KR100425780B1 - The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash - Google Patents

The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash Download PDF

Info

Publication number
KR100425780B1
KR100425780B1 KR10-2001-0043358A KR20010043358A KR100425780B1 KR 100425780 B1 KR100425780 B1 KR 100425780B1 KR 20010043358 A KR20010043358 A KR 20010043358A KR 100425780 B1 KR100425780 B1 KR 100425780B1
Authority
KR
South Korea
Prior art keywords
fly ash
adsorbent
incineration
heat
heavy metal
Prior art date
Application number
KR10-2001-0043358A
Other languages
Korean (ko)
Other versions
KR20030008301A (en
Inventor
이우근
심영숙
Original Assignee
이우근
심영숙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이우근, 심영숙 filed Critical 이우근
Priority to KR10-2001-0043358A priority Critical patent/KR100425780B1/en
Publication of KR20030008301A publication Critical patent/KR20030008301A/en
Application granted granted Critical
Publication of KR100425780B1 publication Critical patent/KR100425780B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing

Abstract

본 발명은 도시폐기물을 소각처리할 때 집진장치에서 배출되는 비산재를 중금속 흡착제로 재활용하기 위한 최적의 흡착제를 제조하는 방법에 관한 것으로서, 집진장치에 포집된 비산재를 100메쉬 이하로 분쇄하여 열처리하는 단계와, 상기의 열처리한 비산재와 수산화나트륨 용액을 혼합한 후 80∼120℃에서 8∼16시간 수열합성하는 단계와, 상기의 수열합성된 비산재를 증류수로 세척한 후 90℃에서 건조하는 단계로 구성되는 제조방법을 제공함으로써, 부가가치가 낮은 무한한 자원을 재활용할 수 있을 뿐만 아니라 도시 고형폐기물의 소각재 문제를 해결하는 유력한 방법으로 활용될 수 있다.The present invention relates to a method for producing an optimal adsorbent for recycling the fly ash discharged from the dust collector to a heavy metal adsorbent when incineration of municipal waste, the step of pulverizing the fly ash collected in the dust collector to less than 100 mesh And, after mixing the heat-treated fly ash and sodium hydroxide solution, the step of hydrothermal synthesis for 8 to 16 hours at 80 ~ 120 ℃, and the step of washing the hydrothermally synthesized fly ash with distilled water and dried at 90 ℃ By providing a manufacturing method that can be used, not only can it recycle infinitely low value-added resources, but also can be used as a powerful way to solve the problem of incineration of municipal solid waste.

Description

소각 비산재의 수열합성을 이용한 흡착제 제조방법{The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash}The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash}

본 발명은 소각 비산재의 수열합성을 이용한 흡착제 제조방법에 관한 것으로서, 특히 도시폐기물을 소각처리할 때 집진장치에서 배출되는 비산재를 중금속 흡착제로 재활용하기 위한 최적의 흡착제를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an adsorbent using hydrothermal synthesis of incineration fly ash, and more particularly, to a method for preparing an optimal adsorbent for recycling fly ash discharged from a dust collector to a heavy metal adsorbent when incineration of municipal waste.

일반적으로 폐기물을 소각처리한 후 발생되는 소각재를 바닥재와 비산재로 구분할 수 있는데 이중 비산재는 지정폐기물로 분류되어 특별히 관리되는 매립장에서 처리되어야 하나 향후 지정폐기물을 최종처분할 수 있는 매립장의 확보가 어려운 실정이다.Generally, incineration ash generated after incineration of waste can be classified into floor ash and fly ash. Among these, fly ash must be classified as designated waste and treated at a specially managed landfill, but it is difficult to secure a landfill that can finally dispose of designated waste in the future. to be.

상기의 소각재의 대부분(80-85%)은 바닥재인데 바닥재에는 철, 못 등의 불연분을 다량으로 함유하고 있으며 전체적인 입경분포가 48메쉬(mesh) 이상으로 이루어져 있어서 흡착제로 제조하기에는 입경이 크다. 반면에 비산재는 주로 10-20%의산화규소(SiO2)와 20-40%의 산화칼슘(CaO)과, 3-10%의 산화알루미늄(Al2O3), 1-5%의 철(Fe)과 4-12%의 산화나트륨(Na2O)과, 10-30%의 미연소분 등으로 이루어져 있고 입경크기도 주로 100메쉬 이하로 구성되어 있다. 비산재는 입경크기가 작아 바닥재보다는 흡착제로 제조하기에 용이하며, 비산재중에 주로 함유된 규소와 칼슘, 나트륨의 성분을 이용하여 흡착제로 유용하게 제조할 수 있다. 그러나 비산재는 바닥재보다 염기성 성분을 보다 많이 포함하고 있고 크롬(Cr), 주석(Sn), 구리(Cu), 납(Pb) 등의 중금속을 함유하고 있는 것으로 나타났다. 따라서, 소각 비산재를 흡착제로 제조하기 위해서는 600℃에서 2시간 이상의 열처리하는 단계를 거쳐 중금속을 안정화시켜야 한다.Most of the incineration ash (80-85%) is a flooring material, but the flooring material contains a large amount of incombustibles such as iron and nails, and the overall particle size distribution is made of 48 mesh (mesh) or more, so the particle size is large to prepare as an adsorbent. Fly ash, on the other hand, is mainly composed of 10-20% silicon oxide (SiO 2 ), 20-40% calcium oxide (CaO), 3-10% aluminum oxide (Al 2 O 3 ), and 1-5% iron ( Fe), 4-12% sodium oxide (Na 2 O), 10-30% unburned powder, etc., and the particle size is mainly composed of 100 mesh or less. The fly ash has a small particle size and is easier to prepare as an adsorbent than a floor ash, and can be usefully prepared as an adsorbent using components of silicon, calcium and sodium mainly contained in the fly ash. However, fly ash contained more basic components than floor ash and contained heavy metals such as chromium (Cr), tin (Sn), copper (Cu), and lead (Pb). Therefore, in order to prepare the incineration fly ash as an adsorbent, the heavy metal must be stabilized through a heat treatment at 600 ° C. for at least 2 hours.

대한민국 공개특허 제2000-049962호는 도시폐기물을 소각처리할 때 집진장치에서 배출되는 비산재를 폐수처리용 흡착제로 제조하는 방법에 관한 것으로서, 비산재 또는 소석회와 혼합한 비산재를 500∼600℃의 환원조건에서 1∼2시간 동안 열처리하는 단계와 열처리된 비산재를 냉각시켜 분말 흡착제를 생산하는 단계를 포함하는 것을 특징으로 하는 흡착제 제조방법이 개시되어 있다. 상기한 종래기술은 열처리된 비산재 자체를 흡착제로 사용하고 있으므로 균일한 입경과 기공을 가진 흡착제를 제조하기 어려운 문제점이 있다.Korean Patent Laid-Open No. 2000-049962 relates to a method for manufacturing fly ash discharged from a dust collecting device as an adsorbent for wastewater treatment when incineration of municipal waste, and the fly ash mixed with fly ash or slaked lime is reduced to 500 to 600 ° C. An adsorbent production method is disclosed that comprises a step of heat treatment for 1 to 2 hours and cooling the heat-treated fly ash to produce a powder adsorbent. Since the prior art uses the heat-treated fly ash itself as an adsorbent, it is difficult to produce an adsorbent having a uniform particle size and pores.

오늘날 산업의 발전과 소비의 증가로 각종 부산물에 의한 환경오염의 문제가 심각하게 대두되고 있는 바, 중금속 등 유해물질의 정화 제거는 생존권을 좌우하는 주요관건이 되고 있다. 환경 오염 물질의 정화처리는 그 오염원의 특성에 따라 그처리방법이 선택되어지는데, 일반적으로 염료공장, 제철공장, 필름제조공장, 합금공장, 합성공장, 안료공장 및 광산 등에서 배출하는 오폐수는 생물학적으로 처리 불가능한 화학약품, 중금속 등을 함유하고 있으므로, 그 종류에 따라서 흡착법, 이온교환법, 침전법 등을 사용하여 폐수를 처리하고 있다.Today, due to the development of the industry and the increase of consumption, the problem of environmental pollution caused by various by-products has been raised seriously, and the purification and removal of harmful substances such as heavy metals has become a key factor in determining the right to survival. The treatment method of environmental pollutants is selected according to the characteristics of the pollutant. Generally, wastewater discharged from dye factory, steel mill, film manufacturing plant, alloy plant, synthesis plant, pigment plant and mine is biologically Since it contains unprocessable chemicals, heavy metals, etc., the wastewater is treated using an adsorption method, an ion exchange method, a precipitation method, or the like depending on the type.

상기한 방법중에서 흡착법은 용액상 또는 기체상에서 분자가 물리적 혹은 화학적 결합력에 의해서 고체표면에 붙는 현상인 흡착을 이용한 것으로 흡착을 위해서는 분자가 달라붙을 수 있는 표면을 제공하는 흡착제(Adsorbent)가 필요하다. 폐수 및 용수 중에 함유된 중금속이온을 제거하기 위한 흡착제로서 활성탄, 이온교환수지 및 합성제올라이트(Zeolite)가 주로 사용되고 있는데, 활성탄은 탄소원료를 수증기 또는 연소가스에 의하여 800-1000℃로 활성화하거나 염화아연(ZnCl2)에 의하여 활성화한 것으로 활성화 공정에서 생성된 미세공에 중금속 이온이 흡착, 제거된다. 이온교환수지는 중금속 이온과 공존하는 다른 이온도 동일하게 흡착하기 때문에 다량의 공존이온을 함유하는 폐수 및 용수중에 미량존재하는 중금속이온을 제거할때 중금속이온의 유출이 많은 문제점이 있다. 또한, 합성 제올라이트는 알루민산 나트륨[NaAl(OH)4], 규산나트륨(Na2SiO3) 및 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)을 출발원료로 하여 특수한 용도로 합성하기 때문에 제조경비가 많이 들고 여러 이온이 공존할 경우 전체이온을 제거할 수 없는 문제점이 있다.Among the above methods, the adsorption method uses adsorption, which is a phenomenon in which a molecule adheres to a solid surface by physical or chemical bonding force in a solution or gas phase, and an adsorption agent is required to provide a surface to which molecules can adhere. Activated carbon, ion exchange resins and synthetic zeolites are mainly used as adsorbents to remove heavy metal ions contained in wastewater and water, and activated carbon is activated at 800-1000 ° C by steam or combustion gas or zinc chloride. Activated by (ZnCl 2 ), heavy metal ions are adsorbed and removed in the micropores generated in the activation process. Since the ion exchange resin adsorbs other ions coexisting with the heavy metal ions in the same way, there is a problem in that heavy metal ions are effluent when the heavy metal ions are removed in the wastewater and water containing a large amount of co-ions. In addition, synthetic zeolites are synthesized for special purposes using sodium aluminate [NaAl (OH) 4 ], sodium silicate (Na 2 SiO 3 ), and sodium hydroxide (NaOH) or potassium hydroxide (KOH) as starting materials. There is a problem that can not remove the whole ion when a lot of ions coexist.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 제안된 것으로써, 본발명의 목적은 원료가 풍부하고 가격이 저렴한 소각 비산재를 열처리하여 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 상기의 안정화된 비산재를 균일한 입경분포를 갖도록 수열합성 방법을 사용함으로써 비표면적 및 중금속 흡착능이 우수하고 경제적인 중금속 제거용 흡착제로 제조하는 방법을 제공하는 것이다.The present invention has been proposed to solve the above problems of the prior art, the object of the present invention is to heat the incineration fly ash rich in raw material and inexpensive to stabilize the harmful substances contained in the fly ash, and the stabilized It is to provide a method for producing fly ash as an adsorbent for removing heavy metals with excellent specific surface area and heavy metal adsorption capacity by using a hydrothermal synthesis method to have a uniform particle size distribution.

도 1은 본 발명에 의한 소각비산재로부터 흡착제를 제조하는 방법을 나타내는 공정흐름도.1 is a process flow diagram showing a method for producing an adsorbent from incineration fly ash according to the present invention.

상기한 목적을 달성하기 위해 본 발명은 집진장치에 포집된 소각비산재를 100메쉬 이하로 분쇄하여 500~600℃에서 100~120분 동안 환원분위기로 열처리하는 단계와, 상기의 열처리한 비산재와 수산화나트륨 용액을 혼합한 후 80∼120℃에서 8∼16시간 수열합성하는 단계와, 상기의 수열합성된 비산재를 증류수로 세척한후 80~90℃에서 건조하는 단계를 포함하여 이루어짐을 특징으로 하는 소각 비산재의 수열합성을 이용한 흡착제 제조방법을 제공한다.In order to achieve the above object, the present invention is a step of crushing the incineration fly ash collected in the dust collector to 100 mesh or less and heat-treated in a reducing atmosphere for 100 to 120 minutes at 500 ~ 600 ℃, the above heat treatment fly ash and sodium hydroxide Incineration fly ash comprising a step of hydrothermally synthesizing the solution at 80-120 ° C. for 8-16 hours and washing the hydrothermally synthesized fly ash with distilled water and then drying at 80-90 ° C. Provided is a method for preparing an adsorbent using hydrothermal synthesis.

일반적으로 흡착제는 다음과 같은 구비 조건을 갖추어야 한다. 즉 첫째, 단위 무게당 흡착력이 우수하여야 한다. 둘째, 물에 용해되지 않으면서 내산성, 내 알칼리성이어야 한다. 셋째, 재생이 가능하여야 한다. 넷째, 다공질이며 입경(부피)에 대해 비표면적이 커야 한다. 다섯째, 액체상이나 기체상에서 유독물질을 발생하지 않아야 한다. 여섯째, 입도분포가 균일하여야 한다. 일곱째, 구입이 용이하고 가격이 저렴하여야 한다.In general, the adsorbent should have the following conditions: That is, first, the adsorption force per unit weight should be excellent. Second, it must be acid and alkali resistant without dissolving in water. Third, playback should be possible. Fourth, it must be porous and have a large specific surface area for the particle size (volume). Fifth, it should not generate toxic substances in liquid or gas phase. Sixth, the particle size distribution should be uniform. Seventh, it should be easy to purchase and low price.

본 발명은 상기한 조건을 충족시키는 최적의 흡착제의 제조방법에 관한 것으로서 첨부한 도면을 참조하여 본 발명을 상세히 설명하고자 한다.The present invention relates to a method for preparing an optimal adsorbent that satisfies the above conditions, and will be described in detail with reference to the accompanying drawings.

도 1은 소각비산재로부터 흡착제를 제조하는 방법을 나타내는 공정흐름도이다. 우선 소각비산재에 함유되어 있는 중금속을 열처리로 안정화한 후 흡착제로 제조한다. 즉, 소각비산재를 100메쉬이하로 분쇄한 후 전기로에서 500~600℃로 100~120분 동안 열처리한다. 열처리시 온도를 500℃이하로 하거나 600℃이상으로 하게되면, 효과적인 중금속의 안정화가 이루어지지 않는다.상기의 열처리된 비산재와 1-4 노르말농도(N)의 수산화나트륨(NaOH) 용액을 사용하여 실온에서 180℃까지 온도와 반응시간을 변화시켜 처리한 다음, 원심분리를 이용하여 고액분리를 하고 과량의 수산화나트륨(NaOH)용액을 제거하기 위해 증류수로 수세, 여과하고 80~90℃정도로 항온된 건조기에서 건조한다. 이때, 건조기의 온도가 80℃이하로 설정되면 건조가 원활히 일어나지 않는다.1 is a process flow chart showing a method for producing an adsorbent from incineration fly ash. First, the heavy metal contained in the incineration fly ash is stabilized by heat treatment, and then manufactured as an adsorbent. That is, the incineration fly ash is pulverized to 100 mesh or less and then heat treated at 500 to 600 ° C. for 100 to 120 minutes in an electric furnace. If the temperature is lower than 500 ° C or higher than 600 ° C during heat treatment, no effective heavy metal stabilization is achieved. Using the heat-treated fly ash and the 1-4 normal concentration (N) solution of sodium hydroxide (NaOH), room temperature After treatment by changing the temperature and reaction time from to 180 ℃, the solid-liquid separation by centrifugation, washed with distilled water to remove the excess sodium hydroxide (NaOH) solution, filtered and incubated at 80 ~ 90 ℃ To dry. At this time, when the temperature of the dryer is set to 80 ° C or less, drying does not occur smoothly.

본 발명에서는 흡착제의 성능을 양이온 교환 능력(CEC)과 비표면적(BET), 다공도(porosity)로 측정하였으며, 양이온 교환 능력(Cation Exchange Capacity)은 어떤 한 이온이 다른 이온을 어느 정도 치환할 수 있는 정도를 측정하는 것으로 흡착제로의 가능성을 알아보기 위한 간접적인 수치로 이용되어 지고 있다. 또한 비표면적(BET)와 다공도(Porosity) 역시 흡착제의 성능을 측정하는 방법으로 이용되고 있다.In the present invention, the performance of the adsorbent was measured by cation exchange capacity (CEC), specific surface area (BET), and porosity, and the cation exchange capacity (Cation Exchange Capacity) can be substituted to some extent by one ion. It is used as an indirect figure to determine the possibility of adsorbent by measuring the degree. In addition, specific surface area (BET) and porosity (Porosity) is also used as a method for measuring the performance of the adsorbent.

본 발명에 의한 흡착제는 알칼리성이고, 미세공을 다수 가지고 있으며, 표면적이 크고, 흡착력이 크며, 각종의 용도로 사용될 수 있는 것으로 나타났다. 또한 본 발명의 흡착제는 분말 또는 고형 펠릿의 형태중 어느 하나로 사용할 수 있는데 상기 두가지 경우에 형태와 무관하게 사용량의 범위는 동일하지만, 분말 형태인 경우의 흡착 속도는 고형 펠릿의 그것보다 약 10배 빠른 것으로 나타나고 있다The adsorbent according to the present invention has been shown to be alkaline, have a large number of micropores, have a large surface area, large adsorption force, and can be used for various purposes. In addition, the adsorbent of the present invention can be used in the form of powder or solid pellets. In both cases, the amount of use is the same regardless of the form, but in the case of powder form, the adsorption rate is about 10 times faster than that of the solid pellets. Appearing

본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 한정되는 것은 아니다.If the present invention will be described in detail based on the Examples as follows, the present invention is not limited to the Examples.

<비교예 1>Comparative Example 1

소각장에서 배출된 소각비산재(Raw fly ash)는 중금속 및 유해물질을 함유하고 있으므로 600℃로 2시간 열처리를 통한 전처리 과정을 거쳐 흡착제로 사용하였다. 열처리만을 수행한 경우 흡착능력을 평가할 수 있는 CEC의 값이 6meq/100g 정도로 본 발명에 의한 흡착제보다 작은 값을 나타났으며 또한 BET와 다공도 또한 낮게 나타났다. 상기의 결과를 표 1에 나타내었다.Raw fly ash discharged from the incinerator contains heavy metals and harmful substances, and was used as an adsorbent after pretreatment through heat treatment at 600 ° C. for 2 hours. When only heat treatment was performed, the value of CEC, which can evaluate the adsorption capacity, was about 6 meq / 100g, which was smaller than that of the adsorbent according to the present invention. Also, BET and porosity were also lower. The above results are shown in Table 1.

<실시예 1-12><Example 1-12>

100메쉬 이하로 체분리한 소각비산재를 전기로에서 600℃로 2시간 열처리하여 소각비산재 10g을 1-4N의 수산화나트륨 100㎖과 함께 환류냉각기를 부착한 3구 플라스크(Flask)에서 실온에서 180℃의 온도범위에서 수열합성한 다음 수세하여 수산화나트륨용액을 제거하여 90℃정도로 항온된 건조기에서 건조하였다.The incineration fly ash separated into 100 mesh or less was heat-treated at 600 ° C. for 2 hours in an electric furnace, and 10 g of the incineration fly ash was heated at 180 ° C. at room temperature in a three-necked flask equipped with a reflux cooler together with 100 ml of 1-4 N sodium hydroxide. After hydrothermal synthesis in the temperature range and washing with water to remove the sodium hydroxide solution and dried in a drier incubated at about 90 ℃.

상기의 수열합성의 알칼리 농도, 반응온도, 반응시간을 변화시켜 제조한 실시예 1-12의 흡착제 및 비교예 1의 열처리한 소각비산재에 대하여 CEC(양이온교환능력), BET(비표면적) 및 다공도(Porosity)를 측정한 결과를 표 1에 나타내었다. 표 1에서 보는 바와 같이, 본 발명에 따라 수열합성에 의해 소각비산재를 흡착제로 제조했을 때, 흡착효율을 간접적으로 측정할 수 있는 모든 변수 CEC와 BET 표면적, 다공도가 증가하는 것으로 나타났다. 최고의 흡착 조건을 나타내는 조건은 본 발명에서 찾아낸 조건으로 3N 알칼리 용액으로 100℃에서 12시간 수열합성하였을 때 최고의 흡착조건을 나타내었다.CEC (cationic ion exchange capacity), BET (specific surface area) and porosity of the adsorbents of Examples 1-12 prepared by changing the alkali concentration, reaction temperature, and reaction time of the hydrothermal synthesis and the incineration fly ash heat treated in Comparative Example 1 Table 1 shows the results of measuring (Porosity). As shown in Table 1, when the incineration fly ash was prepared as an adsorbent by hydrothermal synthesis according to the present invention, all variables CEC and BET surface area and porosity which can indirectly measure the adsorption efficiency were increased. The conditions showing the best adsorption conditions showed the best adsorption conditions when hydrothermally synthesized at 100 ° C. for 12 hours with a 3N alkaline solution.

항목\실시예Item \ Example 반응조건Reaction condition CEC(meq/100g)CEC (meq / 100g) BET(㎡/g)BET (㎡ / g) Porosity(%)Porosity (%) 비교예1Comparative Example 1 열처리 소비산재Heat treatment 6.16.1 11.811.8 6565 실시예1Example 1 수산화나트륨용액 1.0NSodium hydroxide solution 1.0N 10.210.2 40.440.4 6969 실시예2Example 2 수산화나트륨용액 2.0NSodium hydroxide solution 2.0N 29.429.4 49.6549.65 7070 실시예3Example 3 수산화나트륨용액 3.0NSodium hydroxide solution 3.0 N 30.230.2 51.751.7 7979 실시예4Example 4 수산화나트륨용액 4.0NSodium hydroxide solution 4.0N 28.428.4 48.648.6 8080 실시예5Example 5 반응온도 25℃Reaction temperature 25 ℃ 17.217.2 26.126.1 -- 실시예6Example 6 반응온도 100℃Reaction temperature 100 ℃ 30.230.2 51.751.7 -- 실시예7Example 7 반응온도 150℃Reaction temperature 150 ℃ 27.227.2 47.047.0 -- 실시예8Example 8 반응온도 180℃Reaction temperature 180 ℃ 30.830.8 50.450.4 -- 실시예9Example 9 반응시간 6시간6 hours response time 21.021.0 38.438.4 -- 실시예10Example 10 반응시간 12시간Response time 12 hours 30.230.2 51.751.7 -- 실시예11Example 11 반응시간 24시간Response time 24 hours 27.627.6 48.048.0 -- 실시예12Example 12 반응시간 36시간Response time 36 hours 23.423.4 44.844.8 --

<실험예 1>Experimental Example 1

실시예 3의 흡착제를 이용하여 중금속 흡착량을 고액비(w/w(%))에 따라 측정하였으며 그 결과를 표 2에 나타내었다. 흡착실험은 25℃의 진탕수조에서 행하였으며, 흡착평형 시킨후 마지막 pH를 측정하고 고형물과 액은 여과시켜 분리하였다. 분리된 액 중의 중금속은 spectr AA-20plus로 측정하였다. 고액비는 흡착제와 중금속을 함유한 용액의 비를 나타낸다.The amount of heavy metal adsorption was measured according to the solid-liquid ratio (w / w (%)) using the adsorbent of Example 3, and the results are shown in Table 2. The adsorption experiment was carried out in a shaker bath at 25 ° C., after equilibration of adsorption, the final pH was measured, and the solids and the liquid were separated by filtration. Heavy metals in the separated solution were measured by spectr AA-20plus. Solid-liquid ratio shows the ratio of the solution containing an adsorbent and heavy metal.

표 2는 중금속 흡착량을 비산재 단위무게당 흡착된 중금속의 양으로 나타낸 것으로 흡착은 pH에 따라 다소 차이가 있으므로 본 결과는 pH 7에서 행한 실험 결과를 나타낸 것이다. 또한 소각비산재는 알칼리성을 나타내므로 고액비를 조절하여 산성폐수를 중성의 폐수로 중화시킬 수 있는 것으로 나타났다.Table 2 shows the amount of heavy metal adsorption in terms of the amount of heavy metal adsorbed per unit weight of fly ash. As the adsorption varies slightly depending on pH, the present results show the results of experiments performed at pH 7. In addition, since incineration fly ash shows alkalinity, it has been shown that the acidic wastewater can be neutralized by neutral wastewater by controlling the solid-liquid ratio.

고액비\성분Solid liquid 1:101:10 1:251:25 1:501:50 1:1001: 100 수용액 pH 7.0에서 Pb2+(흡착량,g/kg)Pb2 + (adsorbed amount, g / kg) in aqueous solution pH 7.0 0.990.99 2.462.46 4.894.89 9.599.59 수용액 pH 7.0에서 Cu2+(흡착량,g/kg)Cu2 + (adsorbed amount, g / kg) in aqueous solution pH 7.0 0.930.93 2.342.34 4.04.0 7.657.65

따라서, 본 발명에 의한 흡착제는 축산폐수, 염료, 제철, 필름제조, 합금공장, 광산의 오폐수 처리 등에서 뿐만 아니라, 중금속에 오염된 오염지의 개량 등에도 효과적으로 사용할 수 있다. 또한 본 발명의 흡착제는 부가가치가 낮은 무한한 자원을 이용하고, 폐수중의 중금속을 흡착제에 흡착시킨 뒤 흡착제를 분리하여 일정한 장소에 매립하거나, 흡착제에 흡착된 중금속을 강한 무기산 용액으로 추출한 후 재사용할 수 있으므로 경제적이다.Therefore, the adsorbent according to the present invention can be effectively used not only for livestock wastewater, dye, steelmaking, film production, alloy plant, wastewater treatment of mines, but also for improving contaminated paper contaminated with heavy metals. In addition, the adsorbent of the present invention can use infinite resources with low added value, adsorb heavy metals in the waste water to the adsorbent, separate the adsorbents and bury them in a fixed place, or extract the heavy metals adsorbed on the adsorbent with a strong inorganic acid solution and reuse it. It is economical.

상술한 바와 같이, 본 발명에 의해 소각비산재를 열처리하여 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 안정화된 비산재를 흡착능이 우수하고 경제적인 흡착제로 재활용함으로써 자원을 유용하게 이용할 수 있을 뿐만 아니라 도시 고형폐기물의 소각재 문제를 해결하는 유력한 방법으로 활용될 수 있다.As described above, heat treatment of the incineration fly ash according to the present invention stabilizes the harmful substances contained in the fly ash, and recycles the stabilized fly ash as an adsorbent having excellent adsorption capacity and economical efficiency, as well as urban solids. It can be used as a powerful way to solve the problem of waste incineration.

Claims (2)

집진장치에 포집된 소각비산재를 100메쉬 이하로 분쇄하여 500~600℃에서 100~120분 동안 환원분위기로 열처리하는 단계와,Crushing the incineration fly ash collected in the dust collector to 100 mesh or less and heat-treating it at 500 to 600 ° C. for 100 to 120 minutes in a reducing atmosphere; 상기의 열처리한 비산재와 수산화나트륨 용액을 혼합한 후 80∼120℃에서 8∼16시간 수열합성하는 단계와,Mixing the heat-treated fly ash and the sodium hydroxide solution, followed by hydrothermal synthesis at 80 to 120 ° C. for 8 to 16 hours, 상기의 수열합성된 비산재를 증류수로 세척한후 80~90℃에서 건조하는 단계를 포함하여 이루어짐을 특징으로 하는 소각 비산재의 수열합성을 이용한 흡착제 제조방법.Method for producing an adsorbent using hydrothermal synthesis of incineration fly ash comprising the step of washing the hydrothermally synthesized fly ash with distilled water and drying at 80 ~ 90 ℃. 삭제delete
KR10-2001-0043358A 2001-07-19 2001-07-19 The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash KR100425780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043358A KR100425780B1 (en) 2001-07-19 2001-07-19 The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043358A KR100425780B1 (en) 2001-07-19 2001-07-19 The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash

Publications (2)

Publication Number Publication Date
KR20030008301A KR20030008301A (en) 2003-01-25
KR100425780B1 true KR100425780B1 (en) 2004-04-03

Family

ID=27715655

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0043358A KR100425780B1 (en) 2001-07-19 2001-07-19 The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash

Country Status (1)

Country Link
KR (1) KR100425780B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527036B1 (en) * 2002-06-21 2005-11-09 강원대학교산학협력단 Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture
CN115624961A (en) * 2022-10-24 2023-01-20 苏州市吴中区固体废弃物处理有限公司 Recycling treatment method for utilizing household garbage incineration fly ash

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191018A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Molecular sieve type zeorite
JPH07109117A (en) * 1993-10-04 1995-04-25 Agency Of Ind Science & Technol Production of type a zeolite
US5965105A (en) * 1998-06-12 1999-10-12 Council Of Scientific And Industrial Research Process for the synthesis of flyash based Zeolite-A
KR20000007859A (en) * 1998-07-08 2000-02-07 이동훈 Method for preparing a-type zeolite from coal arsenate
JP2000107726A (en) * 1998-10-02 2000-04-18 Mie Prefecture Production of adsorbent from refuse incineration ash
KR20020004302A (en) * 2000-07-04 2002-01-16 곽영훈 Technique of Synthesis of Zeolite Na-A from slag and fly ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191018A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Molecular sieve type zeorite
JPH07109117A (en) * 1993-10-04 1995-04-25 Agency Of Ind Science & Technol Production of type a zeolite
US5965105A (en) * 1998-06-12 1999-10-12 Council Of Scientific And Industrial Research Process for the synthesis of flyash based Zeolite-A
KR20000007859A (en) * 1998-07-08 2000-02-07 이동훈 Method for preparing a-type zeolite from coal arsenate
JP2000107726A (en) * 1998-10-02 2000-04-18 Mie Prefecture Production of adsorbent from refuse incineration ash
KR20020004302A (en) * 2000-07-04 2002-01-16 곽영훈 Technique of Synthesis of Zeolite Na-A from slag and fly ash

Also Published As

Publication number Publication date
KR20030008301A (en) 2003-01-25

Similar Documents

Publication Publication Date Title
Chunfeng et al. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals
Apak et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes)
Chunfeng et al. Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies
Jha et al. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+
Weng et al. Adsorption characteristics of copper (II) onto spent activated clay
US9382133B2 (en) Adsorbent composite from natural raw materials to remove heavy metals from water
Ugurlu et al. Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite
Behin et al. Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite
Jangkorn et al. Comparative lead adsorptions in synthetic wastewater by synthesized zeolite A of recycled industrial wastes from sugar factory and power plant
Paudyal et al. Removal of fluoride by effectively using spent cation exchange resin
Nie et al. Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism
Wajima et al. Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43− from aqueous solution
Çoruh et al. Adsorption of copper (II) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies
CN110698174A (en) Lightweight sludge ceramsite, and preparation method and application thereof
Kang et al. Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity
Shah et al. Equilibrium and kinetic studies of the adsorption of basic dye from aqueous solutions by zeolite synthesized from bagasse fly ash
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
Harja et al. Eco-friendly nano-adsorbents for pollutant removal from wastewaters
Zhao et al. Removal of p-Nitrophenol from simulated sewage using steel slag: Capability and mechanism
Li et al. Investigation of the adsorption characteristics of Cr (VI) onto fly ash, pine nut shells, and modified bentonite
Ziejewska et al. Eco-friendly zeolites for innovative purification of water from cationic dye and heavy metal ions.
Wajima et al. Removal of fluoride ions using calcined paper sludge
KR100425780B1 (en) The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash
Vasques et al. Application of ecological adsorbent in the removal of reactive dyes from textile effluents
Shah et al. Alkaline hydrothermal conversion of agricultural waste Bagasse Fly Ash into zeolite: utilisation in dye removal from aqueous solution

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120102

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee