JP2005076075A - Thermal spray coating, forming method therefor and bearing member - Google Patents

Thermal spray coating, forming method therefor and bearing member Download PDF

Info

Publication number
JP2005076075A
JP2005076075A JP2003306973A JP2003306973A JP2005076075A JP 2005076075 A JP2005076075 A JP 2005076075A JP 2003306973 A JP2003306973 A JP 2003306973A JP 2003306973 A JP2003306973 A JP 2003306973A JP 2005076075 A JP2005076075 A JP 2005076075A
Authority
JP
Japan
Prior art keywords
powder
thermal spray
spray coating
coating
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003306973A
Other languages
Japanese (ja)
Inventor
Masateru Hirano
雅揮 平野
Noritaka Miyamoto
典孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003306973A priority Critical patent/JP2005076075A/en
Publication of JP2005076075A publication Critical patent/JP2005076075A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spray coating which does not contain lead and has superior sliding characteristics, high strength and superior adhesiveness, and also to provide a forming method therefor, and a bearing member with the thermal spray coating. <P>SOLUTION: A powder to be thermally sprayed onto a surface of a substrate is prepared by mixing, by weight percentage, a 5 to 25% Sn powder with a 95 to 75% Al powder. Here, the Sn powder has preferably a particle diameter of 0.5 to 0.8 times larger than that of the Al powder. Alternatively, the powder to be thermally sprayed onto the surface of the substrate is prepared so as to comprise, by weight percentage, 15 to 40% Sn and the balance copper with unavoidable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属粒子を基材表面に溶射して形成した溶射皮膜と、その形成方法および軸受部材に関する。   The present invention relates to a thermal spray coating formed by spraying metal particles on a substrate surface, a method for forming the thermal spray coating, and a bearing member.

軸受部材の摺動部に溶射皮膜を形成することで、軸受部材を小型化、軽量化することができる。近年、このような溶射皮膜を形成した軸受部材に関する技術が報告されるようになった(例えば、特許文献1)。当該文献に開示された軸受材料は、溶射により形成される特殊な組織を持つ青銅系軸受け材料に関するものである。すなわち、溶射層の組織を青銅アトマイズ粉の未溶解組織と、鉛を強制固溶した層状溶射組織との混合組織とするか、あるいは3〜40%の鉛を含有する粉体の未溶解組織と、3%未満の鉛を含有するかもしくは含有しない溶解組織との混合組織としたものである。このような組織の溶射層を有することで、摺動特性に優れ、かつ高硬度で密着性に優れた軸受材料が得られるとしている。しかし、当該技術においては、主として摺動成分として多量の鉛を使用している。   By forming the thermal spray coating on the sliding portion of the bearing member, the bearing member can be reduced in size and weight. In recent years, a technique related to a bearing member in which such a thermal spray coating is formed has been reported (for example, Patent Document 1). The bearing material disclosed in this document relates to a bronze bearing material having a special structure formed by thermal spraying. That is, the structure of the sprayed layer is a mixed structure of an undissolved structure of bronze atomized powder and a layered sprayed structure in which lead is forcibly solid-solved, or an undissolved structure of powder containing 3 to 40% lead. It is a mixed structure with a dissolved structure containing or not containing less than 3% lead. By having a thermal sprayed layer of such a structure, it is said that a bearing material having excellent sliding characteristics, high hardness and excellent adhesion can be obtained. However, in this technique, a large amount of lead is mainly used as a sliding component.

2000年10月に発効したいわゆる「EU廃車指令」では、原則として自動車部材に、鉛、水銀、カドミウムおよび6価クロムといった重金属の使用を禁止している。このため、摺動部に鉛を含まない溶射軸受部材の開発が望まれていた。
特許第2965192号公報
The so-called “EU scrap car directive” that came into force in October 2000 prohibits the use of heavy metals such as lead, mercury, cadmium and hexavalent chromium in automobile parts in principle. For this reason, development of the thermal spray bearing member which does not contain lead in a sliding part was desired.
Japanese Patent No. 2965192

本発明は以上の事情に鑑みてなされたもので、本発明の第1の目的は、鉛を含まない摺動特性に優れかつ高強度で密着性に優れた溶射皮膜を提供することである。また、本発明の第2の目的は、鉛を含まない摺動特性に優れかつ高強度で密着性に優れた溶射皮膜の形成方法を提供することである。さらに、本発明の第3の目的は、鉛を含まない摺動特性に優れかつ高強度で密着性に優れた溶射皮膜を形成した軸受部材を提供することである。   This invention is made | formed in view of the above situation, and the 1st objective of this invention is to provide the thermal spray coating which was excellent in the sliding characteristic which does not contain lead, was high intensity | strength, and was excellent in adhesiveness. A second object of the present invention is to provide a method for forming a thermal spray coating that is excellent in sliding properties not containing lead, has high strength, and has excellent adhesion. Furthermore, the third object of the present invention is to provide a bearing member in which a thermal spray coating excellent in sliding characteristics not containing lead, having high strength and excellent adhesion is formed.

本発明者は、溶射皮膜中にSnを多量に含有させることにより,摺動特性に優れかつ高強度で密着性に優れた溶射皮膜を得ることのできることを見出して本発明を完成した。   The present inventor has found that by containing a large amount of Sn in the thermal spray coating, it is possible to obtain a thermal spray coating excellent in sliding properties, high strength and excellent adhesion, and completed the present invention.

請求項1の溶射皮膜に係わる発明は、本発明の第1発明であり、上記第1の目的を達成するために、金属粒子を基材表面に溶射して形成した溶射皮膜であって、前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とするものである。   The invention relating to the thermal spray coating of claim 1 is the first invention of the present invention, and in order to achieve the first object, a thermal spray coating formed by spraying metal particles on the surface of the substrate, The metal particles are a mixed powder obtained by mixing 5 to 25% by weight of Sn powder and 95 to 75% by weight of Al powder.

請求項2の溶射皮膜に係わる発明は、上記第1の目的を達成するために、請求項1に記載の発明において、前記混合粉末の粒径は10〜75μmであることを特徴とするものである。   In order to achieve the first object, the invention according to claim 2 is characterized in that, in the invention according to claim 1, the particle size of the mixed powder is 10 to 75 μm. is there.

請求項3の溶射皮膜に係わる発明は、上記第1の目的を達成するために、請求項1または2に記載の発明において、前記Al粉末の粒径に対する前記Sn粉末の粒径が0.5〜0.8であることを特徴とするものである。   In order to achieve the first object, the invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the particle size of the Sn powder is 0.5 to the particle size of the Al powder. It is characterized by being -0.8.

請求項4の溶射皮膜に係わる発明は、本発明の第2発明であり、上記第1の目的を達成するために、金属粒子を基材表面に溶射して形成した溶射皮膜であって、
前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とするものである。
The invention related to the thermal spray coating of claim 4 is the second invention of the present invention, and in order to achieve the first object, a thermal spray coating formed by spraying metal particles on the surface of the substrate,
The metal particles contain 15 to 40% Sn by weight, and the balance is a powder made of copper and inevitable impurities.

請求項5の溶射皮膜に係わる発明は、上記第1の目的を達成するために、請求項4に記載の発明において、前記粉末の粒径は10〜45μmであることを特徴とするものである。   In order to achieve the first object, the invention according to claim 5 is characterized in that, in the invention according to claim 4, the powder has a particle size of 10 to 45 μm. .

請求項6の溶射皮膜に係わる発明は、上記第1の目的を達成するために、請求項4または5に記載の発明において、前記溶射層中の酸素濃度が4重量%未満であることを特徴とするものである。   In order to achieve the first object, the invention related to the sprayed coating of claim 6 is characterized in that, in the invention of claim 4 or 5, the oxygen concentration in the sprayed layer is less than 4% by weight. It is what.

請求項7の溶射皮膜の形成方法に係わる発明は、本発明の第3発明であり、上記第2の目的を達成するために、重量百分率で5〜25%のSnと95〜75重量%のAl粉末とを混合した混合粉末を基材表面に溶射して溶射皮膜を形成することを特徴とするものである。   The invention relating to the method for forming a thermal spray coating according to claim 7 is the third invention of the present invention, and in order to achieve the second object, 5 to 25% Sn and 95 to 75% by weight are obtained. A thermal spray coating is formed by spraying a mixed powder obtained by mixing Al powder on the surface of a base material.

請求項8の溶射皮膜の形成方法に係わる発明は、本発明の第4発明であり、上記第2の目的を達成するために、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末を基材表面に溶射して溶射皮膜を形成することを特徴とするものである。   The invention relating to the method for forming a sprayed coating according to claim 8 is the fourth invention of the present invention, and in order to achieve the second object, it contains 15 to 40% by weight of Sn, with the balance being copper. And the powder which consists of an unavoidable impurity is sprayed on the base-material surface, and a sprayed coating is formed.

請求項9の溶射皮膜の形成方法に係わる発明は、上記第2の目的を達成するために、請求項8に記載の発明において、前記基材を200〜300℃に予熱することを特徴とするものである。   The invention related to the method for forming a thermal spray coating according to claim 9 is characterized in that, in order to achieve the second object, in the invention according to claim 8, the base material is preheated to 200 to 300 ° C. Is.

請求項10の溶射皮膜の形成方法に係わる発明は、上記第2の目的を達成するために、請求項9に記載の発明において、前記溶射皮膜の積層回数は1回であることを特徴とするものである。   The invention related to the method for forming a thermal spray coating according to claim 10 is characterized in that, in order to achieve the second object, in the invention according to claim 9, the number of times the thermal spray coating is laminated is one. Is.

請求項11の軸受部材に係わる発明は、本発明の第5発明であり、上記第3の目的を達成するために、金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とするものである。   The invention related to the bearing member according to claim 11 is the fifth invention of the present invention, and in order to achieve the third object, the bearing member is formed by spraying metal particles on the surface of the substrate to form a sprayed coating. The metal particles are a mixed powder obtained by mixing 5 to 25% by weight of Sn powder and 95 to 75% by weight of Al powder.

請求項12の軸受部材に係わる発明は、本発明の第6発明であり、上記第3の目的を達成するために、金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とするものである。   The invention related to the bearing member of claim 12 is the sixth invention of the present invention, and is a bearing member in which a thermal spray coating is formed by spraying metal particles on the surface of the substrate in order to achieve the third object. The metal particles contain 15 to 40% by weight of Sn, and the balance is a powder made of copper and inevitable impurities.

本発明の第1発明の溶射皮膜は、Al粉末とSn粉末とを混合粉末として溶射して形成するので、溶射皮膜中にSnを均一に分散することができる。従って、面圧疲労強度が高く焼き付き強度の高い良好な溶射皮膜を得ることができる。   Since the thermal spray coating of the first invention of the present invention is formed by thermal spraying Al powder and Sn powder as a mixed powder, Sn can be uniformly dispersed in the thermal spray coating. Therefore, it is possible to obtain a good thermal spray coating having high surface pressure fatigue strength and high seizure strength.

また、本発明の第2発明の溶射皮膜は、Cu中に大量のSnを含有させることによって、溶射皮膜の酸化を抑制することができる。従って、溶射皮膜の硬化を抑えることができ、溶射粉末を高温で溶融することができるので、基材との密着強度が高く、また、面圧疲労強度の高い溶射皮膜を得ることができる。さらに、本合金粉末によれば、溶射時の粉末供給量を多くして溶射皮膜の積層回数(溶射ガンのパス回数)を減らすことができる。これにより、形成された溶射皮膜の品質の向上と、生産性を著しく向上させる効果がある。   Moreover, the thermal spray coating of 2nd invention of this invention can suppress the oxidation of a thermal spray coating by containing a lot of Sn in Cu. Accordingly, curing of the thermal spray coating can be suppressed, and the thermal spray powder can be melted at a high temperature, so that a thermal spray coating having high adhesion strength with the base material and high surface pressure fatigue strength can be obtained. Furthermore, according to the present alloy powder, it is possible to increase the amount of powder supplied at the time of thermal spraying and reduce the number of times the thermal spray coating is laminated (the number of thermal gun passes). Thereby, there exists an effect which improves the quality of the formed sprayed coating, and improves productivity remarkably.

本発明の軸受部材は、自動車内燃機関のコンロッドとして好適に使用することができる。   The bearing member of the present invention can be suitably used as a connecting rod for an automobile internal combustion engine.

本発明の軸受部材は、軸受部材の小型化、軽量化に寄与し、さらに燃費の向上に寄与するところ大である。   The bearing member of the present invention greatly contributes to the reduction in size and weight of the bearing member and further contributes to the improvement of fuel consumption.

まず、本発明の第1発明の実施の形態について図1〜13を参照しながら説明する。   First, an embodiment of the first invention will be described with reference to FIGS.

Al−Sn合金粉末をプラズマ溶射して溶射皮膜を形成すると、SnはAl中に固溶しにくいために溶射された合金粉末表面にSnが析出する。Snは融点が232℃と、Alの660℃に対して極めて低い。このため、図12に示すように溶射皮膜1では、隣接する溶射粒子から該粒子表面に析出したSn3が溶融するとともに連なって融合し、Al粒子2を包み込んだ溶射組織が得られる。このような溶射組織においては,Alに比べてSnの強度は低いために、溶射被膜1に引張り力が働くと融合したSn3に沿って亀裂Cが発生する。従って、溶射被膜1の強度は低いものとなる。図13に、Al−10%Sn合金粉末を溶射して得られた溶射皮膜のEPMAによるマッピング像を示す。aはAl,bはSnのマッピング像である。Alの間に融合したSnが連続面を形成していることが分かる。   When an Al—Sn alloy powder is plasma sprayed to form a sprayed coating, Sn is not readily solid-solved in Al, so Sn is deposited on the sprayed alloy powder surface. Sn has a melting point of 232 ° C., which is extremely low compared to 660 ° C. of Al. For this reason, as shown in FIG. 12, in the thermal spray coating 1, Sn3 deposited on the particle surface from the adjacent thermal spray particles melts and fuses together to obtain a thermal spray structure enclosing the Al particles 2. In such a sprayed structure, since the strength of Sn is lower than that of Al, when a tensile force acts on the sprayed coating 1, a crack C is generated along the fused Sn3. Therefore, the strength of the sprayed coating 1 is low. FIG. 13 shows a mapping image by EPMA of the sprayed coating obtained by spraying Al-10% Sn alloy powder. a is a mapping image of Al and b is a mapping image of Sn. It can be seen that Sn fused between Al forms a continuous surface.

本第1発明の溶射皮膜は、Al粉末にSn粉末を混合して、この混合粉末を溶射して形成した溶射皮膜である。このようにして形成された溶射皮膜では、図1に示すようにAl粒子2の層中に溶融Sn3が分散して凝固した溶射組織1が得られ、Al粒子2が摺動荷重を支え、分散して溶融凝固したSn3が摺動成分として焼き付き強度を確保することができる。図2に、Al粉末にSn粉末を10重量%混合した混合粉末を溶射して得られた溶射皮膜のEPMAによるマッピング像を示す。aはAl,bはSnのマッピング像である。ここでは、Alの中にSnが分散して凝固していることが分かる。   The sprayed coating of the first invention is a sprayed coating formed by mixing Sn powder with Al powder and spraying this mixed powder. In the spray coating formed in this way, as shown in FIG. 1, a sprayed structure 1 in which molten Sn3 is dispersed and solidified in the layer of Al particles 2 is obtained, and the Al particles 2 support the sliding load and disperse. Thus, the melted and solidified Sn3 can ensure seizure strength as a sliding component. FIG. 2 shows an EPMA mapping image of a sprayed coating obtained by spraying a mixed powder obtained by mixing 10% by weight of Sn powder with Al powder. a is a mapping image of Al and b is a mapping image of Sn. Here, it can be seen that Sn is dispersed and solidified in Al.

本第1発明の溶射皮膜は、金属粒子を基材表面に溶射して形成した溶射皮膜であって、前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とする。(以降、%は重量%とする。)
Sn粉末の配合量に対する溶射被膜の面圧疲労強度の変化と焼き付き荷重の変化とを図3に示す。左縦軸は皮膜の面圧疲労強度を、右縦軸は焼き付き強度を示す。ここで、面圧疲労強度は、軸受けに軸からの繰り返し面圧(たたき)を付加して溶射皮膜が破損する疲労強度である。すなわち、所定の混合粉末を溶射して形成した溶射皮膜を有する溶射軸受けに円柱形のシャフトを挿通し、シャフトを所定の周速で回転するとともに、一定の面圧で溶射皮膜表面とシャフト外周面との接触・非接触を繰り返すことで溶射皮膜の破断する面圧を面圧疲労強度とする。
本実施の形態においては、接触面圧を70〜100MPaの範囲で変動させ、3000回/分の面圧を発生させ、107回で溶射皮膜が破損する面圧を面圧疲労強度とした。なお、シャフトの周速は6.7m/secとした。
The thermal spray coating of the first invention is a thermal spray coating formed by spraying metal particles on the surface of a substrate, and the metal particles are 5 to 25% Sn powder and 95 to 75% Al by weight percentage. It is a mixed powder obtained by mixing powder. (Hereafter, “%” means “% by weight”.)
FIG. 3 shows changes in the surface pressure fatigue strength of the sprayed coating and changes in the seizure load with respect to the amount of Sn powder. The left vertical axis represents the surface pressure fatigue strength of the film, and the right vertical axis represents the seizure strength. Here, the surface pressure fatigue strength is a fatigue strength at which the thermal spray coating is damaged by applying repeated surface pressure (tapping) from the shaft to the bearing. That is, a cylindrical shaft is inserted into a thermal spray bearing having a thermal spray coating formed by spraying a predetermined mixed powder, the shaft is rotated at a predetermined peripheral speed, and the surface of the thermal spray coating and the outer peripheral surface of the shaft with a constant surface pressure. The surface pressure fatigue strength is defined as the contact pressure at which the sprayed coating breaks by repeating contact and non-contact.
In the present embodiment, the contact surface pressure was varied in the range of 70 to 100 MPa, a surface pressure of 3000 times / minute was generated, and the surface pressure at which the sprayed coating was damaged 10 7 times was defined as the surface pressure fatigue strength. The peripheral speed of the shaft was 6.7 m / sec.

図3で溶射被膜の面圧疲労強度(■で示す)は、混合粉末中のSn粉末量の増加とともに低下する。特にSn粉末の配合量が25重量%を越えると急激に低下することが分かる。これは、Sn粉末の配合量の増加とともに溶射皮膜中でSn粒子が隣接する確率が高まり、相互に融合しやすくなったためであると推察される。   In FIG. 3, the surface pressure fatigue strength (indicated by ■) of the thermal spray coating decreases as the amount of Sn powder in the mixed powder increases. In particular, it can be seen that when the blending amount of Sn powder exceeds 25 wt%, it rapidly decreases. This is presumably because the probability that the Sn particles are adjacent to each other in the thermal spray coating increases as the blending amount of the Sn powder increases, and it becomes easy to fuse together.

一方、よく知られているようにSnは摺動成分であるので、溶射皮膜の焼き付き荷重(◆で示す)は、Sn粉末量の増加とともに高くなる。   On the other hand, since Sn is a sliding component as is well known, the seizure load (indicated by ♦) of the thermal spray coating increases as the amount of Sn powder increases.

以上のように、溶射皮膜の面圧疲労強度と焼き付き強度とはSn粉末の配合量の増加に伴って、相反する挙動を示す。従って、溶射皮膜に要求される特性値に合わせて、Sn粉末の配合量を両方の特性値を満足する範囲で選択することが望ましい。すなわち、Sn粉末の配合量が5重量%未満では、十分な耐焼き付き荷重が得られない。また、Sn粉末の配合量が25重量%を越えると十分な面圧疲労強度を得ることができない。従って、混合粉末全体を100重量%としてSn粉末の配合量は、5〜25重量%とすることが望ましい。Sn粉末のより好ましい配合量は、混合粉末を100重量%として10〜15重量%である。   As described above, the surface pressure fatigue strength and the seizure strength of the sprayed coating exhibit opposite behaviors as the amount of Sn powder increases. Therefore, it is desirable to select the blending amount of Sn powder within the range satisfying both characteristic values in accordance with the characteristic values required for the thermal spray coating. That is, if the amount of Sn powder is less than 5% by weight, a sufficient seizure resistance load cannot be obtained. Moreover, when the compounding quantity of Sn powder exceeds 25 weight%, sufficient surface-pressure fatigue strength cannot be obtained. Therefore, it is desirable that the total amount of the mixed powder is 100% by weight and the amount of Sn powder is 5 to 25% by weight. A more preferable blending amount of the Sn powder is 10 to 15% by weight with respect to 100% by weight of the mixed powder.

混合粉末の粒径は10〜75μmであることが望ましい。混合粉末の粒径が10μm未満では溶融しやすいために安定した溶射が得られない、また、75μmを越えると混合粉末が溶融不足となることがあるので好ましくない。さらに好ましくは45〜75μmである。   The particle size of the mixed powder is desirably 10 to 75 μm. If the particle size of the mixed powder is less than 10 μm, it is easy to melt, so that stable spraying cannot be obtained, and if it exceeds 75 μm, the mixed powder may be insufficiently melted. More preferably, it is 45-75 micrometers.

ところで、以上のようにAlとSnの粒径が同程度の粉末を混合して溶射すると、図4に示すように溶射皮膜1内でSn3が基材4側に偏って溶射されることがある。これは、Alの比重が約2.7に対してSnの比重は約7.3と大きく、両者の比重の差が大きいためである。粉末の粒径が同程度であるAl粉末とSn粉末を混合粉末としてプラズマジェット中に供給すると、Sn粉末の方が粉末供給部の先端から飛び出す初速が遅いために、プラズマジェットの奥深くにまで到達することができない。このためにAl粒子よりも早く基材の表面に到達するので、基材表面側にSn3が偏ることとなる。溶射ガンを基材表面に平行に移動させ、1回の移動(1パス条件)で溶射する場合には、このSnの偏りが顕著に現れる。多パス条件とすればこのSnの偏りを無くすことができるが、この場合には、溶射皮膜を積層することとなり、層間に酸化物が形成されて層間剥離が生じるおそれがあり好ましくない。   By the way, when powders having the same Al and Sn particle sizes are mixed and sprayed as described above, Sn3 may be sprayed in the sprayed coating 1 with a bias toward the substrate 4 as shown in FIG. . This is because the specific gravity of Al is about 2.7 and the specific gravity of Sn is as large as about 7.3, and the difference in specific gravity between the two is large. When Al powder and Sn powder with the same particle size are supplied into the plasma jet as a mixed powder, the initial speed of Sn powder jumping out from the tip of the powder supply section is slower, so it reaches deep into the plasma jet. Can not do it. For this reason, since it reaches the surface of the base material earlier than the Al particles, Sn3 is biased toward the base material surface side. When the spray gun is moved in parallel to the substrate surface and sprayed by one movement (one-pass condition), this Sn bias appears remarkably. If the multi-pass condition is used, this unevenness of Sn can be eliminated. However, in this case, a thermal spray coating is laminated, and an oxide is formed between the layers, which may cause delamination.

そこで、Al粉末に対してSn粉末の粒径を小さくして、Al粉末の粒子の重量とSn粉末の粒子の重量とを同程度にすることで、Al粒子とSn粒子とをほぼ同時に基材表面へ到達するようにする。このように、粒子の重量を同程度とすることにより、図5に示すようにSnを溶射皮膜中に均一に分散することができる。   Therefore, by reducing the particle size of the Sn powder relative to the Al powder and making the weight of the Al powder particles and the weight of the Sn powder particles approximately the same, the Al particles and the Sn particles can be made substantially the same as the base material. To reach the surface. Thus, by setting the weight of the particles to the same level, Sn can be uniformly dispersed in the sprayed coating as shown in FIG.

比重の異なる粉末を混合粉末とする場合には、混合する粉末の粒径の違いによって皮膜中での分散の様子が異なる。図6は、Al粉末とSn粉末について粒径の違いと皮膜中のSnの分散状態との関係を調べたものである。すなわち、Alの平均粒径に対するSnの平均粒径の比(以下、粒径比と称する)を横軸としSnの分散率を縦軸として、粒径比の変化による溶射被膜内でのSnの分散率の変化を示している。ここで、分散率は、溶射皮膜の基材側と表面側とにおけるSnの面積率のバラツキを表すものとする。図7に示すように任意の溶射皮膜断面において溶射皮膜を厚さ方向に2等分して、中間より表面側の皮膜をA、中間より基材側の皮膜をBとする。AにおけるSnの面積率をa、BにおけるSnの面積率をbとして、分散率を(a−b)の絶対値と定義する。つまり、分散率が大きいほど溶射被膜中でのSnの偏りが大きく、分散率が0に近いほど溶射被膜中でSnは均一に分散していることを示す。図6から、Snの分散率は、粒径比が0.7付近までは粒径比の増加につれて減少する。その後増加して粒径比が1,すなわちAL粉末とSn粉末との粒径が一致すると分散率は10%程度となる。   When powders having different specific gravities are used as mixed powders, the manner of dispersion in the film varies depending on the particle size of the powders to be mixed. FIG. 6 shows the relationship between the difference in particle size between Al powder and Sn powder and the dispersion state of Sn in the film. That is, the ratio of the average particle diameter of Sn to the average particle diameter of Al (hereinafter referred to as the particle diameter ratio) as the horizontal axis and the Sn dispersion ratio as the vertical axis, The change in the dispersion rate is shown. Here, the dispersion ratio represents the variation in the area ratio of Sn on the base material side and the surface side of the thermal spray coating. As shown in FIG. 7, the thermal spray coating is divided into two equal parts in the thickness direction in an arbitrary thermal spray coating cross section, and the coating on the surface side from the middle is A, and the coating on the substrate side from the middle is B. The area ratio of Sn in A is a, the area ratio of Sn in B is b, and the dispersion ratio is defined as the absolute value of (ab). That is, the larger the dispersion rate, the larger the bias of Sn in the sprayed coating, and the closer the dispersion rate is to 0, the more uniformly the Sn is dispersed in the sprayed coating. From FIG. 6, the dispersion rate of Sn decreases as the particle size ratio increases until the particle size ratio is around 0.7. Thereafter, when the particle size ratio increases to 1, that is, when the particle sizes of the AL powder and the Sn powder coincide, the dispersion ratio becomes about 10%.

溶射皮膜の安定した面圧疲労強度を得るためには、この分散率は0.5%以下であることが望ましい。つまり、Al粉末の粒径に対するSn粉末の粒径は、0.5〜0.8であることが望ましい。   In order to obtain a stable surface pressure fatigue strength of the sprayed coating, the dispersion ratio is desirably 0.5% or less. That is, the particle size of the Sn powder with respect to the particle size of the Al powder is desirably 0.5 to 0.8.

以下、具体例により本第1発明の溶射皮膜についてさらに詳しく説明する。   Hereinafter, the thermal spray coating of the first invention will be described in more detail with reference to specific examples.

図8は、溶射粉末の種類による溶射皮膜の面圧疲労強度を比較した具体例である。横軸は粉末の種類であり縦軸はその粉末を溶射して形成された溶射皮膜の面圧疲労強度である。Aは平均粒径が60μmのAl粉末に平均粒径が25μmのSn粉末を10重量%配合した混合粉末である。Bは平均粒径が60μmのAl粉末に、平均粒径がAl粉末と同程度の60μmのSn粉末を10重量%配合した混合粉末である。また、CはAlにSnを10重量%配合した平均粒径が60μmのAl−Sn合金粉末である。面圧疲労強度は、合金粉末を溶射したCよりも、混合粉末で溶射したA及びBの方が高い値が得られた。さらに、混合粉末溶射においても、Al粉末の粒径よりもSn粉末の粒径が小さい混合粉末を用いたAの方が、同程度の粒径である混合粉末を用いたBよりもさらに高い面圧疲労強度を示すことが分かる。   FIG. 8 is a specific example in which the surface pressure fatigue strength of the thermal spray coatings according to the type of thermal spray powder is compared. The horizontal axis represents the type of powder, and the vertical axis represents the surface pressure fatigue strength of the thermal spray coating formed by spraying the powder. A is a mixed powder in which 10% by weight of Sn powder having an average particle diameter of 25 μm is blended with Al powder having an average particle diameter of 60 μm. B is a mixed powder in which an Al powder having an average particle size of 60 μm is blended with 10 wt% of an Sn powder having an average particle size of 60 μm, which is similar to that of the Al powder. C is an Al—Sn alloy powder having an average particle diameter of 60 μm in which 10% by weight of Sn is mixed with Al. The surface pressure fatigue strength of A and B sprayed with the mixed powder was higher than that of C sprayed with the alloy powder. Further, in the mixed powder spraying, A using the mixed powder having a smaller particle diameter of the Sn powder than the Al powder has a higher surface than B using the mixed powder having the same particle diameter. It can be seen that the pressure fatigue strength is shown.

図9は前記の粉末Bと粉末Cを用いて形成した各溶射皮膜について、それぞれ20箇所のビッカース硬さ(HV:0.2)を常温で測定した結果である。平均硬さは混合粉末であるBが合金粉末であるCに比べてやや高い程度であるが、図中太線で示す硬さのバラツキは、CではHV30〜HV80と著しく大きいのに対して、BではHV50〜HV70と小さいことが分かる。このことから、混合粉末を溶射することによって溶射皮膜内にSnが均一に分散していることが推察される。つまり、混合粉末Bを用いた溶射皮膜では皮膜硬さのバラツキを抑えることができるので、結果として溶射皮膜の摩耗量などのバラツキを低減することができる。   FIG. 9 shows the results of measuring 20 Vickers hardnesses (HV: 0.2) at room temperature for each thermal spray coating formed using the powder B and the powder C, respectively. The average hardness is slightly higher than B, which is a mixed powder, compared to C, which is an alloy powder. However, the hardness variation shown by the bold line in the figure is extremely large at HV30 to HV80, whereas B Then, it turns out that it is small with HV50-HV70. From this, it is inferred that Sn is uniformly dispersed in the sprayed coating by spraying the mixed powder. That is, the sprayed coating using the mixed powder B can suppress variations in coating hardness, and as a result, variations in the amount of wear of the sprayed coating can be reduced.

図10は、溶射皮膜の加熱状態での高温硬さの変化を示している。混合粉末Bによる溶射皮膜(◆)と合金粉末Cによる溶射皮膜(◇)との結果を併記した。いずれの場合も温度が高くなるにつれて皮膜の硬さは低下する。しかし、低下の程度は、混合粉末Bの方が合金粉末Cに比べて小さい。すなわち、溶射皮膜中にSnを分散することにより高温硬さの低下を抑制でき、高温状態での耐摩耗性の低下を防止することができる。Snは高温硬さが低下しやすいが、均一に分散させることで高温硬さの低下を抑制できることが分かる。   FIG. 10 shows the change in high temperature hardness in the heated state of the thermal spray coating. The results of the thermal spray coating (♦) with the mixed powder B and the thermal spray coating (◇) with the alloy powder C are also shown. In either case, the hardness of the coating decreases as the temperature increases. However, the degree of decrease is smaller in the mixed powder B than in the alloy powder C. That is, by dispersing Sn in the sprayed coating, it is possible to suppress a decrease in high-temperature hardness and to prevent a decrease in wear resistance in a high-temperature state. It can be seen that Sn can be easily reduced in high-temperature hardness, but can be suppressed by uniformly dispersing Sn.

本第2発明の溶射皮膜は、金属粒子を基材表面に溶射して形成した溶射皮膜であって、前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とするものである。   The thermal spray coating of the second invention is a thermal spray coating formed by spraying metal particles on the surface of the substrate, and the metal particles contain 15 to 40% by weight of Sn, with the balance being copper and inevitable. It is characterized in that it is a powder composed of mechanical impurities.

図14にCu合金中のSn量による溶射皮膜の酸化量(重量百分率で示す酸素濃度)の変化を示す。Snの含有量が増加するのに伴って酸化量は減少することが分かる。酸化量はSnの含有量が35%付近で約2.8%と最小となり、その後わずかに増加してSnの含有量が50%では約3.2%となる。従来のSnの含有量が5%であるCu合金粉末における酸化量は約5.8%であるので、Sn含有量の増加により溶射皮膜の酸化が著しく抑制されることが分かる。これは、Cu中にSnが固溶した結果、CuとSnとが規則格子的な原子配列を形成したために、酸素がこの規則格子の内部に拡散しにくくなったためと考えられる。   FIG. 14 shows the change in the oxidation amount (oxygen concentration expressed in weight percentage) of the sprayed coating depending on the amount of Sn in the Cu alloy. It can be seen that the amount of oxidation decreases as the Sn content increases. The oxidation amount reaches a minimum of about 2.8% when the Sn content is around 35%, and then increases slightly to about 3.2% when the Sn content is 50%. Since the oxidation amount in the Cu alloy powder having a conventional Sn content of 5% is about 5.8%, it can be seen that the increase in the Sn content significantly suppresses the oxidation of the sprayed coating. This is presumably because, as a result of Sn being dissolved in Cu, Cu and Sn formed an ordered atomic arrangement of oxygen, so that oxygen became difficult to diffuse into the ordered lattice.

以上のように溶射皮膜の酸化を抑制できることで、溶射皮膜の特性に対して以下のような従来にない有用な作用を及ぼすことができる。
1)溶射皮膜の硬化を抑制することができる。
Since the oxidation of the thermal spray coating can be suppressed as described above, the following useful effects can be exerted on the characteristics of the thermal spray coating.
1) Curing of the sprayed coating can be suppressed.

図15には、Snの含有量による皮膜硬さの変化を示す。皮膜硬さはSn量の増加に伴って低下してSn含有量が15%付近でHV120となり、25%付近では最も低いHV100程度となる。さらにSn含有量が増加すると皮膜硬さは徐々に増加して、Sn含有量が40%付近で再びHV120となりさらに硬さを増す。すなわち、Sn含有量を増加させることにより溶射皮膜の酸化を抑制できるので、皮膜硬化を抑制できることが分かる。例えば、相手材とのなじみ性を確保するためにHV120以下の硬さの皮膜を形成する場合には、Cu合金中のSn量を15〜40%とすればよいことが分かる。
2)溶射皮膜の伸び率を向上させることができる。
FIG. 15 shows changes in film hardness depending on the Sn content. The film hardness decreases with an increase in Sn content, and becomes HV120 when the Sn content is around 15%, and becomes the lowest HV100 around 25%. When the Sn content further increases, the film hardness gradually increases, and when the Sn content is around 40%, it becomes HV120 again and the hardness is further increased. That is, it can be understood that the coating can be suppressed since the oxidation of the sprayed coating can be suppressed by increasing the Sn content. For example, when forming a film having a hardness of HV120 or less in order to ensure compatibility with the counterpart material, it is understood that the Sn content in the Cu alloy may be 15 to 40%.
2) The elongation rate of the sprayed coating can be improved.

図16にSnの含有量と皮膜の伸び率との関係を示す。ここで伸び率は、溶射皮膜の引張り応力に対する長さの増加率を示す。すなわち、伸び率は溶射皮膜の変形限界量を示しており高い方が好ましい値である。図16から分かるように、Sn含有量の増加に伴って、伸び率は向上しSn含有量が30%付近で約0.35%の最大値となる。さらにSn含有量を増加させると伸び率は僅かに低下する。つまり、Sn含有量の増加に伴い皮膜の酸化が抑制されるので、皮膜の伸び率を向上させることができるわけである。例えば、軸受部材がコンロッドの場合には、稼働中のコンロッドのひずみに対応するために必要な溶射皮膜の伸び率は0.2%以上であり、図16では目標値として点線で示している。Cu−5%Snの従来合金では十分な伸び率が得られないが、Sn量を増加させることで皮膜の伸び率を向上させやすいことが分かる。
3)面圧疲労強度の高い溶射皮膜を形成することができる。
FIG. 16 shows the relationship between the Sn content and the elongation percentage of the film. Here, the elongation rate indicates the rate of increase in length with respect to the tensile stress of the thermal spray coating. That is, the elongation rate indicates the deformation limit amount of the thermal spray coating, and a higher value is a preferable value. As can be seen from FIG. 16, as the Sn content increases, the elongation increases and reaches a maximum value of about 0.35% when the Sn content is around 30%. Further, when the Sn content is increased, the elongation rate slightly decreases. That is, since the oxidation of the film is suppressed as the Sn content increases, the elongation rate of the film can be improved. For example, when the bearing member is a connecting rod, the elongation ratio of the sprayed coating necessary to cope with the strain of the connecting rod during operation is 0.2% or more, and the target value is indicated by a dotted line in FIG. It can be seen that a conventional alloy of Cu-5% Sn cannot obtain a sufficient elongation, but it is easy to improve the elongation of the film by increasing the amount of Sn.
3) A thermal spray coating with high surface pressure fatigue strength can be formed.

以上のように酸化しにくい材料にすることで、従来より粉末の溶融熱を増加させても溶射皮膜は硬化しにくい。そこで、粉末の溶融熱を高めることで、粉末粒子同士の密着性を高め、溶射皮膜の面圧疲労強度を向上させることができる。   By using a material that does not easily oxidize as described above, the thermal spray coating is hard to be cured even if the heat of fusion of the powder is increased. Thus, by increasing the heat of fusion of the powder, the adhesion between the powder particles can be increased, and the surface pressure fatigue strength of the thermal spray coating can be improved.

図17に、溶射粉末としてCu−25%Sn粉末を用いた溶射皮膜の粉末の溶融熱による面圧疲労強度の変化を示した。横軸に溶融熱としてプラズマを発生させるための電力(kW)をとった。図17で、溶融熱を増加させることで面圧疲労強度が向上することが分かる。例えば、従来のCu−5Sn粉末の溶射では、酸化を抑えるために溶融熱は30kWであったが、Snの含有量を増加したCu−25%Sn粉末を用いれば溶融熱を40kW以上としても酸化の心配はない。つまり、Sn含有量を変化させて従来より高温で溶射することで、例えば、硬さをHV120以下に維持しながら、面圧疲労強度を目標値である80(MPa)以上にすることができる。従って、溶融熱は30〜50kWとすることが望ましい。
4)基材との密着強度の高い溶射皮膜を形成することができる。
FIG. 17 shows the change in the surface fatigue strength due to the heat of fusion of the powder of the thermal spray coating using Cu-25% Sn powder as the thermal spray powder. The horizontal axis represents electric power (kW) for generating plasma as heat of fusion. It can be seen from FIG. 17 that the contact fatigue strength is improved by increasing the heat of fusion. For example, in the conventional thermal spraying of Cu-5Sn powder, the heat of fusion was 30 kW in order to suppress oxidation, but if Cu-25% Sn powder with an increased Sn content is used, the heat of fusion will be oxidized even if the heat of fusion is 40 kW or higher There is no worry. That is, by changing the Sn content and performing thermal spraying at a higher temperature than before, for example, the surface fatigue strength can be set to 80 (MPa) or more which is a target value while maintaining the hardness at HV120 or less. Therefore, it is desirable that the heat of fusion be 30-50 kW.
4) A sprayed coating with high adhesion strength to the substrate can be formed.

一般的に基材を予熱すると、溶融粒子が基材表面に衝突した後も液体状態を維持する時間が長くなるため基材との密着強度が向上する。しかし、従来合金では溶射皮膜が酸化しやすいので基材の予熱温度を高くすることができなかった。本発明では、溶射粉末を酸化しにくい材料にすることで、従来より基材の予熱温度を高温とすることができる。つまり、皮膜硬さを低く維持しながら皮膜密着強度や面圧疲労強度を向上させることができるわけである。   Generally, when the base material is preheated, the time for maintaining the liquid state after the molten particles collide with the surface of the base material becomes long, so that the adhesion strength with the base material is improved. However, since the thermal spray coating is easily oxidized in the conventional alloy, the preheating temperature of the base material cannot be increased. In this invention, the preheating temperature of a base material can be conventionally made high temperature by making a thermal spray powder into the material which is hard to oxidize. That is, it is possible to improve the film adhesion strength and the surface pressure fatigue strength while maintaining the film hardness low.

Cu−25%Sn合金粉末を溶射して形成した溶射皮膜について、基材予熱温度と密着強度との関係を図18に示した。基材予熱温度の上昇に伴って密着強度は高くなる。Cu−5%Snの従来合金粉末では、基材予熱温度を100℃以上とすることは困難であったが、Sn含有量を増加させることで、従来より基材の予熱温度を高温にできることが分かる。   FIG. 18 shows the relationship between the substrate preheating temperature and the adhesion strength of the thermal spray coating formed by thermal spraying of Cu-25% Sn alloy powder. As the substrate preheating temperature increases, the adhesion strength increases. In the conventional alloy powder of Cu-5% Sn, it was difficult to set the base material preheating temperature to 100 ° C. or higher. However, by increasing the Sn content, the base material preheating temperature can be made higher than before. I understand.

図19は、Cu−25%Sn合金粉末を溶射して形成した溶射皮膜について、基材予熱温度と面圧疲労強度との関係を示したものである。前記の密着強度と同様に基材予熱温度の上昇に伴って面圧疲労強度は向上する。Cu−5%Snの従来合金粉末では、基材予熱温度を100℃以上とすることは困難であったため、目標値ぎりぎりの面圧疲労強度しか得られなかったが、Sn含有量を増加させることで基材予熱温度を高めることができるので、さらに高い面圧疲労強度を得ることができる。   FIG. 19 shows the relationship between the substrate preheating temperature and the surface pressure fatigue strength for a thermal spray coating formed by thermal spraying Cu-25% Sn alloy powder. Similar to the adhesion strength described above, the surface fatigue strength increases as the substrate preheating temperature increases. In the conventional alloy powder of Cu-5% Sn, it was difficult to set the base material preheating temperature to 100 ° C. or higher, so that only the surface pressure fatigue strength of the target value was obtained, but the Sn content should be increased. Since the substrate preheating temperature can be increased, higher surface pressure fatigue strength can be obtained.

つまり、皮膜硬さを低く維持しながら皮膜密着強度や面圧疲労強度を向上させるために、基材の予熱温度は200〜300℃であることが望ましい。。
5)基材温度のバラツキによる溶射皮膜の硬さバラツキを抑制することができる。
That is, the preheating temperature of the substrate is desirably 200 to 300 ° C. in order to improve the film adhesion strength and the surface pressure fatigue strength while maintaining the film hardness low. .
5) Variation in hardness of the sprayed coating due to variation in substrate temperature can be suppressed.

図20に基材予熱温度と溶射皮膜硬さとの関係を示す。溶射粉末としてCu−25%Sn合金を用いた場合を△、従来のCu−5%Sn合金を用いた場合を■で示し、さらに参考として銅粉末を用いた場合を◆で示した。いずれの場合も基材予熱温度の上昇とともに皮膜硬さは増加する。しかし、Sn含有量の多い方が硬さは低いことが分かる。特にCu−25%Sn合金粉末の場合には、基材予熱温度にほぼ比例して硬さは高くなるが、その割合は小さく、例えば、基材予熱温度が100℃から300℃に200℃上昇しても、硬さは約HV30程度しか硬くならない。従って、基材予熱温度がばらついても溶射皮膜の硬さは大きくばらつくことはない。   FIG. 20 shows the relationship between the substrate preheating temperature and the thermal spray coating hardness. The case of using a Cu-25% Sn alloy as the spray powder is indicated by Δ, the case of using a conventional Cu-5% Sn alloy is indicated by ▪, and the case of using copper powder as a reference is indicated by ◆. In either case, the film hardness increases as the substrate preheating temperature increases. However, it can be seen that the higher the Sn content, the lower the hardness. In particular, in the case of Cu-25% Sn alloy powder, the hardness increases in proportion to the base material preheating temperature, but the ratio is small. For example, the base material preheating temperature increases from 100 ° C to 300 ° C by 200 ° C. Even so, the hardness is only about HV30. Therefore, even if the base material preheating temperature varies, the hardness of the sprayed coating does not vary greatly.

すなわち、Sn量を増加させることで酸化を抑制できるので、基材の予熱による皮膜硬さのバラツキを抑制することができる。
6)溶射皮膜の耐焼き付き性を向上させることができる。
That is, since the oxidation can be suppressed by increasing the amount of Sn, variations in film hardness due to preheating of the substrate can be suppressed.
6) The seizure resistance of the sprayed coating can be improved.

従来のようにCu−Sn合金粉末を焼結して形成した軸受メタルでは、図21に■で示すように、合金粉末中のSn含有量の増加に伴って軸受メタルの硬度は急激に増加する。これは、合金粉末を焼結することにより、軸受メタル中にCu31Sn8,Cu41Sn11といったCuSn金属間化合物が部分的に形成されるためと考えられる。このため、軸受メタル用の合金粉末材にあってはSnの含有量を増加させることができなかった。 In the conventional bearing metal formed by sintering Cu—Sn alloy powder, the hardness of the bearing metal increases rapidly as the Sn content in the alloy powder increases, as shown by ■ in FIG. . This is presumably because CuSn intermetallic compounds such as Cu 31 Sn 8 and Cu 41 Sn 11 are partially formed in the bearing metal by sintering the alloy powder. For this reason, in the alloy powder material for bearing metal, the Sn content could not be increased.

ところが、溶射皮膜は急冷凝固によって形成されるために、同一の合金組成であってもCuSn金属間化合物を形成しにくく、Sn量を増加させても皮膜硬化しにくいと考えられる。そのため、図22に示すように摺動成分であるSnを増加させて耐焼き付き性を向上させることができる。
7)溶射皮膜を低エネルギで溶射成形することができる。
However, since the thermal spray coating is formed by rapid solidification, it is considered that CuSn intermetallic compounds are hardly formed even with the same alloy composition, and the coating is hard to be cured even if the Sn amount is increased. Therefore, as shown in FIG. 22, Sn, which is a sliding component, can be increased to improve the seizure resistance.
7) The thermal spray coating can be thermal spray molded with low energy.

Cu−Sn合金ではSnの含有量を増加させることにより、大幅に融点を下げることができる。例えば、銅の融点は約1100℃であるが、Cu−25%Sn合金では約800℃とその融点は極めて低くなっている。そのため、Snの含有量を増加させるほど、溶射粉末の溶融に必要なエネルギを小さくすることができる。合金粉末の融点を低くできると、溶射粉末の供給量を大きくしても溶射皮膜内に未溶融粒子ができにくく、従って、溶射皮膜を形成する溶射積層回数(溶射ガンのパス回数)を低減することができる。溶射積層回数を少なくすることで、形成された積層間の酸化を抑制し、溶射皮膜全体の酸化量を低減することができる。   In the Cu—Sn alloy, the melting point can be significantly lowered by increasing the Sn content. For example, the melting point of copper is about 1100 ° C., but the melting point of Cu—25% Sn alloy is about 800 ° C., which is extremely low. Therefore, the energy required for melting the thermal spray powder can be reduced as the Sn content is increased. If the melting point of the alloy powder can be lowered, it is difficult to form unmelted particles in the thermal spray coating even if the supply amount of the thermal spray powder is increased. Therefore, the number of times of thermal spray lamination (the number of times of spray gun passes) for forming the thermal spray coating is reduced. be able to. By reducing the number of times of thermal spray lamination, oxidation between the formed multilayers can be suppressed, and the oxidation amount of the entire thermal spray coating can be reduced.

図23は、Cu−25%Sn粉末を溶射して形成した溶射皮膜の溶射積層回数と皮膜内の酸化量との関係を示したものである。形成された皮膜厚さは400μmで一定とした。一回毎の溶射量を増加させて積層回数を減らすことによって溶射皮膜内の酸化量が低減していることが分かる。   FIG. 23 shows the relationship between the number of sprayed layers of the sprayed coating formed by spraying Cu-25% Sn powder and the amount of oxidation in the coating. The formed film thickness was constant at 400 μm. It can be seen that the amount of oxidation in the sprayed coating is reduced by increasing the spraying amount per time and decreasing the number of laminations.

従って、本第2発明の溶射皮膜の積層回数はできるだけ少ないことが望ましく、1回で形成することが好ましい。   Therefore, it is desirable that the thermal spray coating of the second invention is laminated as few times as possible.

以上のように、本第2発明の溶射皮膜は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末を基材表面に溶射して形成した溶射皮膜である。すでに説明したように、Sn含有量が15重量%未満、あるいはSn含有量が40重量%を越えると溶射皮膜中の酸化量が大きくなり、溶射皮膜の硬度が高くなって適当ではない。より好ましくはCu中のSnの含有量は20〜35重量%である。   As described above, the thermal spray coating according to the second aspect of the present invention is a thermal spray coating formed by spraying a powder composed of 15 to 40% Sn by weight and the balance of copper and inevitable impurities on the surface of the substrate. is there. As already explained, if the Sn content is less than 15% by weight, or if the Sn content exceeds 40% by weight, the amount of oxidation in the sprayed coating increases and the hardness of the sprayed coating increases, which is not suitable. More preferably, the content of Sn in Cu is 20 to 35% by weight.

また、Cu−Sn合金粉末の粒径は10〜45μmであることが望ましい。合金粉末の粒径が10μm未満では溶融しやすいために安定した溶射が得られない、また、45μmを越えると溶融不足となることがあるので好ましくない。さらに好ましくは20〜35μmである。   The particle size of the Cu—Sn alloy powder is desirably 10 to 45 μm. If the particle size of the alloy powder is less than 10 μm, it is easy to melt, so that stable spraying cannot be obtained, and if it exceeds 45 μm, melting may be insufficient. More preferably, it is 20-35 micrometers.

本発明の溶射皮膜は酸化量が4%未満であることが望ましい。酸化量が4%を越えると皮膜が硬化して好ましくない。より好ましくは1%未満である。   The thermal spray coating of the present invention desirably has an oxidation amount of less than 4%. If the oxidation amount exceeds 4%, the film is hardened, which is not preferable. More preferably, it is less than 1%.

本発明の第3発明は、第1発明の溶射皮膜を形成する溶射皮膜の形成方法に関する発明である。   3rd invention of this invention is invention regarding the formation method of the sprayed coating which forms the sprayed coating of 1st invention.

すなわち、本発明の溶射皮膜の形成方法は、重量百分率で5〜25%のSnと95〜75重量%のAl粉末とを混合した混合粉末を基材表面に溶射して溶射皮膜を形成することを特徴とするものである。ここで、本実施の形態における溶射皮膜の形成方法は特に限定されるものでなく、通常の方法で行うことができる。一例を以下に説明する。   That is, the method for forming a thermal spray coating of the present invention is to form a thermal spray coating by spraying a mixed powder obtained by mixing 5 to 25% Sn and 95 to 75% by weight Al powder on the surface of a substrate. It is characterized by. Here, the formation method of the sprayed coating in this Embodiment is not specifically limited, It can carry out by a normal method. An example is described below.

まず、基材表面にショットブラストを施し、表面をRz=40〜60μmとする。ショットブラストにより粗面化した表面に溶射皮膜と基材との密着性を高めるために、メッキ、スパッタリング、溶射などの方法により中間層を形成する。中間層の厚さは100〜150μmであることが望ましい。次に、この中間層の上に、溶射粉末を溶射して350〜400μmの溶射皮膜を形成する。さらに切削加工などを施して所望の完成皮膜となす。   First, the surface of the substrate is shot blasted so that the surface has Rz = 40 to 60 μm. In order to improve the adhesion between the thermal spray coating and the substrate on the surface roughened by shot blasting, an intermediate layer is formed by a method such as plating, sputtering or thermal spraying. The thickness of the intermediate layer is preferably 100 to 150 μm. Next, a thermal spray coating of 350 to 400 μm is formed on the intermediate layer by spraying the thermal spray powder. Further, a desired finished film is formed by cutting or the like.

ここで、基材は、鋼、アルミニウムなど各種の材料を限定することなく採用することができるが、鋼が好ましい。また、中間層材料は特に限定するものではなく、銅、ニッケル、アルミニウム、銅ニッケル系合金、ニッケルアルミ系合金、銅アルミ系合金、ニッケル自溶合金及びコバルト自溶合金などを適宜に使用することができる。   Here, as the base material, various materials such as steel and aluminum can be adopted without limitation, but steel is preferable. The intermediate layer material is not particularly limited, and copper, nickel, aluminum, copper-nickel alloy, nickel-aluminum alloy, copper-aluminum alloy, nickel self-fluxing alloy, cobalt self-fluxing alloy, etc. should be used as appropriate. Can do.

溶射方法としてはプラズマ溶射法が望ましい。図11に、その一例を模式的に示した。溶射ガン11から噴出されるプラズマジェット12によって、粉末供給ホース13からこのプラズマジェット12内へ供給された粉末14が、溶融されるとともにワーク(例えば軸受部材など)15の内周面へ溶射される。溶射ガン11は、ワーク15の軸心線に対して角度αで傾斜して保持されており、溶射距離dを保って軸心線に平行に上下(矢印Y)しながら、軸心周りに回転しているワーク15の内周面へ溶射皮膜を形成することができる。   A plasma spraying method is desirable as the spraying method. FIG. 11 schematically shows an example thereof. The powder 14 supplied from the powder supply hose 13 into the plasma jet 12 is melted and sprayed onto the inner peripheral surface of the workpiece (for example, a bearing member) 15 by the plasma jet 12 ejected from the spray gun 11. . The spray gun 11 is held at an angle α with respect to the axis of the work 15 and rotates around the axis while maintaining the spray distance d and moving up and down parallel to the axis (arrow Y). A sprayed coating can be formed on the inner peripheral surface of the workpiece 15 that is being worked.

なお、本発明の第1発明であるAl粉末とSn粉末とを混合した混合粉末の好適な溶射条件の一例を表1に示す。   Table 1 shows an example of suitable thermal spraying conditions for the mixed powder obtained by mixing the Al powder and the Sn powder according to the first invention of the present invention.

Figure 2005076075
Figure 2005076075

本発明の第4発明は、第2発明の溶射皮膜を形成する溶射皮膜の形成方法に関する発明である。   4th invention of this invention is invention regarding the formation method of the sprayed coating which forms the sprayed coating of 2nd invention.

すなわち、本発明の溶射皮膜の形成方法は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末を基材表面に溶射して溶射皮膜を形成することを特徴とする。一例を以下に説明する。   That is, the method for forming a sprayed coating according to the present invention is to form a sprayed coating by spraying powder containing Sn and 40% by weight on the surface of the base material containing 15 to 40% by weight of Sn. Features. An example is described below.

まず、基材表面にショットブラストを施し、表面をRz=40〜60μmとする。ショットブラストにより粗面化した表面に溶射皮膜と基材との密着性を高めるために、メッキ、スパッタリング、溶射などの方法により中間層を形成する。中間層の厚さは100〜150μmであることが望ましい。次に、この中間層の上に、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末を溶射して350〜400μmの溶射皮膜を形成する。さらに溶射皮膜には切削加工などを施して所望の完成皮膜となす。   First, the surface of the substrate is shot blasted so that the surface has Rz = 40 to 60 μm. In order to improve the adhesion between the thermal spray coating and the substrate on the surface roughened by shot blasting, an intermediate layer is formed by a method such as plating, sputtering or thermal spraying. The thickness of the intermediate layer is preferably 100 to 150 μm. Next, on this intermediate layer, a powder containing 15 to 40% by weight of Sn, with the balance being made of copper and inevitable impurities is sprayed to form a sprayed coating of 350 to 400 μm. Further, the sprayed coating is subjected to cutting or the like to obtain a desired finished coating.

ここで、基材は、鋼、アルミニウムなど各種の材料を限定することなく採用することができるが、鋼が好ましい。また、中間層の材料は特に限定するものではなく、銅、ニッケル、アルミニウム、銅ニッケル系合金、ニッケルアルミ系合金、銅アルミ系合金、ニッケル自溶合金及びコバルト自溶合金などを適宜に使用することができる。   Here, as the base material, various materials such as steel and aluminum can be adopted without limitation, but steel is preferable. The material of the intermediate layer is not particularly limited, and copper, nickel, aluminum, copper nickel alloy, nickel aluminum alloy, copper aluminum alloy, nickel self-fluxing alloy, cobalt self-fluxing alloy, etc. are appropriately used. be able to.

溶射方法としてはプラズマ溶射法が望ましい。図11に、その一例を模式的に示した。溶射ガン11から噴出されるプラズマジェット12によって、粉末供給ホース13からこのプラズマジェット12内へ供給された粉末14が、溶融されるとともにワーク(例えば軸受部材など)15の内周面へ溶射される。溶射ガン11は、ワーク15の軸心線に対して角度αで傾斜して保持されており、溶射距離dを保って軸心線に平行に上下(矢印Y)しながら、軸心周りに回転しているワーク15の内周面へ溶射皮膜を形成することができる。   A plasma spraying method is desirable as the spraying method. FIG. 11 schematically shows an example thereof. The powder 14 supplied from the powder supply hose 13 into the plasma jet 12 is melted and sprayed onto the inner peripheral surface of the workpiece (for example, a bearing member) 15 by the plasma jet 12 ejected from the spray gun 11. . The spray gun 11 is held at an angle α with respect to the axis of the work 15 and rotates around the axis while maintaining the spray distance d and moving up and down parallel to the axis (arrow Y). A sprayed coating can be formed on the inner peripheral surface of the workpiece 15 that is being worked.

なお、本発明の第2発明であるCu−Sn合金粉末の好適な溶射条件の一例を表2に示す。   Table 2 shows an example of suitable thermal spraying conditions for the Cu—Sn alloy powder according to the second aspect of the present invention.

Figure 2005076075
Figure 2005076075

本発明の溶射皮膜の形成方法においては、基材を200〜300℃に予熱して溶射皮膜を形成することが望ましい。基材の予熱温度を高めることで、溶射皮膜の面圧疲労強度を向上させるとともに基材との密着強度を向上することができる。   In the thermal spray coating forming method of the present invention, it is desirable to preheat the substrate to 200 to 300 ° C. to form the thermal spray coating. By increasing the preheating temperature of the base material, it is possible to improve the contact pressure fatigue strength of the thermal spray coating and improve the adhesion strength with the base material.

また、本発明の溶射皮膜の形成方法においては、溶射粉末を溶融する溶融熱が30〜50kWであることが望ましい。溶融熱を高くすることにより溶射皮膜の面圧疲労強度を向上させることができる。   Moreover, in the formation method of the thermal spray coating of this invention, it is desirable for the heat of fusion which fuse | melts a thermal spraying powder to be 30-50 kW. By increasing the heat of fusion, the surface pressure fatigue strength of the thermal spray coating can be improved.

さらに、本発明の溶射皮膜の形成方法においては、溶射皮膜の積層回数は1回である好ましい。溶射皮膜の積層回数を1回とすることで、皮膜の酸化を低減し良好な溶射皮膜を得ることができる。   Furthermore, in the method for forming a thermal spray coating of the present invention, the number of times the thermal spray coating is laminated is preferably one. By setting the number of times of the thermal spray coating to one, oxidation of the coating can be reduced and a good thermal spray coating can be obtained.

本発明の第5発明は、軸受部材に関する発明である。すなわち、第5発明の軸受部材は、金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とする。このような混合粉末を溶射して溶射皮膜を形成した軸受部材は、高い面圧疲労強度と良好な焼き付き荷重とを有するので、自動車内燃機関のコンロッドとして好適に採用することができる。   The fifth invention of the present invention relates to a bearing member. That is, the bearing member of the fifth invention is a bearing member in which metal particles are sprayed on the surface of the base material to form a sprayed coating, and the metal particles are 5 to 25% Sn powder and 95 to 75 by weight percentage. It is a mixed powder obtained by mixing a weight percent of Al powder. A bearing member formed by spraying such a mixed powder to form a spray coating has high surface pressure fatigue strength and good seizure load, and therefore can be suitably employed as a connecting rod for an automobile internal combustion engine.

本発明の第6発明は、軸受部材に関する発明である。すなわち、第6発明の軸受部材は、金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とする。このような混合粉末を溶射して溶射皮膜を形成した軸受部材は、高い面圧疲労強度と良好な焼き付き荷重とを有するので、自動車内燃機関のコンロッドとして好適に使用することができる。   The sixth aspect of the present invention relates to a bearing member. That is, the bearing member of the sixth invention is a bearing member in which metal particles are sprayed on the surface of the base material to form a sprayed coating, and the metal particles contain 15 to 40% Sn by weight, and the balance Is a powder composed of copper and inevitable impurities. A bearing member formed by spraying such a mixed powder to form a thermal spray coating has high surface pressure fatigue strength and good seizure load, and therefore can be suitably used as a connecting rod for an automobile internal combustion engine.

Al粉末とSn粉末との混合粉末を溶射して形成した溶射皮膜の断面模式図である。It is a cross-sectional schematic diagram of the sprayed coating formed by spraying the mixed powder of Al powder and Sn powder. Al粉末とSn粉末との混合粉末を溶射して形成した溶射皮膜のEPMAによるマッピング像である。aはAL,bはSnのマッピング像である。It is a mapping image by EPMA of the sprayed coating formed by spraying the mixed powder of Al powder and Sn powder. a is a mapping image of AL and b is a mapping image of Sn. Al粉末とSn粉末との混合粉末を溶射して形成した溶射皮膜のSn粉末量による面圧疲労強度と焼き付き荷重との関係を示す図である。It is a figure which shows the relationship between the surface pressure fatigue strength by the amount of Sn powder of the thermal spraying coating formed by spraying the mixed powder of Al powder and Sn powder, and a seizure load. 溶射皮膜中のSnの偏りを説明する説明図である。It is explanatory drawing explaining the bias | inclination of Sn in a thermal spray coating. 溶射皮膜中にSnが均一に分散した状態を説明する説明図である。It is explanatory drawing explaining the state which Sn disperse | distributed uniformly in the sprayed coating. 混合粉末の粒径比と分散率との関係を示す図である。It is a figure which shows the relationship between the particle size ratio of a mixed powder, and a dispersion rate. 分散率の定義を説明する説明図である。It is explanatory drawing explaining the definition of a dispersion rate. 各粉末によ形成した溶射皮膜の面圧疲労強度を比較する比較図である。It is a comparison figure which compares the surface pressure fatigue strength of the sprayed coating formed with each powder. 粉末による溶射皮膜の硬さとバラツキを示す図である。It is a figure which shows the hardness and dispersion | variation of the thermal spray coating by powder. 溶射皮膜の高温硬さの変化を示す図である。It is a figure which shows the change of the high temperature hardness of a thermal spray coating. プラズマ溶射法の一例を示す模式図である。It is a schematic diagram which shows an example of the plasma spraying method. Al−Sn合金粉末を溶射して形成した溶射皮膜の断面模式図である。It is a cross-sectional schematic diagram of the sprayed coating formed by spraying Al-Sn alloy powder. Al−Sn合金粉末を溶射して形成した溶射皮膜のEPMAによるマッピング像である。aはAL,bはSnのマッピング像である。It is a mapping image by the EPMA of the sprayed coating formed by spraying Al-Sn alloy powder. a is a mapping image of AL and b is a mapping image of Sn. Cu−Sn合金粉末のSn含有量と酸化量との関係を示す図である。It is a figure which shows the relationship between Sn content and oxidation amount of Cu-Sn alloy powder. Cu−Sn合金粉末のSn含有量と溶射皮膜の硬さとの関係を示す図である。It is a figure which shows the relationship between Sn content of Cu-Sn alloy powder, and the hardness of a sprayed coating. Cu−Sn合金粉末のSn含有量と溶射皮膜の伸び率との関係を示す図である。It is a figure which shows the relationship between Sn content of a Cu-Sn alloy powder, and the elongation rate of a sprayed coating. Cu−25%Sn合金粉末の溶融熱と面圧疲労強度との関係を示す図である。It is a figure which shows the relationship between the fusion heat of Cu-25% Sn alloy powder, and surface pressure fatigue strength. Cu−25%Sn合金粉末の基材予熱温度と密着強度との関係を示す図である。It is a figure which shows the relationship between the base-material preheating temperature of Cu-25% Sn alloy powder, and adhesion strength. Cu−25%Sn合金粉末の基材予熱温度と面圧疲労強度との関係を示す図である。It is a figure which shows the relationship between the base-material preheating temperature of Cu-25% Sn alloy powder, and surface pressure fatigue strength. 基材予熱温度による溶射皮膜硬さの変化を示す図である。It is a figure which shows the change of the thermal spray coating hardness by base-material preheating temperature. Cu−Sn合金粉末のSn含有量と溶射皮膜の硬さとの関係を示す図である。It is a figure which shows the relationship between Sn content of Cu-Sn alloy powder, and the hardness of a sprayed coating. Cu−Sn合金粉末のSn含有量と溶射皮膜の耐焼付き性との関係を示す図である。It is a figure which shows the relationship between Sn content of Cu-Sn alloy powder, and the seizure resistance of a sprayed coating. 溶射積層回数と溶射皮膜の酸化量との関係を示す図である。It is a figure which shows the relationship between the thermal spraying lamination frequency and the oxidation amount of a thermal spray coating.

符号の説明Explanation of symbols

1:溶射皮膜 2:Al 3:Sn 4:基材 11:溶射ガン 12:プラズマジェット 13:粉末供給ホース 14:溶射粉末 15:ワーク 1: Thermal spray coating 2: Al 3: Sn 4: Base material 11: Thermal spray gun 12: Plasma jet 13: Powder supply hose 14: Thermal spray powder 15: Workpiece

Claims (12)

金属粒子を基材表面に溶射して形成した溶射皮膜であって、
前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とする溶射皮膜。
It is a sprayed coating formed by spraying metal particles on the surface of a substrate,
The thermal spray coating, wherein the metal particles are a mixed powder in which 5 to 25% by weight of Sn powder and 95 to 75% by weight of Al powder are mixed.
前記混合粉末の粒径は10〜75μmである請求項1に記載の溶射皮膜。   The thermal spray coating according to claim 1, wherein the mixed powder has a particle size of 10 to 75 μm. 前記Al粉末の粒径に対する前記Sn粉末の粒径が0.5〜0.8である請求項1又は2に記載の溶射皮膜。   The thermal spray coating according to claim 1 or 2, wherein a particle diameter of the Sn powder with respect to a particle diameter of the Al powder is 0.5 to 0.8. 金属粒子を基材表面に溶射して形成した溶射皮膜であって、
前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とする溶射皮膜。
It is a sprayed coating formed by spraying metal particles on the surface of a substrate,
The said metal particle contains 15 to 40% of Sn by weight percentage, The remainder is a powder which consists of copper and an unavoidable impurity, The thermal spray coating characterized by the above-mentioned.
前記粉末の粒径は10〜45μmである請求項4に記載の溶射皮膜。   The thermal spray coating according to claim 4, wherein the powder has a particle size of 10 to 45 μm. 前記溶射層中の酸素濃度が4重量%未満である請求項4または5に記載の溶射皮膜。   The thermal spray coating according to claim 4 or 5, wherein an oxygen concentration in the thermal spray layer is less than 4% by weight. 重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末を基材表面に溶射して溶射皮膜を形成することを特徴とする溶射皮膜の形成方法。   A method for forming a sprayed coating, comprising spraying a mixed powder obtained by mixing 5 to 25% by weight of Sn powder and 95 to 75% by weight Al powder on a substrate surface to form a sprayed coating. 重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末を基材表面に溶射して溶射皮膜を形成することを特徴とする溶射皮膜の形成方法。   A method for forming a sprayed coating, comprising forming a sprayed coating by spraying a powder containing Sn and 15 to 40% by weight, the balance being copper and inevitable impurities, onto a substrate surface. 前記基材を200〜300℃に予熱する請求項8に記載の溶射皮膜の形成方法。   The method for forming a sprayed coating according to claim 8, wherein the substrate is preheated to 200 to 300 ° C. 前記溶射皮膜の積層回数は1回である請求項9に記載の溶射皮膜の形成方法。   The method for forming a thermal spray coating according to claim 9, wherein the thermal spray coating is laminated once. 金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、
前記金属粒子は、重量百分率で5〜25%のSn粉末と95〜75重量%のAl粉末とを混合した混合粉末であることを特徴とする軸受部材。
A bearing member in which metal particles are thermally sprayed on a substrate surface to form a sprayed coating,
The bearing member according to claim 1, wherein the metal particles are a mixed powder in which 5 to 25% by weight of Sn powder and 95 to 75% by weight of Al powder are mixed.
金属粒子を基材表面に溶射して溶射皮膜を形成した軸受部材であって、
前記金属粒子は、重量百分率で15〜40%のSnを含有し、残部が銅及び不可避的不純物からなる粉末であることを特徴とする軸受部材。
A bearing member in which metal particles are thermally sprayed on a substrate surface to form a sprayed coating,
The said metal particle contains 15 to 40% of Sn by weight percentage, The remainder is a powder which consists of copper and an inevitable impurity, The bearing member characterized by the above-mentioned.
JP2003306973A 2003-08-29 2003-08-29 Thermal spray coating, forming method therefor and bearing member Withdrawn JP2005076075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306973A JP2005076075A (en) 2003-08-29 2003-08-29 Thermal spray coating, forming method therefor and bearing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306973A JP2005076075A (en) 2003-08-29 2003-08-29 Thermal spray coating, forming method therefor and bearing member

Publications (1)

Publication Number Publication Date
JP2005076075A true JP2005076075A (en) 2005-03-24

Family

ID=34409904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306973A Withdrawn JP2005076075A (en) 2003-08-29 2003-08-29 Thermal spray coating, forming method therefor and bearing member

Country Status (1)

Country Link
JP (1) JP2005076075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669400A1 (en) * 2012-06-01 2013-12-04 Sulzer Metco AG Zinc-free spray powder, copper thermal spray coating, method for creating a copper thermal spray coating
JP2015183283A (en) * 2014-03-26 2015-10-22 株式会社栗本鐵工所 Method of forming base for thermal spraying
JP2019183273A (en) * 2018-04-02 2019-10-24 東京エレクトロン株式会社 Formation method of metal film
JP7384690B2 (en) 2020-02-12 2023-11-21 トーカロ株式会社 sliding parts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669400A1 (en) * 2012-06-01 2013-12-04 Sulzer Metco AG Zinc-free spray powder, copper thermal spray coating, method for creating a copper thermal spray coating
JP2013249533A (en) * 2012-06-01 2013-12-12 Sulzer Metco Ag Zinc-free spray powder, copper-containing thermal spray layer, and method for producing the copper-containing thermal spray layer
JP2013249536A (en) * 2012-06-01 2013-12-12 Sulzer Metco Ag Bearing part and thermal spray method
CN103556097A (en) * 2012-06-01 2014-02-05 苏舍美特科公司 Zinc-free spray powder, copper-containing thermal spray layer, as well as method of manufacturing a copper-containing thermal spray layer
US9097276B2 (en) 2012-06-01 2015-08-04 Oerlikon Metco Ag Bearing part and thermal spray method
US9885382B2 (en) 2012-06-01 2018-02-06 Oerlikon Metco Ag, Wohlen Zinc-free spray powder, copper-containing thermal spray layer, as well as method of manufacturing a copper-containing thermal spray layer
JP2015183283A (en) * 2014-03-26 2015-10-22 株式会社栗本鐵工所 Method of forming base for thermal spraying
JP2019183273A (en) * 2018-04-02 2019-10-24 東京エレクトロン株式会社 Formation method of metal film
JP7379844B2 (en) 2018-04-02 2023-11-15 富士電機株式会社 Method of forming metal film
JP7384690B2 (en) 2020-02-12 2023-11-21 トーカロ株式会社 sliding parts

Similar Documents

Publication Publication Date Title
CN108570571B (en) Sliding material, method for producing same, sliding member, and bearing device
US5958522A (en) High speed thermal spray coating method using copper-based lead bronze alloy and aluminum
US20080093350A1 (en) Superfine/nanostructured cored wires for thermal spray applications and methods of making
US7964239B2 (en) Bearing material coated slide member and method for manufacturing the same
JP4504328B2 (en) Sliding member
JP4389026B2 (en) Sliding material and manufacturing method thereof
JP2009519378A (en) Sn-containing durable material composition, method for producing durable coating, and use thereof
US20050069724A1 (en) Spraying piston ring
KR20010075003A (en) Flame-sprayed copper-aluminum composite material and its production method
JP2004306120A (en) Mold for continuous casting and method for manufacturing and repairing the same
JP2020510747A (en) Electrode coating method for resistance welding and electrode for resistance welding
CN103255413B (en) Copper and copper alloy surface laser melting coating cobalt-based self-lubricating coat in use and preparation technology
JP2006022896A (en) Double-layered bearing material and its manufacturing method
CN109804095B (en) Sliding material, method for producing same, and sliding member
JP2005076075A (en) Thermal spray coating, forming method therefor and bearing member
JP5535280B2 (en) Method for strengthening welding tip and welding tip
CN111542626B (en) Plain bearing element
CN107881500A (en) A kind of high-strength wearable shock resistance and high adhesion force coating material and preparation method thereof
AU2004324901A1 (en) Method for producing steel pipe plated with metal by thermal spraying
JP2012041617A (en) Thermal spraying wire for iron-based thermally sprayed coating
GB2251661A (en) A lead containing copper alloy bearing
DE102004043914A1 (en) Bronze slip bearing is fabricated by cold gas spray application of a suitable alloy
DE102008053641B3 (en) Thermally sprayed cylinder bore coating useful in an internal combustion engine, comprises copper alloy containing manganese content and aluminum content or tin content
JP5388298B2 (en) Cast iron member with sprayed coating for casting, method for producing the same, and cylinder liner with sprayed coating for casting
CN109898046A (en) Preventing corrosion from molten metals, abrasion axle sleeve protective coating preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061218