JP4933095B2 - Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement - Google Patents

Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement Download PDF

Info

Publication number
JP4933095B2
JP4933095B2 JP2005374946A JP2005374946A JP4933095B2 JP 4933095 B2 JP4933095 B2 JP 4933095B2 JP 2005374946 A JP2005374946 A JP 2005374946A JP 2005374946 A JP2005374946 A JP 2005374946A JP 4933095 B2 JP4933095 B2 JP 4933095B2
Authority
JP
Japan
Prior art keywords
cement
water
pavement
weight
cement milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005374946A
Other languages
Japanese (ja)
Other versions
JP2007176721A (en
Inventor
徹 佐々木
憲一 安久
豊 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005374946A priority Critical patent/JP4933095B2/en
Publication of JP2007176721A publication Critical patent/JP2007176721A/en
Application granted granted Critical
Publication of JP4933095B2 publication Critical patent/JP4933095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5079Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、セメント組成物、セメントミルク、保水性舗装及び保水性舗装の施工方法に関し、特に、セメントから有害な六価クロム等が溶出するのを防止しつつ保水性舗装を施工するためのセメント組成物、セメントミルク、保水性舗装及び保水性舗装の施工方法に関する。   The present invention relates to a cement composition, cement milk, water retentive pavement and a water retentive pavement construction method, and in particular, a cement for constructing a water retentive pavement while preventing harmful hexavalent chromium from being eluted from the cement. The present invention relates to a composition, cement milk, a water-retaining pavement, and a construction method for the water-retaining pavement.

従来、路面の温度上昇を抑制する観点から、20〜30%の空隙率を有する開粒度アスファルトや開粒度コンクリート等(以下、開粒度アスファルト等ともいう)の空隙中に、保水作用のある材料を含んだセメントミルクを浸透させ、これを硬化させてなる保水性舗装が知られている。
該保水性舗装は、雨水等の水分を保水性材料に一時的に蓄えておき、晴天時の温度上昇に伴ってこの水分を蒸発させることにより、潜熱によって路面等の温度上昇を抑制するものであり、ヒートアイランド現象の防止策として注目されている。
Conventionally, from the viewpoint of suppressing the temperature rise of the road surface, a material having a water retaining action is provided in the voids of open grained asphalt or open grained concrete having a porosity of 20 to 30% (hereinafter also referred to as open grained asphalt). There is known a water-retaining pavement in which cement milk contained is permeated and cured.
The water-retaining pavement temporarily stores water such as rainwater in a water-retaining material, and evaporates the water as the temperature rises in fine weather, thereby suppressing the temperature rise of road surfaces and the like due to latent heat. It is attracting attention as a measure to prevent the heat island phenomenon.

ところで、この保水性舗装の施工等に用いられるセメントミルクは、開粒度アスファルト等の空隙中に浸透させる必要があることから、低粘度であって流動性に優れたものでなければならず、一般には、60〜120%という高水/粉体比のものが使用される。   By the way, the cement milk used for the construction of this water-retaining pavement, etc. needs to permeate into gaps such as open grained asphalt, so it must have low viscosity and excellent fluidity. Are used with a high water / powder ratio of 60-120%.

しかしながら、セメント中にはその原料由来のクロム元素が微量ながら含まれており、このような高水粉体比のセメントミルクを硬化させたセメント硬化体からは、有害な六価クロム等が溶出しやすいという問題がある。   However, the cement contains a small amount of chromium element derived from its raw material, and harmful hexavalent chromium and the like are eluted from the hardened cement obtained by hardening cement milk having such a high water powder ratio. There is a problem that it is easy.

従来、セメントミルク(セメントスラリー)からの六価クロム溶出防止方法としては、地盤改良やグラウト材として使用されるセメントスラリー(セメントミルク)を対象として、六価クロムの溶出防止を図った方法が知られている。例えば、下記特許文献1には、有害な六価クロムを三価クロムに還元する還元剤を用いる方法が記載されており、下記特許文献2には、硫酸鉄塩とキレートとを併用する方法が記載されている。
特開2001−335780号公報 特開2002−60751号公報
Conventionally, hexavalent chromium elution prevention methods from cement milk (cement slurry) are known to prevent hexavalent chromium elution from cement slurry (cement milk) used for ground improvement and grout materials. It has been. For example, Patent Document 1 described below describes a method using a reducing agent that reduces harmful hexavalent chromium to trivalent chromium, and Patent Document 2 described below discloses a method of using iron sulfate and a chelate in combination. Are listed.
JP 2001-335780 A JP 2002-60751 A

しかしながら、これら特許文献1および2に記載されたような従来の溶出低減方法では、六価クロムの溶出低減効果が不十分となる場合があり、六価クロム溶出低減機能の更なる改善が求められている。   However, in the conventional elution reduction methods described in Patent Documents 1 and 2, the elution reduction effect of hexavalent chromium may be insufficient, and further improvement of the hexavalent chromium elution reduction function is required. ing.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、水/粉体比の高いセメントミルクを用いた場合の六価クロムの溶出量を低減することを一の課題とし、さらに、該セメントミルクを保水性舗装等の保水用途として用いた場合に六価クロムの溶出量を低減しつつ十分な保水性能を発揮させることを他の課題とする。   The present invention has been made in view of such problems of the prior art, and an object thereof is to reduce the elution amount of hexavalent chromium when cement milk having a high water / powder ratio is used. Furthermore, another object is to exhibit sufficient water retention performance while reducing the elution amount of hexavalent chromium when the cement milk is used for water retention such as water retention pavement.

上記課題を解決すべく、本発明は、セメント、高炉スラグ微粉末、硫酸第一鉄、及びゼオライトを含有するセメント組成物であって、前記セメント100重量部に対し、前記ゼオライトが125〜160重量部配合され、前記セメント組成物中の前記高炉スラグ微粉末の割合が6〜10重量%であって、前記硫酸第一鉄の割合が0.2〜0.5重量%であることを特徴とするセメント組成物を提供する。
In order to solve the above-mentioned problems, the present invention is a cement composition containing cement, blast furnace slag fine powder, ferrous sulfate, and zeolite , wherein the zeolite is 125 to 160 weight parts per 100 weight parts of the cement. The ratio of the blast furnace slag fine powder in the cement composition is 6 to 10% by weight, and the ratio of the ferrous sulfate is 0.2 to 0.5% by weight. A cement composition is provided.

また、本発明は、上述のようなセメント組成物と、水とが、水/粉体比60〜120%で混合されてなることを特徴とするセメントミルクを提供する。   The present invention also provides a cement milk comprising the above-described cement composition and water mixed at a water / powder ratio of 60 to 120%.

また、本発明は、アスファルト舗装又はコンクリート舗装の空隙中に、上述のようなセメントミルクが浸透され、硬化してなることを特徴とする保水性舗装を提供する。   The present invention also provides a water-retaining pavement characterized in that cement milk as described above is infiltrated into a gap in asphalt pavement or concrete pavement and hardened.

さらに、本発明は、アスファルト舗装又はコンクリート舗装の表面に上述のようなセメントミルクを塗布し、該セメントミルクを該アスファルト舗装又はコンクリート舗装の空隙中に浸透させ、硬化させることを特徴とする保水性舗装の施工方法を提供する。   Furthermore, the present invention is characterized in that the above-mentioned cement milk is applied to the surface of asphalt pavement or concrete pavement, and the cement milk is allowed to penetrate into the voids of the asphalt pavement or concrete pavement and harden. Provide pavement construction methods.

本発明によれば、硫酸第一鉄及び高炉スラグ微粉末の作用によってセメント中に含まれる六価クロムが三価クロムに還元され、且つ安定化され、さらに、該三価クロムは、ゼオライトのイオン交換作用および吸着作用によって該ゼオライト中に固定化されることとなる。
また、潜在水硬性材料である高炉スラグ微粉末は、セメント等のアルカリ成分によって刺激されて硬化するが、この高炉スラグ微粉末の硬化の際にも、クロムが取り込まれて固定化されることとなる。
従って、水/粉体比の高いセメントミルクを調製し、種々の用途に用いた場合であっても該セメントからの六価クロムの溶出量を顕著に低減することができる。
According to the present invention, hexavalent chromium contained in cement is reduced to trivalent chromium and stabilized by the action of ferrous sulfate and blast furnace slag fine powder, and further, the trivalent chromium is an ion of zeolite. It is immobilized in the zeolite by the exchange action and the adsorption action.
In addition, blast furnace slag fine powder, which is a latent hydraulic material, is cured by being stimulated by an alkaline component such as cement. Become.
Therefore, even when cement milk having a high water / powder ratio is prepared and used for various applications, the elution amount of hexavalent chromium from the cement can be significantly reduced.

さらに、本発明で用いられるゼオライトは優れた保水機能を有するものであるため、本発明に係るセメント組成物およびセメントミルク並びに保水性舗装は、六価クロムの溶出量を顕著に低減するとともに、優れた保水性能をも発揮するという効果がある。   Furthermore, since the zeolite used in the present invention has an excellent water retention function, the cement composition, cement milk and water retention pavement according to the present invention significantly reduce the elution amount of hexavalent chromium and are excellent. It also has the effect of exhibiting water retention performance.

このように、本発明によれば、水/粉体比の高いセメントミルクを調製した場合であっても六価クロムの溶出量を低減することができ、さらに、該セメントミルクを保水性舗装等の保水用途に用いた場合には六価クロムの溶出量を低減しつつ十分な保水性能を発揮させることが可能となる。   Thus, according to the present invention, even when cement milk having a high water / powder ratio is prepared, the elution amount of hexavalent chromium can be reduced. When used for water retention purposes, it is possible to exhibit sufficient water retention performance while reducing the elution amount of hexavalent chromium.

本発明に係るセメント組成物は、セメント、高炉スラグ微粉末、硫酸第一鉄、及びゼオライトを含有するものである。
本発明において用いられるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、白色ポルトランドセメント、耐流酸塩ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメントなどの各種ポルトランドセメントが挙げられる。
The cement composition according to the present invention contains cement, blast furnace slag fine powder, ferrous sulfate, and zeolite.
Examples of the cement used in the present invention include various Portland cements such as ordinary Portland cement, early-strength Portland cement, super-early-strength Portland cement, white Portland cement, sulfate-resistant Portland cement, moderately hot Portland cement, and low heat Portland cement. It is done.

本発明において用いられる高炉スラグ微粉末としては、溶鉱炉で銑鉄と同時に生成する高炉スラグであれば特に限定されないが、例えば、JIS A 6206の「コンクリート用高炉スラグ微粉末」に規定された高炉スラグ微粉末や、JIS A 5011の「高炉スラグ骨材」に規定された高炉スラグ粗骨材又は高炉スラグ細骨材を粉砕したもの等を好適に使用することができる。
該高炉スラグ微粉末は単独では水和硬化しないが、セメント等のアルカリ成分の作用により水和硬化する性質、即ち、潜在水硬性を有する。本発明においては、還元された三価クロムを安定化させ、さらに、上述のような水和硬化作用によって該クロムを固定化し、保水性舗装等を構成するセメント硬化体からの溶出を抑制する。
The blast furnace slag fine powder used in the present invention is not particularly limited as long as it is a blast furnace slag that is generated simultaneously with pig iron in a blast furnace. Powder, blast furnace slag coarse aggregate or blast furnace slag fine aggregate stipulated in “Blast furnace slag aggregate” of JIS A 5011 can be suitably used.
Although the blast furnace slag fine powder alone is not hydrated and hardened, it has a property of being hydrated and hardened by the action of an alkali component such as cement, that is, latent hydraulic property. In the present invention, the reduced trivalent chromium is stabilized, and further, the chromium is fixed by the hydration hardening action as described above, and the elution from the cement hardened body constituting the water-retaining pavement and the like is suppressed.

高炉スラグ微粉末の添加量は、セメント組成物中6〜10重量%とすることが好ましく、5〜7.5重量%とすることがより好ましい。
斯かる配合のセメント組成物によれば、六価クロムの溶出低減作用をより一層顕著に発揮しうるという優れた効果がある。
The amount of blast furnace slag fine powder added is preferably 6 to 10% by weight, more preferably 5 to 7.5% by weight in the cement composition.
According to the cement composition having such a composition, there is an excellent effect that the elution reduction action of hexavalent chromium can be exhibited more remarkably.

本発明において用いられる硫酸第一鉄としては、一水塩のもの、及び七水塩のもの、何れも使用することができる。特に、セメント組成物中に予め混合しておく場合には、セメントの変質が生じにくいという観点から、一水塩のものが好適に用いられる。   As the ferrous sulfate used in the present invention, either a monohydrate salt or a heptahydrate salt can be used. In particular, in the case where the cement composition is preliminarily mixed, a monohydrate salt is preferably used from the viewpoint that the cement is hardly deteriorated.

本発明のセメント組成物においては、セメント組成物中に硫酸第一鉄が0.2〜0.5重量%となるように配合する。0.2重量%以上とすることにより、六価クロムを略確実に還元することができ、0.5重量%以下とすることにより、硬化体の強度低下を略確実に防止できるという効果がある。
In the cement composition of the present invention, the ferrous sulfate is 0 . 2 you blended so that 0.5 wt%. By setting it to 0.2 % by weight or more, hexavalent chromium can be reduced almost reliably, and by setting it to 0.5 % by weight or less, there is an effect that a decrease in strength of the cured body can be prevented almost certainly. .

また、本発明において用いられるゼオライトは、ケイ素(Si)とアルミニウム(Al)とが酸素(O)を介して結合し、このSi−O−Al−O−Siの構造が三次元的に組み合わさった構造を有するものである。そして、アルミニウム(+3価)とケイ素(+4価)が酸素(−2価)を互いに共有し、ケイ素の周りが電気的に中性、アルミニウムの周りが−1価となる。従って、この負電荷を補償するためにゼオライトの骨格中に陽イオンが必要となる結果、六価や三価のクロムイオンがゼオライトの骨格中に積極的に吸着固定化されることとなる。   In the zeolite used in the present invention, silicon (Si) and aluminum (Al) are bonded through oxygen (O), and the structure of Si-O-Al-O-Si is combined three-dimensionally. It has a structure. Aluminum (+3 valence) and silicon (+4 valence) share oxygen (-2 valence) with each other, with silicon being electrically neutral and aluminum surrounding −1. Therefore, in order to compensate for this negative charge, a cation is required in the framework of the zeolite. As a result, hexavalent and trivalent chromium ions are actively adsorbed and immobilized in the framework of the zeolite.

本発明のセメント組成物においては、前記セメント100重量部に対してゼオライトを125〜160重量部配合する。前記セメント100重量部に対してゼオライトを125〜160重量部配合することにより、保水作用を発揮しつつ六価クロムの溶出量を大幅に低減しうるという優れた効果がありさらに、全クロムの溶出量を顕著に低減しうるという極めて優れた効果を発揮する。 In the cement composition of the present invention, zeolite you formulation 125-160 parts by weight with respect to the cement 100 parts by weight. By blending 125-160 parts by weight of zeolite to the cement 100 parts by weight, there is excellent effect that can greatly reduce the amount of elution of hexavalent chromium while exhibiting water retention effect, further, the total chromium It exhibits an extremely excellent effect that the amount of elution can be significantly reduced.

また、本発明に係るセメント組成物中には、本発明の作用効果を阻害しない範囲内において、他の成分を添加することができる。
他の成分の具体例としては、石灰石粉、シリカフューム、フライアッシュ等が挙げられる。石灰石粉としては、消石灰粉又は生石灰粉の何れを使用することもできる。石灰石粉の添加量は、セメント組成物中に0〜8重量%とすることが好ましく、2.5〜5重量%とすることがより好ましい。
In addition, other components can be added to the cement composition according to the present invention within a range that does not impair the effects of the present invention.
Specific examples of other components include limestone powder, silica fume, fly ash and the like. As limestone powder, either slaked lime powder or quick lime powder can be used. The amount of limestone powder added is preferably 0-8 wt%, more preferably 2.5-5 wt% in the cement composition.

本発明に係るセメントミルクは、上述のようなセメント組成物と水とを、水/粉体比が60〜120%となるように混合してなるものである。ここで、水/粉体比とは、セメント、高炉スラグ微粉末、硫酸第一鉄およびゼオライト等の粉体成分の合計量に対する水の添加量(重量比)をいう。水/粉体比を60〜120%とすることにより、該セメントミルクは、アスファルト舗装やコンクリート舗装の空隙中へ浸透させやすい粘度となる。   The cement milk according to the present invention is obtained by mixing the above cement composition and water so that the water / powder ratio is 60 to 120%. Here, the water / powder ratio refers to the amount (weight ratio) of water added to the total amount of powder components such as cement, blast furnace slag fine powder, ferrous sulfate and zeolite. By setting the water / powder ratio to 60 to 120%, the cement milk has a viscosity that can easily penetrate into the voids of asphalt pavement and concrete pavement.

該セメントミルクを浸透させる対象としては、開粒度アスファルト舗装やポーラスコンクリート舗装に限定されず、コンクリート製品やコンクリート構造物のひび割れ部分、土木構造物等であってもよい。   The target to be infiltrated with the cement milk is not limited to open-graded asphalt pavement or porous concrete pavement, but may be a concrete product, a cracked portion of a concrete structure, a civil engineering structure, or the like.

本発明に係る保水性舗装は、開粒度アスファルト舗装やポーラスコンクリート舗装の空隙中に、上記のようなセメントミルクが浸透され、硬化してなるものである。
アスファルト舗装やコンクリート舗装としては、上記のようなセメントミルクを浸透させうるような空隙を有するものであれば特に限定されず、空隙率が通常10%以上、好ましくは20%以上、30%以下のものであればよい。
The water-retaining pavement according to the present invention is formed by the cement milk as described above being permeated into the voids of an open-graded asphalt pavement or a porous concrete pavement.
Asphalt pavement and concrete pavement are not particularly limited as long as they have voids that can penetrate cement milk as described above, and the porosity is usually 10% or more, preferably 20% or more, 30% or less. Anything is acceptable.

本発明に係る保水性舗装の施工方法は、上述のような配合よりなるセメントミルクを調製した後、該セメントミルクをアスファルト舗装又はコンクリート舗装の表面に塗布し、さらに該セメントミルクを該アスファルト舗装又はコンクリート舗装の空隙中に浸透させ、硬化させるものである。セメントミルクの調製手段や、アスファルト舗装等表面への塗布手段等については、従来公知の種々の手段を採用することが可能である。   The construction method of the water-retaining pavement according to the present invention comprises preparing cement milk having the above-mentioned composition, applying the cement milk to the surface of asphalt pavement or concrete pavement, and further applying the cement milk to the asphalt pavement or It penetrates into the voids of concrete pavement and hardens. Various conventionally known means can be adopted as means for preparing cement milk, means for applying to the surface of asphalt pavement and the like.

次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

普通ポルトランドセメントランド(住友大阪セメント社製)、ゼオライト(日東粉化工業社製、SP#2300)、石灰石粉(近江鉱業社製、LP200)、高炉スラグ微粉末(名古屋エスメント社製)および硫酸第一鉄(試薬)を下記表1に示す配合割合で混合し、さらに、水/粉体比100%となるように水を添加混合し、セメントミルクを調製した。   Ordinary Portland Cement Land (Sumitomo Osaka Cement Co., Ltd.), Zeolite (Nitto Flour Chemical Co., Ltd., SP # 2300), Limestone Powder (Omi Mining Co., LP200), Blast Furnace Slag Fine Powder (Nagoya Esmento Co., Ltd.) and Sulfuric Acid Ferrous iron (reagent) was mixed at a blending ratio shown in Table 1 below, and water was added and mixed so that the water / powder ratio was 100% to prepare cement milk.

Figure 0004933095
Figure 0004933095

(材齢7日の圧縮強度)
上述のようにして得た試験No.1乃至19のセメントミルクを内寸4×4×16cmの型枠に打設し、材齢1日で脱型した後、材齢7日まで水中養生を行い、JIS R 5201の圧縮強さ試験に準じて試験を行った。結果を表2に示す。
(Compressive strength at age 7 days)
Test No. obtained as described above. Cement milk of 1 to 19 is placed in a 4 × 4 × 16 cm inner mold, demolded at a material age of 1 day, then cured under water until a material age of 7 days, and a compressive strength test of JIS R 5201 The test was conducted according to the above. The results are shown in Table 2.

(溶出試験)
試験No.1乃至19のセメントミルクを内寸4×4×16cmの型枠に打設し、材齢1日で脱型した後、材齢7日まで水中養生を行って供試体を作成し、該供試体について、「平成15年度環境庁告示第46号」に定める方法に基づき、六価クロムの溶出試験を行った。
また、該試験体について、JIS K0102 65.1に定める方法に基づき、全クロムの溶出試験を行った。
結果を表2に示す。
(Dissolution test)
Test No. 1 to 19 cement milk was placed in a mold with an inner size of 4 × 4 × 16 cm, demolded at a material age of 1 day, and then subjected to underwater curing until a material age of 7 days to prepare a specimen. The specimens were subjected to a hexavalent chromium elution test based on the method set forth in “Environmental Agency Notification No. 46, 2003”.
Moreover, the elution test of all the chromium was done about this test body based on the method prescribed | regulated to JISK0102 65.1.
The results are shown in Table 2.

(給水率試験)
試験No.1乃至19のセメントミルクを内寸4×4×16cmの型枠に打設し、材齢3日で脱型することによって供試体を作成した。該供試体を24時間水中に浸漬させて吸水状態の重量(W1)を測定した後、60℃の通風式乾燥機内に24時間放置して乾燥させた状態の重量(W0)を測定し、次式に基づいて最大吸水率を算出した。
最大吸水率(%)=(W1−W0)/W0×100
結果を表2に示す。
(Water supply rate test)
Test No. A specimen was prepared by placing 1 to 19 cement milk on a mold with an internal size of 4 × 4 × 16 cm and removing the mold at a material age of 3 days. The specimen was immersed in water for 24 hours and the weight (W 1 ) in the water-absorbing state was measured, and then the weight (W 0 ) in the state of being left to dry in a 60 ° C. ventilated dryer for 24 hours was measured. The maximum water absorption was calculated based on the following equation.
Maximum water absorption (%) = (W 1 −W 0 ) / W 0 × 100
The results are shown in Table 2.

Figure 0004933095
Figure 0004933095

上記表2に示した結果によると、高炉スラグ微粉末および硫酸第一鉄を含有しない試験No.1〜3の試験体では、六価クロム溶出量および全クロム溶出量が約0.6〜0.8(mg/L)であり、環境基準を大幅に上回る結果となっている。   According to the results shown in Table 2 above, Test No. containing no fine powder of blast furnace slag and ferrous sulfate. In the specimens 1 to 3, the elution amount of hexavalent chromium and the elution amount of total chromium are about 0.6 to 0.8 (mg / L), which is a result that greatly exceeds the environmental standard.

高炉スラグ微粉末を石灰石粉と置換して配合量を変化させた試験No.4〜7の試験体では、高炉スラグ微粉末の添加量の増加に伴って六価クロムの溶出量は減っているものの、未だ環境基準を満たすものとはなっていない。   Test No. 1 in which the blast furnace slag fine powder was replaced with limestone powder to change the blending amount. In the specimens 4 to 7, although the elution amount of hexavalent chromium decreased with an increase in the amount of blast furnace slag fine powder added, it still does not satisfy the environmental standards.

一方、硫酸第一鉄のみを配合した試験No.8および9の試験体では、六価クロム溶出量が約0.6(mg/L)、全クロム溶出量が約0.6〜0.7(mg/L)であり、六価クロム等の溶出低減効果が得られていないことが認められる。   On the other hand, Test No. containing only ferrous sulfate. In the specimens 8 and 9, the elution amount of hexavalent chromium was about 0.6 (mg / L) and the total elution amount of chromium was about 0.6 to 0.7 (mg / L). It is recognized that the elution reduction effect is not obtained.

また、高炉スラグ微粉末および硫酸第一鉄を含有するが、ゼオライトを含有しない試験No.10および11の試験体では、六価クロム溶出量および全クロム溶出量が約0.7〜1.2(mg/L)と非常に大きい値となっていることが認められる。   Further, test No. 1 containing fine blast furnace slag powder and ferrous sulfate but no zeolite. In the specimens 10 and 11, it is recognized that the hexavalent chromium elution amount and the total chromium elution amount are very large values of about 0.7 to 1.2 (mg / L).

これに対し、高炉スラグ微粉末および硫酸第一鉄を含有し、さらにゼオライトを含有する試験No.12〜19の試験体では、六価クロム溶出量および全クロム溶出量が他の試験体と比べて大幅に低減されており、高炉スラグ微粉末と硫酸第一鉄およびゼオライトの3成分による相乗効果が得られていることが認められる。   On the other hand, Test No. containing fine blast furnace slag powder and ferrous sulfate and further containing zeolite. In the specimens 12 to 19, the elution amount of hexavalent chromium and the total chromium elution amount are greatly reduced as compared with other specimens, and the synergistic effect of the three components of blast furnace slag fine powder, ferrous sulfate and zeolite. It is recognized that is obtained.

また、試験No.12〜19の試験体では、他の試験体と同程度の強度および吸水率を発揮しており、上記のように六価クロム等の溶出量を低減しつつも、強度および吸水率が維持されていることが認められる。   In addition, Test No. The test specimens 12 to 19 exhibit the same strength and water absorption rate as other test specimens, and the strength and water absorption ratio are maintained while reducing the elution amount of hexavalent chromium and the like as described above. It is recognized that

特に、セメントの配合量が35〜60重量部であり、ゼオライトの配合量が30〜55重量部(即ち、セメント100重量部に対してゼオライトが50〜160重量部)である試験No.12〜14および試験No.16〜18の試験体では、六価クロムの溶出量のみならず、全クロムの溶出量までもが大幅に低減されており、極めて優れた効果を発揮しうることが認められる。   In particular, Test No. in which the blending amount of cement is 35 to 60 parts by weight and the blending amount of zeolite is 30 to 55 parts by weight (that is, 50 to 160 parts by weight of zeolite with respect to 100 parts by weight of cement). 12-14 and test no. In the specimens 16 to 18, not only the elution amount of hexavalent chromium but also the elution amount of total chromium is greatly reduced, and it is recognized that extremely excellent effects can be exhibited.

Claims (4)

セメント、高炉スラグ微粉末、硫酸第一鉄、及びゼオライトを含有するセメント組成物であって、
前記セメント100重量部に対し、前記ゼオライトが125〜160重量部配合され、
前記セメント組成物中の前記高炉スラグ微粉末の割合が6〜10重量%であって、前記硫酸第一鉄の割合が0.2〜0.5重量%であることを特徴とするセメント組成物。
A cement composition comprising cement, blast furnace slag fine powder, ferrous sulfate, and zeolite ,
125 to 160 parts by weight of the zeolite is blended with respect to 100 parts by weight of the cement,
Cement composition characterized in that the proportion of fine powder of blast furnace slag in the cement composition is 6 to 10% by weight and the proportion of ferrous sulfate is 0.2 to 0.5% by weight. .
請求項1に記載のセメント組成物と、水とが、水/粉体比60〜120%で混合されてなることを特徴とするセメントミルク。 A cement milk comprising the cement composition according to claim 1 and water mixed at a water / powder ratio of 60 to 120%. 開粒度アスファルト舗装又はポーラスコンクリート舗装の空隙中に、前記請求項2に記載のセメントミルクが浸透され、硬化してなることを特徴とする保水性舗装。 A water-retaining pavement, wherein the cement milk according to claim 2 is permeated into a void of an open-graded asphalt pavement or a porous concrete pavement and hardened. 開粒度アスファルト舗装又はポーラスコンクリート舗装の表面に前記請求項2に記載のセメントミルクを塗布し、該セメントミルクを該アスファルト舗装又はコンクリート舗装の空隙中に浸透させ、硬化させることを特徴とする保水性舗装の施工方法。 Water-retaining water characterized in that the cement milk according to claim 2 is applied to a surface of an open-graded asphalt pavement or porous concrete pavement, and the cement milk is allowed to penetrate into the voids of the asphalt pavement or concrete pavement and harden. Pavement construction method.
JP2005374946A 2005-12-27 2005-12-27 Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement Expired - Fee Related JP4933095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374946A JP4933095B2 (en) 2005-12-27 2005-12-27 Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374946A JP4933095B2 (en) 2005-12-27 2005-12-27 Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement

Publications (2)

Publication Number Publication Date
JP2007176721A JP2007176721A (en) 2007-07-12
JP4933095B2 true JP4933095B2 (en) 2012-05-16

Family

ID=38302265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374946A Expired - Fee Related JP4933095B2 (en) 2005-12-27 2005-12-27 Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement

Country Status (1)

Country Link
JP (1) JP4933095B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173687B (en) * 2011-02-25 2012-07-11 北京工业大学 Sulfate-corrosion-resistance concrete additive and preparation method thereof
CN113060948A (en) * 2021-04-01 2021-07-02 重庆康尼睿能商贸有限公司 Cement raw meal and preparation method of cement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP4391064B2 (en) * 2002-06-28 2009-12-24 株式会社福田組 Method for producing filler, method for forming pre-pact concrete, method for arranging pipe material, and method for using filler containing zeolite

Also Published As

Publication number Publication date
JP2007176721A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR100982469B1 (en) Very-early strength mortar composition for constructing speedy and construction method thereof
KR100835702B1 (en) Waterproof admixture for concrete having a corrosion inhibition function
WO2011108065A1 (en) Cement admixture and cement composition
KR101418238B1 (en) To High durability high early strength mix cement Composition
KR100737488B1 (en) Composition of quick setting cement
KR101881785B1 (en) Quick-hardening cement concrete composition with improved workability and durability and repairing method for road pavement therewith
KR101813026B1 (en) Floor finishing material with self-leveling for floor finishing of concrete slab and construction method for floor finishing of concrete slab therewith
JP6763335B2 (en) Semi-flexible pavement cement milk and its manufacturing method and semi-flexible pavement construction method
JP2008120625A (en) Cement-based material
JP2009203145A (en) Porous concrete and method of producing the same
JP4933095B2 (en) Cement composition, cement milk, water retentive pavement, and method for constructing water retentive pavement
JP4382764B2 (en) Cement composition for water-retained cured body, cement milk, water-retained cured body, and method for producing water-retained cured body
JP5345821B2 (en) Cement admixture and cement composition
KR101617723B1 (en) Waterproof and anticorrosive composition for concrete
JP4201265B2 (en) Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition
JP5728545B2 (en) Hardened salt-resistant cement
KR101617722B1 (en) Waterproofing Admixture Composition for Concrete
JP2010100471A (en) Cement admixture and cement composition
JP2007270464A (en) Cement composition, cement milk, water holding pavement, and method of constructing water holding pavement
JP2013227185A (en) Composition for mortar or concrete and molding produced by molding the composition
KR20040089995A (en) The manufacturing method and composition of Restoration mortar with function of sulfuric acid resistance
JP5345820B2 (en) Cement admixture and cement composition
KR20170044402A (en) High sulfate resistant inorganic binders, cement paste, mortar and concrete composite with crack self-healing function
KR102502121B1 (en) Salt-resistant concrete composition for offshore structures using rust inhibitor
JP4222870B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees