KR100324967B1 - High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method - Google Patents
High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method Download PDFInfo
- Publication number
- KR100324967B1 KR100324967B1 KR1020000004273A KR20000004273A KR100324967B1 KR 100324967 B1 KR100324967 B1 KR 100324967B1 KR 1020000004273 A KR1020000004273 A KR 1020000004273A KR 20000004273 A KR20000004273 A KR 20000004273A KR 100324967 B1 KR100324967 B1 KR 100324967B1
- Authority
- KR
- South Korea
- Prior art keywords
- zeolite
- sludge
- hours
- water purification
- strength
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/183—Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3007—Moulding, shaping or extruding
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Treatment Of Sludge (AREA)
Abstract
본 발명은 정수장 슬러지를 이용한 고강도 제올라이트와 분말 제올라이트 및 그 제조방법에 관한 것으로, 더욱 구체적으로는 정수장 슬러지를 700℃ 이상 공기중에서 열처리하여 사용하며, 고강도 제올라이트는 이 열처리 슬러지(150㎛)를 석회질 원료와 알칼리 성분을 50∼200℃ 온도에서 2시간 이상 반응시키는 수열양생공정, 수열양생한 화합물을 몰드에 넣은 다음 70℃ 이상 온도에서 24시간 이상 반응·건조시키는 성형반응공정으로 이루어지며, 분말 제올라이트는 열처리 슬러지와 수산화나트륨을 70℃ 이상에서 5시간 이상 가열하여 합성하는 반응공정으로 이루어진다. 본 발명은 단순하고 경제적인 방법으로 정수장 슬러지로부터 각종 흡착제용 고강도 제올라이트와 분말 제올라이트를 제조함으로써 폐기물로 버려지는 정수장 슬러지를 부가가치가 높은 수처리용 흡착제로 재활용하는데 효과적이다.The present invention relates to a high-strength zeolite and a powder zeolite using a water purification plant sludge, and a method for producing the same. More specifically, the water treatment plant sludge is used by heat treatment at 700 ° C. or higher in air, and the high-strength zeolite uses the heat treated sludge (150 μm) as a raw material for calcining. And a hydrothermal curing step of reacting the alkali component with a temperature of 50 to 200 ° C. for 2 hours or more, and a molding reaction step of putting the hydrothermally cured compound into a mold and reacting and drying at a temperature of 70 ° C. or higher for 24 hours or more. The heat treatment sludge and sodium hydroxide is composed of a reaction step of heating by heating at 70 ℃ or more for 5 hours or more. The present invention is effective in recycling the purified water sludge which is thrown away as wastes into a high value-added adsorbent for water treatment by producing a high-strength zeolite for various adsorbents and powdered zeolites from a water purification plant sludge in a simple and economical manner.
Description
본 발명은 정수장 슬러지를 이용한 고강도 제올라이트와 분말 제올라이트 및 그 제조방법에 관한 것으로, 더욱 구체적으로는 건식법과 습식법에 의해 정수장 슬러지로부터 복합 제올라이트를 제조하고 이들을 수처리용 흡착제로 사용함으로써, 단순하고 경제적인 방법으로 정수장 슬러지를 부가가치가 높은 수처리용 흡착제로 재활용하는 방법에 관한 것이다.The present invention relates to a high-strength zeolite and a powder zeolite using a water treatment plant sludge, and a method for producing the same, and more particularly, to prepare a composite zeolite from a water treatment plant sludge by a dry method and a wet method and to use them as an adsorbent for water treatment, thereby providing a simple and economical method. The present invention relates to a method for recycling water purification sludge into a high value-added adsorbent for water treatment.
일반적으로 유기성 폐기물은 소각하여 무해화 할 수 있는 반면, 무기성 폐기물은 열분해가 어려워 고형화 처리 및 매립과 같은 방법을 통하여 주위환경으로부터 차단하는 방식을 통하여 환경오염을 방지하고 있다. 그러나 이러한 방법은 환경관련법이 강화됨에 따라 적절한 처리방법 개발이 현안으로 대두되고 있다. 이에 따라 정수장에서 발생하는 슬러지는 하수 슬러지와는 달리 유해물 함유량이 낮고 점토와 유사한 성상을 가지고 있어서 재활용하기 위한 연구가 진행되어 왔으며 건축용 벽돌등이 대안으로 제시되기도 하였다.In general, organic wastes can be incinerated and harmless, while inorganic wastes are difficult to thermally decompose to prevent environmental pollution by blocking them from the surrounding environment through solidification treatment and landfilling. However, these methods are emerging as the development of appropriate treatment methods as environmental laws are strengthened. Therefore, unlike sewage sludge, sludge produced in water purification plant has low harmful contents and clay-like properties, and research for recycling has been conducted, and building bricks have been suggested as an alternative.
정수장 슬러지를 700℃까지 열처리하여 성분 분석한 결과에 따르면 주성분이SiO2와 Al2O3임은 이미 알려진 사실이다. 그러나 여기에서 주목해야 할 사항은 성분이 매우 유사한 석탄회(Fly-ash)는 수산화나트륨과 반응하여 제올라이트화가 가능하다고 최근 알려졌으며, 이에 대한 연구결과 기존의 시멘트 혼합제 이외의 흡착제로서 재활용될 수 있음이 밝혀졌다. 또한 다량의 염기성 폐수가 발생되는 기존의 습식반응법과는 달리, 최근 일본에서 석탄회의 건식반응법에 의해 성형이 가능한 고강도 제올라이트를 제조할 수 있다고 알려져 있다.According to the results of the component analysis of the water treatment plant sludge to 700 ℃, it is known that the main components are SiO 2 and Al 2 O 3 . It should be noted, however, that fly ash, which has very similar constituents, has recently been known to be zeolitable by reacting with sodium hydroxide, and studies have shown that it can be recycled as an adsorbent other than conventional cement mixtures. lost. In addition, unlike the conventional wet reaction method in which a large amount of basic wastewater is generated, it is known in Japan that a high-strength zeolite that can be molded by the dry ash method of coal ash is recently produced.
이에 성분이 유사한 정수장 슬러지도 제올라이트의 제조원료로 재활용할 수 있음을 보이고자 함이 본 발명의 동기가 되었다Motivation of the present invention was to show that similar water purification plant sludge can be recycled as a raw material of zeolite.
따라서 본 발명자는 정수장 슬러지를 열처리하고 건식 및 습식 반응법으로 처리하여 고강도 또는 분말 제올라이트를 제조하고 성형하여 각종 흡착제를 제조함으로써 사용 용도에 따라 선택의 폭을 넓히고자 본 발명을 완성하게 되었다.Therefore, the present inventors have completed the present invention in order to broaden the selection according to the intended use by heat treatment of the water purification plant sludge, and by the dry and wet reaction method to prepare a high-strength or powder zeolite and to form a variety of adsorbents.
본 발명은 상기에서의 착안으로 안출한 것으로서, 700℃ 이상 열처리한 슬러지 분체를 시멘트계 결합제와 혼합 반응시키는 건식법에 의한 고강도 제올라이트의 제조방법과 수산화나트륨 용액으로 처리하는 습식법으로 얻은 분말 제올라이트의 제조방법을 통하여 정수장 슬러지에 중금속 및 총유기탄소(TOC) 흡착능 뿐만 아니라 암모니아성 질소흡착 특성이 부여된 기능자원으로 재활용하여 현재 각종 산업 및 환경분야에서 이용되고 있는 기존의 활성탄 및 합성 제올라이트의 대체 소재화함은 물론 정수장 슬러지 처리 문제를 획기적으로 마련하고 기초원료인 정수장 슬러지가 원가 부담이 없는 장점을 최대한 활용하여 경제성을 확보하는데 그 목적이 있다.The present invention has been made in view of the above-mentioned, a method for producing a high-strength zeolite by the dry method of mixing and reacting the sludge powder heat-treated 700 ℃ or more with a cement-based binder and a method for producing a powder zeolite obtained by a wet method treated with sodium hydroxide solution Through recycling of functional metals with ammonia nitrogen adsorption capacity as well as heavy metal and total organic carbon (TOC) adsorption capacity to water purification plant sludge, it becomes a substitute material of existing activated carbon and synthetic zeolite currently used in various industrial and environmental fields. The purpose is to drastically prepare the water treatment plant sludge treatment problem and to secure economic feasibility by making the most of the advantages that the water purification plant sludge, which is the basic raw material, does not have a cost burden.
또한, 시멘트계 결합제와 수산화나트륨을 활용하여 다양한 성상과 기능성을 가진 상기의 제조방법으로 흡착제용 고강도 제올라이트와 분말 제올라이트를 얻음으로써 단순 고형화하여 매립 또는 복토재로 활용하는 기존 정수장 슬러지 처리방법의 한계를 극복하고 폐기물을 유용한 자원으로 재활용하는데 그 목적이 있다.In addition, by using a cement binder and sodium hydroxide to obtain a high-strength zeolite and a powder zeolite for the adsorbent with various properties and functionalities to overcome the limitations of the existing water treatment plant sludge treatment method using a simple solidification as a landfill or cover material Its purpose is to recycle waste into useful resources.
도 1은 본 발명에 따른 습식법 및 건식법에 의해 제조되는 고강도 제올라이트와 분말 제올라이트의 제조공정이고,1 is a manufacturing process of a high-strength zeolite and a powder zeolite prepared by a wet method and a dry method according to the present invention,
도 2는 본 발명에서 사용하는 건조 슬러지에 대한 열중량분석기(Thermo Gravimetric Analyzer-TGA)에 의한 결과이고,Figure 2 is a result by the thermogravimetric analyzer (Thermo Gravimetric Analyzer-TGA) for the dry sludge used in the present invention,
도 3은 주사전자현미경(Scanning Electron Microscope-SEM)의 분석사진이 고,3 is an analysis photograph of a scanning electron microscope (Scanning Electron Microscope-SEM),
도 4는 본 발명에 따른 고강도 제올라이트 결정상의 X선 회절기의 분석 결과이고,4 is an analysis result of the X-ray diffractometer of the high-strength zeolite crystal phase according to the present invention,
도 5는 고로슬래그를 활용하여 건식법으로 제조한 제올라이트의 X선 회절기의 분석 결과이고,5 is an analysis result of the X-ray diffractometer of the zeolite prepared by the dry method using the blast furnace slag,
도 6은 본 발명에 따른 건식법과 습식법에 의한 복합 제올라이트의 암모니아성 질소에 대한 흡착특성을 나타낸 것이고,Figure 6 shows the adsorption characteristics of ammonia nitrogen of the composite zeolite by the dry method and the wet method according to the present invention,
도 7는 본 발명에 따른 건식법과 습식법에 의한 복합 제올라이트의 총유기탄소(Total Organic Carbon-TOC) 흡착특성을 나타낸 것이고,Figure 7 shows the total organic carbon (TOC) adsorption characteristics of the composite zeolite by the dry method and the wet method according to the present invention,
도 8과 도 9는 본 발명에 따른 열처리슬러지 자체, 건식법과 습식법에 의한 복합 제올라이트의 중금속(Pb, Cd) 흡착특성을 나타낸 것이다.8 and 9 show the adsorption characteristics of heavy metals (Pb, Cd) of the composite zeolite by the heat treatment sludge itself, the dry method and the wet method according to the present invention.
상기와 같은 목적을 달성하기 위하여, 본 발명은 정수장 슬러지를 700℃ 이상 열처리하여 약 150㎛정도의 분체로 만드는 열처리공정; 석회질원료와 알칼리 성분을 50∼200℃온도에서 2시간 이상 수열양생하는 수열양생공정; 수열양생한 화합물을 성형하기 위하여 몰드에 넣어 70℃ 이상 24시간 이상 반응·건조시키는 고강도 제올라이트 제조공정과 열처리 슬러지를 수산화나트륨 용액으로 처리하는 분말 제올라이트 공정으로 이루어지며, 이 제조공정을 도 1에 도시하였다.In order to achieve the above object, the present invention comprises a heat treatment step of making the water treatment plant sludge to 700 ℃ or more about 150㎛ powder; Hydrothermal curing step of hydrocuring the calcined raw material and the alkali component at a temperature of 50 to 200 ° C. for at least 2 hours; It consists of a high-strength zeolite manufacturing process in which a hydrothermally cured compound is put into a mold and reacted and dried at 70 ° C. or more for 24 hours or more, and a powder zeolite process in which the heat-treated sludge is treated with a sodium hydroxide solution. It was.
이하, 도 1에 도시된 각 제조공정을 구체적으로 설명하면 다음과 같다.Hereinafter, each manufacturing process illustrated in FIG. 1 will be described in detail.
Ⅰ. 고강도 제올라이트의 제조공정I. Manufacturing process of high strength zeolite
(1) 열처리공정(1) heat treatment process
정수장 슬러지를 가열로에 넣고 700℃ 이상, 공기중에서 열처리하여 슬러지에 남아 있는 유기물 함량을 3 중량% 이하로 만든 다음 150㎛ 정도 크기로 분쇄 및 분급시킨다.The sludge is placed in a water treatment plant and heat-treated in the air at 700 ℃ or higher to make organic matter remaining in the sludge to 3% by weight or less, and then pulverized and classified to a size of 150㎛.
(2) 수열양생공정(2) hydrothermal curing process
열처리 슬러지 100 중량부, 석회질원료와 알칼리성분의 혼합물 10∼50 중량부를 50∼200℃ 온도에서 2시간 이상 수열양생한다. 이때 석회질원료로는 CaO를, 알칼리 성분으로는 Na2CO3를 사용할 수 있으며 이들의 몰비는 0.3∼1.8인 것이 바람직하다. 또한, 석회질과 알칼리성분을 모두 함유한 고로 슬래그를 활용함으로써 또 다른 폐자원을 재활용 할 수 있다.100 parts by weight of the heat treated sludge and 10 to 50 parts by weight of the mixture of the calcined raw material and the alkali component are hydrothermally cured for 2 hours or more at a temperature of 50 to 200 ° C. At this time, CaO may be used as the lime raw material, and Na 2 CO 3 may be used as the alkali component, and their molar ratio is preferably 0.3 to 1.8. In addition, by utilizing the blast furnace slag containing both calcareous and alkali components, it is possible to recycle another waste resources.
(3) 성형공정(3) forming process
일정형태의 고강도 제올라이트를 얻기 위해 각종 크기의 몰드에 수열양생한 혼합물을 넣은 다음 70℃ 이상의 온도에서 24시간 이상 반응, 건조시킨다 이때 점도를 조절하여 각종 압출 및 사출 성형기법으로 다양한 형태의 성형체도 제조할 수 있다.In order to obtain a high-strength zeolite of a certain type, hydrothermally cured mixtures are put into molds of various sizes, and then reacted and dried for 24 hours or more at a temperature of 70 ° C. or more. At this time, various types of molded bodies are also manufactured by various extrusion and injection molding techniques. can do.
상기의 (1),(2),(3) 연식 건식공정에 의해 폐수의 발생이 전혀없이 각종 형상의 고강도 제올라이트 제조가 가능하며, 제조된 제올라이트 성형체(5×5×5 ㎝ 기준)의 강도는 100∼500 ㎏f/㎠의 높은 압축강도를 갖는다.According to the above (1), (2) and (3) soft dry process, it is possible to manufacture high-strength zeolites of various shapes without any generation of waste water, and the strength of the manufactured zeolite molded body (based on 5 × 5 × 5 cm) is It has a high compressive strength of 100 to 500 kgf / cm 2.
Ⅱ. 수산화나트륨용액 반응법에 의한 분말 제올라이트의 제조공정II. Manufacturing process of powder zeolite by sodium hydroxide solution reaction method
상기 Ⅰ의 공정 (1)에서 얻은 탄소함유량이 3중량% 이하인 저탄소 열처리 슬러지를 수산화나트륨용액에서 70℃ 이상으로 5시간 이상 가열하고 여과 건조하여 분말 제올라이트를 제조한다.A low-carbon heat-treated sludge having a carbon content of 3 wt% or less obtained in step (1) above is heated in a sodium hydroxide solution at 70 ° C. or more for at least 5 hours, and filtered and dried to prepare a powder zeolite.
상기의 분말 제올라이트는 각종 크기의 몰드에 CaO와 반응시켜 성형체를 만들 수 있으며, 또한 각종 바인더와 반응시킨 후 각종(N2, Ar, 대기중) 분위기의 100℃이상에서 열처리하여 성형성과 비표면적을 향상 시킬 수 있다. 이때 바인더는 물유리, 물풀, 당밀, 페놀수지 등이 사용될 수 있다.The powdered zeolite can be formed into a molded body by reacting with various types of molds with CaO, and further reacted with various binders and heat-treated at 100 ° C. or above in various (N 2 , Ar, air) atmospheres to improve moldability and specific surface area. Can improve. At this time, the binder may be water glass, water pool, molasses, phenol resin, or the like.
이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.
실시예 1Example 1
정수장 슬러지를 600℃ 이상의 온도로 열처리하여 유기물질이 제거되고 황토색의 슬러지가 되었다. 외부정수장 슬러지를 열처리하여 성분분석한 결과를 표 1에 나타내었다.The water treatment plant sludge was heat-treated at a temperature of 600 ° C. or higher to remove organic matter and to form ocherous sludge. Table 1 shows the results of component analysis by heat treatment of external water purification sludge.
상기 원소 분석 결과로부터, 주성분은 SiO2와 Al2O3로서 무기물질의 슬러지 애쉬(ash)만이 존재하였다. 유독성 물질분석 실험도 기준치 이하를 나타내어 하수 슬러지와는 차이를 보였다. 그러나 표 1의 측정결과에 따르면 SiO2와 Al2O3의 비율은 정수장 및 계절에 따라 차이를 나타내었다.From the elemental analysis results, only the sludge ash of the inorganic material was present as SiO 2 and Al 2 O 3 . The toxic substance analysis experiment also showed below the standard value, which was different from the sewage sludge. However, according to the measurement results of Table 1, the ratio of SiO 2 and Al 2 O 3 showed a difference according to the water purification plant and seasons.
실시예 2Example 2
건조슬러지의 열적특성Thermal Characteristics of Dry Sludge
건조슬러지의 온도에 따른 변화를 알아보기 위하여 열중량분석기(TGA 2050, TA Instruments)를 사용하여 질소분위기하에서 1000℃(10℃/min)까지 측정(도 2)하였다. 슬러지를 자연건조한 뒤 질소분위기에서 열처리할 때 100℃이하에서 수분에 의한 11 중량%의 감량이 발생하였고 700℃까지 약 30 중량%의 총적산 감량이 일어났다. 이때, 슬러지내에 함유된 각종 유기성 응집제나 기타 유기물이 탄화되어 흑색을 나타내었는데 공기중에서 열처리시 유기물이 완전연소되어 30∼50 중량%의 높은 감량율과 황백색을 나타내는 현상과 대비되었다.In order to determine the change according to the temperature of the dry sludge, the thermogravimetric analyzer (TGA 2050, TA Instruments) was measured up to 1000 ° C. (10 ° C./min) under nitrogen atmosphere (FIG. 2). When the sludge was naturally dried and then heat-treated in a nitrogen atmosphere, the weight loss of 11% by weight was generated below 100 ° C and the total weight loss of about 30% by weight was reached up to 700 ° C. At this time, various organic flocculants or other organic substances contained in the sludge were carbonized to show a black color. Compared with the phenomenon that the organic substance was completely burned during heat treatment in air, a high loss ratio of 30 to 50% by weight and yellowish white color were observed.
실시예 3Example 3
열처리 슬러지 100 중량부, CaO 10.3 중량부, Na2CO322.2 중량부의 혼합비율로 100℃에서 반응건조 시킨 후 고강도 제올라이트를 제조하였다.100 parts by weight of the heat treatment sludge, 10.3 parts by weight of CaO, 22.2 parts by weight of Na 2 CO 3 After the reaction drying at 100 ℃ to prepare a high-strength zeolite.
이와 같이 제조된 제올라이트에 대하여 압축강도를 측정(300 kgf/㎠)(표 2)하였고, 주사전자현미경분석(도 3), X선 회절분석기(도 4)를 통하여 결정상을 분석하여 고강도 제올라이트가 생성됨을 확인하였다.The compressive strength of the zeolite thus prepared was measured (300 kgf / cm 2) (Table 2), and a high strength zeolite was produced by analyzing the crystal phase through a scanning electron microscope analysis (FIG. 3) and an X-ray diffractometer (FIG. 4). It was confirmed.
실시예 4Example 4
CaO 대신 고로슬래그를 사용한 것을 제외하고 실시예 3과 동일하며, 이와같이 제조된 결정상을 X선 회절분석의 결과(도 5)를 통하여 고강도의 복합 제올라이트가 생성됨을 확인하였다.Except for using the blast furnace slag instead of CaO and the same as in Example 3, it was confirmed that a high-strength composite zeolite was produced through the result of the X-ray diffraction analysis (FIG. 5) of the crystal phase thus prepared.
실시예 5Example 5
실시예 1에서 사용한 열처리 슬러지 100 중량부, CaO 20.6 중량부, Na2CO344.4 중량부를 100℃ 에서 2시간 수열양생시킨 후 100℃에서 반응 건조시킨 후 압축강도를 측정(500kgf/㎠)하였고, 얻어진 결정상은 X선 회절 분석의 결과를 통하여 복합 제올라이트(건식법)가 생성됨을 확인하였다.100 parts by weight of the heat treatment sludge used in Example 1, 20.6 parts by weight of CaO and 44.4 parts by weight of Na 2 CO 3 were hydrothermally cured at 100 ° C. for 2 hours, and then dried at 100 ° C. for reaction. The compressive strength was measured (500kgf / cm 2), The obtained crystal phase confirmed that a composite zeolite (dry method) was produced through the results of X-ray diffraction analysis.
실시예 6Example 6
열처리 슬러지 100 중량부를 4N-NaOH용액 400㎖에서 90℃의 온도로 4시간 동안 반응시킨 후 여과하여 110℃에서 건조하였다. 이렇게 얻어진 결정상은 X선 회절 분석의 결과(도 4)를 통하여 분말상의 복합 제올라이트임이 확인되었다.100 parts by weight of the heat treated sludge was reacted at 400 ° C. in 4N-NaOH solution at a temperature of 90 ° C. for 4 hours, and then filtered and dried at 110 ° C. The crystal phase thus obtained was confirmed to be a powdery composite zeolite through X-ray diffraction analysis (FIG. 4).
실시예 7Example 7
NHNH 44 -N 흡착특성-N adsorption characteristic
표준용액은 1000 ppm 암모니아 표준용액(Ammonia Standard Solution)을 이용하여 100 ㎖를 1000 ㎖에 희석하여 10 ppm 표준용액을 제조하였다. 건식법과 습식법으로 제조한 제올라이트를 각각 표준 암모늄 용액의 농도 10 ppm용액 100 ㎖를 250 ㎖ 삼각플라스크에 넣은 후 교반속도 250min-1으로 교반을 시키면서 초기농도∼6시간 동안 흡착한 후 30분 간격으로 0.45㎛ 멤브레인 필터(membrane filter)로 여과한 후 여액을 채취하여 네슬러(Nesler)법에 의해 자외선 흡광기로 측정하였다.The standard solution was prepared by diluting 100 ml in 1000 ml using a 1000 ppm ammonia standard solution to prepare a 10 ppm standard solution. The zeolite prepared by the dry and wet method was added 100 ml of a 10 ppm solution of standard ammonium solution into a 250 ml Erlenmeyer flask, and then adsorbed at an initial concentration of 6 hours with stirring at 250 min −1 , followed by 0.45 at 30 minute intervals. After filtration with a membrane filter (membrane filter), the filtrate was taken and measured by an ultraviolet absorber by the Nesler method.
고로 슬래그를 사용하여 건식법으로 제조한 제올라이트는 pH는 10을 유지하였고 제거율은 2시간일 때 81 %의 최대 제거율을 보였다. 시간이 지나면서 흡착, 탈착과정이 반복되었으나 63∼81 %의 제거율을 유지하였다.Zeolite prepared by dry method using blast furnace slag maintained pH of 10 and showed a maximum removal rate of 81% when the removal rate was 2 hours. The adsorption and desorption process was repeated over time, but the removal rate was 63-81%.
천연 제올라이트와 비교한 결과 천연 제올라이트는 3시간일 때 최대 77 %, 12 시간일 때 64 %의 제거율을 보였다.Compared with natural zeolites, natural zeolites had a maximum removal rate of 77% at 3 hours and 64% at 12 hours.
건식법(CaO)으로 제조한 제올라이트는 pH 11을 유지하였고 제거율은 51∼71 %로 30분일 때 최대 71%의 제거율(도 6)을 보였다. 습식법으로 제조한 제올라이트는 pH 12를 유지했고 제거율은 15∼22 %의 제거율를 보였다(도 6).Zeolite prepared by dry method (CaO) was maintained at pH 11 and the removal rate was 51 ~ 71% showed a maximum removal rate of 71% (Fig. 6) at 30 minutes. Zeolite prepared by the wet method was maintained at pH 12 and the removal rate was 15 to 22% removal rate (Fig. 6).
실시예 8Example 8
총유기탄소(TOC)의 흡착특성Adsorption Characteristics of Total Organic Carbon (TOC)
건식법과 습식법으로 제조한 제올라이트를 총유기탄소(TOC) 농도가 300 ppm인 하수처리장 유입수나 혹은 0.3g의 부식산을 물 1ℓ에 녹여 300ppm인 용액을 대상으로 측정실험하였다. 약 150㎖의 크기로 분쇄된 1∼7g의 시료를 250 ㎖ 삼각플라크스에 넣어 자동교반기로 250min-1으로 3시간 교반하여 흡착실험을 하였다. 흡착성능을 분석하기 위하여 혼합용액을 0.45㎛ 멤브레인 필터로 여과한 다음 100배 희석하여 총유기탄소(TOC)를 측정하였다. 현재 정수처리공정에서 사용되고 있는 상업용 활성탄의 흡착능 비교를 위해 동일한 입자크기의 시료를 사용하여 동일한 방법으로 실험하였다. 건식법으로 고로슬래그로 제조한 제올라이트는 7g일때 44 %의 제거율을 나타내었다.Zeolites prepared by dry and wet methods were measured and tested for 300 ppm solution by dissolving 0.3 g of humic acid in 1 liter of water or influent sewage treatment plant with 300 ppm total organic carbon (TOC) concentration. 1 to 7 g of the sample ground to a size of about 150 ml was put in 250 ml Erlenmeyer flasks and stirred for 3 hours at 250 min −1 with an automatic stirrer to perform adsorption experiments. In order to analyze the adsorption performance, the mixed solution was filtered through a 0.45㎛ membrane filter and then diluted 100-fold to measure total organic carbon (TOC). In order to compare the adsorption capacity of the commercial activated carbon currently used in the water treatment process, the experiment was conducted using the same particle size sample. Zeolite made from blast furnace slag by the dry method showed a removal rate of 44% at 7 g.
건식법(CaO)으로 제조한 제올라이트는 pH 11을 유지했고 제거율은 5g일 때 63 %를 보였다. 습식법으로 제조한 제올라이트는 pH 12를 유지했고 5g일때 78%의 제거율(도 7)을 보였다. 건식법(Fly-ash)으로 제조한 제올라이트는 7g일 때 53%의 제거율을 보였다.Zeolite prepared by dry method (CaO) was maintained at pH 11 and the removal rate was 63% at 5g. Zeolite prepared by the wet method was maintained at pH 12 and showed a removal rate of 78% (Fig. 7) at 5g. Zeolites prepared by the dry method (Fly-ash) showed a removal rate of 53% at 7 g.
실시예 9Example 9
중금속 측정Heavy metal measurement
건식법과 습식법으로 제조한 제올라이트를 1000 ppm Pb, Cd 표준용액을 10 ppm으로 제조한 용액에 250 ㎖ 삼각플라스크에 2 g씩 넣은 후, 상온에서 자동교반기로 4, 8, 24시간 동안 250 min-1로 흡착시킨 다음 각각의 pH를 측정한 후 여과한 여액을 채취하여 원자 분석기(AA)로 잔여농도를 측정하였다. 열처리 슬러지는 Pb를 100% 제거했으나 24시간 후에는 20%의 탈착현상을 보였다. pH는 4 정도로 일정하게 유지되었다.(도 7, 도 8)The zeolite prepared by the dry and wet method was put into 2 ml of 250 ml Erlenmeyer flask in 1000 ppm Pb and 10 ppm of Cd standard solution, and 250 min -1 for 4, 8 and 24 hours using an automatic stirrer at room temperature. After adsorbing with each other and measuring the respective pH, the filtrate was filtered and the residual concentration was measured by atomic analyzer (AA). Heat-treated sludge removed 100% of Pb but showed desorption of 20% after 24 hours. The pH was kept constant at about 4 (FIGS. 7, 8).
상기 실시예를 통해 알 수 있듯이, 본 발명의 고강도 제올라이트와 분말 제올라이트는 중금속 및 총유기탄소(TOC) 흡착능 뿐만 아니라 암모니아성 질소흡착 특성이 우수함을 알 수 있고 이를 통하여 현재 각종 산업 및 환경분야에서 이용되고 있는 기존의 활성탄 및 합성 제올라이트의 대체 소재화함은 물론 정수장 슬러지 처리 문제를 획기적으로 해결하고 기초원료인 정수장 슬러지가 원가 부담이 없는 장점을 최대한 활용하여 경제성을 확보할 수 있음을 알 수 있다. 또한, 본 발명의 제조방법 중 건식법에 의한 고강도 복합 제올라이트는 제조공정시에 성형하여 제조할 수 있고, 제조시 수열양생 조건은 폐수문제 및 공정을 간소화하는 효과를 얻을 수 있다.As can be seen from the above embodiment, the high-strength zeolite and the powder zeolite of the present invention can be seen that the adsorption capacity of heavy metals and total organic carbon (TOC) as well as the ammonia nitrogen adsorption properties are excellent and through this use in various industrial and environmental fields As well as the replacement of existing activated carbon and synthetic zeolite, it is possible to solve the problem of water treatment sludge treatment drastically, and it can be seen that the water purification plant sludge, which is a basic raw material, can maximize the cost-free advantage and secure economic feasibility. In addition, the high-strength composite zeolite by the dry method of the manufacturing method of the present invention can be molded and manufactured during the manufacturing process, the hydrothermal curing conditions during the manufacturing can be obtained the effect of simplifying wastewater problems and processes.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000004273A KR100324967B1 (en) | 2000-01-28 | 2000-01-28 | High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000004273A KR100324967B1 (en) | 2000-01-28 | 2000-01-28 | High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010076860A KR20010076860A (en) | 2001-08-16 |
KR100324967B1 true KR100324967B1 (en) | 2002-02-20 |
Family
ID=19642465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000004273A KR100324967B1 (en) | 2000-01-28 | 2000-01-28 | High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100324967B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100802163B1 (en) * | 2006-12-29 | 2008-02-11 | 한국지질자원연구원 | Adsorbent using made of sludge and method for manufacturing thereof |
-
2000
- 2000-01-28 KR KR1020000004273A patent/KR100324967B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20010076860A (en) | 2001-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1337359C (en) | Waste treatment | |
Ahmaruzzaman | A review on the utilization of fly ash | |
Quina et al. | Treatment and use of air pollution control residues from MSW incineration: an overview | |
Tantawy et al. | Evaluation of the pozzolanic activity of sewage sludge ash | |
Rashidi et al. | Overview on the potential of coal-based bottom ash as low-cost adsorbents | |
CN112174628B (en) | Preparation method of non-sintered ceramsite with Fenton-like reaction property | |
Carvalheiras et al. | Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters | |
CN110698174A (en) | Lightweight sludge ceramsite, and preparation method and application thereof | |
CN111848130A (en) | Modified ceramsite capable of efficiently removing phosphorus and preparation method thereof | |
JP7174967B2 (en) | phosphorus adsorbent | |
US4105463A (en) | Lime-fly ash-aggregate-sludge paving material | |
KR101235251B1 (en) | Cement using waterworks sludge and mathod for manufacturing the same | |
Wajima et al. | Removal of fluoride ions using calcined paper sludge | |
KR100343418B1 (en) | Absorbent For Water Treatment Using Water Plant Sludges And Its Method Of Preparation | |
KR100324967B1 (en) | High Strength Zeolite And Powder Zeolite From Water Plant Sludges And Their Preparation Method | |
KR20140081952A (en) | Adsorbent of organic compounds in waste water by using coal fly ash and preparation method thereof | |
KR20050020096A (en) | Process for dirty water/waste water high adsorption and high microorganism immobilyzatiom of capacity biocube and a manufacturing process method | |
KR100273736B1 (en) | Granulation method of coal ash at low temperature and its usage | |
CN112174279B (en) | Polymeric aluminosilicate inorganic flocculant and preparation method and application thereof | |
KR20020043386A (en) | Dry Preparative Method of A Type Zeolite with Waste Water Treatment From Fly Ash Containing Highly Unburned Carbon | |
Xing et al. | Removal of phosphorus from wastewater by metal salt doping waste-based ceramsite | |
Chen et al. | Toward a Circular Economy in Water Treatment: Upcycling Aluminum Salt-Based Water Treatment Residual into An Effective Adsorbent–Ceramsite | |
Feng et al. | Study on the Pb (II) adsorption mechanism on acid‐modified ceramsite made from sewage sludge and industrial solid wastes | |
KR100425780B1 (en) | The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash | |
KR102678446B1 (en) | Media for removing hydrogen sulfide and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120130 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |