JP2016169132A - Manufacturing method of cement-based cured body - Google Patents

Manufacturing method of cement-based cured body Download PDF

Info

Publication number
JP2016169132A
JP2016169132A JP2015050992A JP2015050992A JP2016169132A JP 2016169132 A JP2016169132 A JP 2016169132A JP 2015050992 A JP2015050992 A JP 2015050992A JP 2015050992 A JP2015050992 A JP 2015050992A JP 2016169132 A JP2016169132 A JP 2016169132A
Authority
JP
Japan
Prior art keywords
cement
raw material
tile
cured body
siliceous raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015050992A
Other languages
Japanese (ja)
Inventor
純夫 柴田
Sumio Shibata
純夫 柴田
松下 文明
Fumiaki Matsushita
文明 松下
加藤 聡
Satoshi Kato
聡 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2015050992A priority Critical patent/JP2016169132A/en
Publication of JP2016169132A publication Critical patent/JP2016169132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a cement-based cured body capable of reducing use of natural siliceous raw materials while maintaining compressive strength required to the cement-based cured body.SOLUTION: There is provided a manufacturing method of a cement-based cured body by curing a cement-based material composition containing a siliceous raw material mainly consisting of quartzite, a calcareous raw material with a molar ratio of lime content and silica content (Ca/Si) of 0.3 to 0.7 with replacing at least a part of quartzite constituting the siliceous raw material with tile potsherd with SiOcontent of 70 mass% or more.SELECTED DRAWING: None

Description

本発明は、セメント系硬化体の製造方法に関する。詳しくは、建築物の壁や屋根、床等に使用されるコンクリートパネル等のセメント系硬化体に関するものであり、天然資源の使用量を低減することができるセメント系硬化体の製造方法に関する。   The present invention relates to a method for producing a cement-based cured body. Specifically, the present invention relates to a cement-based cured body such as a concrete panel used for a wall, roof, or floor of a building, and relates to a method for manufacturing a cement-based cured body that can reduce the amount of natural resources used.

一般にコンクリートパネル等のセメント硬化体の製造においては、主に硬化後の養生工程において、珪石等の珪酸質原料と、セメントや生石灰等の石灰質原料から、珪酸カルシウム水和物のトバモライト(5CaO・6SiO・5HO)が生成され、これがセメント高化体の更なる強度の向上に寄与することが知られている。 In general, in the manufacture of hardened cement bodies such as concrete panels, calcium silicate hydrate tobermorite (5CaO · 6SiO) is produced from siliceous raw materials such as silica and calcareous raw materials such as cement and quicklime mainly in the curing process after hardening. 2 · 5H 2 O) is produced, which is known to contribute to further improvement in the strength of the cement-enhanced body.

しかしながら、近年の天然資源の減少はその速度を増すばかりで、セメント系硬化体製造に最適な珪石の鉱床も枯渇してきている。環境破壊の問題も資源枯渇の顕在化に拍車をかけており、採取規制が除々に広がりをみせている。天然資源の無尽蔵な確保は将来においては困難となることも考えられ、又、それに伴う原料価格の上昇を抑えるためにも、従来の天然の珪酸質原料の使用を削減できる代替技術が求められている。   However, the decrease in natural resources in recent years has not only increased the rate, but the quartzite deposits that are optimal for the production of cementitious hardened bodies have also been depleted. The problem of environmental destruction has also spurred the emergence of resource depletion, and the collection regulations have gradually expanded. Ensuring inexhaustible reserves of natural resources may be difficult in the future, and there is a need for alternative technologies that can reduce the use of conventional natural siliceous raw materials in order to suppress the accompanying rise in raw material prices. Yes.

ここで、例えば、窯業の分野においては、タイルセルベン等の産業廃棄物を主たる原料とする製造方法が既に提案されている(特許文献1参照)。尚、タイルセルベンとは、ガラス、磁器製品、碍子等磁器製品粉砕物の総称である。   Here, for example, in the field of ceramics, a manufacturing method using industrial waste such as tile selven as a main raw material has already been proposed (see Patent Document 1). Note that tile selven is a general term for pulverized products of porcelain products such as glass, porcelain products, and insulators.

しかしながら、優れた圧縮強度を備えることが求められるコンクリート構造物等のセメント系硬化体においては、結晶度の高いトバモライトを多量且つ均質に生成させることが極めて重要であり、そのためには、例えば、石英の結晶サイズのバラツキが少ない原石からなるもの等、高品位の珪酸質原料の選択が必須であるというのが従来の通説であった(特許文献2参照)。   However, in cement-based hardened bodies such as concrete structures that are required to have excellent compressive strength, it is extremely important to produce a large amount and a homogeneous amount of tobermorite having a high degree of crystallinity. Conventionally, it is essential to select a high-quality siliceous raw material such as a raw material having a small variation in crystal size (see Patent Document 2).

特開平9−100151号公報JP-A-9-1000015 特開2001−302325号公報JP 2001-302325 A

本発明は、上記の状況の中でなされたものである。本発明は、セメント系硬化体において強度の向上に寄与する珪酸カルシウム水和物の生成量を保持したまま、或いは増大させつつ、天然の珪酸質原料の使用量を削減することができるセメント系硬化体の製造方法を提供することを課題とする。   The present invention has been made in the above situation. The present invention is a cement-based curing that can reduce the amount of natural siliceous raw material used while maintaining or increasing the amount of calcium silicate hydrate that contributes to improving strength in the cement-based cured body. It is an object to provide a method for manufacturing a body.

本発明者らは、セメント系硬化体の製造においても、所定の閾値範囲内であれば、天然の珪酸質原料の一部を産業廃棄物であるタイルセルベンで代替したとしても、トバモライトの生成量は減少せず、むしろその生成量を増加させることができることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。   In the production of a cement-based cured body, the present inventors have produced a tobermorite production amount even if a part of natural siliceous raw material is replaced with tile selven, which is an industrial waste, within a predetermined threshold range. The inventors have found that the amount produced can be increased without decreasing, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 珪石を含んでなる珪酸質原料と石灰質原料から珪酸カルシウム水和物が生成される工程を含むセメント系硬化体の製造方法であって、前記珪酸質原料を構成する珪石の一部を、SiO含有量が70質量%以上であるタイルセルベンで代替することによって、前記珪酸質原料を前記珪石のみで構成した場合よりも前記珪酸カルシウム水和物の生成量を増加させることを特徴とするセメント系硬化体の製造方法。 (1) A method for producing a cement-based hardened body including a step of producing calcium silicate hydrate from a siliceous raw material containing silica and a calcareous raw material, and a part of the silica constituting the siliceous raw material The amount of the calcium silicate hydrate is increased as compared with the case where the siliceous raw material is composed only of the silica by replacing with tile selven having a SiO 2 content of 70% by mass or more. A method for producing a cement-based cured body.

(1)の発明によれば、セメント系硬化体の製造において、強度等の品質を保持したまま、天然の珪酸質原料の一部を産業廃棄物であるタイルセルベンで代替することができる。これにより希少な天然資源の保護と産業廃棄物の有効な再利用による地球環境の保全とに寄与することができる。又、材料コストの低減によってセメント系硬化体製造の経済性向上にも寄与することができる。尚、タイルセルベンとは、ガラス、磁器製品、碍子等磁器製品粉砕物の総称であるが、一般にタイルセルベンは、産業廃棄物の中でも比較的安定した性状であり、SiOを多く含むことが知られている。本発明の製造方法において、好適に用いることができるSiO含有量が70質量%以上であるタイルセルベンを入手することに格別の困難性はない。 According to the invention of (1), in the production of a cement-based cured body, a part of natural siliceous raw material can be replaced with tile selven which is industrial waste while maintaining quality such as strength. This can contribute to the protection of scarce natural resources and the preservation of the global environment through the effective reuse of industrial waste. Moreover, it can contribute also to the economical improvement of cement-type hardening body manufacture by reduction of material cost. Tile selven is a general term for pulverized porcelain products such as glass, porcelain products, and insulators. In general, tile selben is a relatively stable property among industrial wastes and is known to contain a large amount of SiO 2. Yes. In the production method of the present invention, there is no particular difficulty in obtaining a tile selven having a SiO 2 content of 70% by mass or more that can be suitably used.

(2) 前記珪酸質原料中の珪石とタイルセルベンとの合計含有量に対するタイルセルベンの含有量比が、5質量%以上75質量%以下である(1)に記載のセメント系硬化体の製造方法。   (2) The method for producing a cement-based cured body according to (1), wherein a content ratio of tile selben to a total content of silica stone and tile selben in the siliceous raw material is 5% by mass to 75% by mass.

(2)の発明によれば、(1)に記載の一般的なタイルセルベンを用いる場合において、極めて高い確度で、セメント系硬化体の強度を好ましい強度範囲に保持することができる。即ち、これにより、(1)の発明の効果をより安定的に発現させることができる。   According to the invention of (2), when the general tile selven as described in (1) is used, the strength of the cement-based cured body can be maintained within a preferable strength range with extremely high accuracy. That is, the effect of the invention of (1) can thereby be expressed more stably.

本発明によれば、本発明は、セメント系硬化体において強度の向上に寄与する珪酸カルシウム水和物であるトバモライトの生成量を保持したまま、或いは増大させつつ、天然の珪酸質原料の使用を削減できるセメント系硬化体の製造方法を提供することができる。そして、これによれば、資源保護と産業廃棄物の有効利用による環境保全と、製造コスト低減によるセメント系硬化体製造に係る経済性の向上に寄与することができる。   According to the present invention, the present invention uses a natural siliceous raw material while maintaining or increasing the amount of tobermorite, which is a calcium silicate hydrate that contributes to improving strength in a cement-based cured body. The manufacturing method of the cement-type hardened | cured material which can be reduced can be provided. And according to this, it can contribute to the environmental improvement by resource protection and the effective use of industrial waste, and the improvement of the economy which concerns on cement-type hardened | cured material manufacture by manufacturing cost reduction.

以下、本発明の実施態様について説明する。尚、本発明は以下の実施態様に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiments.

<セメント系硬化体の製造方法>
従来行われている一般的なセメント系硬化体の製造方法は、以下の通りである。セメント系硬化体の製造においては、先ず、珪石等の珪酸質原料と、セメント、生石灰等の石灰質原料を主原料とするフレッシュコンクリート等のセメント系材料組成物を作成する。そして、これを型枠内で硬化させる。硬化後、更に、適切な環境と期間の養生工程を経ることによりセメント系硬化体を製造することができる。
<Method for producing cement-based cured body>
A conventional method for producing a hardened cementitious body is as follows. In the production of a cement-based hardened body, first, a cement-based material composition such as fresh concrete is mainly prepared using a siliceous material such as silica stone and a calcareous material such as cement and quicklime. And this is hardened within a formwork. After hardening, a cement-type hardened body can be manufactured by passing through a curing process of an appropriate environment and period.

本発明の製造方法は、上記セメント系材料組成物の主原料である珪酸質原料の一部を産業廃棄物であるタイルセルベンで代替することを特徴とする。   The production method of the present invention is characterized in that a part of the siliceous raw material which is the main raw material of the cement-based material composition is replaced with tile selven which is industrial waste.

<セメント系材料組成物>
一般に、セメント系硬化体の製造に用いるセメント系材料組成物は、主原料である上記の珪酸質原料及び石灰質原料の他、各種の骨材や界面活性剤等の添加物、及び温水を加えて混練することによって得ることができる。本発明のセメント系硬化体の製造方法に用いるセメント系材料組成物は、このセメント系材料組成物の主原料のうち、珪酸質原料の一部を、産業廃棄物であるタイルセルベンで代替する。
<Cement-based material composition>
Generally, the cement-based material composition used for the production of a cement-based hardened body is made by adding additives such as various aggregates and surfactants, and hot water in addition to the above-mentioned siliceous raw materials and calcareous raw materials that are the main raw materials. It can be obtained by kneading. In the cement-based material composition used in the method for producing a cement-based hardened body of the present invention, a part of the siliceous raw material is replaced with tile selven, which is an industrial waste, among the main raw materials of the cement-based material composition.

上述の通り、セメント系硬化体の強度向上には養生工程におけるトモバライトの生成が重要な役割を果たす。このトモバライトの生成を促進する上では、珪酸質原料は、例えば特許文献2に記載されているように高品位のものであることが好ましい。よって、例えば、SiO品位に劣るタイルセルベン等でこれを代替すると、セメント系硬化体の強度の向上に寄与する珪酸カルシウム水和物であるトバモライトの生成が不充分となり、セメント系硬化体の強度が低下してしまうものと考えられていた。 As described above, generation of tomobalite in the curing process plays an important role in improving the strength of the cement-based cured body. In order to promote the generation of tomobalite, the siliceous raw material is preferably of high quality as described in Patent Document 2, for example. Therefore, for example, if this is replaced by tile selven, etc., which is inferior in SiO 2 quality, the generation of tobermorite, which is a calcium silicate hydrate that contributes to improving the strength of the cement-based cured body, becomes insufficient, and the strength of the cement-based cured body is It was thought to decline.

しかしながら、本発明者らは、従来の知見に反し、珪酸質原料のうちの一部を、所定の範囲の代替率範囲内でタイルセルベンに代替することによって、反って、トバモライトの生成量を増大させることができることを見出し本発明の製造方法を完成するに至った。   However, contrary to conventional knowledge, the inventors have increased the amount of tobermorite on the contrary by substituting some of the siliceous raw materials with tile selven within a predetermined substitution rate range. As a result, the production method of the present invention has been completed.

尚、本発明のセメント系硬化体の製造方法に用いるセメント系材料組成物は、珪酸質原料を構成する珪石のうち、少なくともその一部をタイルセルベンで代替するものである。セメント系材料組成物を構成する石灰質原料やその他の材料成分については、従来のセメント系材料組成物と同様のものを用いることができる。   In addition, the cement-type material composition used for the manufacturing method of the cement-type hardened | cured material of this invention replaces at least one part among the silica stones which comprise a siliceous raw material with a tile selven. About the calcareous raw material and other material components constituting the cement-based material composition, the same materials as the conventional cement-based material composition can be used.

[珪酸質原料]
本発明のセメント系材料組成物に用いる珪酸質原料は、上述の通り、珪石の一部をタイルセルベンで代替したものである。ここで、タイルセルベンとは、ガラス、磁器製品、碍子等磁器製品粉砕物の総称である。又、一般にタイルセルベンは、産業廃棄物の中でも安定した性状を有することが知られている。具体的な組成としてSiOを多く含むものであることが一般的である。
[Silicaceous material]
As described above, the siliceous raw material used in the cementitious material composition of the present invention is obtained by replacing a part of silica stone with tile selven. Here, tile selben is a general term for pulverized products of porcelain products such as glass, porcelain products, and insulators. In general, tile selven is known to have stable properties among industrial wastes. As a specific composition, it is common to contain a lot of SiO 2 .

タイルセルベンのSiO含有量比が70質量%以上であるとき、珪酸質原料中の珪石とタイルセルベンとの合計含有量に対するタイルセルベンの含有量比(以下、「タイルセルベン代替率」とも言う)は、5質量%以上75質量%以下であることが好ましい。後に実施例において示す通り、タイルセルベン代替率が5質量%以上で75質量%以下、好ましくは25質量%以上75質量%以下の範囲にあるとき、珪石のタイルセルベンによる代替により、セメント系硬化体内の養生期間におけるトバモライトの生成量を有意に増大させることができる。 When the SiO 2 content ratio of tile selben is 70% by mass or more, the content ratio of tile selben to the total content of silica and tile selven in the siliceous raw material (hereinafter also referred to as “tile tile ben substitution rate”) is 5 mass. % Or more and 75% by mass or less is preferable. As will be shown later in the examples, when the replacement rate of tile selben is in the range of 5% by mass to 75% by mass, preferably 25% by mass to 75% by mass, the curing in the cement-based hardened body by the replacement of the silica with tile selven. The amount of tobermorite produced during the period can be significantly increased.

但し、製造対象物とするセメント系硬化体の種類によっては、上記のタイルセルベン代替率が一定割合を超えた場合に、トモバライトの生成量増加の一方で、製造物の緻密化の度合いの低下等、製造物の品質に対する他のデメリットが生じる場合もある。よって、製造物の種類に応じて、上記タイルセルベンの代替率の上限を適宜調整することが好ましい。例えば、製造対象物が軽量気泡コンクリート(ALC)である場合には、組織の緻密化による強度保持の観点から上記のタイルセルベン代替率を50質量%以下として本発明を適用することがより好ましい。   However, depending on the type of cement-based hardened body to be manufactured, when the tile cerven substitution rate exceeds a certain percentage, while the amount of tomobarite increases, the degree of densification of the product decreases, etc. There may be other disadvantages to product quality. Therefore, it is preferable to appropriately adjust the upper limit of the substitution rate of tile selven according to the type of product. For example, when the object to be manufactured is lightweight cellular concrete (ALC), it is more preferable to apply the present invention with the above-mentioned tile selven substitution rate being 50% by mass or less from the viewpoint of maintaining strength by densifying the structure.

[石灰質原料]
本発明のセメント系硬化体の製造方法に用いる石灰質原料は、セメント系硬化体製造用途として従来公知の各種のセメント系材料を適宜用いることができる。具体例としては、普通ポルトランドセメント、早強ポルトランドセメント等のポルトランドセメント以外に高炉セメント、シリカセメント、フライアッシュセメント等を挙げることができる。これらを、セメント系硬化体の使用用途により適宜使い分けることが好ましい。
[Calcium raw material]
As the calcareous raw material used in the method for producing a cement-based cured body of the present invention, various conventionally known cement-based materials can be appropriately used as a cement-based cured body production application. Specific examples include blast furnace cement, silica cement, fly ash cement and the like in addition to Portland cement such as ordinary Portland cement and early-strength Portland cement. These are preferably properly used depending on the intended use of the cement-based cured body.

[その他の材料]
セメント系材料組成物のその他の材料と配合比については特段限定されない。用途を考慮して適宜設定すればよい。一般的なAE剤、AE減水剤、高性能AE減水剤等の混和剤を添加することもできる。
[Other materials]
There are no particular limitations on the blending ratio with other materials of the cementitious material composition. What is necessary is just to set suitably in consideration of a use. Admixtures such as general AE agents, AE water reducing agents, and high performance AE water reducing agents can also be added.

以下、本発明のセメント系硬化体の製造方法について、実施例を挙げて詳細に説明する。尚、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the manufacturing method of the cement-type hardened | cured material of this invention is demonstrated in detail, giving an Example. In addition, this invention is not limited to the Example shown below at all.

<セメント系硬化体試料の製造>
普通ポルトランドセメント、珪石粉末質量比を1:1とし、水粉体質量比は0.8とした。ペーストの材料分離を防ぐため増粘剤として花王ビスコトップを2質量%加えて練り混ぜた後、流し込み成形を行い、室温から72℃まで4時間の前養生を行った。脱型した後、180℃(10atm)でのオートクレーブ養生を12時間行った。それぞれの昇温条件は工業プロセスのトレースとした。タイルセルベンは珪石粉末のみ使用した場合を代替率0%とし、質量比で25%、50%、75%、100%での代替を行った。オートクレーブ養生の前後のセメント系硬化体試料を粉砕し、内部標準物質としてCaFを用いた内部標準法によりTobermorite(2θ=7.8)、Quartz(2θ=20.9)、Fluorite(2θ=28.3)のピーク面積を求め、強熱減量で補正した。又、各セメント系硬化体試料の製造に用いたタイルセルベンの組成は表1に示す通りである。
<Manufacture of cement-based cured body sample>
Ordinary Portland cement and silica powder mass ratio was 1: 1, and water powder mass ratio was 0.8. In order to prevent material separation of the paste, 2% by mass of Kao Visco Top as a thickener was added and kneaded, followed by casting and precuring from room temperature to 72 ° C. for 4 hours. After demolding, autoclave curing at 180 ° C. (10 atm) was performed for 12 hours. Each temperature raising condition was an industrial process trace. For tile selben, the substitution rate was 0% when only silica powder was used, and substitution was performed at a mass ratio of 25%, 50%, 75%, and 100%. Cement-based hardened body samples before and after the autoclave curing were pulverized and subjected to an internal standard method using CaF 2 as an internal standard substance, Tobermorite (2θ = 7.8), Quartz (2θ = 20.9), Fluorite (2θ = 28 .3) peak area was determined and corrected by loss on ignition. Table 1 shows the composition of tile selven used in the production of each cement-based cured body sample.

上記の各セメント系硬化体試料における原料のタイルセルベン代替率とTobermorite/Fluoriteピーク面積比の関係を下記表2に示す。タイルセルベン代替率の増加に伴って、トバモライト生成量は増加し、タイルセルベン代替率が50%と75%の場合に最大となっている。但し、タイルセルベン代替率100%の場合にはトバモライト生成量は急激に減少した。尚、タイルセルベン代替率75%の場合には、オートクレーブ養生時のQuartzの反応率が大きく低下しており、タイルセルベン代替率が100%の場合には、ほとんど反応していなかった。タイルセルベン代替率100%の場合のトバモライト生成量の急減は、このQuartzの反応率の著しい低下に起因するものと考えられる。   Table 2 below shows the relationship between the raw material tile selven substitution ratio and the Tobermorite / Fluorite peak area ratio in each of the cement-based cured body samples. With the increase in the tile selven substitution rate, the tobermorite generation amount increases, and is maximized when the tile selven substitution rate is 50% and 75%. However, when the tile selven replacement rate was 100%, the amount of tobermorite produced decreased sharply. In addition, when the tile selven substitution rate was 75%, the reaction rate of Quartz during autoclave curing was greatly reduced, and when the tile selven substitution rate was 100%, there was almost no reaction. The rapid decrease in the amount of tobermorite produced when the tile selven substitution rate is 100% is considered to be due to the significant decrease in the reaction rate of Quartz.

Figure 2016169132
Figure 2016169132

Figure 2016169132
Figure 2016169132

表1及び2より本発明のセメント系硬化体の製造方法によれば、天然資源である珪石を、産業廃棄物であるタイルセルベンで代替することによって、環境保全への寄与やセメント系硬化体製造における経済性の向上というメリットを享受しながら、同時に製造プロセスにおいて必要とされるトモバライトの生成量を増加させて品質の向上にも寄与することができることが分かる。又、SiO含有量が70質量%程度のタイルセルベンである場合において、その代替率は75%以下の範囲で実施可能であることが分かる。 According to the method for producing a cement-based cured body of the present invention from Tables 1 and 2, by replacing silica stone, which is a natural resource, with tile selven, which is an industrial waste, in the contribution to environmental protection and the production of a cement-based cured body. It can be seen that while enjoying the merit of improving the economic efficiency, the amount of tomobalite required in the manufacturing process can be increased and the quality can be improved. In addition, in the case of a tile selven having a SiO 2 content of about 70% by mass, it can be seen that the substitution rate can be implemented within a range of 75% or less.

Claims (2)

珪石を含んでなる珪酸質原料と石灰質原料から珪酸カルシウム水和物が生成される工程を含むセメント系硬化体の製造方法であって、
前記珪酸質原料を構成する珪石の一部を、SiO含有量が70質量%以上であるタイルセルベンで代替することによって、
前記珪酸質原料を前記珪石のみで構成した場合よりも前記珪酸カルシウム水和物の生成量を増加させることを特徴とするセメント系硬化体の製造方法。
A method for producing a cement-based hardened body comprising a step of producing calcium silicate hydrate from a siliceous raw material comprising silica and a calcareous raw material,
By substituting a part of silica stone constituting the siliceous raw material with tile selven having a SiO 2 content of 70% by mass or more,
A method for producing a cement-based hardened body, wherein the amount of calcium silicate hydrate produced is increased as compared with the case where the siliceous raw material is composed of only the silica.
前記珪酸質原料中の珪石とタイルセルベンとの合計含有量に対するタイルセルベンの含有量比が、5質量%以上75質量%以下である請求項1に記載のセメント系硬化体の製造方法。   The method for producing a cement-based cured body according to claim 1, wherein a content ratio of tile selben to a total content of silica stone and tile selben in the siliceous raw material is 5 mass% or more and 75 mass% or less.
JP2015050992A 2015-03-13 2015-03-13 Manufacturing method of cement-based cured body Pending JP2016169132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050992A JP2016169132A (en) 2015-03-13 2015-03-13 Manufacturing method of cement-based cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050992A JP2016169132A (en) 2015-03-13 2015-03-13 Manufacturing method of cement-based cured body

Publications (1)

Publication Number Publication Date
JP2016169132A true JP2016169132A (en) 2016-09-23

Family

ID=56983108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050992A Pending JP2016169132A (en) 2015-03-13 2015-03-13 Manufacturing method of cement-based cured body

Country Status (1)

Country Link
JP (1) JP2016169132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675736A (en) * 2018-05-25 2018-10-19 海南广胜新型建材有限公司 A kind of autoclaved lime-sand brick and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140750A (en) * 1979-04-20 1980-11-04 Chubu Kogyo Kk Manufacture of inorganic lightweight material
JPH05208182A (en) * 1992-01-30 1993-08-20 Inax Corp Manufacture of hydration-hardened body
JP2000327397A (en) * 1999-05-24 2000-11-28 Inax Corp Hydrothermally solidified body by using waste glass
JP2002003269A (en) * 2000-06-20 2002-01-09 Chuetsu Tec Kk Method of manufacturing calcium silicate plate
JP2003286066A (en) * 2002-03-28 2003-10-07 Kobe Steel Ltd Method for manufacturing solidified body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140750A (en) * 1979-04-20 1980-11-04 Chubu Kogyo Kk Manufacture of inorganic lightweight material
JPH05208182A (en) * 1992-01-30 1993-08-20 Inax Corp Manufacture of hydration-hardened body
JP2000327397A (en) * 1999-05-24 2000-11-28 Inax Corp Hydrothermally solidified body by using waste glass
JP2002003269A (en) * 2000-06-20 2002-01-09 Chuetsu Tec Kk Method of manufacturing calcium silicate plate
JP2003286066A (en) * 2002-03-28 2003-10-07 Kobe Steel Ltd Method for manufacturing solidified body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675736A (en) * 2018-05-25 2018-10-19 海南广胜新型建材有限公司 A kind of autoclaved lime-sand brick and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101333084B1 (en) High early strength cement comprising blast furnace slag and CSA cement
CN113321467B (en) Internal curing low-shrinkage lightweight aggregate ultrahigh-performance concrete and preparation method thereof
CN103253877A (en) Composite cement and preparation method thereof
CN104016621A (en) Anti-cracking concrete and preparation method thereof
DK3018109T3 (en) HYDRAULIC MIXING COMPREHENSIVE GRANULATES OF VEGETABLE ORIGIN AND PROCEDURE FOR THE PREPARATION OF CONCRETE OR MORTAL FROM THIS MIXTURE
JP2013047154A (en) Blast furnace composition
CN103214226A (en) Recycled concrete commercial mortar
JP2018100204A (en) Method of producing cement composition
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
KR101351560B1 (en) Concrete binder composition for improving early strength, concrete using thereof, and manufacturing method thereof
KR101352536B1 (en) A rapid hardening concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
JP2016088778A (en) High durability concrete
JP4171173B2 (en) Concrete using slag aggregate
JP2016169132A (en) Manufacturing method of cement-based cured body
KR101733053B1 (en) Binder of concrete by steam curing
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
JP2016005994A (en) Geopolymer composition and mortar or concrete or secondary concrete product
KR101746518B1 (en) Crack Repair Performance
JP2017149639A (en) Artificial aggregate and cement curing body
JP2004284873A (en) Hydraulic complex material
CN109160762B (en) Cement quick-hardening additive and application thereof
JP2021155231A (en) Expansive material-containing concrete
JP2016169123A (en) Manufacturing method of light weight cellular concrete panel
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917