28 | 2002-03-28 | Manufacturing method of solidified body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002092063A JP4072366B2 (en) | 2002-03-28 | 2002-03-28 | Manufacturing method of solidified body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003286066A JP2003286066A (en) | 2003-10-07 |
JP4072366B2 true JP4072366B2 (en) | 2008-04-09 |
Family
ID=29236991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002092063A Expired - Lifetime JP4072366B2 (en) | 2002-03-28 | 2002-03-28 | Manufacturing method of solidified body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4072366B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169132A (en) * | 2015-03-13 | 2016-09-23 | 住友金属鉱山シポレックス株式会社 | Manufacturing method of cement-based cured body |
-
2002
- 2002-03-28 JP JP2002092063A patent/JP4072366B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003286066A (en) | 2003-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009518276A (en) | MULTIFUNCTIONAL COMPOSITION FOR COAGABLE COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE COMPOSITION | |
CN111892340B (en) | Preparation method of low-cost steel slag carbonized brick | |
JP5776749B2 (en) | Cement-based solidified concrete sludge heat-dried powder and method for producing the same | |
CN115974475A (en) | Cement brick and hydration carbonization cooperative maintenance process | |
US20080093774A1 (en) | Method for Producing Components | |
AU2020434972A1 (en) | Method for producing a binder | |
JP4072366B2 (en) | Manufacturing method of solidified body | |
JP2006026616A (en) | Water clarifying material and manufacturing method of water clarifying material | |
JP2019014617A (en) | Geopolymer composition and geopolymer-cured body | |
JP2002320952A (en) | Method for treating contaminated soil and treated matter | |
JP4664462B2 (en) | Method for producing carbonated cured body | |
Sakamoto et al. | Preparation of geopolymer cement from crushed stone by-product using alkali fusion | |
JP4418244B2 (en) | Method for producing powdered solidified material | |
JP2001205241A (en) | Method for solidifying incineration ash | |
KR101080855B1 (en) | Preparation method of Eco-building material using waster polishes sludge | |
JP4317391B2 (en) | Eco lime cement, method for producing the same and method for producing eco lime cement solidified body | |
JP4340057B2 (en) | Method for producing hydrothermal solidified body | |
JP2000191353A (en) | Production of glass aggregate and glass aggregate obtained thereby | |
JPH0717760A (en) | Highly strong ceramic body and its preparation | |
JP2009155134A (en) | Method of producing hydraulic material for autoclave-forming and method of producing ceramic-based building material | |
JPH09286643A (en) | Production of inorganic board | |
JP3657703B2 (en) | Method for producing hydrated cured product | |
JP2005154590A (en) | Dust-free solidification material and method for producing the same | |
JP4565126B2 (en) | Method for producing hydraulic materials using waste materials from ceramics building materials | |
JP4340058B2 (en) | Method for producing hydrothermal solidified body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4072366 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |