KR20010113710A - Method for producing a wear-resistant surface on components consisting of steel and machine with at least one component of this type - Google Patents

Method for producing a wear-resistant surface on components consisting of steel and machine with at least one component of this type Download PDF

Info

Publication number
KR20010113710A
KR20010113710A KR1020017010796A KR20017010796A KR20010113710A KR 20010113710 A KR20010113710 A KR 20010113710A KR 1020017010796 A KR1020017010796 A KR 1020017010796A KR 20017010796 A KR20017010796 A KR 20017010796A KR 20010113710 A KR20010113710 A KR 20010113710A
Authority
KR
South Korea
Prior art keywords
aluminum
layer
steel
hardness
layers
Prior art date
Application number
KR1020017010796A
Other languages
Korean (ko)
Other versions
KR100440426B1 (en
Inventor
모출스키레히
안데르센에어링브레달
Original Assignee
존 스텐달 한센
맨 비 앤드 더블유 디젤 에이/에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 존 스텐달 한센, 맨 비 앤드 더블유 디젤 에이/에스 filed Critical 존 스텐달 한센
Publication of KR20010113710A publication Critical patent/KR20010113710A/en
Application granted granted Critical
Publication of KR100440426B1 publication Critical patent/KR100440426B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F2007/0097Casings, e.g. crankcases or frames for large diesel engines

Abstract

According to the invention, components consisting of steel are provided with a protective coat (6) with an intermediate layer which is harder than steel and a still harder outer layer by successively melting superposed layers (8, 9) consisting of aluminium-bronze onto the steel base material (7).

Description

마모에 강한 철강 부품의 표면을 제조하는 방법 및 동종의 부품을 적어도 하나 포함하는 장치{METHOD FOR PRODUCING A WEAR-RESISTANT SURFACE ON COMPONENTS CONSISTING OF STEEL AND MACHINE WITH AT LEAST ONE COMPONENT OF THIS TYPE}METHOD FOR PRODUCING A WEAR-RESISTANT SURFACE ON COMPONENTS CONSISTING OF STEEL AND MACHINE WITH AT LEAST ONE COMPONENT OF THIS TYPE}

단단한 표면을 형성하기 위해 철강으로 이루어진 부품들의 표면을 경화 처리하는 것은 이미 잘 알려져 있다. 그렇지만 경화 처리에 필요한 열처리는 비용이 많이 들 뿐만 아니라 경험도 많이 필요하다. 뿐만 아니라 여러 번에 걸친 경화 처리를 통해 얻을 수 있는 경도도 충분치 않다. 또한 표면을 경화 처리하면 경도가 대체로 작고, 플레이킹(flaking)의 위험이 크다는 단점도 있다. 따라서 공구의 수명이 대체로 짧다.It is well known to harden the surface of parts made of steel to form a hard surface. However, the heat treatment required for the curing treatment is expensive and requires much experience. In addition, the hardness obtained from several hardening treatments is not sufficient. Hardening of the surface also has the disadvantage that the hardness is generally small and the risk of flaking is high. Therefore, the tool life is generally short.

본 발명은 마모에 강한 철강 부품의 표면을 제조하기 위한 방법 및 적어도 부분적으로 마모에 강한 표면을 구비하는 철강 부품을 적어도 하나 포함하는 장치에 관한 것이다.The present invention relates to a method for producing a surface of a wear resistant steel part and to an apparatus comprising at least one steel part having a surface which is at least partially resistant to wear.

도 1은 2행정-대형 디젤 엔진의 크로스 헤드 안내부 부분도1 is a partial head cross section of a two-stroke diesel engine;

도 2는 보호용 피복을 구비한 도 1에 따른 장치의 단면을 확대한 도면2 an enlarged view of the cross section of the device according to FIG. 1 with a protective sheath;

본 발명의 목적은 이러한 문제점들로부터 출발하여 앞서 언급한 종류의 방법 및 장치를 간단하고도 저렴한 방법으로 개선하여, 마모에 강한 영역의 경도 및 두께를 크게 할 뿐만 아니라 지지(support)를 신빙성 있게 하고 또한 제조를 간단하게 하는 데 있다.The object of the present invention is to start from these problems and improve the method and apparatus of the kind mentioned above in a simple and inexpensive way, which not only increases the hardness and thickness of the area resistant to wear, but also makes the support reliable. It is also to simplify manufacturing.

본 발명의 목적은 특허청구범위의 상위의 개념에 따른 방법과 연관하여 철강에 비해 단단한 중간층(intermediative layer) 및 훨씬 더 단단한 외층(outer layer)을 형성하기 위해 철강 기본 재료(steel base material)에, 알루미늄-청동 합금으로 이루어지는 서로 겹치는 다수의 층을 용해시킴으로써 달성된다. 또한 본 발명의 목적은 상위의 개념에 따른 장치와 관련하여 마모에 강한 표면을 형성하기 위해 구비되는 보호용 피복(protective coat)이 철강 기본 재료에 용해되는 다수의, 주로 두 개의 서로 겹치는 알루미늄-청동 합금 층으로 이루어짐으로써 달성된다.The object of the present invention is to provide a steel base material to form a harder intermediate layer and a much harder outer layer compared to steel in connection with the method according to the concepts above in the claims, It is achieved by dissolving a plurality of overlapping layers of aluminum-bronze alloys. It is also an object of the present invention to provide a plurality of, mainly two, overlapping aluminum-bronze alloys in which a protective coat, which is provided for forming a wear resistant surface in connection with the device according to the above concept, is dissolved in a steel base material. Achieved by layering.

주로 용접을 통해 용해되는 알루미늄-청동 합금은 놀랍게도 외층이 내층보다 더 단단한 것으로 입증된다. 차례로 용접되는 두 층에 대한 실험에서 내층의 경도는 300HV 내지 400HV였고, 외층의 경도는 500HV 내지 600HV로 내층보다 훨씬 컸다. 따라서 철강으로 이루어지고 경도가 100HV 내지 200HV인 기본 재료에, 비교적 단단한 외층 및 외층에 비해 부드럽지만 철강에 비해서는 훨씬 더 단단한 중간층이 바람직하게 자동적으로 생겨난다. 이로써 기본 재료 및 마모에 강한 외층 사이의 경도는 한 단계가 아니라 여러 단계를 통해 균형을 이루게 된다는 점이 확실해졌다. 그 결과 바람직하게는 표면에 작용하는 평행한 전단력(shearing force) 및 표면에 수직인 항력이 기본 재료에 확실히 잘 전달된다. 이로써 바람직하게는 플레이킹의 높은 안정성이 보장된다. 그 결과 외층의 경도가 큼으로써 보장된 수명은 대단히 효과적일 수 있다. 따라서 본 발명에 따른 방안들은 바람직하게 높은 경제성을 보장해준다.Aluminum-bronze alloys, which primarily dissolve through welding, surprisingly prove that the outer layer is harder than the inner layer. In the experiments on the two layers welded in turn, the hardness of the inner layer was 300HV to 400HV and the hardness of the outer layer was 500HV to 600HV, which was much larger than the inner layer. Thus, in a base material consisting of steel and having a hardness of 100 HV to 200 HV, an intermediate layer is preferably automatically formed which is relatively hard outer layer and softer than the outer layer but much harder than steel. This ensures that the hardness between the base material and the outer layer resistant to wear is balanced in several steps, not just one. As a result, the parallel shearing force acting on the surface and the drag force perpendicular to the surface are reliably transmitted to the base material. This preferably ensures high stability of flaking. As a result, the lifetime guaranteed by the high hardness of the outer layer can be extremely effective. The measures according to the invention thus preferably ensure high economics.

바람직한 형태 및 본 발명의 목적에 맞는 상기한 방안들의 변형 형태는 청구항에 제시되어 있다. 알루미늄-청동 합금으로 이루어진 층을 용해하기 전에 각각 수용하는 재료를 우선 노(爐)에서 사전 가열하는 것은 특히 본 발명의 목적에 부합되는 것으로 입증된다. 사전 가열을 통해 내층 내지 외층의 경도값은 올라갈 수 있다. 따라서 원하는 경도를 개별적인 상황에 적합하도록 간단하게 맞출 수 있다.Preferred forms and variations of the foregoing measures suitable for the purpose of the invention are set forth in the claims. It is proved to be particularly suitable for the purpose of the present invention to preheat the respective receiving materials first in the furnace before dissolving the layer made of aluminum-bronze alloy. By preheating, the hardness value of the inner layer to the outer layer can be raised. Thus, the desired hardness can be simply adjusted to suit the individual situation.

사전 가열 온도는 350℃가 특히 선호되는 것으로 밝혀졌다. 이로써 기본 재료의 구조를 변경시키지 않고도 최대 경도값을 얻을 수 있다.The preheating temperature was found to be particularly preferred at 350 ° C. This allows a maximum hardness value to be obtained without changing the structure of the base material.

원하는 경도값을 개별적인 상황에 적합하게 할 수 있는 또 다른 가능성으로, 바람직하게는 활용 가능한 알루미늄-청동 합금 합성의 변화를 들 수 있다. 특히 큰 경도를 원할 때는 알루미늄 13% 내지 16%, 철 4% 내지 5%, 규소 0.2% 내지 0.8%, 망간 1% 내지 2%, 탄소 0.2% 이하 및 잔류 구리를 포함하는 알루미늄-청동 합금을 사용하는 것이 적합하다. 알루미늄 8% 내지 11%, 니켈 4% 내지 5%, 철 3% 내지 5%, 망간 1% 내지 2% 및 잔류 구리를 포함하는 알루미늄-청동 합금을 사용하면 경도가 비교적 작아질 수 있다. 이런 방식으로 외층 및/또는 내층의 경도는 개별적인 필요성에 맞추어질 수 있다.Another possibility of adapting the desired hardness value to the individual situation is a change in the aluminum-bronze alloy synthesis that is preferably available. Particularly, for greater hardness, aluminum-bronze alloys containing 13% to 16% aluminum, 4% to 5% iron, 0.2% to 0.8% silicon, 1% to 2% manganese, 0.2% carbon or less and residual copper are used. It is appropriate. The use of an aluminum-bronze alloy comprising 8% to 11% aluminum, 4% to 5% nickel, 3% to 5% iron, 1% to 2% manganese and residual copper can result in relatively low hardness. In this way the hardness of the outer and / or inner layers can be tailored to the individual needs.

대부분의 경우, 보호용 피복을 형성하는 전체 층이 동일한 알루미늄-청동 합금으로 이루어지는 것은 바람직하다. 이로써 보다 쉽게 제조할 수 있게 되고, 연속되는 층들 간에 특히 동질의 결합이 생겨난다.In most cases, it is preferred that the entire layer forming the protective coating consists of the same aluminum-bronze alloy. This makes it easier to manufacture and results in particularly homogeneous bonding between successive layers.

또 다른 바람직한 형태에서는 입구의 품질(input quality)을 좋게 하기 위해, 알루미늄-청동 합금으로 이루어지는 마모에 강한 외층에 마모되기 쉬운 MoS2 등으로 코팅을 할 수도 있다. 유입 단계가 진행되는 동안 저절로 사라지는 이 입구층(input layer) 때문에, 알루미늄-청동 합금으로 이루어진 외층에 의해 형성된 단단한 지지층(support layer)은 유입 시간이 어느 정도 흐른 후 비로소 노출되고 효력을 발휘한다. 이것은 수명 연장에 바람직한 영향을 미친다.In another preferred form, in order to improve the input quality, the coating may be coated with MoS2 or the like which is liable to wear on an outer layer made of aluminum-bronze alloy. Because of this input layer, which disappears by itself during the inflow phase, the rigid support layer formed by the outer layer of aluminum-bronze alloy is exposed and effective only after some inflow time. This has a desirable effect on life extension.

기타 바람직한 실시형태 및 상기한 방안들의 적절한 변형 형태는 나머지 종속항에 제시되어 있고, 하기의 실시예에서 도면을 참조하여 보다 상세히 설명된다.Other preferred embodiments and suitable variations of the foregoing solutions are set forth in the remaining dependent claims and are explained in more detail with reference to the drawings in the following examples.

본 발명은 철강 부품의 표면에 철강의 경도가 100HV 내지 200HV를 넘는 보호용 피복이 필요한 경우 어디에나 적용될 수 있다. 이것은 예를 들어 피스톤 링(piston ring), 크로스 헤드 안내부처럼 고부하의 베어링면(bearing face)을 구비하는 상이한 엔진 부품들의 경우에 적합하다. 기본 재료에 비해 단단한 보호용 피복을 이용하여, 마모 속도를 줄이고 또 수명을 늘릴 수 있다. 따라서 부하를 받는 표면의 경도가 가능한 한 크고 기본 재료와의 결합은 가능한 한 좋아진다.The present invention can be applied wherever the protective coating on the surface of the steel component requires a hardness of more than 100HV to 200HV. This is suitable for the case of different engine parts with high load bearing faces, for example piston rings, cross head guides. By using a hard protective coating compared to the base material, the wear rate can be reduced and the service life can be extended. Therefore, the hardness of the surface under load is as large as possible and the bonding with the base material is as good as possible.

도 1의 2행정-대형 디젤 엔진의 프레임(frame) 단면은 크로스 헤드(1)의 양 측면에 있는 스탠드 벽(standing wall; 2)을 포함한다. 크로스 헤드(1)에 있는 측면 안내 블록(guide shoe; 3)의 단부에는 서로 대향된 베어링면을 구비하는안내판(guide plate; 4)이 제공된다. 안내판은 서로 향한 베어링면을 구비하고 스탠드 측에 제공되는 안내 레일(guide rail; 5) 상에서 움직인다.The frame cross section of the two-stroke diesel engine of FIG. 1 includes a standing wall 2 on both sides of the cross head 1. At the end of the side guide block 3 in the cross head 1 is provided a guide plate 4 with bearing surfaces facing each other. The guide plate has bearing surfaces facing each other and moves on a guide rail 5 provided on the stand side.

안내판(4) 및 안내 레일(5)은 표준 철강을 기본 재료로 하여 구성되고, 철강보다 경도가 커서 수명이 확실히 긴 보호용 피복(6)을 서로 마주보는 베어링면 영역에 구비한다. 예를 들어 베어링 부시(bearing bush)나 피스톤 링처럼 부하를 비슷하게 받는 다른 철강 부품들의 경우에도 물론 이와 같은 보호용 피복을 구비할 수 있다.The guide plate 4 and the guide rail 5 are made of standard steel as a base material, and are provided in the bearing surface area | region which mutually faces the protective sheath 6 which is larger in hardness and has a longer life. Such protective sheaths can of course also be applied to other steel parts under similar load, for example bearing bushes or piston rings.

보호용 피복(6)은 알루미늄-청동 합금으로 이루어지고, 도 2에서 잘 볼 수 있듯이 본 발명의 목적에 부합되게 철강 기본 재료(7)에 차례로 용접을 통해 용해되고 서로 겹치게 되는 두 개의 층(8, 9)으로 제조된다. 철강의 경도는 대체로 100HV 내지 200HV이다. 알루미늄-청동 합금의 경도 크기는 대체로 200HV이다. 철강으로 이루어지는 기본 재료(7)에 먼저 용접되는 내층(8)은 놀랍게도 이미 약 300HV 내지 400HV의 경도를 갖는다. 두 번째 층인 외층(9)의 경도는 놀랍게도 약 500HV 내지 600HV로 훨씬 크다. 따라서 외층(9)은 구동에 무리가 갈 때에도 긴 수명을 확실히 보장하는 마모에 강한 지지층으로 특히 적합하다.The protective sheath 6 is made of an aluminum-bronze alloy and, as can be seen in FIG. 2, two layers 8, which are in turn melted and overlapped with each other by welding to the steel base material 7 in accordance with the object of the invention. 9) is manufactured. The hardness of the steel is generally from 100 HV to 200 HV. The hardness size of the aluminum-bronze alloy is generally 200 HV. The inner layer 8 which is first welded to the base material 7 made of steel surprisingly already has a hardness of about 300 HV to 400 HV. The hardness of the second layer, the outer layer 9, is surprisingly much higher, from about 500 HV to 600 HV. The outer layer 9 is therefore particularly suitable as a wear resistant support layer which ensures a long life even when driving is difficult.

우선 일정한 유입 단계를 거친 후 매우 단단한 지지층이 효력을 발휘한다면, 이는 대단히 바람직하다고 할 수 있다. 이러한 경우 외층(9)에 코팅되는 입구층(10)은 예를 들어 MoS2처럼 비교적 마모되기 쉬운 재료로 이루어지고 유입 단계가 진행되는 동안 저절로 사라지므로, 이에 이어서 알루미늄-청동 합금으로 이루어지고 경도가 큰 외층(9)이 도 2 우측에 도시된 것처럼 지지하기 위해 나타난다.If a very solid support layer is in effect after first going through a certain inflow step, this is highly desirable. In this case, the inlet layer 10 coated on the outer layer 9 is made of a relatively brittle material, for example MoS 2 , and disappears spontaneously during the inflow step, which is then made of an aluminum-bronze alloy and the hardness of A large outer layer 9 is shown for supporting as shown in the right side of FIG. 2.

비교적 경도가 작은 내층(8)은 실제로 대단히 단단한 외층(9) 및 외층에 비해 비교적 부드러운 기본 재료(7) 사이를 연결하는 보통 경도의 연결층(bonding layer)으로 쓰인다. 이로써 외층(9) 및 기본 재료(7) 사이의 경도는 단계적으로 균형을 이루게 된다. 이와 동시에 내층(8)은 경도가 비교적 작기 때문에 점성(viscocity) 및 충격 강도(impact strength)가 높아진다. 그 결과 표면에 평행한 전단력 및 표면에 수직인 항력(화살표(11, 12)로 도시됨)을 잘 흡수하여 기본 재료(7)에 전달할 수 있다. 도시된 예에서 차례로 용접되는 층(8, 9)은 두께가 같다. 두 층(8, 9)의 두께는 물론 다르거나 상이할 수 있다. 도시된 예에서 차례로 용접되는 두 개의 층(8, 9)을 갖는 실시 형태가 특히 선호된다고 해도, 두 층 이상을 차례로 용접하는 것도 마찬가지로 생각해볼 수 있다.The relatively low hardness inner layer 8 is actually used as a bonding layer of moderate hardness that connects between the very hard outer layer 9 and the base material 7 which is relatively soft compared to the outer layer. This ensures that the hardness between the outer layer 9 and the base material 7 is balanced in stages. At the same time, the inner layer 8 has a relatively small hardness, resulting in high viscosity and impact strength. As a result, the shear force parallel to the surface and the drag force (shown by arrows 11 and 12) perpendicular to the surface can be absorbed well and transferred to the base material 7. In the example shown, the layers 8, 9 to be welded in turn are of the same thickness. The thickness of the two layers 8, 9 can of course be different or different. Although the embodiment with two layers 8, 9 welded in turn in the example shown is particularly preferred, welding two or more layers in turn is likewise conceivable.

두 층(8, 9)을 제조할 때, 알루미늄 8% 내지 25%, 각각 0.2% 내지 10%의 스티븀(Sb), 코발트(Co), 베릴륨(Be), 크롬(Cr), 주석(Sn), 망간(Mn), 규소(Si), 카드뮴(Cd), 아연(Zn), 철(Fe), 니켈(Ni), 납(Pb) 및 탄소(C) 중 적어도 하나 및 잔류 구리를 포함하는 알루미늄-청동 합금을 사용하는 것은 바람직하다. 내층 및/또는 외층(8, 9)이 특히 큰 경도값을 갖기를 원한다면, 알루미늄 13% 내지 16%, 철 4% 내지 5%, 규소 0.2% 내지 0.8%, 망간 1% 내지 2%, 탄소 0.2% 이하 및 잔류 구리를 포함하는 알루미늄-청동 합금을 사용하는 것이 바람직하다. 내층 및/또는 외층(8, 9)의 경도가 약간 작기를 원한다면, 알루미늄 8% 내지 11%, 니켈 4% 내지 6%, 철 3% 내지 5%, 망간 1% 내지 2% 및 잔류 구리를 포함하는 알루미늄-청동 합금을 사용할 수 있다. 경도의 크기 따라 내층 또는 외층(8, 9)에 경도값이 크거나 작은 알루미늄-청동 합금을 사용할 수 있다. 그렇지만 두 층(8, 9)에 같은 알루미늄-청동 합금을 사용하는 것은 대체로 바람직하다.When producing the two layers 8 and 9, 8% to 25% of aluminum, 0.2% to 10% of each of styrene (Sb), cobalt (Co), beryllium (Be), chromium (Cr) and tin (Sn) ), At least one of manganese (Mn), silicon (Si), cadmium (Cd), zinc (Zn), iron (Fe), nickel (Ni), lead (Pb) and carbon (C) and residual copper Preference is given to using aluminum-bronze alloys. If the inner and / or outer layers 8, 9 are to have particularly high hardness values, aluminum 13% to 16%, iron 4% to 5%, silicon 0.2% to 0.8%, manganese 1% to 2%, carbon 0.2 Preference is given to using aluminum-bronze alloys comprising up to% and residual copper. If the hardness of the inner and / or outer layers 8, 9 is slightly small, it comprises 8% to 11% aluminum, 4% to 6% nickel, 3% to 5% iron, 1% to 2% manganese and residual copper. An aluminum-bronze alloy can be used. Depending on the size of the hardness, an aluminum-bronze alloy having a large or small hardness value may be used for the inner or outer layers 8 and 9. However, it is generally desirable to use the same aluminum-bronze alloy in both layers 8, 9.

앞서 언급했듯이, 두 층(8, 9)은 용접 공정으로 코팅될 수 있다. 이 경우 전기 아크(electro arc) 또는 레이저 광선 또는 화염(flame)이 사용될 수 있다.As mentioned above, the two layers 8, 9 can be coated by a welding process. In this case, an electric arc or laser beam or flame may be used.

원하는만큼 경도를 높이기 위해서는 매번 알루미늄 층을 용착시키기 전에 수용하는 부품을 사전 가열할 수 있다. 즉 내층(8)을 용착시키기 전에 기본 재료를 사전 가열하고, 외층(9)을 용착시키기 전에 코팅된 중간 제품을 사전 가열할 수 있다. 사전 가열은 노에서 하는 것이 바람직하다. 이때 사전 가열 온도는 약 350℃가 특히 바람직하다고 밝혀졌다.To increase the hardness as desired, the receiving parts can be preheated before each aluminum layer is deposited. That is, the base material can be preheated before the inner layer 8 is welded, and the coated intermediate product can be preheated before the outer layer 9 is welded. Preheating is preferably done in the furnace. It was found that the preheating temperature at this time is about 350 ° C. being particularly preferred.

Claims (12)

마모에 강한 철강 부품의 표면을 제조하기 위한 방법으로서,As a method for manufacturing a surface of abrasion resistant steel parts, 철강에 비해 단단한 중간층 및 훨씬 더 단단한 외층을 포함하는 보호용 피복(6)을 형성하기 위해, 알루미늄-청동 합금으로 이루어지고 서로 겹치는 다수의 층(8, 9)을 철강으로 이루어지는 기본 재료(7)에 용해시키는 방법.In order to form a protective sheath 6 comprising a harder intermediate layer and a much harder outer layer than steel, a plurality of layers 8, 9 made of aluminum-bronze alloy and overlapping each other are applied to the base material 7 made of steel. How to dissolve. 제1항에서,In claim 1, 알루미늄-청동 합금으로 이루어지는 두 층(8, 9)을 용해시키는 방법.Method for dissolving two layers (8, 9) made of aluminum-bronze alloy. 제1항 또는 제2항에서,The method of claim 1 or 2, 상기 보호용 피복(6)을 이루는 층(8, 9)을 용접에 의하여 형성하는 방법.Forming a layer (8, 9) of the protective sheath (6) by welding. 제1항 내지 제3항 중 어느 한 항에서,The method according to any one of claims 1 to 3, 상기 보호용 피복(6)의 각 층(8, 9)을 용착시키기 전에 각 층에 덮히는 재료를 노(爐)에서 사전 가열하는 방법.A method of preheating the material covered in each layer in a furnace before depositing each layer (8, 9) of said protective coating (6). 제4항에서,In claim 4, 상기 사전 가열은 약 350℃에서 이루어지는 방법.Said preheating at about 350 ° C. 제1항 내지 제5항 중 어느 한 항에서,The method according to any one of claims 1 to 5, 상기 보호용 피복(6)을 이루는 층(8, 9)을 동일한 합금으로 형성하는 방법.Forming a layer (8, 9) of the protective coating (6) from the same alloy. 제1항 내지 제6항 중 어느 한 항에서,In any one of claims 1 to 6, 상기 보호용 피복(6)을 형성하며 알루미늄-청동 합금으로 이루어지는 층(8, 9)이 알루미늄 8% 내지 25%, 각각 0.2% 내지 10%의 스티븀, 코발트, 베릴륨, 크롬, 주석, 망간, 규소, 카드뮴, 아연, 철, 니켈, 납, 탄소 중 적어도 하나 및 잔류 구리를 포함하는 방법.The layers 8 and 9 of the aluminum-bronze alloy forming the protective sheath 6 are made from 8% to 25% of aluminum, 0.2% to 10% of styrene, cobalt, beryllium, chromium, tin, manganese and silicon, respectively. At least one of cadmium, zinc, iron, nickel, lead, carbon, and residual copper. 제7항에서,In claim 7, 알루미늄-청동 합금으로 이루어지는 상기 보호용 피복(6)의 적어도 한 층(8, 9)이 알루미늄 13% 내지 16%, 철 4% 내지 5%, 규소 0.2% 내지 0.8%, 망간 1% 내지 2%, 탄소 0.2% 이하 및 잔류 구리로 구성되는 방법.At least one layer (8, 9) of the protective coating (6) made of an aluminum-bronze alloy comprises 13% to 16% aluminum, 4% to 5% iron, 0.2% to 0.8% silicon, 1% to 2% manganese, A method consisting of up to 0.2% carbon and residual copper. 제6항 또는 제7항에서,In claim 6 or 7, 알루미늄-청동 합금으로 이루어지는 상기 보호용 피복(6)의 적어도 한 층(8, 9)이 알루미늄 8% 내지 11%, 니켈 4% 내지 6%, 철 3% 내지 5%, 망간 1% 내지 2% 및 잔류 구리로 구성되는 방법.At least one layer (8, 9) of the protective coating (6) made of an aluminum-bronze alloy comprises: 8% to 11% aluminum, 4% to 6% nickel, 3% to 5% iron, 1% to 2% manganese, and Method consisting of residual copper. 적어도 부분적으로 마모에 강한 표면을 구비하는 철강 부품을 적어도 하나포함하는 장치로서,An apparatus comprising at least one steel component having a surface that is at least partially resistant to wear, the apparatus comprising: 마모에 강한 표면을 형성하기 위해 상기 보호용 피복(6)을 구비하고, 상기 보호용 피복(6)은 철강으로 이루어지는 기본 재료(7) 상에 중첩해서 용해되어 있는 다수의, 주로 두 개의 알루미늄-청동 합금 층(8, 9)으로 이루어지는 장치.A plurality of, mainly two aluminum-bronze alloys, provided with the protective sheath 6 to form a wear-resistant surface, which is superposed and dissolved on a base material 7 made of steel. Device consisting of layers (8, 9). 제10항에서,In claim 10, 상기 보호용 피복 중 기본 재료에 가까운 내층(8)의 경도는 300HV 내지 400HV이고, 표면측의 외층(9)의 경도는 500HV 내지 600HV인 장치.The hardness of the inner layer (8) close to the base material of the protective coating is 300 HV to 400 HV, and the hardness of the outer layer (9) on the surface side is 500 HV to 600 HV. 제10항 또는 제11항에서,The method of claim 10 or 11, 알루미늄-청동 합금으로 이루어지는 외층(9)에 마모되기 쉬운 재료로 이루어지는 입구층(10)이 다시 코팅되어 있는 장치.The outer layer (9) made of aluminum-bronze alloy is recoated with the inlet layer (10) made of a material which is subject to wear.
KR10-2001-7010796A 1999-02-25 2000-02-11 Method for producing a wear-resistant surface on components consisting of steel and machine with at least one component of this type KR100440426B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19908107.7 1999-02-25
DE19908107A DE19908107C2 (en) 1999-02-25 1999-02-25 Method for producing a wear-resistant surface in the case of components made of steel and machine with at least one such component

Publications (2)

Publication Number Publication Date
KR20010113710A true KR20010113710A (en) 2001-12-28
KR100440426B1 KR100440426B1 (en) 2004-07-14

Family

ID=7898801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-7010796A KR100440426B1 (en) 1999-02-25 2000-02-11 Method for producing a wear-resistant surface on components consisting of steel and machine with at least one component of this type

Country Status (12)

Country Link
EP (1) EP1157142B1 (en)
JP (1) JP3859970B2 (en)
KR (1) KR100440426B1 (en)
CN (1) CN1152975C (en)
AT (1) ATE223512T1 (en)
AU (1) AU3280100A (en)
DE (2) DE19908107C2 (en)
ES (1) ES2182792T3 (en)
NO (1) NO332021B1 (en)
PL (1) PL192821B1 (en)
RU (1) RU2239000C2 (en)
WO (1) WO2000050660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047179A (en) * 2018-10-26 2020-05-07 제주대학교 산학협력단 Piezoelectric Nano Generator, Optical Sensor Comprising of the same, and Preparation method of Piezoelectric Nano Generator

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136788C2 (en) * 2001-07-27 2003-06-05 Diehl Metall Stiftung & Co Kg aluminum Bronze
DE10164754B4 (en) * 2001-07-27 2004-03-04 Diehl Metall Stiftung & Co.Kg aluminum Bronze
CA2514491C (en) * 2004-09-17 2012-07-03 Sulzer Metco Ag A spray powder
AT7941U1 (en) 2004-12-02 2005-11-15 Ceratizit Austria Gmbh TOOL FOR DISCONTINUING MACHINING
DE102006023396B4 (en) * 2006-05-17 2009-04-16 Man B&W Diesel A/S Wear protection coating and use and method for producing such
CN100453236C (en) * 2006-12-20 2009-01-21 中国电子科技集团公司第十四研究所 Micro-zone repair welding method for aluminum alloy defect
US7960006B2 (en) 2007-01-23 2011-06-14 Tdk Corporation Optical recording medium and recording film material
DE102007019510B3 (en) * 2007-04-25 2008-09-04 Man Diesel A/S Process to run-in a large marine two-stroke diesel engine with soft abrasion coating on piston rings
KR101419328B1 (en) * 2007-06-18 2014-07-14 베르트질레 슈바이츠 악티엔게젤샤프트 A large crosshead diesel engine
PL385392A1 (en) * 2008-06-09 2009-12-21 Plasma System Spółka Akcyjna Ring of a wheel
DE102008036657B4 (en) * 2008-08-06 2016-09-01 Federal-Mogul Burscheid Gmbh Piston ring with adaptive coating and manufacturing method thereof
EA019463B1 (en) * 2011-06-27 2014-03-31 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Method for producing wear-resistant surfaces of steel and cast-iron parts
CN102848634B (en) * 2012-03-22 2015-07-08 福州联其铜铅钢带制造有限公司 Easily-molded environment-friendly beryllium bronze-steel bimetallic bearing material and manufacturing method thereof
EP2669399B1 (en) * 2012-06-01 2016-10-12 Oerlikon Metco AG, Wohlen Bearing and thermal spray method
JP5979034B2 (en) 2013-02-14 2016-08-24 三菱マテリアル株式会社 Sputtering target for protective film formation
CN103194640B (en) * 2013-04-07 2015-08-26 宁波博威合金材料股份有限公司 Xantal and preparation method thereof
CN103395242A (en) * 2013-08-08 2013-11-20 常熟市东方特种金属材料厂 Metal free from mechanical wear
JP5757318B2 (en) 2013-11-06 2015-07-29 三菱マテリアル株式会社 Protective film forming sputtering target and laminated wiring film
US20160348215A1 (en) 2014-02-04 2016-12-01 Otto Fuchs Kommanditgesellschaft Lubricant-Compatible Copper Alloy
CA2882788C (en) * 2014-02-26 2019-01-22 Endurance Technologies, Inc. Coating compositions, methods and articles produced thereby
EP2927335B1 (en) * 2014-04-03 2016-07-13 Otto Fuchs KG Aluminium bronze alloy, method for manufacturing the same and product made of aluminium bronze
DE102014106933A1 (en) 2014-05-16 2015-11-19 Otto Fuchs Kg Special brass alloy and alloy product
DE202016102693U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
DE202016102696U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
CN109296643B (en) * 2018-11-29 2020-07-14 上海交通大学 Double-layer metal composite material applied to sliding bearing and preparation method thereof
CN113046739A (en) * 2019-12-26 2021-06-29 山东省科学院激光研究所 Preparation method of wear-resistant machine tool guide rail plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615280A (en) * 1970-02-10 1971-10-26 Ampco Metal Inc Aluminum bronze article having a hardened surface
US4123122A (en) * 1976-07-06 1978-10-31 The Torrington Company Bearing element
CA1083856A (en) * 1976-07-19 1980-08-19 Mahesh S. Patel High hardness copper aluminum alloy flame spray powder
JPS59215274A (en) * 1983-05-23 1984-12-05 Kawasaki Steel Corp Method of overlaying aluminum bronze by welding on iron or steel base
JPS59215275A (en) * 1983-05-23 1984-12-05 Kawasaki Steel Corp Method for overlaying aluminum bronze by welding which prevents penetration of cu to iron grain boundary
DE3519452A1 (en) * 1985-05-31 1986-12-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden LAYERING MATERIAL FOR SLIDING BEARING ELEMENT WITH ANTIFRICTION LAYER MADE OF AN ALUMINUM BASED MATERIAL
JP2866384B2 (en) * 1988-11-04 1999-03-08 オイレス工業株式会社 Aluminum bronze casting with wear resistance for sliding members
DK174241B1 (en) * 1996-12-05 2002-10-14 Man B & W Diesel As Cylinder element, such as a cylinder liner, piston, piston skirt or piston ring, in a diesel-type internal combustion engine as well as a piston ring for such an engine.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047179A (en) * 2018-10-26 2020-05-07 제주대학교 산학협력단 Piezoelectric Nano Generator, Optical Sensor Comprising of the same, and Preparation method of Piezoelectric Nano Generator

Also Published As

Publication number Publication date
NO20013876L (en) 2001-10-18
KR100440426B1 (en) 2004-07-14
PL192821B1 (en) 2006-12-29
RU2239000C2 (en) 2004-10-27
PL349466A1 (en) 2002-07-29
WO2000050660A1 (en) 2000-08-31
ES2182792T3 (en) 2003-03-16
CN1341157A (en) 2002-03-20
NO20013876D0 (en) 2001-08-08
DE50000452D1 (en) 2002-10-10
NO332021B1 (en) 2012-05-29
EP1157142A1 (en) 2001-11-28
EP1157142B1 (en) 2002-09-04
JP3859970B2 (en) 2006-12-20
CN1152975C (en) 2004-06-09
DE19908107C2 (en) 2003-04-10
AU3280100A (en) 2000-09-14
JP2002538016A (en) 2002-11-12
DE19908107A1 (en) 2000-08-31
ATE223512T1 (en) 2002-09-15

Similar Documents

Publication Publication Date Title
KR100440426B1 (en) Method for producing a wear-resistant surface on components consisting of steel and machine with at least one component of this type
EP3204173B1 (en) Method for manufactured a rolling mill roll by laser cladding
JP4988824B2 (en) Sliding bearing, method for producing such a sliding bearing and use thereof
KR101131165B1 (en) Machine part belonging to a sliding pair and method for the production thereof
ZA200807974B (en) Method of fabricating a welded part with very good mechanical characteristics from rolled and coated plate
KR20110138196A (en) Sliding bearing
KR20100135934A (en) Roll for supporting and conveying hot material having a welded-on surface, method for the production of a roll comprising a welded-on surface, method for repairing a used roll
JP2009533630A (en) Sliding bearing, method and use for manufacturing such a sliding bearing
KR20080077255A (en) Sn-containing heavy-duty material composition, method for the production of a heavy-duty coating, and use thereof
KR100537764B1 (en) Method for producing a protective covering 0n the surface of components which are made of cast iron, and an engine wiht at least one component consisting of cast iron and comprising of a protective covering on the surface
US8845199B2 (en) Solid bronze bearing with hardness gradient
JP4958498B2 (en) Joint for joining aluminum product and steel product and joining method using the same
WO2007069409A1 (en) Method of repairing metal mold and paste agent for metal mold repair
KR100879155B1 (en) Thermal spraying of a piston ring
US4382169A (en) Weld deposition of metal other than aluminium onto aluminium-base alloy
JPH079085A (en) Manufacture of partially reformed aluminum-made core for casting
JP6343418B2 (en) Carrier part forming sliding bearing, sliding bearing, method for manufacturing carrier part, and reciprocating piston combustion engine having sliding bearing
JPH01250670A (en) Manufacture of sheave for winding machine
JP2005076075A (en) Thermal spray coating, forming method therefor and bearing member
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
GB2096514A (en) Deposition of metal on aluminium-based alloys
JP2769336B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
KR20200089544A (en) Method of manufacturing a double layer type transmission planetary gear carrier and a planetary gear carrier manufactured therefrom
JPH06145924A (en) Manufacture of aluminum-made pulley
JPH105975A (en) Wear resistant aluminum cast-in product

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140626

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150625

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160623

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180621

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 16