JP3657703B2 - Method for producing hydrated cured product - Google Patents

Method for producing hydrated cured product Download PDF

Info

Publication number
JP3657703B2
JP3657703B2 JP21515296A JP21515296A JP3657703B2 JP 3657703 B2 JP3657703 B2 JP 3657703B2 JP 21515296 A JP21515296 A JP 21515296A JP 21515296 A JP21515296 A JP 21515296A JP 3657703 B2 JP3657703 B2 JP 3657703B2
Authority
JP
Japan
Prior art keywords
raw material
sio
siliceous
cured product
siliceous raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21515296A
Other languages
Japanese (ja)
Other versions
JPH1036163A (en
Inventor
秀輝 石田
香 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP21515296A priority Critical patent/JP3657703B2/en
Publication of JPH1036163A publication Critical patent/JPH1036163A/en
Application granted granted Critical
Publication of JP3657703B2 publication Critical patent/JP3657703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は水和硬化体の製造方法に関し、特に各種の産業廃棄物(珪酸塩廃棄物)を用いて水和硬化体を得ることのできる製造方法に関する。
【0002】
[発明の背景]
近年、各種分野で産業廃棄物が多く発生し、その処理が問題となっている。
これら産業廃棄物の中にはSiO2を主成分として含有するものも多く含まれている。例えばキラ,硝子屑,タイル屑,火力発電所等から発生する石炭灰,高炉スラグ,鋳込砂屑,汚泥焼却灰等である。
【0003】
ここでキラとは、粘土山から採取した粘土から硝子産業分野で利用される珪砂分を除き、更に窯業分野で利用される粒子の細かい蛙目粘土を除いた後に残る粒子の大きな粘土から成るものであって現在特別の利用用途がなく、産業廃棄物として捨てられるものである。
このキラは通常SiO2を80%以上の量で含有している。
【0004】
また硝子屑は硝子工場等で硝子を加工したときなどに発生するものであって、同じくSiO2分に富んでいる。これもまた特別の利用用途がなく、捨てられているのが実情である。
同様にタイル屑はタイル工場等で発生する屑であって、同じくSiO2を多く含有している。
【0005】
一方石炭灰は、石炭火力発電所において石炭の微粉末を火炎中に投入して一挙に燃焼させたときなどに生じる灰であって、SiO2を主成分とするものである。
この石炭灰は道路用の骨材とか埋立用の材料としての用途の外に特別の用途を持たない産業廃棄物である。
【0006】
他方、鋳込砂屑は鋳造用に用いられた鋳型の屑で、また汚泥焼却灰は下水等で発生する汚泥を焼却したもので、何れもSiO2を主成分とする産業廃棄物である。
【0007】
その他、釉汚泥は窯業等の分野で用いられる釉薬廃棄物を濃縮したものであり、珪質粘土は粒度,SiO2含有量等が不安定で鉄分,TiO2分を含むため、利用価値の低い産業廃棄物としての粘土である。
【0008】
本発明者らは、これら産業廃棄物(珪酸塩廃棄物)がSiO2を主成分として含んでいることに着目し、その利用方法としてこれに石灰質原料粉体を加えて混合し、その混合粉体を圧力窯内で加熱・加圧下で水分と反応させることにより水和硬化体を得る方法を開発した。
【0009】
【発明が解決しようとする課題】
しかしながらこれら産業廃棄物としての珪酸質原料は成分の一定しない、組成のばらついたものであるとともに、SiO2分が少なかったり(例えばSiO2分が40%以下)、或いは上記圧力窯内での水熱合成反応に際して活性の低いAl等の不純物を多く含んでいたり、またSiO2分の大半が反応性の低い非晶質分であったりし、このためかかる産業廃棄物を珪酸質原料として用いたとき、上記水熱合成反応によって実用上十分な強度が得られなかったり、または十分な強度を得るために非常な高温での反応又は長時間の反応が必要である等の問題があり、実際上工業的な製造方法として採用することが困難であった。
【0010】
即ち、珪酸質原料として純度が高く且つ水熱合成反応の際に活性な原料(例えばSiO2分が90%以上でSiO2が結晶質の珪砂)を用いるときには上記水熱合成反応によって十分な強度の水和硬化体を得ることができるものの、珪酸質原料として上記産業廃棄物を用いるときには水熱合成反応を十分に生成させることが難しく、求める強度が得られ難いのである。
【0011】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものである。
而して本願の発明は、珪酸質原料粉体と石灰質原料粉体とをCa/Siモル比が0.05〜1.0となる比率で混合するとともに、これに該珪酸質原料粉体における単位表面積当り10〜50mg/m2の量の水を加えて混合粉体を、容器内部にボール等粉砕媒体を収容した粉砕機を用いて湿式細磨処理し、しかる後該混合粉体を所定形状に成形した後、圧力窯内で加圧・加熱下で水分とともに水熱合成反応させて水和硬化体を得ることを特徴とする。
【0012】
【作用及び発明の効果】
上記のように本発明は、珪酸質原料粉体と石灰質原料粉体とを、珪酸質原料粉体の単位表面積当り10〜50mg/m2の水を添加した上で所定の粉砕機、即ち容器内部にボール等粉砕媒体を収容した粉砕機を用いて湿式細磨処理し、その後に水熱合成反応を行わせることを特徴とするもので、かかる本発明によれば、上記のように珪酸質原料に成分のばらつきがあったりSiO2分が少なかったり或いは不純物が多く含まれていたりしても十分に水熱合成反応を生ぜしめられること、従って珪酸質原料として産業廃棄物(珪酸塩廃棄物)を用いても実用上十分な強度の水和硬化体を得ることができることを確認し得た。
【0013】
本発明に従って処理を行った場合に水熱合成反応が良好に惹起される理由は以下の点にあるものと考えられる。
例えば珪酸質原料粉末と石灰質原料粉末とを単に混合しただけである場合、珪酸質原料粒子と石灰質原料粒子とはある程度混ざり合うものの、図1の模式図に示しているように珪酸質原料粒子10と石灰質原料粒子12の一部ないし多くはそれぞれ塊状となって互いに離れて局在した状態になっているものと考えられる。
【0014】
これに対し、本発明に従い水を添加した状態で混合を行った場合、図2の模式図に示すように例えば珪酸質原料粒子10の表面に水膜14が形成され、その水膜14を媒介として石灰質原料粒子12が珪酸質原料粒子10表面を被覆した状態、即ちコーティングした状態となって、珪酸質原料粒子10の表面に石灰質原料粒子12の層が形成され、以て珪酸質原料粒子10と石灰質原料粒子12との接触面積が多くなるものと考えられる。
【0015】
また粉砕機で細磨処理することによって、通常の場合では得られない珪酸質原料粒子10と石灰質原料粒子12との密な接触状態が形成され、加えて粉砕機における粉砕媒体を通じて粒子を擦り潰すように作用する機械的応力(機械的エネルギ−)が、図2に示しているように珪酸質原料粒子10表面をコーティングした状態の石灰質原料粒子12や珪酸質原料粒子10の歪や構造破壊ないし構造欠陥の形で蓄積されて珪酸質原料粒子10及び石灰質原料粒子12が化学的に活性な状態となって反応性が高められ、そのメカノケミカル効果によって細磨処理時にある程度珪酸質原料粒子10と石灰質原料粒子12との反応が進むとともに、引き続く水熱合成処理の際に両粒子の反応が活発に引き起こされるものと考えられる。
【0016】
また乾式混合細磨の場合には粒子の表面にのみ作用する機械的応力が、水の添加により粒子表面に適当な厚みの水膜14が形成されることによって、その水膜14を介して珪酸質原料粒子10及び石灰質原料粒子12の内部まで効果的に及び、上記メカノケミカル効果が助長されるものと考えられる。
【0017】
そして以上の理由により、本発明によればその後の水熱合成処理の際に反応が促進されて、従来では十分な強度を得られなかった珪酸塩廃棄物、例えばSiO2含量の少ない珪酸塩廃棄物を珪酸質原料として用いた場合にも十分な強度が得られるようになったものと考えられる。
【0018】
ここで本発明においては、石灰質原料として水酸化カルシウム,石灰岩等各種の原料を用いることが可能である。但しCa/Siモル比は0.05〜1.0の範囲とすることが必要である。
モル比が0.05より低いとCaOが不足して十分な強度が得られず、逆に1.0よりも多くなると水和硬化体中に未反応のCa(OH)2が残留して経時的に強度を低下させる要因となる。
【0019】
本発明においては、粒子表面に適当な厚みの水膜を形成させるために、添加する水量として珪酸質原料粒子における単位表面積当り10mg/m2以上の水を添加する必要がある。
但し50mgを超えて添加すると逆に粒子表面の水膜が厚くなり過ぎて上記メカノケミカル作用を効果的に及ぼすことが難しくなる。従ってその上限値は50mgとする必要がある。
【0020】
本発明においては、また、水熱合成反応に際しての反応温度を150〜250℃とするのが望ましく、更に反応時間としては2〜10時間の範囲とするのが良い。
反応温度が150℃未満であると良好に水熱合成反応が生じず、逆に250℃を超える温度では工業的な方法として採用することが困難となる。
また反応時間が2時間未満であると同じく水熱合成反応が十分に生じず、逆に10時間を超えるとこれもまた工業的な方法としては採用が難しくなる。
【0021】
本発明はSiO2分を多く含む珪酸質原料(上限は100%)に適用することは勿論可能であるが、特に従来では十分な強度の得られなかった、SiO2分の少ない珪酸質原料に適用して効果的なものである。
例えば、本発明はSiO2分が20%以上の珪酸質原料に対して、またSiO2分が結晶質である場合にはこれを10%以上含有する珪酸質原料に対して適用することができる。但しSiO2分が50%以上含まれている場合には、従来の方法でも所定の強度を有する水和硬化体を得ることができる。
従って特にSiO2の低含量の珪酸質原料に適用して効果が高い。
尚、本発明においては水熱合成反応に際してその圧力を0.5MPa〜4.0MPaとするのが良い。
【0022】
【実施例】
次に本発明の実施例を以下に詳述する。
表1に示す化学組成の珪酸質原料粉体と石灰質原料(工業用消石灰)粉体とを水を加えて混合及び細磨処理した。
ここで水は表2及び表3に示す種々添加量で加え、また細磨処理は容器内部に粉砕媒体としてのボールを収容した振動ミルを用いて行い、処理時間は30分とした。
【0023】
【表1】

Figure 0003657703
【0024】
【表2】
Figure 0003657703
【0025】
【表3】
Figure 0003657703
【0026】
その後10×10×40mmの供試体を1軸加圧成形機を用いて面圧300kgf/cm2(約30MPa)で乾式プレス成形し、これをオートクレーブにより温度200℃,圧力1.5MPa,時間5時間の条件下で水熱合成処理し、水和硬化体を得た。
【0027】
そしてこの水和硬化体に対して3点曲げ強度試験を行い、強度の評価を行った。
また比較のために珪酸質原料粉体と石灰質原料粉体とを単に混合するだけで、水の添加及び細磨処理を行わないものについても同様の試験を行った。
尚、3点曲げ強度試験は上記供試体をスパン30mm,クロスヘッドスピード0.5mm/分の条件で行った。
結果が表2及び表3に併せて示してある。
【0028】
次にCa/Siモル比0.5のものについてオートクレーブ処理の時間を変化させて同様の試験を行った。
結果が表4に示してある。
尚、水の添加量は30mg/m2とし、また反応温度は200℃とした。
【0029】
【表4】
Figure 0003657703
【0030】
次に反応温度の影響を調べるべく、Ca/Siモル比0.5のものについて反応温度を種々変化させて同様の試験を行った。
結果が表5に示してある。
尚、水の添加量は30mg/m2、反応時間は5時間とした。
【0031】
【表5】
Figure 0003657703
【0032】
これらの結果から、本発明に従って所定量の水添加を行った上で細磨処理を行ったものについては、水和硬化体の曲げ強度が効果的に高まっていることが分かる。
尚、Ca/Siモル比1.5のものについては、モル比1.0のものに比べて曲げ強度が若干低くなっているものの一定の強度が得られている。
但しモル比1.5のものについては、水熱合成反応後において水和硬化体中に未反応のCa分が多く含まれており、経時的に強度低下を来す問題を有している。
【0033】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【図面の簡単な説明】
【図1】珪酸質原料と石灰質原料とを単に混合しただけの場合の混合状態を模式的に表した図である。
【図2】本発明に従って珪酸質原料と石灰質原料とを混合及び湿式細磨したときの粒子の挙動を模式的に表す図である。
【符号の説明】
10 珪酸質原料粒子
12 石灰質原料粒子
14 水膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrated cured product, and more particularly to a production method capable of obtaining a hydrated cured product using various industrial wastes (silicate waste).
[0002]
[Background of the invention]
In recent years, a lot of industrial waste has been generated in various fields, and its treatment has become a problem.
Many of these industrial wastes contain SiO 2 as a main component. Examples include ash, glass waste, tile waste, coal ash generated from thermal power plants, blast furnace slag, cast sand waste, sludge incineration ash, and the like.
[0003]
Here, Kira is composed of clay with large particles remaining after removing the silica sand used in the glass industry from the clay collected from the clay mountain, and further removing the fine grained clay used in the ceramic industry. However, it has no special use and is discarded as industrial waste.
This glitter usually contains SiO 2 in an amount of 80% or more.
[0004]
Glass scrap is generated when glass is processed in a glass factory or the like, and is also rich in SiO 2 . This also has no special use and is abandoned.
Similarly, tile waste is waste generated at a tile factory or the like and also contains a large amount of SiO 2 .
[0005]
On the other hand, coal ash is ash generated when coal fine powder is put into a flame at a coal-fired power plant and burned all at once, and is mainly composed of SiO 2 .
This coal ash is an industrial waste that has no special use other than its use as road aggregate or landfill material.
[0006]
On the other hand, cast sand scraps are mold scraps used for casting, and sludge incineration ash is incinerated sludge generated in sewage or the like, both of which are industrial wastes mainly composed of SiO 2 .
[0007]
In addition, dredged sludge is a concentrate of glaze waste used in fields such as ceramics, and siliceous clay is unstable in particle size, SiO 2 content, etc. and contains iron and TiO 2 , so its utility value is low Clay as industrial waste.
[0008]
The present inventors pay attention to the fact that these industrial wastes (silicate wastes) contain SiO 2 as a main component, and as a method of using the same, add calcareous raw material powder to this, and mix the powder. We developed a method to obtain a hydrated cured body by reacting the body with moisture under pressure and heating in a pressure kiln.
[0009]
[Problems to be solved by the invention]
However siliceous material as these industrial wastes are not constant component, together with those that vary in composition, or SiO 2 minutes less (e.g. SiO 2 minutes or less 40%), or water in the above autoclave In the thermal synthesis reaction, it contains a lot of impurities such as Al having low activity, and most of the SiO 2 part is an amorphous part having low reactivity, so this industrial waste was used as a siliceous raw material. When the above-mentioned hydrothermal synthesis reaction does not provide a practically sufficient strength, or there is a problem that a reaction at a very high temperature or a long time is necessary to obtain a sufficient strength, It was difficult to adopt as an industrial manufacturing method.
[0010]
That is, when a raw material having high purity and active during hydrothermal synthesis reaction is used as a siliceous raw material (for example, silica sand having a SiO 2 content of 90% or more and SiO 2 is crystalline), the hydrothermal synthesis reaction provides sufficient strength. However, when the above industrial waste is used as a siliceous raw material, it is difficult to sufficiently generate a hydrothermal synthesis reaction, and it is difficult to obtain the required strength.
[0011]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems.
Thus, in the present invention, the siliceous raw material powder and the calcareous raw material powder are mixed at a ratio such that the Ca / Si molar ratio is 0.05 to 1.0. Water in an amount of 10 to 50 mg / m 2 per unit surface area is added and the mixed powder is wet-polished using a pulverizer containing a pulverizing medium such as a ball inside the container. After forming into a shape, a hydrothermal synthesis reaction is carried out together with moisture under pressure and heating in a pressure kiln to obtain a hydrated cured product.
[0012]
[Operation and effect of the invention]
As described above, the present invention adds a siliceous raw material powder and a calcareous raw material powder to a predetermined pulverizer, that is, a container after adding 10 to 50 mg / m 2 of water per unit surface area of the siliceous raw material powder. It is characterized in that wet grinding using a pulverizer containing a pulverizing medium such as balls inside, followed by a hydrothermal synthesis reaction. According to the present invention, silicic acid as described above Even if there are variations in raw materials, SiO 2 content is low, or impurities are included, hydrothermal synthesis reaction can be generated sufficiently. Therefore, industrial waste (silicate waste as siliceous raw material) It was confirmed that a hydrated and cured product having a practically sufficient strength could be obtained even using the above.
[0013]
The reason why the hydrothermal synthesis reaction is favorably induced when the treatment is performed according to the present invention is considered to be as follows.
For example, when the siliceous raw material powder and the calcareous raw material powder are simply mixed, the siliceous raw material particles and the calcareous raw material particles are mixed to some extent, but as shown in the schematic diagram of FIG. It is considered that a part or many of the calcareous raw material particles 12 are in a lump shape and are located apart from each other.
[0014]
On the other hand, when mixing is performed with water added according to the present invention, a water film 14 is formed on the surface of the siliceous raw material particles 10 as shown in the schematic diagram of FIG. As a result, the layer of the calcareous raw material particles 12 is formed on the surface of the siliceous raw material particles 10, and thus the siliceous raw material particles 10 are formed. It is thought that the contact area between the limestone raw material particles 12 increases.
[0015]
In addition, the fine grinding process by the pulverizer forms a close contact state between the siliceous raw material particles 10 and the calcareous raw material particles 12 that cannot be obtained in a normal case, and in addition, the particles are crushed through the pulverizing medium in the pulverizer. The mechanical stress (mechanical energy) acting as described above is the distortion or structural destruction of the calcareous raw material particles 12 and the siliceous raw material particles 10 in the state where the surface of the siliceous raw material particles 10 is coated as shown in FIG. The siliceous raw material particles 10 and the calcareous raw material particles 12 are accumulated in the form of structural defects and become chemically active to increase the reactivity. Due to the mechanochemical effect, the siliceous raw material particles 10 As the reaction with the calcareous raw material particles 12 proceeds, it is considered that the reaction between both particles is actively caused during the subsequent hydrothermal synthesis treatment.
[0016]
Further, in the case of dry mixing fine polishing, mechanical stress acting only on the surface of the particles is formed by forming a water film 14 having an appropriate thickness on the particle surface by the addition of water. It is considered that the mechanochemical effect is promoted effectively to the inside of the quality raw material particles 10 and the calcareous raw material particles 12.
[0017]
And for the above reasons, according to the present invention, the reaction is promoted during the subsequent hydrothermal synthesis treatment, and silicate waste that has not been able to obtain sufficient strength in the past, for example, silicate waste with low SiO 2 content. It is considered that sufficient strength can be obtained even when the product is used as a siliceous material.
[0018]
Here, in the present invention, various raw materials such as calcium hydroxide and limestone can be used as the calcareous raw material. However, the Ca / Si molar ratio needs to be in the range of 0.05 to 1.0.
When the molar ratio is lower than 0.05, CaO is insufficient and sufficient strength cannot be obtained. Conversely, when the molar ratio is higher than 1.0, unreacted Ca (OH) 2 remains in the hydrated cured body. It becomes a factor to reduce strength.
[0019]
In the present invention, in order to form a water film having an appropriate thickness on the particle surface, it is necessary to add 10 mg / m 2 or more of water per unit surface area of the siliceous raw material particles as the amount of water to be added.
However, if it is added in excess of 50 mg, the water film on the particle surface becomes too thick and it is difficult to effectively exert the mechanochemical action. Therefore, the upper limit value needs to be 50 mg.
[0020]
In the present invention, the reaction temperature during the hydrothermal synthesis reaction is preferably 150 to 250 ° C., and the reaction time is preferably in the range of 2 to 10 hours.
If the reaction temperature is less than 150 ° C., the hydrothermal synthesis reaction does not occur favorably. Conversely, if the reaction temperature exceeds 250 ° C., it is difficult to adopt as an industrial method.
Also, if the reaction time is less than 2 hours, the hydrothermal synthesis reaction does not occur sufficiently. Conversely, if the reaction time exceeds 10 hours, this is also difficult to adopt as an industrial method.
[0021]
The present invention is it is of course possible to apply the siliceous raw material containing a large amount of 2 minutes SiO (upper limit, 100%), especially in the conventional not obtained sufficient strength, the less siliceous material of SiO 2 minutes It is effective when applied.
For example, the present invention can be applied to a siliceous raw material having a SiO 2 content of 20% or more, and when the SiO 2 content is crystalline, it can be applied to a siliceous raw material containing 10% or more of this. . However, when the SiO 2 content is 50% or more, a hydrated cured product having a predetermined strength can be obtained by a conventional method.
Therefore, it is particularly effective when applied to a siliceous raw material having a low SiO 2 content.
In the present invention, the pressure is preferably 0.5 MPa to 4.0 MPa during the hydrothermal synthesis reaction.
[0022]
【Example】
Next, examples of the present invention will be described in detail below.
The siliceous raw material powder having the chemical composition shown in Table 1 and the calcareous raw material (industrial slaked lime) powder were mixed and finely polished by adding water.
Here, water was added in various addition amounts shown in Tables 2 and 3, and the polishing process was performed using a vibration mill containing balls as grinding media inside the container, and the treatment time was 30 minutes.
[0023]
[Table 1]
Figure 0003657703
[0024]
[Table 2]
Figure 0003657703
[0025]
[Table 3]
Figure 0003657703
[0026]
Thereafter, a 10 × 10 × 40 mm specimen was dry-pressed at a surface pressure of 300 kgf / cm 2 (about 30 MPa) using a uniaxial pressure molding machine, and this was autoclaved at a temperature of 200 ° C., a pressure of 1.5 MPa, and a time of 5 Hydrothermal synthesis treatment was performed under conditions of time to obtain a hydrated cured product.
[0027]
Then, a three-point bending strength test was performed on the hydrated cured body, and the strength was evaluated.
For comparison, a similar test was also performed on a mixture in which the siliceous raw material powder and the calcareous raw material powder were simply mixed and water was not added and the polishing process was not performed.
The three-point bending strength test was performed under the conditions where the specimen was a span of 30 mm and a crosshead speed of 0.5 mm / min.
The results are shown in Tables 2 and 3.
[0028]
Next, the same test was conducted by changing the autoclave treatment time for a Ca / Si molar ratio of 0.5.
The results are shown in Table 4.
The amount of water added was 30 mg / m 2 and the reaction temperature was 200 ° C.
[0029]
[Table 4]
Figure 0003657703
[0030]
Next, in order to investigate the influence of the reaction temperature, the same test was conducted by changing the reaction temperature for a Ca / Si molar ratio of 0.5.
The results are shown in Table 5.
The amount of water added was 30 mg / m 2 and the reaction time was 5 hours.
[0031]
[Table 5]
Figure 0003657703
[0032]
From these results, it can be seen that the bending strength of the hydrated and cured product is effectively increased for those subjected to the fine polishing treatment after adding a predetermined amount of water according to the present invention.
In the case of the Ca / Si molar ratio of 1.5, although the bending strength is slightly lower than that of the molar ratio of 1.0, a certain strength is obtained.
However, those having a molar ratio of 1.5 have a problem that after the hydrothermal synthesis reaction, a large amount of unreacted Ca is contained in the hydrated cured body, resulting in a decrease in strength over time.
[0033]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a mixed state when a siliceous raw material and a calcareous raw material are simply mixed.
FIG. 2 is a diagram schematically showing the behavior of particles when a siliceous raw material and a calcareous raw material are mixed and wet-polished according to the present invention.
[Explanation of symbols]
10 Silicic raw material particles 12 Calcareous raw material particles 14 Water film

Claims (1)

珪酸質原料粉体と石灰質原料粉体とをCa/Siモル比が0.05〜1.0となる比率で混合するとともに、これに該珪酸質原料粉体における単位表面積当り10〜50mg/m2の量の水を加えて混合粉体を、容器内部にボール等粉砕媒体を収容した粉砕機を用いて湿式細磨処理し、しかる後該混合粉体を所定形状に成形した後、圧力窯内で加圧・加熱下で水分とともに水熱合成反応させて水和硬化体を得ることを特徴とする水和硬化体の製造方法。The siliceous raw material powder and the calcareous raw material powder are mixed at a Ca / Si molar ratio of 0.05 to 1.0, and 10 to 50 mg / m per unit surface area in the siliceous raw material powder. 2 amount of water is added and the mixed powder is wet-polished using a pulverizer containing a pulverizing medium such as a ball inside the container. After that, the mixed powder is formed into a predetermined shape, and then the pressure kiln. And a hydrothermal synthesis reaction with moisture under pressure and heating to obtain a hydrated cured product.
JP21515296A 1996-07-26 1996-07-26 Method for producing hydrated cured product Expired - Fee Related JP3657703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21515296A JP3657703B2 (en) 1996-07-26 1996-07-26 Method for producing hydrated cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21515296A JP3657703B2 (en) 1996-07-26 1996-07-26 Method for producing hydrated cured product

Publications (2)

Publication Number Publication Date
JPH1036163A JPH1036163A (en) 1998-02-10
JP3657703B2 true JP3657703B2 (en) 2005-06-08

Family

ID=16667537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21515296A Expired - Fee Related JP3657703B2 (en) 1996-07-26 1996-07-26 Method for producing hydrated cured product

Country Status (1)

Country Link
JP (1) JP3657703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114562A (en) * 2000-10-05 2002-04-16 Clion Co Ltd Hydrothermal hardened body and method for manufacturing the same

Also Published As

Publication number Publication date
JPH1036163A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
KR20080077002A (en) Multi-function composition for settable composite materials and methods of making the composition
JP3657703B2 (en) Method for producing hydrated cured product
JP3750269B2 (en) Solidification method of industrial waste and solidified body of industrial waste
JP3840371B2 (en) Steelmaking slag and sand-washed sludge treatment method
JP4664462B2 (en) Method for producing carbonated cured body
JP2021151947A (en) Method for producing inorganic industrial waste recycled product
JP3673960B2 (en) Method for producing hydraulic powder
JPH1025138A (en) Hardenable inorganic composition
KR100815062B1 (en) Process for the preparation of aluminus cements
JP4340057B2 (en) Method for producing hydrothermal solidified body
JP2748206B2 (en) Method for producing hydrated cured product
CN112624643B (en) Preparation method of optical fiber-doped waste mud alkali-activated phosphorous slag geopolymer
JPH04326975A (en) Production of slag due to melting of waste
KR101080855B1 (en) Preparation method of Eco-building material using waster polishes sludge
JP3263648B2 (en) Calcium silicate molding composition containing incinerated ash molten slag
JP4251723B2 (en) Crushed stone by-product processing method
JP3008341B2 (en) Sintered body made of phosphate conversion sludge and zeolite powder and its production method
JPH1036110A (en) Production of dicalcium silicate
JP2002348165A (en) Polymer cement composition and solidified body
WO1996037634A1 (en) Process for forming shaped articles
JP4072366B2 (en) Manufacturing method of solidified body
JP4000394B2 (en) Recrystallized slag using fly ash as anti-fusing agent and its use
TW407068B (en) The method of fabricating water-preserving brick by utilizing the second aluminum dregs
JPH0774096B2 (en) Method for manufacturing mullite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees