JP2684163B2 - Sintered material made of calcium phosphite and zeolite powder and its manufacturing method - Google Patents

Sintered material made of calcium phosphite and zeolite powder and its manufacturing method

Info

Publication number
JP2684163B2
JP2684163B2 JP7020971A JP2097195A JP2684163B2 JP 2684163 B2 JP2684163 B2 JP 2684163B2 JP 7020971 A JP7020971 A JP 7020971A JP 2097195 A JP2097195 A JP 2097195A JP 2684163 B2 JP2684163 B2 JP 2684163B2
Authority
JP
Japan
Prior art keywords
sintered material
calcium phosphite
water
zeolite
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7020971A
Other languages
Japanese (ja)
Other versions
JPH08198661A (en
Inventor
哲男 斎藤
利秋 伊藤
和年 石下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Original Assignee
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture filed Critical Tochigi Prefecture
Priority to JP7020971A priority Critical patent/JP2684163B2/en
Publication of JPH08198661A publication Critical patent/JPH08198661A/en
Application granted granted Critical
Publication of JP2684163B2 publication Critical patent/JP2684163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、メッキ廃液の処理過程
から生じる亜リン酸カルシウムを主成分とした廃棄物成
分と大谷石等のゼオライト粉体とを用いた焼結材であっ
て、主として舗装用タイル、外装、内装用タイル等の焼
成建材に用いる焼結材及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a sintered material using a waste component containing calcium phosphite as a main component and a zeolite powder such as Otani stone produced from a treatment process of a plating waste liquid, which is mainly used for paving. The present invention relates to a sintered material used for a fired building material such as a tile, an exterior, and an interior tile, and a method for producing the same.

【0002】[0002]

【従来の技術】今日、無電解ニッケルめっきは産業界に
広く利用されているが、その廃液は年間10万トンに達
し、その90%が海洋投棄されており、環境汚染の原因
として大きく問題視されている。そこで、本発明者は、
先にこの無電解ニッケルめっき廃液の再生処理の方法を
提案しており(特願平5−294053号)、その概要
は、無電解ニッケルめっき皮膜形成により次亜リン酸塩
が酸化された塩を含む無電解ニッケルめっき廃液に、該
廃液中に存在するニッケルイオン1モルに対し水酸化ア
ンモニウムを0.2〜4モルの割合、より望ましくは
1.8〜2.2モルの割合で添加し、次いでカルシウ
ム,バリウム又はストロンチウムの水酸化物から成る群
の少なくとも一つ以上を含む亜リン酸処理剤を添加し、
ニッケルイオンを沈殿させることなく亜リン酸化合物を
選択的に除去することを特徴とするもので、要するに無
電解ニッケルめっきの廃液を再生して循環的に再利用で
きる方法を提供するものである。
2. Description of the Related Art Today, electroless nickel plating is widely used in the industrial world, but the amount of waste liquid reaches 100,000 tons per year, 90% of which is dumped into the ocean, which is a serious problem as a cause of environmental pollution. Has been done. Therefore, the present inventor
Previously, a method of regenerating this electroless nickel plating waste solution has been proposed (Japanese Patent Application No. 5-294053), and its outline is a salt in which hypophosphite is oxidized by electroless nickel plating film formation. To the electroless nickel plating waste liquid containing, ammonium hydroxide is added at a ratio of 0.2 to 4 mol, more preferably 1.8 to 2.2 mol, relative to 1 mol of nickel ions present in the waste liquid, Then, a phosphite treating agent containing at least one of the group consisting of hydroxides of calcium, barium or strontium is added,
The present invention is characterized by selectively removing a phosphite compound without precipitating nickel ions, and in short, provides a method of recycling a waste solution of electroless nickel plating and recycling it.

【0003】[0003]

【発明が解決しようとする課題】しかし、この廃液の再
生処理に関しても、亜リン酸処理剤として主に用いる水
酸化カルシウムでめっき阻害成分を除去するに際し、廃
液1リットル当たり約120グラムの亜リン酸カルシウ
ムの副生が避けられない。そこで今回、この亜リン酸カ
ルシウムを再利用する方途を検討し、前記無電解ニッケ
ルめっきの廃液に対する処理法を完遂させようと種々の
手段を試みた。
However, regarding the regeneration treatment of this waste liquid, when removing the plating-inhibiting component with calcium hydroxide mainly used as a phosphorous acid treatment agent, about 120 g of calcium phosphite per liter of waste liquid is removed. Inevitable by-product. Then, this time, the method of reusing this calcium phosphite was examined, and various means were tried in order to complete the processing method with respect to the said electroless nickel plating waste liquid.

【0004】その一環として、亜リン酸カルシウムの結
合性に着目して焼結体としての利用を検討し、先ず、陶
磁器に利用される長石、陶石等を含む粘土成分に、該亜
リン酸カルシウムを混入させて焼成を試みた。ところ
が、高温に加熱されて焼結反応が進むと、大きな収縮を
伴い、亀裂や気泡を含みながら内部に大きな潜在歪を残
し、その結果、冷却後には、大きな寸法変化と変形が生
じるという欠点を露呈した。又、物理的強度の点におい
ても、曲げ強度や耐衝撃性が低く、建材等の利用には供
し得ないものとなった。
As a part of this, the use as a sintered body was examined paying attention to the binding property of calcium phosphite. First, the calcium phosphite was mixed with a clay component containing feldspar, porcelain stone, etc. used in ceramics. I tried firing. However, when it is heated to a high temperature and the sintering reaction proceeds, it is accompanied by a large shrinkage, leaving a large latent strain inside including cracks and bubbles, and as a result, a large dimensional change and deformation occur after cooling. Exposed. Also in terms of physical strength, the bending strength and impact resistance are low, and it cannot be used for building materials.

【0005】そこで、鋭意研究を重ねたところ、大谷石
等のゼオライト粉体に該亜リン酸カルシウムを混入させ
て焼結を施すと、物理的強度に優れ、寸法変化や変形が
極小で、且つ、保水性と透水性に優れるという特性が得
られることを見い出し、ここに本発明を完成させたもの
である。
Therefore, as a result of intensive studies, when zeolite powder such as Otani stone was mixed with the calcium phosphite and sintered, the physical strength was excellent, dimensional change and deformation were minimal, and water retention was maintained. It was found that the characteristics of excellent properties and water permeability can be obtained, and the present invention has been completed here.

【0006】[0006]

【課題を解決するための手段】本発明焼結材は、大略、
亜リン酸カルシウムを重量比で5〜50%と、ゼオライ
ト粉末を重量比で5〜50%と、焼結助剤等の第3成分
を混合して焼成して成る。
The sintered material of the present invention is generally
5 to 50% by weight of calcium phosphite, 5 to 50% by weight of zeolite powder, and a third component such as a sintering aid are mixed and fired.

【0007】先ず、亜リン酸カルシウムは前述の通り、
無電解ニッケルめっきの廃液を再生して循環的に再利用
できる方法を実施するに当たって副生するものを利用で
きる。無電解ニッケルめっきの廃液は、 次亜リン酸ナトリウム 23g/l 亜リン酸ナトリウム 120g/l ニッケルイオン 5g/l 有機酸(コハク酸、クエン酸等) 30g/l から成り、めっき阻害成分たる亜リン酸ナトリウムを水
酸化カルシウムCa(OH)2で除去すると、廃液1リ
ットル当たり約120gの亜リン酸カルシウムを生成
し、この他、1%程度のニッケルイオンと若干の有機酸
が共沈する。該液から若干の共沈成分を含む亜リン酸カ
ルシウムを採集し、これを熱風乾燥し、ボ−ルミル等の
粉砕機で、粒径0.2〜0.5mm程度の粉体に粉砕す
る。
First, calcium phosphite is as described above.
In carrying out the method of recycling the waste solution of the electroless nickel plating and recycling it, the by-product can be used. The waste liquid of electroless nickel plating consists of sodium hypophosphite 23 g / l sodium phosphite 120 g / l nickel ion 5 g / l organic acid (succinic acid, citric acid, etc.) 30 g / l When sodium acid salt is removed with calcium hydroxide Ca (OH) 2 , about 120 g of calcium phosphite is produced per liter of waste liquid, and in addition, about 1% of nickel ions and some organic acids coprecipitate. Calcium phosphite containing some coprecipitated components is collected from the liquid, dried with hot air, and pulverized with a pulverizer such as a ball mill to a powder having a particle size of about 0.2 to 0.5 mm.

【0008】該亜リン酸カルシウムの混合割合は、強度
保持のため全体重量割合にして5〜50%とする。5%
以下では強度不足と共に配合メリットが失われ、50%
以上では透水性及び保水性がなくなるからである。
The mixing ratio of the calcium phosphite is 5 to 50% as a whole weight ratio in order to maintain strength. 5%
In the following, the strength is insufficient and the merit of blending is lost.
This is because water permeability and water retention are lost in the above.

【0009】次いで、ゼオライト粉体には、天然ゼオラ
イト若しくは合成ゼオライトが利用できるが、経済的に
は大谷石等の天然ゼオライトが好ましい。該大谷石は、
(Na2・K2)O.Al23.SiO2 8.H2Oの化学
式で表され、天然ゼオライトで最も熱的に安定なクリノ
プチロライト構造を有し、1μ以下の微細な気孔を内包
し、又、多量の結晶水を含んでいる。結晶水を内蔵して
いる気孔は加熱によって結晶水を失うにつれて周辺の気
体分子を吸着したまま焼結収縮を起こすため1000℃
以上で非晶質化し、本来のゼオライトの格子構造がくず
れた状態になってもなお超微細な細孔を残したままの焼
結体となる。
Next, as the zeolite powder, natural zeolite or synthetic zeolite can be used, but economically, natural zeolite such as Otaniishi is preferable. The Otani stone is
(Na 2 · K 2 ) O. Al 2 O 3 . SiO 2 8 . It is represented by the chemical formula of H 2 O, has the most thermally stable clinoptilolite structure of natural zeolite, contains fine pores of 1 μm or less, and contains a large amount of crystal water. The pores containing water of crystallization cause sintering shrinkage while adsorbing the surrounding gas molecules as the water of crystallization is lost by heating, and the temperature is 1000 ° C.
As a result, even if the original lattice structure of zeolite is collapsed and the original zeolite lattice structure is collapsed, a sintered body is obtained in which ultrafine pores are still left.

【0010】該ゼオライト粉体は、その粒径が0.5m
m以下であるものが望ましく、0.5mm以上の粒径の
ものは粗く、焼結材に必要な強度に耐え得ない。又、そ
の混合割合は、曲げ強度と透水・保水機能を兼備させる
ため全体重量割合にして5〜50%とする。5%以下で
は透水・保水機能がなく、50%以上では焼結材の寸法
精度等の品質が安定せず、曲げ強度も低下するからであ
る。
The particle size of the zeolite powder is 0.5 m.
Those having a particle diameter of 0.5 mm or less are desirable, and those having a particle diameter of 0.5 mm or more are coarse and cannot withstand the strength required for a sintered material. In addition, the mixing ratio is 5 to 50% in terms of the total weight ratio in order to have both bending strength and water permeation / water retention functions. This is because if it is 5% or less, there is no water permeability / water retention function, and if it is 50% or more, the quality such as dimensional accuracy of the sintered material is not stable and the bending strength is also reduced.

【0011】そして、第3成分として、粘土、ガラス
粉、スラグ等を混入するが、粘土及びガラス粉は上記亜
リン酸カルシウム及びゼオライトでは可塑性に欠けるた
めこれを補うものであり、スラグは、焼結材の寸法精度
を制御するにつき収縮誤差を抑えるためである。
Clay, glass powder, slag, etc. are mixed as the third component, but the clay and glass powder supplement the calcium phosphite and zeolite because they lack plasticity, and the slag is a sintered material. This is because the shrinkage error is suppressed in controlling the dimensional accuracy of.

【0012】上記各成分を混合調整した後、高周波振動
を与えつつ加圧下で成形し、所定大きさ及び形状とし、
これを約1000℃〜1200℃の環境下で加温焼成
し、焼結して本発明焼結材を得る。このとき、焼成温度
は、陶磁器等の焼結温度と比較して100℃程度低い温
度で済むが、これはゼオライト構造の気孔が熱気を通過
させることができるので、熱が内部にまで到達し易いか
らである。
After mixing and adjusting the above-mentioned components, they are molded under pressure while applying high-frequency vibration to have a predetermined size and shape,
This is heated and baked in an environment of about 1000 ° C to 1200 ° C and sintered to obtain the sintered material of the present invention. At this time, the firing temperature may be about 100 ° C. lower than the sintering temperature of ceramics or the like, but this is because the pores of the zeolite structure allow hot air to pass through, so that heat easily reaches the inside. Because.

【0013】[0013]

【作用】上記製法によって得られた本発明の焼結材は、
相互に完全融解し、新たな構造体を形成することが確認
された。即ち、先ず後述の実施例2の手順に従ってその
断面を走査型電子顕微鏡で観察したところ、図1に示す
如く、亜リン酸カルシウムと粘土を主成分とする焼結体
(A)では、配合した原料の明瞭な融解が認められず、
比較的大きな粒子の粒界が観察された。一方、本発明焼
結材の一例をなす(B)では、配合した原料が相互に融
解しており、粒子粒界は全く観察されなかった。この結
果、本発明焼結材は相互が完全に融解していることが確
認された。
The sintered material of the present invention obtained by the above-mentioned manufacturing method is
It was confirmed that they completely melt each other and form a new structure. That is, first, when the cross section was observed with a scanning electron microscope according to the procedure of Example 2 described later, as shown in FIG. 1, in the sintered body (A) containing calcium phosphite and clay as main components, No clear melting was observed,
Grain boundaries of relatively large particles were observed. On the other hand, in (B) which is an example of the sintered material of the present invention, the blended raw materials were mutually melted, and no grain boundary was observed at all. As a result, it was confirmed that the sintered materials of the present invention were completely melted with each other.

【0014】又、その構造については、実施例3の手順
で調整したものを、配合原料たる大谷石粉末と亜リン酸
カルシウムと比較しつつ、X線解析器にかけたところ、
そのX線回折パタ−ンは、図2に示す如くであり、この
ことは、大谷石の粉末及び亜リン酸カルシウムとは全く
異なる回折パタ−ンを示しており、本発明焼結材が原料
物質とは異なる新たな物質構造を有していることが判明
した。
Regarding the structure thereof, the one prepared according to the procedure of Example 3 was subjected to an X-ray analyzer while comparing with Otaniishi powder and calcium phosphite as raw materials for compounding,
The X-ray diffraction pattern is as shown in FIG. 2, which shows a completely different diffraction pattern from the powder of Otani stone and calcium phosphite. Was found to have a different new material structure.

【0015】次に、本発明焼結材の物理的強度について
は、実施例1の手順に基づいて、建材等に要求される曲
げ強度について測定した。その結果、本発明焼結材は、
磁器質セラミックスが100N/cm以上及び陶器質セ
ラミックスが60N/cm以上であるのに対し、250
N/cm以上と優れた曲げ強度を有することが確認され
た。これは、上記完全融解が示す様に粒子粒界を失う程
に融合し、粒子が相互に結び付いていることに加え、亜
リン酸カルシウムは、カルシウムとリン成分によって結
合強度が強く、融解後に強い構造力を発揮することが一
方の要因であり、他方、気孔の空隙を有する組織が一種
の柔構造を示し、曲げ作用に対し弾性を発揮し、耐性を
得ることがもう一つの要因である。上記相互の結合性と
組織の柔構造との調和が優れた曲げ強度をもたらすもの
と考えられる。
Next, with respect to the physical strength of the sintered material of the present invention, the bending strength required for building materials and the like was measured based on the procedure of Example 1. As a result, the sintered material of the present invention,
Whereas porcelain ceramics are 100 N / cm or more and ceramic ceramics are 60 N / cm or more, 250
It was confirmed to have an excellent bending strength of N / cm or more. This is because, as shown in the above complete melting, the particles are fused enough to lose the grain boundary and the particles are connected to each other.In addition, calcium phosphite has a strong bonding strength due to the calcium and phosphorus components, and a strong structural force after melting. Is one factor, and the other is that the tissue having voids of pores shows a kind of flexible structure, exhibits elasticity to bending action, and obtains resistance. It is considered that the harmony between the mutual bondability and the soft structure of the tissue brings about excellent bending strength.

【0016】更に、本焼結材の気孔の多さに着目して、
透水性と保水性について測定したところ、本発明焼結材
は、透水性について砂質地盤に相当する優れた透水性
と、良好な保水性を有することが判明した。即ち、実施
例4の手順に従い、透水性、保水性に関する物性に対
し、飽和透水試験、pF試験、不飽和透水試験を行なっ
たところ、表2、図3及び図4に示される結果を得た。
この結果、飽和透水係数は、1.25×10-4cm/s
ecと極めて小さな値を示し、これは比較的透水性の良
い砂質地盤に相当する値であり、又、吸水性は毛管飽和
時に飽和度93%と良好な値を示し、保水性は、pF試
験結果からpF2.2までは一定値を保ち、この領域を
超えると急激に含水比が低下する傾向を示した。これ
は、本発明焼結材は、pFが一定値までは保水性が良
く、焼結材の気孔内に水を保つが、一定値を超えると水
を保持することができず水を吐き出す結果、透水性を向
上させることになり、透水性と保水性を兼ね備える特性
を得ることを示している。この特性から、後述の舗装タ
イルとして都市のヒ−トアイランド化を防止する効果を
導くことができる。
Further, paying attention to the large number of pores in the sintered material,
The water permeability and water retention were measured, and it was found that the sintered material of the present invention had excellent water permeability equivalent to that of sandy ground and good water retention. That is, according to the procedure of Example 4, a saturated water permeability test, a pF test, and an unsaturated water permeability test were performed on the physical properties relating to water permeability and water retention, and the results shown in Table 2, FIG. 3 and FIG. 4 were obtained. .
As a result, the saturated hydraulic conductivity was 1.25 × 10 −4 cm / s.
ec shows a very small value, which is a value corresponding to sandy soil with relatively good water permeability, water absorption has a good saturation level of 93% at capillary saturation, and water retention is pF. From the test results, a constant value was maintained up to pF2.2, and when it exceeded this range, the water content ratio tended to decrease rapidly. This is because the sintered material of the present invention has good water retention up to a certain value of pF and retains water in the pores of the sintered material, but when it exceeds a certain value, water cannot be retained and water is discharged. It shows that the water permeability is improved, and the property of having both water permeability and water retention is obtained. From this characteristic, it is possible to derive the effect of preventing the formation of heat islands in the city as a pavement tile described later.

【0017】最後に、本発明焼結材は、潜在的歪の少な
いことから変形や亀裂が起こり難く、成形時の寸法や形
状の安定性に優れており、その結果、比較的大型の建材
も一工程で成形が可能となる。又、亜リン酸カルシウム
の副生分のなかには、1%程度のニッケルイオンが含ま
れているが、焼成時の加熱で同金属イオンが着色剤とし
て機能し、製品に淡い着色効果を与える。
Finally, the sintered material of the present invention is less likely to be deformed or cracked due to less latent strain, and is excellent in stability of size and shape at the time of molding. As a result, even a relatively large building material can be obtained. Molding is possible in one step. Although about 1% of nickel ions are contained in the by-product of calcium phosphite, the metal ions function as a coloring agent when heated during firing, and give a light coloring effect to the product.

【0018】[0018]

【実施例1】以下の配合を基に、混合調整した。 大谷石 40wt% 亜リン酸カルシウム 25wt% 粘土 15wt% ガラス粉 10wt% スラグ 10wt% これを高周波振動装置で加振しつつ、油圧成形機で10
0kg/cm2に加圧し、300×300×25mmの
板材に成形し、焼成炉内で1160℃に加温し、全焼成
3時間で焼成、焼結した。
Example 1 A mixture was prepared based on the following formulation. Otaniishi 40wt% Calcium phosphite 25wt% Clay 15wt% Glass powder 10wt% Slag 10wt% While vibrating this with a high frequency vibration device, 10 with a hydraulic molding machine
Pressurized to 0 kg / cm 2 , molded into a plate of 300 × 300 × 25 mm, heated to 1160 ° C. in a firing furnace, and fired and sintered for 3 hours in total firing.

【0019】その曲げ強度を磁器質セラミックス等の対
比させて表すと表1の通りであった。
The bending strength is shown in Table 1 in comparison with that of porcelain ceramics and the like.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例2】下記配合の粘土と亜リン酸カルシウムとの
混合物である比較例(A)と、実施例1で得た本発明焼
結材(B)と対比し、その断面を走査型電子顕微鏡で撮
影した。 比較例(A)配合:粘土−50wt%、亜リン酸カルシ
ウム−50wt% その結果は、図1に示す通りであった。
[Example 2] A comparative example (A), which is a mixture of clay and calcium phosphite having the following composition, and the sintered material (B) of the present invention obtained in Example 1 were compared, and their cross sections were observed with a scanning electron microscope. I took a picture. Comparative Example (A) Formulation: Clay-50 wt%, calcium phosphite-50 wt% The results were as shown in FIG.

【0022】[0022]

【実施例3】実施例1で得た本発明焼結材と、原料たる
めっき廃液再生処理中に副生した亜リン酸カルシウム
と、大谷石粉末をX線解析機にかけ、そのX線回折パタ
−ンを求めた。その結果は、図2の通りであった。
[Example 3] The sintered material of the present invention obtained in Example 1, calcium phosphite produced as a raw material during the regeneration treatment of the plating waste liquid, and Oyaishi powder were subjected to an X-ray analyzer, and the X-ray diffraction pattern was obtained. I asked. The results are shown in FIG.

【0023】[0023]

【実施例4】実施例1で得た本発明焼結材について、直
径50mm、厚さ24mmの円柱体を供試体とし、飽和
透水試験、pF試験、不飽和透水試験を行なった。飽和
透水試験の飽和は、供試体の内部を約0.9kgf/c
2に減圧し、脱気水を通過することで行なった。透水
試験は、JISA1202を基本に実施し、試験用水に
は脱気水を使用し、透水圧は定水位として制御した。p
F試験は、土質工学会基準 JSFT151を基準とし
て実施し、供試体に加える圧力は試験の全工程において
加圧法を採用した。不飽和透水試験は、Richard
s法により実施した。その結果は、表2の通りであっ
た。
Example 4 The sintered material of the present invention obtained in Example 1 was subjected to a saturated water permeation test, a pF test and an unsaturated water permeation test using a cylindrical body having a diameter of 50 mm and a thickness of 24 mm as a test sample. Saturation in the saturated water permeability test shows that the inside of the specimen is about 0.9 kgf / c.
It was carried out by reducing the pressure to m 2 and passing deaerated water. The water permeation test was carried out based on JIS A1202, deaerated water was used as the test water, and the water permeation pressure was controlled at a constant water level. p
The F test was carried out based on JSFT151 of the Japan Society of Geotechnical Engineering, and the pressure applied to the specimen was a pressure method in all the steps of the test. The unsaturated water permeability test is conducted by Richard.
s method. The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上の構成及び作用から本発明は以下の
如き優れた効果を奏する。 (a)曲げ強度等の物理的特性が良好であり、建材等の
構造的使用に適する。 (b)成形時の寸法安定性に優れるから、比較的大型の
成形品にも応用が可能である。従来、焼結材は変形が激
しいので、寸法の大きなものや厚手のものは成形するこ
とができず、寸法合せの切断工程が必要であったが、本
発明品はそれを省略でき、大型若しくは厚手の焼結製品
を一工程で得ることができる。 (c)透水性と保水性を兼備することから、これを敷石
タイル等に応用すると、透水性で雨水を地下に導くこと
が容易で、且つ、保水性があることから太陽熱を受けた
場合に、蒸発に伴う潜熱吸収による冷却作用を誘起し、
都市のヒ−トアイランド現象を抑制することができる。 (d)ゼオライトの多孔性により内部への熱の到達効率
が良く、従来焼結材より低温度で焼結でき運転コストを
軽減させることができる。 (e)無電解ニッケルめっき廃液の再生処理に伴い副生
する亜リン酸カルシウムを有効に利用することができる
ので環境汚染の問題を解消し、且つ、めっき廃液の再生
処理費用の抑制を図ることができる。
From the above constitution and operation, the present invention has the following excellent effects. (A) Good physical properties such as bending strength and suitable for structural use such as building materials. (B) Since it has excellent dimensional stability during molding, it can be applied to relatively large molded products. Conventionally, since the sintered material is severely deformed, it is not possible to mold a large size or a thick one, and a cutting step for size matching is required, but the product of the present invention can omit it, and Thick sintered products can be obtained in one step. (C) Since it has both water permeability and water retention, if it is applied to paving stone tiles, etc., it is easy to guide rainwater to the underground due to water permeability, and when it receives solar heat because it has water retention. , Induces a cooling action due to latent heat absorption accompanying evaporation,
The heat island phenomenon in the city can be suppressed. (D) Due to the porosity of the zeolite, the heat can reach the inside efficiently, and the sintering can be performed at a lower temperature than that of the conventional sintered material, and the operating cost can be reduced. (E) Since calcium phosphite, which is a by-product of the regeneration treatment of the electroless nickel plating waste liquid, can be effectively used, the problem of environmental pollution can be solved and the cost of the regeneration treatment of the plating waste liquid can be suppressed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2に示す比較例(A)と本発明焼結材
(B)との電子顕微鏡写真。
FIG. 1 is an electron micrograph of a comparative example (A) shown in Example 2 and a sintered material of the present invention (B).

【図2】実施例3に示す本発明焼結材と原料とを比較し
たX線回折図。
FIG. 2 is an X-ray diffraction diagram comparing the sintered material of the present invention shown in Example 3 with a raw material.

【図3】実施例4に示す本発明焼結材のpF試験結果の
グラフ図。
FIG. 3 is a graph showing a pF test result of the sintered material of the present invention shown in Example 4.

【図4】実施例4に示す本発明焼結材の不飽和透水試験
結果グラフ図。
FIG. 4 is a graph showing an unsaturated water permeability test result of the sintered material of the present invention shown in Example 4.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】亜リン酸カルシウムを重量比で5〜50%
と、ゼオライト粉末を重量比で5〜50%と、焼結助剤
の第3成分を混合して成る焼結材。
1. Calcium phosphite in a weight ratio of 5 to 50%
And a zeolite powder in a weight ratio of 5 to 50% and a third component of a sintering aid.
【請求項2】亜リン酸カルシウムを重量比で5〜50%
と、ゼオライト粉末を重量比で5〜50%と、焼結助剤
第3成分を混合調整し、加圧成形し、1000℃〜1
200℃の温度範囲で焼結することを特徴とする焼結材
の製造方法。
2. Calcium phosphite in a weight ratio of 5 to 50%
And 5 to 50% by weight of zeolite powder, a sintering aid
The third component mixture was adjusted, pressure molding of, 1000 ° C. to 1
A method for producing a sintered material, which comprises sintering in a temperature range of 200 ° C.
【請求項3】請求項1又は2記載の亜リン酸カルシウム
が、無電解ニッケルめっき廃液を再生処理する際に副生
する成分である焼結材。
3. A sintered material, wherein the calcium phosphite according to claim 1 or 2 is a component that is a by-product when regenerating the electroless nickel plating waste liquid.
【請求項4】請求項1又は2記載の亜リン酸カルシウム
が、無電解ニッケルめっき廃液を再生処理する際に副生
する成分である焼結材の製造方法。
4. A method for producing a sintered material, wherein the calcium phosphite according to claim 1 or 2 is a component that is a by-product when regenerating the electroless nickel plating waste liquid.
【請求項5】請求項1又は2記載のゼオライトが、大谷
石である焼結材。
5. A sintered material in which the zeolite according to claim 1 or 2 is Oyaishi.
【請求項6】請求項1又は2記載のゼオライトが、大谷
石である焼結材の製造方法。
6. A method for producing a sintered material, wherein the zeolite according to claim 1 or 2 is Oyaishi.
【請求項7】請求項1又は2記載の第3成分に、少なく
とも粘土、ガラス粉末を含む焼結材。
7. A sintered material containing at least clay and glass powder in the third component according to claim 1 or 2.
【請求項8】請求項1又は2記載の第3成分に、少なく
とも粘土、ガラス粉末を含む焼結材の製造方法。
8. A method for producing a sintered material, which comprises at least clay and glass powder in the third component according to claim 1 or 2.
JP7020971A 1995-01-13 1995-01-13 Sintered material made of calcium phosphite and zeolite powder and its manufacturing method Expired - Fee Related JP2684163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7020971A JP2684163B2 (en) 1995-01-13 1995-01-13 Sintered material made of calcium phosphite and zeolite powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020971A JP2684163B2 (en) 1995-01-13 1995-01-13 Sintered material made of calcium phosphite and zeolite powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08198661A JPH08198661A (en) 1996-08-06
JP2684163B2 true JP2684163B2 (en) 1997-12-03

Family

ID=12042059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020971A Expired - Fee Related JP2684163B2 (en) 1995-01-13 1995-01-13 Sintered material made of calcium phosphite and zeolite powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2684163B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296261B1 (en) * 1998-12-30 2001-10-29 최성찬 Construction Materials Using Phosphate Wastewater Sludge and Manufacturing Method Thereof
KR20030069692A (en) * 2002-02-22 2003-08-27 신학기 Method of Manufacturing Lightweight Aggregate of Apatite Crystal Structure
CN113493348B (en) * 2021-08-03 2023-02-07 昆明理工大学 Calcium phosphate/zeolite composite porous material and preparation method thereof

Also Published As

Publication number Publication date
JPH08198661A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
Shilar et al. Advancement of nano-based construction materials-A review
CN101977868B (en) Structural material with the carbon emission being almost equal to zero
JP3221908B2 (en) Method for producing recycled aggregate and recycled aggregate
KR102324211B1 (en) Method of Preparing Artificial Lightweight Aggregate
DE102016106642A1 (en) Process for the production of aerated concrete molded bodies
JP7178367B2 (en) Molded article formed from curable composition
JP2684163B2 (en) Sintered material made of calcium phosphite and zeolite powder and its manufacturing method
DE102020134133A1 (en) Residue-based composition for the production of a lightweight geopolymer brick; Geopolymer lightweight stone, as well as a method for its production and its use
DE69906453T2 (en) Ceramic cordierite filter
JP2002320952A (en) Method for treating contaminated soil and treated matter
CN113912391B (en) Preparation method of spinel-structured zinc titanate nano powder, composition for curing radioactive waste and method for curing lanthanum oxide by using composition
DE2200002A1 (en) Heterogeneous mixtures with high melting points
KR102014290B1 (en) Manufacturing method of fly ash-based geopolymer open porous material using pla fibers
Kadhim et al. Using geopolymers materials for remediation of lead-contaminated soil
US11939262B2 (en) Method for manufacturing coal-based geopolymer foam including silica fume
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JPH11343129A (en) Preparation of formed glass
JPH0692700A (en) Production of light-weight aggregate
DE2935482C2 (en) Process for the preparation of a hydrothermally curable binder and its use
JP2005187264A (en) Extrusion molding composition, extrusion molded hardened body and method of manufacturing extrusion molded hardened body
DD274206A1 (en) METHOD FOR THE AUTOCLAVE-FREE PRODUCTION OF SILICATE HYDRATE-CONTAINED COMPONENTS
KR101061463B1 (en) Crystallized Glass of Nephrulin as the Major Crystalline Using Coal Flooring and Its Manufacturing Method
JP2000026136A (en) Production of foamed glass
TAHIR Preparation and Characterization of Glass Ceramic Materials from Mixtures of Waste Oyster Shell and Recycled Soda-Lime-Silica Glass
JP2002348165A (en) Polymer cement composition and solidified body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees