KR20010078254A - 주사노광방법 및 주사형 노광장치 - Google Patents

주사노광방법 및 주사형 노광장치 Download PDF

Info

Publication number
KR20010078254A
KR20010078254A KR1020010004892A KR20010004892A KR20010078254A KR 20010078254 A KR20010078254 A KR 20010078254A KR 1020010004892 A KR1020010004892 A KR 1020010004892A KR 20010004892 A KR20010004892 A KR 20010004892A KR 20010078254 A KR20010078254 A KR 20010078254A
Authority
KR
South Korea
Prior art keywords
pattern
exposure
mask
substrate
overlapping
Prior art date
Application number
KR1020010004892A
Other languages
English (en)
Other versions
KR100849870B1 (ko
Inventor
후지쯔까세이지
무라까미마사이찌
가또마사끼
마찌노가쯔야
도구찌마나부
Original Assignee
오노 시게오
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000025661A external-priority patent/JP2001215717A/ja
Priority claimed from JP2000026630A external-priority patent/JP4482998B2/ja
Application filed by 오노 시게오, 가부시키가이샤 니콘 filed Critical 오노 시게오
Publication of KR20010078254A publication Critical patent/KR20010078254A/ko
Application granted granted Critical
Publication of KR100849870B1 publication Critical patent/KR100849870B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

본 발명은, 마스크와 기판을 동기이동시켜 기판상에서 분할패턴을 이어맞추어 화면합성을 행할 때에, 동기이동방향에서 인접하는 분할패턴끼리를 원활하게 이어맞추는 것을 목적으로 한다. 본 발명에서는, 노광광의 조사에 대하여 마스크와 기판을 동기이동시켜, 마스크의 분할패턴을 기판에 투영하고, 기판상에서 인접하는 복수의 분할패턴을 이어맞추어 노광할 때에, 동기이동방향으로 인접하는 분할패턴끼리를 서로 일부 중복시킨다.

Description

주사노광방법 및 주사형 노광장치{SCANNING EXPOSURE METHOD AND SCANNING EXPOSURE APPARATUS}
본 발명은, 마스크와 기판을 소정 방향으로 동기이동시켜, 마스크에 형성된 패턴을 기판에 노광하는 주사노광방법 및 주사형 노광장치에 관한 것이다. 특히, 기판상에서 인접하는 복수의 분할패턴을 이어맞추어 노광하는 주사노광방법 및 주사형 노광장치에 관한 것이다. 또한, 본 발명은 일본국 특허출원 2000-25661 호 및 2000-26630 호에 기초한 것으로, 본 발명에는 상기 특허출원 내용도 포함된다.
최근, 퍼스컴이나 TV 등의 표시소자로서, 박형화가 가능한 액정표시패널이 많이 사용되게 되었다. 이런 종류의 액정표시패널은 평면에서 보았을 때 직사각형을 이루는 감광기판상에 투명박막전극을 포토리소그래피의 수법으로 소망의 형상으로 패터닝함으로써 제조되고 있다. 이 포토리소그래피 장치로서는, 마스크 (레티클) 상에 형성된 패턴을, 투영광학계를 통하여 감광기판상의 포토레지스트층에 노광하는 노광장치가 사용되고 있다.
상기 액정표시패널은 화면을 보기 쉬운 점에서 대면적화가 추진되고 있다. 예를 들어, 퍼스널컴퓨터용 패널에서는 현재 307.34 ㎜ (12.1 인치) 타입으로부터 358.14 ㎜ (14.1 인치) 타입의 대형 패널이 주류를 이루고 있다. 이런 요청에 부응하는 노광장치로서는, 예를 들어 일본 공개특허 공보 평7-57986 호에 개시되어 있는 바와 같이, 마스크의 패턴을 정립상으로 기판상에 투영하는 복수의 투영광학계에 대하여 주사함으로써, 동기이동방향과 직교하는 방향으로 큰 노광영역을 가진다. 즉, 마스크에 형성된 LCD (Liquid Crystal Display) 등의 패턴을 글래스기판상의 노광영역에 순차적으로 전사하는 주사형 노광장치가 고안되고 있다.
이 때, 투영영역이 커도 장치를 대형화하지 않고, 양호한 결상특성을 얻는 투영광학계로서, 복수의 투영광학계를 인접하는 투영영역이 주사방향에서 소정량 변위되도록, 그리고 인접하는 투영영역의 단부끼리가 주사방향과 직교하는 방향으로 중복되도록 배치된 것이 사용되고 있다. 이 경우, 각 투영광학계의 시야조리개는 예를 들어 대형 (臺形) 형상이고, 주사방향의 시야조리개 개구폭의 합계는 항상 동등하게 되도록 설정되어 있다. 그 때문에, 상기와 같은 주사형 노광장치는, 인접하는 투영광학계의 이음부가 중복되어 노광되고, 투영광학계의 광학수차 또는 노광조도가 원활하게 변화되는 이점을 가지고 있다.
그런데, 최근 액정표시패널 제조용의 기판으로서, 다수의 액정표시패널의 동시 생산에 의한 생산성 향상이나, TV 등을 목적으로 한, 보다 큰 표시영역을 가지는 액정표시패널을 제조하기 위하여, 한 변이 50∼70 ㎝ 이상인 커다란 글래스기판을 사용하는 것이 고려되고 있다. 이와 같이 표시영역이 큰 액정표시패널에 상당하는 사이즈의 기판을 노광하기 위해서는, 기판사이즈와 동등한 크기의 마스크를 사용하여 일괄 주사노광하는 방법과, 1 개의 액정표시패널의 패턴을 복수의 영역으로 분할하여 합성하는 방법을 생각할 수 있다. 전자의 방법에서는, 고속의 스루풋을 얻을 수 있으나, 마스크의 패턴 정밀도가 통상적으로 낮기 때문에, 소위 고정세 패턴용의 고정밀도 마스크를 얻기 위해서는 비용이 커져 현실적이지 못하다.
한편, 후자의 방법에서는 레티클 제조 오차를 포함한 다양한 오차를 관리할필요가 있어 보정작업이 번잡해진다. 또한, 보정 오차가 잔존하여 양호한 화면합성 정밀도를 얻기 곤란하다. 예를 들어, 패턴 이음부에 있어서, 마스크의 패턴묘화오차, 투영광학계의 광학수차 또는 글래스기판을 이동시키는 스테이지의 위치결정오차 등에 기인하여 단차가 발생하고 패널의 특성이 저해되기도 한다. 나아가 패턴 합성된 것을 다층으로 중첩시킨 경우, 각 층의 노광영역의 중첩오차 또는 패턴의 선폭 차가 패턴의 이음부분에서 불연속적으로 변화되어, 액정표시패널을 점등시켰을 때, 이음 부분에서 색번짐이 발생되는 등, 패널의 품질이 저하된다.
이 문제를 해결하면서, 대형 글래스기판에 노광하기 위한 주사형 노광장치가, 예를 들어 일본 공개특허공보 평10-64782 호에 개시되어 있다. 이 장치는, 마스크를 유지하는 마스크 스테이지 및 글래스기판을 유지하는 기판 스테이지를 동기시켜 구동하고 주사노광한 후, 마스크 스테이지 및 기판 스테이지를 동기이동과 직교하는 방향으로 조명영역의 폭에 상당하는 거리만큼 스텝 이동시켜 이후의 노광영역을 앞의 노광영역과 일부 중복시키고, 또한 중복부의 노광량 (노광 에너지량) 이 비중복부의 노광량과 동일하게 되도록 하는 공정을 1 회 또는 수 회에 걸쳐 반복함으로써, 복수의 분할패턴을 이어맞춰 커다란 글래스기판상에 전사하는 것이다.
그러나, 최근에는 액정표시패널의 대면적화에 대한 요구가 더욱 높아져 보다 큰 글래스기판에 노광할 필요가 있다. 이를 위해서는, 분할패턴을 종횡으로 이어맞추어 화면합성하는 방법이 고려되고 있지만, 종래에는, 주사방향 (동기이동방향) 으로 원활하게 분할패턴을 이어맞출 수 없었다. 그래서, 비주사방향과 마찬가지로 주사방향으로 이어맞추어도, 디바이스의 품질을 유지할 수 있는 화면합성방법이 요망되고 있다.
또한, 상기와 같이, 1 장의 레티클을 사용하여 글래스기판상에서 분할패턴을 이어맞추는 경우, 디바이스패턴이 갖는 화소패턴과 같이, 패턴의 반복성을 갖는 특징을 이용하여 글래스기판의 위치를 변경함으로써, 레티클의 패턴 중 반복패턴을 중복시키면서 복수의 노광영역에 노광한다.
그러나, 이 화소패턴은 디바이스패턴에 대하여 0 도 또는 90 도 방향 (X 방향 또는 Y 방향) 으로 배열된다. 그리고, 글래스기판상에서의 분할패턴끼리의 중복부 (화면합성라인) 도, 화소패턴과 동일하게 0 도 또는 90 도 방향을 따라서 설정되는 것이 많다. 액정디바이스에 있어서, 화면합성시에 발생되는 표시품질상의 한 가지 문제로서, 구동용 트랜지스터 제조시의 중첩정밀도 차가 있다. 이것은, 화면합성라인을 사이에 두고, 예를 들어 좌우 패턴의 중첩 정밀도 차가 발생되는 구동용 트랜지스터의 제어오차가 구동용 트랜지스터의 성능과 사용되는 액정재료에 의하여 결정되는 계조 (階調) 의 최소분해능을 상회하는 것이 주요 원인이다.
게다가, 화면합성라인이 연장되는 방향과, 화소패턴의 배열방향이 동일하면, 화면합성라인에 인접하는 구동용 트랜지스터는 모두 동일한 게이트선 또는 신호선에 접속되므로 동일한 타이밍으로 구동된다. 그 결과, 화면합성에 의하여 발생되는 중첩정밀도 차가 표시품질에 미치는 영향이 직선상으로 배열되게 된다. 통상, 오차가 커도 오차부분이 점재(点在)하는 경우는 그다지 눈에 띄지 않으나,오차가 작아도 오차 부분이 정연하게 배열되면 시인성이 높아진다. 그 결과, 중첩정밀도 차의 영향이 직선상으로 배열되면, 표시품질이 저하되어 버린다.
본 발명은, 이상과 같은 점을 고려하여 이루어진 것으로, 마스크와 기판을 동기이동시켜 기판상에서 패턴을 이어맞추어 화면합성할 때, 동기이동방향에서 인접하는 분할패턴끼리를 원활하게 이어맞출 수 있는 주사노광방법 및 주사형 노광장치를 제공하는 것을 목적으로 한다. 또한, 본 발명의 다른 목적은 화면합성에 의하여 발생되는 중첩정밀도 차가 디바이스의 표시품질에 악영향을 미치는 것을 방지하는 주사노광방법 및 주사형 노광장치를 제공하는 것이다.
도 1 은, 본 발명의 실시예를 나타낸, 주사형 노광장치의 개략 외관사시도,
도 2 는, 도 1 에 나타낸 주사형 노광장치의 개략 구성도,
도 3 은, 본 발명의 주사형 노광장치를 구성하는 투영계 모듈의 개략 구성을 나타낸 도면,
도 4 는, 본 발명의 실시예를 나타낸, 투영계 모듈로 설정되는 투영영역의 평면도,
도 5 는, 본 발명의 실시예를 나타낸, 글래스기판과 투영영역과의 관계를 나타낸 평면도,
도 6 은, 글래스기판상에 화면합성된 각 분할패턴의 개략적인 평면도,
도 7 은, 본 발명의 제 1 실시예의 주사노광에 사용되는 마스크의 평면도,
도 8a 은, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 분할패턴이 주사노광 개시위치에 있을 때를 나타낸 도면,
도 8b 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 투영영역에 위치하는 중복부에 대한 노광광의 조사상황을 나타낸 도면,
도 8c 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 투영영역에 위치하는 중복부에 대한 노광광의 조사상황을 나타낸 도면,
도 8d 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 분할패턴을 노광중인 상황을 나타낸 도면,
도 8e 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 주사노광의 종료를 나타낸 도면,
도 9a 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 주사노광중의 상황을 나타낸 도면,
도 9b 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 중복부가 투영영역에 위치했을 때의 노광광의 차광을 나타낸 도면,
도 9c 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 주사노광중의 상황을 나타낸 도면,
도 9d 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 중복부가 투영영역에 위치했을 때의 노광광의 차광을 나타낸 도면,
도 9e 는, 분할패턴을 주사노광하는 순서를 설명하는 평면도로서, 주사노광의 종료를 나타낸 도면,
도 10a 는, 중복부의 노광량 분포를 나타낸 도면,
도 10b 는, 중복부의 노광량 분포를 나타낸 도면,
도 10c 는, 중복부의 노광량 분포를 나타낸 도면,
도 10d 는, 중복부의 노광량 분포를 나타낸 도면,
도 11 은, 투영영역과 분할패턴의 중복부의 위치관계를 나타낸 평면도,
도 12a 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 12b 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 12c 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 12d 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 13a 는, 2 개의 투영영역 단부에서 노광된 중복부의 노광량 분포를 나타낸 도면,
도 13b 는, 2 개의 투영영역 단부에서 노광된 중복부의 노광량 분포를 나타낸 도면,
도 14a 는, 중복부의 노광량 분포를 나타낸 도면,
도 14b 는, 중복부의 노광량 분포를 나타낸 도면,
도 14c 는, 중복부의 노광량 분포를 나타낸 도면,
도 14d 는, 중복부의 노광량 분포를 나타낸 도면,
도 15a 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 15b 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 15c 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 15d 는, 투영영역 단부에 의한 중복부의 노광량 분포를 나타낸 도면,
도 16 은, 본 발명의 제 2 실시예의 주사노광에 사용되는 마스크의 평면도,
도 17a 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17b 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17c 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17d 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17e 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17f 는, 주사노광의 순서를 나타내기 위한 평면도,
도 17g 는, 주사노광의 순서를 나타내기 위한 평면도,
도 18 은, 본 발명의 제 3 실시예를 나타낸 도면으로서, 단일 투영영역과 글래스기판의 위치관계를 나타낸 평면도,
도 19 는, 투영영역의 크기를 변경하는 방법을 나타낸 평면도,
도 20 은, 본 발명의 제 4 실시예를 나타낸 도면으로서, 주사형 노광장치의 광학계의 개략을 나타낸 도면,
도 21 은, 도 20 의 주사형 노광장치를 구성하는 레티클 블라인드의 외관을 나타낸 사시도,
도 22 는, 레티클 블라인드를 구성하는 블라인드판의 평면도,
도 23 은, 본 발명의 주사노광방법에 의하여 화면합성되는 LCD 패턴의 평면도,
도 24 는, 글래스기판상에 구성되는 TFT/LCD 의 표시화소의 개략 구성을 나타낸 도면,
도 25 는, LCD 패턴의 화면합성에 사용되는 레티클의 평면도,
도 26 은, 글래스기판상의 위치와 에너지량의 관계를 나타낸 도면,
도 27 은, 분할패턴 (P2) 의 주사노광 개시위치에 노광 스포트가 설정된 레티클의 평면도,
도 28 은, 글래스기판상의 위치와 에너지량의 관계를 나타낸 도면,
도 29 는, 중복부 (JX1, JY1) 의 교차부의 노광량 분포를 설명하기 위한 도면,
도 30 은, 중복부 (JX1, JY1) 의 교차부의 노광량 분포를 설명하기 위한 도면,
도 31 은, 본 발명의 제 5 실시예를 나타낸, 레티클상의 노광 스포트를 동기이동방향과 직교하는 방향으로 이동시킬 때의 평면도,
도 32 는, 도 31 에 나타낸 레티클을 사용하여 화면합성되는 LCD 패턴의 평면도,
도 33 은, 본 발명의 제 6 실시예를 나타낸 도면으로, 레티클상의 노광 스포트를 동기이동방향과 직교하는 방향으로 복수 회 이동시킬 때의 평면도,
도 34 는, 도 33 에 나타낸 레티클을 사용하여 화면합성되는 LCD 패턴의 평면도,
도 35 는, 액정표시 디바이스의 제조공정의 일례를 나타낸 플로우 차트이다.
* 도면의 주요 부분에 대한 부호의 설명 *
1 : 노광장치 2 : 조명광학계
3a ~ 3e : 투영계 모듈 4 : 마스크 스테이지
P : 글래스 기판 5 : 기판 스테이지
M : 마스크 (레티클) 6 : 광원
상기 목적을 달성하기 위하여 본 발명은, 실시예를 나타내는 도 1 내지 도 10 에 대응하는 이하의 구성을 채용하고 있다.
본 발명의 주사노광방법은, 노광광의 조사에 대하여 마스크 (M) 와 기판 (P) 을 동기이동시켜, 마스크 (M) 의 분할패턴 (51∼54) 을 기판 (P) 에 투영하고, 기판 (P) 상에서 인접하는 복수의 분할패턴 (51∼54) 을 이어맞추어 노광하는 주사노광방법으로서, 동기이동방향으로 인접하는 분할패턴 (51 과 52, 53 과 54) 끼리를 서로 일부 중복시키는 것을 특징으로 한다.
또한, 본 발명의 주사형 노광장치는, 노광광의 조사영역에 대하여 마스크 (M) 를 유지하는 마스크 스테이지 (4) 와 기판 (P) 을 유지하는 기판 스테이지 (5) 를 동기이동시켜 기판 (P) 상에서 인접하는 복수의 분할패턴 (51∼54) 을 이어맞추어 노광하는 주사형 노광장치 (1) 로서, 노광광을 차광ㆍ개방하는 차광장치 (12)및, 동기이동 중에 조사영역의 차광상태를 변경하여, 동기이동방향으로 인접하는 분할패턴 (51 과 52. 53 과 54) 끼리를 서로 일부 중복시키도록 마스크 스테이지 (4), 기판 스테이지 (5) 및 차광장치 (12) 를 제어하는 제어장치 (17) 를 구비하는 것을 특징으로 한다.
본 발명의 주사노광방법에 의하면, 각 분할패턴 (51∼54) 을 주사노광할 때, 분할패턴 (51 과 52, 53 과 54) 끼리의 중복부 (51a 와 52a, 53a 와 54a) 에서의 노광량(노광 에너지량) 을 경계를 향하여 비례적으로 감소시킴으로써, 중첩 노광했을 때, 이 부분의 노광량을 비중복부의 노광량과 거의 일치시킬 수 있다. 그래서, 동기이동방향에서 인접하는 분할패턴 (51 과 52, 53 과 54) 끼리는, 마스크 (M) 의 패턴묘화오차, 투영광학계 (3) 의 광학수차 또는 기판을 이동시키는 스테이지 (4, 5) 의 위치결정오차 등이 존재해도, 중복부 (51a∼54a) 에서 단차가 원활하게 변화하여, 디바이스특성이 저하되는 것을 방지할 수 있다. 상기 노광량의 조정은, 마스크 스테이지 (4) 와 기판 스테이지 (5) 가 동기이동하여, 분할패턴 (51∼54) 의 중복부 (51a∼54a) 가 노광광의 조사영역 (34a∼34e) 에 위치했을 때, 중복부 (51a∼54a) 에서의 노광광의 조사를, 조사와 차광으로 전환하여 실행할 수 있다.
나아가, 상기 목적을 달성하기 위하여 본 발명은, 실시예를 나타내는 도 20 내지 도 34 에 대응시킨 이하의 구성을 채용하고 있다.
본 발명의 주사노광방법은, 제 1 패턴 (P1) 과 제 2 패턴 (P2) 을 가진 마스크 (M) 와 기판 (P) 을 동기이동시켜, 제 1 패턴 (P1) 과 제 2 패턴 (P2) 을 기판(P) 에 노광하는 주사노광방법에 있어서, 기판 (P) 의 동기이동방향을 따라서 제 1 패턴 (P1) 과 제 2 패턴 (P2) 을 노광할 때, 제 1 패턴 (P1) 의 일부와 제 2 패턴 (P2) 의 일부를 중복 노광하고, 나아가 중복 노광할 때의 마스크 (M) 와 기판 (P) 의 동기이동속도를 중복 노광하지 않을 때의 마스크 (M) 와 기판 (P) 의 동기이동속도와는 상이하게 하는 것을 특징으로 한다.
본 발명의 주사노광방법에 의하면, 제 1 패턴 (P1) 과 제 2 패턴 (P2) 의 중복부에서의 노광량(노광 에너지량) 을 비중복부에서의 노광량과 상이하게 할 수 있다. 그래서, 제 1 패턴 (P1) 과 제 2 패턴 (P2) 을 동기이동방향을 따라서 노광할 때, 각 패턴 (P1, P2) 끼리의 중복부 (JY1) 에서의 노광량(노광 에너지량) 을 경계를 향하여 비례적으로 감소시킴으로써, 중복 노광했을 때 이 부분의 노광량을 비중복부의 노광량과 거의 일치시킬 수 있다. 그래서, 제 1 패턴 (P1) 과 제 2 패턴 (P2) 은, 마스크 (M) 의 패턴묘화오차, 투영광학계 (PL) 의 광학수차 또는 기판을 이동시키는 스테이지 (105, 106) 의 위치결정오차가 존재해도, 중복부 (JX1) 에서 단차가 원활하게 변화되게 되어, 디바이스 특성의 저하를 방지할 수 있다.
또한, 본 발명의 주사노광방법은, 패턴 (P1, P3) 을 가진 마스크 (M) 와 기판 (P) 을 노광광의 조명영역 (S) 에 대하여 동기이동시켜, 패턴을 기판 (P) 에 노광하는 주사노광방법에 있어서, 동기이동방향과는 상이한 방향의 조명영역 (S) 의 크기를 동기이동 중에 변경하는 것을 특징으로 한다.
나아가, 본 발명의 주사노광장치는 패턴 (P1, P3) 을 가진 마스크 (M) 와 기판 (P) 을 동기이동시켜, 패턴 (P1, P3) 을 기판 (P) 에 노광하는 주사형 노광장치(101) 에 있어서, 마스크 (M) 의 조명영역 (S) 을 설정하는 조명영역 설정장치 (110) 및, 동기이동방향과는 상이한 방향의 조명영역 (S) 의 크기를 동기이동 중에 변경하는 변경장치 (114) 를 구비하는 것을 특징으로 한다.
본 발명의 주사노광방법 및 주사형 노광장치에 의하면, 조명영역 (S) 의 단부의 궤적이 동기이동방향과 상이한 방향으로 연장되게 된다. 그래서, 기판 (P) 상에서 중복노광되는 패턴 (P1, P3) 을 조명영역 (S) 의 단부에서 조명함으로써, 기판 (P) 상에서 이어맞춤되는 패턴끼리의 중복부 (JY1) 의 방향을 동기이동방향과 상이하게 할 수 있다. 그 때문에, 화소패턴 등의 단위 패턴 (122) 이 동기이동방향을 따라 배열되어 있어도, 화면합성라인에 인접하는 구동용 트랜지스터는 상이한 신호선으로 구동되게 된다. 따라서, 동일한 중첩 정밀도이어도 표시품질에 미치는 영향을 작게 할 수 있다.
이하에서, 본 발명의 주사노광방법 및 주사형 노광장치의 제 1 실시예를, 도 1 내지 도 15 를 참조하여 설명하기로 한다. 여기에서는 기판으로서 액정표시패널의 제조에 사용되는 각형의 글래스기판을 사용하고, 마스크에 형성된 액정표시 디바이스의 회로패턴을 글래스기판상에 전사하는 경우의 예를 사용하여 설명하기로 한다. 또한, 여기에서는, 투영광학계가 5 개의 투영계 모듈로 이루어지고, 4 회의 주사노광에 의하여 글래스기판상에 화면합성되는 경우의 예를 사용하여 설명한다.
도 1 은, 본 발명에 의한 주사형 노광장치 (1) 의 개략적인 구성을 나타낸 사시도이다. 주사형 노광장치 (1) 는 조명광학계 (2) 와, 복수의 투영계 모듈(3a∼3e) 로 이루어지는 투영광학계 (3) 와, 마스크 (레티클; M) 를 유지하는 마스크 스테이지 (4) 와, 글래스기판 (기판; P) 을 유지하는 기판 스테이지 (5) 를 주체로서 구성되어 있다. 이하, 마스크 (M) 및 글래스기판 (P) 이 XY 평면을 따라서 배치되어 있는 것으로 하고, XY 평면 중 주사방향 (동기이동방향) 을 X 방향, X 방향과 직교하는 비주사방향을 Y 방향으로 하고, XY 평면에 직교하는 광축방향을 Z 방향으로 하여 설명한다.
도 2 에 나타낸 바와 같이, 조명광학계 (2) 는, 초고압 수은램프 등의 광원 (6) 으로부터 사출된 광속 (노광광) 을 마스크 (M) 상에 조명하는 것으로서, 다이크로익 미러 (7), 파장선택필터 (8), 라이트 가이드 (9) 및 투영계 모듈 (3a∼3e) 각각에 대응하여 배치 형성된 조명계 모듈 (10a∼10e) (단, 도 2 에서는, 편의상 조명광학계 (10a) 에 대응하는 것만을 나타내고 있다) 로 구성되어 있다.
광원 (6) 으로부터 사출된 광속은, 타원경에서 집광된 후, 다이크로익 미러 (7) 로 입사된다. 다이크로익 미러 (7) 는 노광에 필요한 파장의 광속을 반사하고, 기타의 파장의 광속을 투과시키는 것이다. 다이크로익 미러 (7) 에서 반사된 광속은, 파장선택필터 (8) 에 입사되고, 투영광학계 (3) 가 노광하기에 적합한 파장 (통상은 g, h, i 선 중, 적어도 1 개의 대역) 의 광속으로 되어, 라이트 가이드 (9) 에 입사된다. 라이트 가이드 (9) 는, 입사된 광속을 5 개로 분기하여, 반사미러 (11) 를 통하여 각 조명계 모듈 (10a∼10e) 에 입사시키는 것이다.
각 조명계 모듈 (10a∼10e) 은, 조명셔터 (차광장치; 12) 와 릴레이렌즈 (13) 와 플라이아이렌즈 (14) 와 콘덴서렌즈 (15) 로 개략 구성되어 있다. 또한, 본 실시예에서는, 이 조명계 모듈 (10a∼10e) 과 동일한 구성의 조명계 모듈 (10b∼10e) 가 X 방향과 Y 방향으로 일정한 간격으로 배치되어 있다. 그리고, 각 조명계 모듈 (10a∼10e) 로부터의 광속은 마스크 (M) 의 상이한 조명영역을 조명하는 구성으로 되어 있다.
조명셔터 (12) 는 라이트 가이드 (9) 의 후방에, 광속의 광로에 대하여 진퇴가능하게 배치되어 있다. 조명셔터 (12) 는, 광로를 차폐했을 때에 이 광로로부터 마스크 (M) 및 글래스기판 (P) 에 도달하는 광속을 차광하고, 광로를 개방했을 때에 광속에 대한 차광을 해제하여, 마스크 (M) 및 글래스기판 (P) 으로 광속을 조사시키는 것이다. 또한, 조명셔터 (12) 에는, 이 조명셔터 (12) 를 상기 광로에 대하여 진퇴 이동시키는 셔터 구동부 (16) 가 구비되어 있다. 셔터 구동부 (16) 는 제어장치 (17) 에 의하여 그의 구동이 제어되고 있다.
한편, 각 조명계 모듈 (10a∼10e) 에는, 광량조정기구 (18) 가 부설되어 있다. 광량조정기구 (18) 는, 광로마다 광속의 조도를 설정함으로써, 각 광로마다 노광량을 조정하는 것으로, 하프미러 (19), 디텍터 (20), 필터 (21) 및 필터구동부 (22) 로 구성되어 있다. 하프미러 (19) 는, 필터 (21) 와 릴레이렌즈 (13) 간의 광로 중에 배치되고, 필터 (21) 를 투과시킨 광속의 일부를 디텍터 (20) 에 입사시키는 것이다. 디텍터 (20) 는 입사된 광속의 조도를 검출하고, 검출한 조도신호를 제어장치 (17) 에 출력하는 것이다.
필터 (21) 는 글래스기판상에 Cr 등을 블라인드 형상으로 패터닝한 것으로, 투과율이 Y 방향을 따르고 있는 범위에서 선형으로 점차 변화되도록 형성되고, 각광로 중의 조명셔터 (12) 와 하프미러 (19) 사이에 배치되어 있다. 이들 하프미러 (19), 디텍터 (20) 및 필터 (21) 는 복수의 광로마다 각각 배치 형성되어 있다. 필터구동부 (22) 는 제어장치 (17) 의 지시에 의하여 필터 (21) 를 Y 방향을 따라서 이동시킨다.
따라서, 디텍터 (20) 가 검출한 광속의 조도에 기초하여, 제어장치 (17) 가 필터구동부 (22) 를 제어함으로써, 각 광로마다 글래스기판 (P) 상에서의 조도가 소정치로 되도록 광로마다의 광량을 조정할 수 있다.
광량조정기구 (18) 를 투과한 광속은 릴레이렌즈 (13) 를 통하여 플라이아이렌즈 (14) 에 도달한다. 이 플라이아이렌즈 (14) 의 사출면적에는 이차광원이 형성되고, 마스크 (M) 의 조명영역을 콘덴서렌즈 (15) 를 통하여 균일한 조도로 사출할 수 있는 것이다.
마스크 (M) 를 투과한 광속은 투영계 모듈 (3a∼3e) 에 각각 입사된다. 그리고, 조명영역의 마스크 (M) 의 패턴은, 소정의 결상특성에 기초하여 레지스트가 도포된 글래스기판 (P) 상에 전사된다. 각 투영계 모듈 (3a∼3e) 은, 도 3 에 나타낸 바와 같이, 이미지 시프트기구 (23), 2 세트의 반사굴절형 광학계 (24, 25), 시야조리개 (26) 및 배율조정기구 (27) 로 구성되어 있다.
마스크 (M) 를 투과한 광속은, 이미지 시프트기구 (23) 에 입사된다. 이미지 시프트기구 (23) 는 예를 들어 2 장의 평행 평판 글래스가 각각 Y 축 주위 또는 X 축 주위로 회전함으로써, 마스크 (M) 의 패턴 이미지를 X 방향 또는 Y 방향으로 시프트시키는 것이다. 이미지 시프트기구 (23) 를 투과한 광속은, 1 세트째의 반사굴절형 광학계 (24) 에 입사된다. 반사굴절형 광학계 (24) 는 마스크 (M) 의 패턴의 중간 이미지를 형성하는 것으로서, 직각프리즘 (28), 렌즈 (29) 및 오목면경 (30) 을 구비하고 있다. 직각프리즘 (28) 은 Z 방향 주위로 자유롭게 회전되고, 마스크 (M) 의 패턴 이미지를 회전 (로테이션) 시키는 구성으로 되어있다.
이 중간 이미지 위치에는, 시야조리개 (26) 가 배치되어 있다. 시야조리개 (26) 는 글래스기판 (P) 상에서 대형 형상의 투영영역을 설정하는 것이다. 시야조리개 (26) 를 투과한 광속은, 2 세트 째의 반사굴절형 광학계 (25) 에 입사된다. 반사굴절형 광학계 (25) 는 반사굴절형 광학계 (24) 와 마찬가지로, 직각프리즘 (31), 렌즈 (32) 및 오목면경 (33) 을 구비하고 있다. 또한, 직각프리즘 (31) 은 Z 축 주위로 자유롭게 회전되고, 마스크 (M) 의 패턴 이미지을 회전시키는 구성으로 되어 있다.
반사굴절형 광학계 (25) 에서 출사된 광속은, 배율조정기구 (27) 를 통하여 글래스기판 (P) 상에 마스크 (M) 의 정립 패턴 이미지를 등배로 결상한다. 배율조정기구 (27) 는, 예를 들어 평볼록렌즈, 양볼록렌즈, 평오목렌즈의 3 장의 렌즈로 구성되고, 평볼록렌즈와 평오목렌즈 사이에 위치하는 평볼록렌즈를 Z 축 방향으로 이동시킴으로써, 마스크 (M) 의 패턴 이미지의 배율을 변화시키도록 되어 있다.
도 4 는, 글래스기판 (P) 상에서의 투영계 모듈 (3a∼3e) 의 투영영역 (이미지 필드; 34a∼34e) 의 평면도이다. 이 도면에 나타낸 바와 같이, 각 투영영역(34a∼34e) 은 대형(臺形) 형상을 가지고 있고, 투영영역 (34a, 34c, 34e) 과 투영영역 (34b, 34d) 은 짧은 변측을 대향시켜 X 방향으로 간격을 두고 배치되어 있다. 나아가, 투영영역 (34a∼34e) 은 인접하는 투영영역의 단부끼리 (35a 와 35b, 35c 와 35d, 35e 와 35f, 35g 와 35h) 가, 이점쇄선으로 나타낸 바와 같이 Y 방향으로 중복되도록 병렬 배치되고, 또한 X 방향의 투영영역의 폭의 총계가 거의 동등하게 되도록 설정되어 있다. 즉, 투영영역 (34a∼34e) 은 X 방향으로 주사노광했을 때의 노광량이 동등하게 되도록 되어 있다.
이렇게, 각 투영계 모듈 (3a∼3e) 에 의한 투영영역 (34a∼34e) 에 중복되는 이음부 (36a∼36d) 를 형성함으로써, 이음부 (36a∼36d) 에서의 광학수차의 변화 또는 조도변화를 원활하게 할 수 있게 되어 있다. 또한, 본 실시예의 투영영역 (34a∼34e) 의 형상은 대형이나, 육각형 또는 마름모형, 평행사변형 등일 수도 있다.
마스크 스테이지 (4) 는 마스크 (M) 를 유지하는 것으로서, 1차원의 주사노광을 행하도록 X 방향으로 긴 스트로크를 가지며, 주사방향과 직교하는 Y 방향으로 수 ㎜ 정도의 미소량의 스트로크를 가지고 있다. 도 2 에 나타낸 바와 같이, 마스크 스테이지 (4) 에는 마스크 스테이지 (4) 를 X 방향 및 Y 방향으로 구동시키는 마스크 스테이지 구동부 (37) 가 구비되어 있다. 이 마스크 스테이지 구동부 (37) 는 제어장치 (17) 에 의하여 제어되고 있다.
도 1 에 나타낸 바와 같이, 마스크 스테이지 (4) 상의 가장자리 둘레에는, 직교하는 방향으로 이동경 (38a, 38b) 이 각각 설치되어 있다. 이동경 (38a)에는 레이저 간섭계 (39a) 가 대향되어 배치되어 있다. 또한, 이동경 (38b) 에는 레이저 간섭계 (39b) 가 대향하여 배치되어 있다. 이들 레이저 간섭계 (39a, 39b) 가 각각 이동경 (38a, 38b) 에 레이저광을 사출하여 이동경 (38a, 38b) 간의 거리를 계측함으로써, 마스크 스테이지 (4) 의 X 방향, Y 방향의 위치, 즉 마스크 (M) 의 위치를 고분해능, 고정밀도로 검출할 수 있게 되어 있다. 그리고, 레이저 간섭계 (39a, 39b) 의 검출결과는 도면에는 나타나 있지 않으나, 제어장치 (17) 로 출력된다.
기판 스테이지 (5) 는 글래스기판 (P) 을 유지하는 것으로서, 마스크 스테이지 (4) 와 마찬가지로, 1차원의 주사노광을 행하도록 X 방향으로 긴 스트로크와, 주사방향과 직교하는 Y 방향으로 스텝이동하기 위한 긴 스트로크를 가지고 있다. 또한, 기판 스테이지 (5) 는 기판 (P) 을 X 방향 및 Y 방향으로 구동하는 기판 스테이지 구동부 (40) 를 구비하고 있다. 기판 스테이지 구동부 (40) 는 제어장치 (17) 에 의하여 제어되고 있다. 나아가 기판 스테이지 (5) 는 Z 방향으로도 자유롭게 이동할 수 있도록 되어 있다. 그리고, 기판 스테이지 (5) 는 마스크 (M) 의 패턴면과 글래스기판 (P) 의 노광면의 Z 방향의 위치를 계측하는 계측수단 (비도시) 을 구비하고 있고, 마스크 (M) 의 패턴면과 글래스기판 (P) 의 노광면이 항상 소정의 간격이 되도록 제어된다.
또한, 기판 스테이지 (5) 상의 가장자리 둘레에는, 직교하는 방향으로 이동경 (42a, 42b) 이 각각 설치되어 있다. 이동경 (42a) 에는 레이저 간섭계 (43a) 가 대향하여 배치되어 있다. 또한, 이동경 (42b) 에는 레이저 간섭계(43b) 가 대향하여 배치되어 있다. 이들 레이저 간섭계 (43a, 43b) 는 각각 이동경 (42a, 42b) 에 레이저광을 사출하여 이동경 (42a, 42b) 간의 거리를 계측함으로써, 기판 스테이지 (5) 의 X 방향, Y 방향의 위치, 즉 글래스기판 (P) 의 위치를 고분해능, 고정밀도로 검출할 수 있도록 되어 있다. 그리고, 레이저 간섭계 (43a, 43b) 의 검출결과는 도면에 도시되어 있지 않으나, 제어장치 (17) 로 출력된다.
제어장치 (17) 는 레이저 간섭계 (39a, 39b) 의 출력으로부터 마스크 스테이지 (4) 의 위치를 모니터하고, 마스크 스테이지 구동부 (37) 를 제어함으로써, 마스크 스테이지 (4) 를 소망하는 위치로 이동시킴과 동시에, 레이저 간섭계 (43a, 43b) 의 출력으로부터 기판 스테이지 (5) 의 위치를 모니터하고, 기판 스테이지 구동부 (40) 를 제어함으로써, 기판 스테이지 (5) 를 소망하는 위치로 이동시킨다. 즉, 제어장치 (17) 는 마스크 스테이지 (4) 및 기판 스테이지 (5) 의 위치를 모니터하면서 양 구동부 (37, 40) 를 제어함으로써, 마스크 (M) 와 글래스 플레이트 (P) 를 투영계 모듈 (3a∼3e) 에 대하여, 임의의 주사속도 (동기이동속도) 로 X 방향으로 동기이동시킨다.
이어서, 본 실시예의 주사노광방법 및 주사형 노광장치에서 사용되는 마스크 (M) 및 글래스기판 (P) 에 대하여 설명하기로 한다.
도 5 에 나타낸 바와 같이, 글래스기판 (P) 에는 4 개의 분할패턴 (51∼54) 이 화면합성되어 이루어지는 직사각형의 LCD 패턴 (LP) 이 전사된다. LCD 패턴 (LP) 은 도시하지 않았으나, 화소패턴 및 이 화소패턴의 주변에 위치하는 주변회로패턴으로 구성되고, 화소 패턴에는 복수의 픽셀에 따른 복수의 전극이 규칙적으로 반복 배열되어 있다. 또한, 주변회로패턴에는 화소패턴의 전극을 구동시키기 위한 드라이버 회로 등이 반복 배열되어 있다.
도 6a 에 나타낸 바와 같이, 분할패턴 (51) 은 X 방향의 길이가 L11, Y 방향의 길이가 L21 의 장방형 형상을 나타내고 있다. 분할패턴 (51) 의 -X 측의 영역에는 주사방향에서 인접하는 분할패턴 (52) 과 상호 일부 중복되어 노광되는 폭 (L13) 의 중복부 (51a) 가 Y 방향으로 연재하는 벨트 형상으로 설정되어 있다. 또한, 분할패턴 (51) 의 -Y 방향의 영역에는, 비주사방향에서 인접하는 분할패턴 (54) 과 상호 일부 중복되어 노광되는 폭 (L23) 의 중복부 (51b) 가 X 방향으로 연재하는 벨트 형상으로 설정되어 있다. 그리고, 중복부 (51a, 51b) 가 교차되는 거의 정방형 형상의 영역은 분할패턴 (51∼54) 을 노광할 때 4 중 노광되는 중복부 (51c) 로 되어 있다.
마찬가지로, 도 6b 에 나타낸 바와 같이, X 방향의 길이가 L12, Y 방향의 길이가 L21 의 분할패턴 (52) 의 +X 측의 영역에는, 분할패턴 (51) 과 서로 일부 중복하여 노광되는 중복부 (52a) 가 설정되고, 분할패턴 (52) 의 -Y 측의 영역에는 분할패턴 (53) 과 상호 일부 중복되어 노광되는 중복부 (52b) 가 설정되어 있다. 나아가, 중복부 (52a, 52b) 가 교차되는 영역에는 4 중 노광되는 중복부 (52c) 가 설정된다. 또한, 도 6c 에 나타낸 바와 같이, X 방향의 길이가 L12, Y 방향의 길이가 L22 의 분할패턴 (53) 의 +X 측의 영역에는, 분할패턴 (54) 과 상호 일부 중복되어 노광되는 중복부 (53a) 가 설정되고, 분할패턴 (53) 의 +Y 측의 영역에는 분할패턴 (52) 과 상호 일부 중복되어 노광되는 중복부 (53b) 가 설정되어 있다. 나아가 중복부 (53a, 53b) 가 교차되는 영역에는 4 중 노광되는 중복부 (53c) 가 설정된다. 마찬가지로, 도 6d 에 나타낸 바와 같이, X 방향의 길이가 L11, Y 방향의 길이가 L22 의 분할패턴 (54) 의 -X 측의 영역에는, 분할패턴 (53) 과 상호 일부 중복되어 노광되는 중복부 (54a) 가 설정되고, 분할패턴 (54) 의 +Y 측의 영역에는 분할패턴 (51) 과 상호 일부 중복되어 노광되는 중복부 (54b) 가 설정되어 있다. 나아가 중복부 (54a, 54b) 가 교차되는 영역에는, 4 중 노광되는 중복부 (54c) 가 설정된다.
또한, 중복부 (51b∼54b) 의 폭 (L23) 은 도 4 에 나타낸 투영영역 (조명영역; 34a∼34e) 의 삼각형상의 단부 (35a∼35h, 35j, 35k) 의 Y 방향의 폭과 동일하게 설정된다. 또한, 중복부 (51a∼54a) 의 폭 (L13) 은 각 투영영역 (34a∼34e) 의 X 방향의 폭과 동일하게 설정된다.
도 7 에 나타낸 바와 같이, 마스크 (M) 에는, 화소패턴 및 주변회로패턴이 반복패턴으로 구성되는 특성을 이용하여, 부분적으로 조명영역을 설정함으로써, 분할패턴 (51∼54) 이 선택되는 패턴 (MP) 이 형성되어 있다. 즉, 패턴 (MP) 을 X 방향으로 L11, Y 방향으로 L21 의 길이로 설정함으로써, 분할패턴 (51) 이 선택되고, 패턴 (MP) 을 X 방향으로 L12, Y 방향으로 L21 의 길이로 설정함으로써, 분할패턴 (52) 이 선택된다. 마찬가지로, 패턴 (MP) 을 X 방향으로 L12, Y 방향으로 L22 의 길이로 설정함으로써, 분할패턴 (53) 이 선택되고, X 방향으로 L11, Y 방향으로 L22 의 길이로 설정함으로써, 분할패턴 (54) 이 선택된다.
마스크 (M) 의 패턴 (MP) 의 주위에는 Cr 로 형성된 차광 벨트 (55) 가 형성되어 있다. 차광 벨트 (55) 는 분할패턴 (51∼54) 을 주사노광할 때, 중복부 (51a∼54a, 51b∼54b) 와 대향하는 측의 투영영역을 차광함으로써, 이 중복부 (51a∼54a, 51b∼54b) 와 대향하는 측의 분할패턴에 에지를 형성한다.
마스크 (M) 의 상방에는, 마스크 (M) 에 형성된 마스크 얼라인먼트 마크 (비도시) 와 글래스기판 (P) 에 형성된 기판 얼라인먼트 마크 (비도시) 를 검출하는 얼라인먼트계 (49a, 49b) 가 배치 형성되어 있다. 얼라인먼트계 (49a, 49b) 는, 마스크 얼라인먼트 마크에 검지광을 조사하고, 마스크 얼라인먼트 마크의 반사광과, 마스크 얼라인먼트 마크 및 외측의 투영계 모듈 (3a 또는 3e) 을 통하여 얻어지는 기판 얼라인먼트 마크의 반사광을 수광함으로써, 마스크 (M) 와 글래스기판 (P) 의 위치어긋남량을 계측한다. 또한, 도 2 에 나타낸 바와 같이 얼라인먼트계 (49a, 49b) 의 계측결과는 제어장치 (17) 로 출력된다. 또한, 얼라인먼트계 (49a, 19b) 는 X 방향으로 이동하는 구동기구 (비도시) 를 가지고 있고, 주사노광시에는 조명영역내로부터 퇴피가능하게 되어 있다.
상기 구성을 가지는 주사형 노광장치 (1) 에 의하여 글래스기판 (P) 상에 분할패턴 (51∼54) 을 이어맞춤 노광하고, LCD 패턴 (LP) 을 화면합성하는 절차를 설명한다. 여기에서는, 분할패턴 (51, 52, 53, 54) 의 순서로 주사노광하는 것으로 하여 설명한다. 또한, 이하의 설명 중, 마스크 스테이지 (4), 기판 스테이지 (5) 의 이동 및 각 조명계 모듈 (10a∼10e) 에서의 조명셔터 (12) 의 구동은 마스크 스테이지 구동부 (37), 기판 스테이지 구동부 (40) 및 셔터 구동부 (16) 를통하여 이루어지고, 각각의 구동은 각각의 구동부를 제어하는 제어장치 (17) 의 제어에 의하여 이루어진다.
먼저, 얼라인먼트계 (49a, 49b) 에서 마스크 얼라인먼트 마크 및 기판 얼라인먼트 마크를 계측하여, 마스크 (M) 와 글래스기판 (P) 과의 위치어긋남을 구하고, 이 결과로부터 마스크 스테이지 (4) 또는 기판 스테이지 (5) 를 구동시켜 위치맞춤한다. 동시에, 마스크 (M) 와 글래스기판 (P) 에 대한 각 투영계 모듈 (3a∼3e) 마다의 상대적인 시프트, 회전, 스케일링 보정량을 산출하고, 이 보정량에 의하여 각 투영계 모듈 (3a∼3e) 의 이미지 시프트기구 (23), 배율조정기구 (27), 상을 회전시키는 직각프리즘 (28, 31) 을 보정한다.
다음으로, 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 구동시켜, 분할패턴 (51) 의 주사개시위치 (분할패턴 (51)) 의 노광영역이 투영영역 (34a∼34e) 의 +X 측에 있는 위치) 에 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 여기에서는, 마스크 (M) 및 글래스기판 (P) 의 주사방향을 -X 방향으로 한다. 이 때, 도 6 에 나타낸 바와 같이, 투영영역 (34e) 의 하단부 (35k) 가 Y 방향에서 중복부 (51b) 의 위치와 일치하도록 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 구동한다. 또한, 도 8a 에 나타낸 바와 같이, 투영영역 (34a∼34e) 은, 조명셔터 (12) 가 광속의 광로를 차폐함으로써 차광되고 있다.
주사가 개시되면, 마스크 (M) 와 글래스기판 (P) 이 일정 속도로 -X 방향으로 동기이동한다. 그리고, 도 8b 에 나타낸 바와 같이, 중복부 (51a) 의 노광영역이 투영영역 (34b, 34d) 에 위치했을 때, 당해 투영영역 (34b, 34d) 에 대응하는 조명계 모듈 (3b, 3d) 에서의 조명셔터 (12) 를 구동시켜 광속의 광로를 개방한다. 이로써, 투영영역 (34b, 34d) 에 위치하는 분할패턴 (51) 의 노광이 개시된다. 또한, 조명셔터 (12) 의 구동타이밍 등은 레이저 간섭계 (39a, 39b 및 43a, 43b) 에 의한 마스크 스테이지 (4) 및 기판 스테이지 (5) 의 위치계측 결과에 의하여 설정된다 (이하, 동일).
동기이동이 진행되어, 도 8c 에 나타낸 바와 같이, 중복부 (51a) 의 노광영역이 투영영역 (34b, 34d) 에 이어서 투영영역 (34a, 34c, 34e) 에 위치하면, 당해 투영영역 (34a, 34c, 34e) 에 대응하는 조명계 모듈 (3a, 3c, 3e) 에서도 조명셔터 (12) 를 구동하여 광속의 광로를 개방한다. 그 결과, 투영영역 (34a, 34c, 34e) 에 위치하는 분할패턴 (51) 의 노광도 개시되고, 도 8d 에 나타낸 바와 같이, 모든 투영영역 (34a∼34e) 에서 노광이 이루어진다. 그리고, 투영영역 (34a∼34e) 이 분할패턴 (51) 의 노광영역에서 벗어난 지점에서, 도 8e 에 나타낸 바와 같이 당해 투영영역 (34a∼34e) 의 조명셔터 (12) 를 닫음과 동시에, 마스크 (M) 와 글래스기판 (P) 과의 동기이동을 정지시킨다. 또한, 분할패턴 (51) 의 +X 방향의 에지는 마스크 (M) 의 차광 벨트 (55) 에 의하여 형성된다.
이어서, 분할패턴 (52) 을 노광할 때에는, 먼저 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 +X 방향으로 구동하고, 분할패턴 (52) 의 주사개시위치 (분할패턴 (52) 의 노광영역이 투영영역 (34a∼34e) 의 +X 방향에 있는 위치) 에 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 다음으로, 마스크 (M) 와 글래스기판 (P) 을 -X 방향으로 동기이동시킴과 동시에, 각 투영영역 (34a∼34e) 이 분할패턴 (52) 의 노광영역에 달하기 전에 조명셔터 (12) 를 개방한다. 이로써, 도 9a 에 나타낸 바와 같이, 투영영역 (34a∼34e) 에 위치하는 분할패턴 (52) 이 순차적으로 노광된다. 또한, 분할패턴 (52) 의 -X 측의 에지도, 마스크 (M) 의 차광 벨트 (55) 에 의하여 형성된다.
주사노광이 진행되고, 도 9b 에 나타낸 바와 같이, 중복부 (52a) 의 노광영역이 투영영역 (34b, 34d) 에 위치한 경우에는, 당해 투영영역 (34b, 34d) 에 대응하는 조명셔터 (12) 를 닫아 광속을 차광한다. 이후 도 9c 에 나타낸 바와 같이, 투영영역 (34a, 34c, 34e) 에 대응하는 조명셔터 (12) 를 개방한 채로 주사노광한다. 그리고, 도 9d 에 나타낸 바와 같이, 중복부 (52a) 의 노광영역이 투영영역 (34a, 34c, 34e) 에 위치하면, 당해 투영영역 (34a, 34c, 34e) 에 대응하는 조명셔터 (12) 도 닫는다. 이후, 도 9c 에 나타낸 바와 같이, 투영영역 (34a∼34e) 이 분할패턴 (52) 의 노광영역에서 벗어난 지점에서 마스크 (M) 와 글래스기판 (P) 의 동기이동을 정지시키고, 분할패턴 (52) 의 주사노광이 종료된다.
다음으로, 분할패턴 (53) 을 노광할 때에는, 마스크 스테이지 (4) 를 +X 방향으로 구동함과 동시에, 기판 스테이지 (5) 를 +X 방향으로 구동하여, 분할패턴 (53) 의 주사개시위치 (분할패턴 (53) 의 노광영역이 투영영역 (34a∼34e) 의 +X 측에 있는 위치) 로 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 이 때, 도 5 에 나타낸 바와 같이, 투영영역 (34a) 의 상단부 (35j) 가 중복부 (53b) 에 위치하도록 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 구동시킨다. 그리고, 마스크 (M) 와 글래스기판 (P) 을 -X 방향으로 동기이동시키고, 분할패턴 (52) 과동일한 순서로 조명셔터 (12) 를 구동시켜 분할패턴 (53) 을 노광한다.
마찬가지로, 분할패턴 (54) 이 노광될 때에는, 먼저 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 +X 방향으로 구동시켜, 분할패턴 (54) 의 주사개시위치 (분할패턴 (54) 의 노광영역이 투영영역 (34a∼34e) 의 +X 측에 있는 위치) 로 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 그리고, 마스크 (M) 와 글래스기판 (P) 을 -X 방향으로 동기이동시키고, 분할패턴 (51) 과 동일한 순서로 조명셔터 (12) 를 구동시켜 분할패턴 (54) 을 노광한다. 즉, 마스크 스테이지 (4) 및 기판 스테이지 (5) 의 구동과 연동하여, 조명셔터 (12) 를 구동시킴으로써 노광한다. 이상의 주사노광에 의해, 글래스기판 (P) 상에 분할패턴 (51∼54) 이, 인접하는 분할패턴끼리의 중복부 (51a∼54a, 51b∼54b) 를 중복시켜 화면합성된 LCD 패턴 (LP) 이 형성된다.
이어서, 상기한 바와 같이, 노광된 분할패턴 (51∼54) 에서의 노광량 분포를 검증한다. 여기에서는 중복부가 0 ≤x ≤1, 0 ≤y ≤1 의 범위로 되도록 정규화하는 것으로 한다. 또한, 이 범위에서의 노광량을 z 로 나타내고, 비중복부에서의 노광량을 1 로 한다.
먼저, 분할패턴 (51∼54) 에 있어서 4 중 노광되는 중복부 (51c∼54c) 의 노광량 분포에 대하여 설명한다. 분할패턴 (51) 의 노광시에 중복부 (51c) 는 투영영역 (34e) 의 단부 (35k) 에서 노광되나, 이 때의 노광량 분포는, 도 10a 에 나타낸 바와 같은 사각추 형상으로 되고, 아래의 수학식 1 의 함수로 표시된다.
또한, 중복부 (52c) 는 분할패턴 (52) 의 노광시에 투영영역 (34e) 의 단부 (35k) 에서 노광되나, 이 때의 노광량 분포는, 도 10b 에 나타낸 바와 같은 삼각추 형상으로 되고, 아래의 수학식 2 의 함수로 표시된다.
또한, 중복부 (53c) 는 분할패턴 (53) 의 노광시에 투영영역 (34a) 의 단부 (35j) 에서 노광되나, 이 때의 노광량 분포는, 도 10c 에 나타낸 바와 같은 삼각추 형상으로 되고, 아래의 수학식 3 의 함수로 표시된다.
나아가, 중복부 (54c) 는 분할패턴 (54) 의 노광시에 투영영역 (34a) 의 단부 (35j) 에서 노광되나, 이 때의 노광량 분포는, 도 10d 에 나타낸 바와 같은 사각추 형상으로 되고, 아래의 수학식 4 의 함수로 표시된다.
그리고, 상기 수학식 1 ~ 4 의 함수의 합계가 4 중 노광 후의 노광량 분포가 되고, 이것은 z = 1 로 된다. 즉, 4 중 노광된 글래스기판 (P) 상의 노광영역의 총 노광량이, 비중복부와 동일해진다. 즉, 물리적 구조 및 구동방법을 불문하고, 수학식 1 ∼ 4 의 함수로 표시되는 노광량 분포를 형성함으로써, 4 중 노광 부분의 노광량 분포를 비중복부와 동일하게 할 수 있다.
다음으로, 주사방향인 X 방향에 인접하는 분할패턴 (51 과 52, 및 53 과 54) 이 중복되는 중복부 (51a∼54a) 에 대하여 설명한다. 또한, 중복부 (53a, 54a) 가 중복부 (51a, 52a) 와 동일한 노광량 분포가 되므로, 여기에서는 중복부 (51a, 52a) 에 대하여 설명한다. 또한, 여기에서는 도 11 에 나타낸 바와 같이, 투영영역 (34a∼34c) 의 단부 (35a∼35d) 중, 단부 (35a, 35b) 에서 노광되는 직사각형의 중복부 (51e, 52e) 와, 단부 (35c, 35d) 에서 노광되는 직사각형의 중복부 (51f, 52f) 의 노광량 분포에 대하여 설명한다.
먼저, 중복부 (51a) 내의 중복부 (51e) 는, 분할패턴 (51) 의 노광시에, 투영영역 (34a) 의 단부 (35a) 에 의하여 도 12a 에 나타낸 사각추 형상의 노광량 분포로 노광됨과 동시에, 투영영역 (34b) 의 단부 (35b) 에 의하여 도 12b 에 나타낸 삼각추 형상의 노광량 분포로 노광된다. 여기에서, 단부 (35a) 에서 노광된 노광량 분포는 상기 수학식 1 의 함수로 표시되고, 단부 (35b) 에서 노광된 노광량분포는, 아래의 수학식 5 의 함수로 표시된다.
따라서, 분할패턴 (51) 의 노광시에, 단부 (35a, 35b) 에서 노광된 중복부 (51e) 의 노광량 분포는, 도 13a 에 나타낸 바와 같이, 수학식 1 과 5 의 함수의 합계인 z = x 의 함수로 표시된다.
마찬가지로, 중복부 (51f) 는, 분할패턴 (51) 의 노광시에, 투영영역 (34c) 의 단부 (35d) 에 의하여 도 12c 에 나타낸 사각추 형상의 노광량 분포로 노광됨과 동시에, 투영영역 (34b) 의 단부 (35c) 에 의하여 도 12d 에 나타낸 삼각추 형상의 노광량 분포로 노광된다. 여기에서, 단부 (35d) 에서 노광된 노광량 분포는 상기 수학식 4 의 함수로 표시되고, 단부 (35c) 에서 노광된 노광량 분포는 아래의 수학식 6 의 함수로 표시된다.
따라서, 분할패턴 (51) 의 노광시에, 단부 (35d, 35c) 에서 노광된 중복부 (51f) 의 노광량 분포도, 13a 에 나타낸 바와 같이 수학식 4 와 6 의 함수의 합계인 z = x 의 함수로 표시된다.
한편, 각 투영영역에서 단부를 제외한 직사각형 부분에서 노광되는 중복부에 대해서는, 예를 들어 도 11 에 나타낸 바와 같이, 중복부 (51a) 중에서 중복부 (51e, 51f) 에서 삽입된 중복부 (51g) 는, 투영영역 (34b) 의 직사각형의 중앙부 (41) 에 의하여 도 13a 에 표시된 z = x 의 노광량분포로 노광된다. 이것은, 기타의 투영영역 (34a, 34c∼34e) 의 직사각형 부분에서 노광되는 중복부에서도 동일하다. 상기의 결과, 분할패턴 (51) 에서의 중복부 (51a) 는, 도 14a 에 나타내 바와 같이 z = x 의 함수로 표시되는 원활한 경사를 가지는 노광량분포로 노광된다. 다음으로, 중복부 (52a) 내의 중복부 (52e) 는 분할패턴 (52) 의 노광시에, 투영영역 (34a) 의 단부 (35a) 에 의하여 도 15a 에 나타낸 삼각추 형상의 노광량분포로 노광됨과 동시에, 투영영역 (34b) 의 단부 (35b) 에 의하여 도 15b 에 나타낸 사각추 형상의 노광량분포로 노광된다. 여기에서, 단부 (35a) 에서 노광된 노광량분포는 상기 수학식 2 의 함수로 표시되고, 단부 (35b) 로 노광된 노광량분포는 아래의 수학식 7 의 함수로 표시된다.
따라서, 분할패턴 (52) 의 노광시에, 단부 (35a, 35b) 에서 노광된 중복부 (52e) 의 노광량 분포는, 도 13b 에 나타낸 바와 같이, 수학식 2 와 7 의 함수의 합계인 z = 1 - x 의 함수로 표시된다.
마찬가지로, 중복부 (52f) 는, 분할패턴 (52) 의 노광시에 투영영역 (34c)의 단부 (35d) 에 의하여 도 15c 에 나타낸 삼각추 형상의 노광량 분포로 노광됨과 동시에, 투영영역 (34b) 의 단부 (35c) 에 의하여 도 15d 에 나타낸 사각추 형상의 노광량 분포로 노광된다. 여기에서, 단부 (35d) 에서 노광된 노광량 분포는 상기 수학식 3 의 함수로 표시되고, 단부 (35c) 에서 노광된 노광량 분포는 아래의 수학식 8 의 함수로 표시된다.
따라서, 분할패턴 (52) 의 노광시에, 단부 (35d, 35c) 에서 노광된 중복부 (52f) 의 노광량 분포는, 도 13b 에 나타낸 바와 같이, 수학식 3 과 8 의 함수의 합계인 z = 1 - x 의 함수로 표시된다. 또한, 중복부 (52a) 중, 도 11 에 나타낸 중복부 (52e, 52f) 에 끼워진 중복부 (52g) 도, 중앙부 (41) 에 의하여 도 13b 에 z = 1 - x 로 표시되는 노광량분포로 노광된다. 이것은, 기타의 투영영역 (34a, 34c∼34e) 의 직사각형부분에서 노광되는 중복부에서도 동일하다. 상기의 결과, 분할패턴 (52) 에서의 중복부 (52a) 는, 도 14b 에 나타내 바와 같이 z = 1 - x 의 함수로 표시되는 원활한 경사를 가지는 노광량분포로 노광된다.
이상으로부터, 동기이동방향에서 인접하는 분할패턴 (51, 52) 을 노광함으로써, 중복부 (51a, 52a) 의 노광영역에서의 총 노광량은 z = 1 이 되고, 비중복부와 동일해진다. 이것은, 분할패턴 (53, 54) 끼리 중복되는 53a, 54a 에 대해서도 동일하다.
이어서, 비주사방향인 Y 방향으로 인접하는 분할패턴 (51 과 54, 및 52 와 53) 이 중복되는 중복부 (51b∼54d) 에 대해서 설명한다. 이 경우, 중복부 (51b, 521b) 는 투영영역 (34e) 의 단부 (35k) 에서 노광되나, 단부 (35k) 가 -Y 방향을 향하여 점차 축경 (縮徑) 되므로, 도 14c 에 나타낸 바와 같이 z = y 의 함수로 표시되는 노광량분포로 노광된다. 마찬가지로, 중복부 (53b, 54b) 는 투영영역 (34a) 의 단부 (35j) 에서 노광되나, 단부 (35j) 가 +Y 방향을 향하여 점차 축경되므로, 도 14d 에 나타낸 바와 같이, z = 1 - y 의 함수로 표시되는 노광량분포로 노광된다.
이상에서, 분할패턴 (51∼54) 을 노광함으로써, 중복부 (51b 와 54b, 52b 와 53b) 가 각각 중복되는 노광영역의 총 노광량은 z = 1 이 된다. 따라서, 분할패턴 (51∼54) 을 X 방향 및 Y 방향으로 일부 중복시켜 이어맞추어도, z = 1 의 균일한 노량광분포로 노광할 수 있다.
이상 설명한 바와 같이, 본 실시예의 주사노광방법 및 주사형 노광장치에서는, 마스크 (M) 와 글래스기판 (P) 의 동기이동 방향에서도 분할패턴끼리를 원활한 노광량 분포로써 일부 중복시키고 있으므로, 이들 분할패턴을 원활하게 이어맞출 수 있게 되고, 품질을 저하시키지 않고 액정표시패널의 대면적화에 용이하게 대응할 수 있다. 특히, 본 실시예에서는 투영광학계 (3) 가 Y 방향에서 투영영역이 중복되는 복수의 투영계 모듈 (3a∼3e) 로 구성되어 있기 때문에, 비주사방향에서도 더욱 긴 액정표시패널을 제조할 수 있고, 더욱 면적이 큰 패널을 얻을 수 있다. 또한, 본 실시예에서는 이들 분할패턴의 중복부에서의 노광량을, 노광광의 조사와차광을 전환하는 간단한 동작으로 제어하므로, 장치의 대형화 및 고가격화도 방지할 수 있다.
도 16 및 도 17 은, 본 발명의 주사노광방법 및 주사형 노광장치의 제 2 의 실시예를 나타내는 도면이다. 이 도면에서 도 1 내지 도 15 에 나타낸 제 1 의 실시예의 구성요소와 동일한 요소에 대해서는 동일 부호를 붙이고, 그 설명을 생략한다. 제 2 의 실시예와 상기 제 1 의 실시예가 상이한 점은, 조명셔터 (12) 의 구동 타이밍을 마스크 스테이지 (4) 및 기판 스테이지 (5) 의 위치계측 결과에 의해서가 아니라, 이어맞춤용 마크를 검출하여 계측하는 점, 및 분할패턴 (51∼54) 의 노광순서를 최적화한 점이다.
도 16 에 나타낸 바와 같이, 마스크 (M) 의 차광 벨트 (55) 의 외측에는, X 방향을 따른 양측 테두리 중앙 (즉, 마스크 (M) 의 Y 방향 양단 측의 중앙) 의 근방에 위치하는 얼라인먼트 마크 (56a, 56b) 와, 상기 양측 테두리에 X 방향을 따라서 직선상에 위치하는 얼라인먼트 마크 (57a∼60a, 57b∼60b) 를 각각 구비하고 있다. 얼라인먼트계 (56a, 56b) 는 마스크 (M) 의 프리 얼라인먼트할 때 사용되고, 얼라인먼트 마크 (57a∼60a, 57b∼60b) 는 마스크 (M) 의 얼라인먼트 시의 각종 보정량 산출에 사용되고, Cr 등에 의하여 + 자 형상으로 형성되어 있다.
또한, 얼라인먼트 마크 (57a∼60a, 57b∼60b) 는, 분할패턴 (51∼54) 의 중복부 (51a∼54a) 가 투영영역 (34a∼34e) 에 위치했을 때, 조명셔터 (12) 에 의한 광속의 조도ㆍ차광을 전환할 때의 지표로도 사용된다. 구체적으로는, 투영영역 (34a∼34e) 중, Y 방향으로 3 개 배열되는 투영영역 (34a, 34c, 34e) 을 투영영역군 (34m), Y 방향으로 2 개 배열되는 투영영역 (34b, 34d) 을 투영영역군 (34n) 으로 하면, 얼라인먼트 마크 (57a) 는 분할패턴 (51) 을 주사노광할 때, 중복부 (51a) 가 투영영역군 (34n) 에 위치했을 때 얼라인먼트계 (49a) 로 검출되는 위치에 형성되고, 얼라인먼트 마크 (58a) 는 중복부 (51a) 가 투영영역군 (34m) 에 위치했을 때 얼라인먼트계 (49a) 로 검출되는 위치에 형성된다. 또한, 이들 얼라인먼트 마크 (57a, 58b) 는 각 얼라인먼트 마크가 검출될 때 노광되어 있는 분할패턴 (51) 의 근방에 배치되어 있다.
마찬가지로, 얼라인먼트 마크 (59a) 는 분할패턴 (52) 을 주사노광할 때, 중복부 (52a) 가 투영영역군 (34n) 에 위치했을 때 얼라인먼트계 (49a) 로 검출되는 위치에 형성되고, 얼라인먼트 마크 (60a) 는 중복부 (52a) 가 투영영역군 (34m) 에 위치했을 때 얼라인먼트계 (49a) 로 검출되는 위치에 형성된다. 또한 얼라인먼트 마크 (57b) 는, 분할패턴 (54) 을 주사노광할 때, 중복부 (54a) 가 투영영역군 (34n) 에 위치했을 때 얼라인먼트계 (49b) 로 검출되는 위치에 형성되고, 얼라인먼트 마크 (58b) 는 중복부 (54a) 가 투영영역군 (34m) 에 위치했을 때 얼라인먼트계 (49b) 로 검출되는 위치에 형성된다. 나아가, 얼라인먼트 마크 (59b) 는 분할패턴 (53) 을 주사노광할 때, 중복부 (53a) 가 투영영역군 (34n) 에 위치했을 때, 얼라인먼트계 (49b) 로 검출되는 위치에 형성되고, 얼라인먼트 마크 (60b) 는 중복부 (53a) 가 투영영역군 (34m) 에 위치했을 때 얼라인먼트 (49b) 로 검출되는 위치에 형성된다.
그리고, 얼라인먼트 마크 (59a, 60a, 57b∼60b) 도 각 얼라인먼트 마크가 검출되었을 때 노광되어 있는 분할패턴의 근방에 각각 배치되어 있다.
이 마스크 (M) 를 사용하여 주사노광할 때에는, 먼저 얼라인먼트계 (49a, 49b) 로 얼라인먼트 마크 (56a, 56b) 를 각각 계측하여 프리 얼라인먼트를 행한 후, 얼라인먼트 마크 (57a∼60a, 57b∼60b) 를 계측하여 결상특성을 보정하기 위한 각종 보정량을 산출한다. 그리고 이 보정량에 의하여 투영계 모듈 (3a∼3e) 의 결상특성을 조정한 후, 분할패턴 (51) 을 주사노광한다.
여기에서는, 먼저 도 17a 에 나타낸 바와 같이, 분할패턴 (51) 의 노광영역이 투영영역군 (34m, 34n) 의 +X 측에 있는 주사 개시위치에서 마스크 스테이지 (4) 및 기판 스테이지 (5) 를 구동시켜, 마스크 (M) 및 글래스기판 (P) 을 -X 방향으로 동기이동시킨다. 이 때, 조명셔터 (12) 에 의하여 광속의 광로를 차광해 놓는다. 그리고, 동기이동 중에 얼라인먼트계 (49a) 가 얼라인먼트 마크 (57a) 를 검출하면, 즉 중복부 (51a) 가 투영영역군 (34n) 에 위치하면, 곧 바로 이 투영영역군 (34n) 에 대응하는 조명셔터 (12) 를 열어 광속의 광로를 개방한다.
또한, 동기이동이 진행되어, 얼라인먼트계 (49a) 가 얼라인먼트 마크 (58a) 를 검출하면, 즉 중복부 (51a) 가 투영영역군 (34m) 에 위치하면, 곧바로 이 투영영역군 (34m) 에 대응하는 조명셔터 (12) 를 열어 광속의 광로를 개방한다. 그리고, 도 17b 에 나타낸 바와 같이 분할패턴 (51) 의 노광영역이 투영광학군 (34m, 34n) 의 -X 측에 도달하면 분할패턴 (51) 의 노광이 완료된다.
이어서, 분할패턴 (54) 을 노광하기 위하여, 마스크 (M) 및 글래스기판 (P) 을 +Y 방향으로 스텝 이동시킨다 (단, 글래스기판 (P) 이 길이 (L22) 이동하는 것에 대하여, 마스크 (M) 는 도 16 에 나타낸 길이 (L24) 만큼 이동한다.). 이로써, 도 17c 에 나타낸 바와 같이 분할패턴 (54) 의 노광영역이 투영영역군 (34m, 34n) 의 -X 측에 위치한다. 그리고, 조명셔터 (12) 에 의하여 광속의 광로를 차광한 상태에서 마스크 (M) 및 글래스기판 (P) 을 +X 방향으로 동기이동시키고, 분할패턴 (54) 이 각 투영영역군 (34m, 34n) 에 도달하기 전에, 투영영역군 (34m, 34n) 에 대응하는 조명셔터 (12) 를 열어 광속의 광로를 개방한다. 동기이동 중에, 얼라인먼트계 (49b) 가 얼라인먼트 마크 (58b) 를 검출하면, 곧 바로 투영영역군 (34m) 에 대응하는 조명셔터 (12) 를 닫아 광속의 광로를 차광한다.
게다가, 동기이동이 진행되어, 얼라인먼트계 (49b) 가 얼라인먼트 마크 (57b) 를 검출하면, 곧바로 이 투영영역군 (34n) 에 대응하는 조명셔터 (12) 를 닫아 광속의 광로를 차광한다. 그리고, 도 17d 에 나타낸 바와 같이, 분할패턴 (54) 의 노광영역이 투영영역군 (34m, 34n) 보다 +X 측에 도달하고, 분할패턴 (54) 의 노광이 완료된다.
이어서, 분할패턴 (53) 을 노광할 때, 일단 마스크 (M) 및 글래스기판 (P) 을 -X 방향으로 공송 (空送) 하여 도 17e 에 나타낸 바와 같이, 분할패턴 (53) 의 노광영역을 투영영역군 (34m, 34n) 의 -X 측에 위치시킨다 (단, 상기와 마찬가지로, 마스크 (M) 와 글래스기판 (P) 의 공송량은 상이하다). 이 때, 광속의 광로는 차광상태이다. 그리고, 마스크 (M) 와 글래스기판 (P) 을 +X 방향으로 동기이동시키고, 상기와 마찬가지로 얼라인먼트계 (49b) 가 얼라인먼트 마크 (60b) 를 검출하여 중복부 (53e) 가 투영영역군 (34m) 에 위치하면, 곧 바로 이 투영영역군 (34m) 에 대응하는 조명셔터 (12) 를 열고, 얼라인먼트계 (49b) 가 얼라인먼트 마크 (59b) 를 검출하여 중복부 (53a) 가 투영영역군 (34n) 에 위치하면, 곧 바로 이 투영영역군 (34n) 에 대응하는 조명셔터 (12) 를 열어 각 광로를 개방한다. 이로써, 글래스기판 (P) 상에 분할패턴 (53) 이 순차적으로 전사되고, 도 17f 에 나타낸 바와 같이, 분할패턴 (53) 의 노광영역이 투영영역군 (34m, 34n) 의 +X 측에 도달하여 분할패턴 (53) 의 노광이 완료된다.
다음으로, 분할패턴 (52) 을 노광하기 위하여, 마스크 (M) 를 길이 (L24), 글래스기판 (P) 을 길이 (L21), 각각 -Y 방향으로 스텝 이동시킨다. 이로써, 도 17g 에 나타낸 바와 같이, 분할패턴 (52) 의 노광영역이 투영영역군 (34m, 34n) 의 +X 측에 위치한다. 그리고 조명셔터 (12) 에 의하여 광속의 광로를 차광한 상태에서 마스크 (M) 및 글래스기판 (P) 을 -X 방향으로 동기이동시키고, 분할패턴 (52) 이 각 투영영역군 (34m, 34n) 에 도달하기 전에, 투영영역군 (34m, 34n) 에 대응하는 조명셔터 (12) 를 열어 광속의 광로를 개방한다. 동기이동 중에, 얼라인먼트계 (49b) 가 얼라인먼트 마크 (59b) 를 검출하면, 곧바로 이 투영영역군 (34n) 에 대응하는 조명셔터 (12) 를 닫고, 얼라인먼트계 (49a) 가 얼라인먼트 마크 (60a) 를 검출하면, 곧 바로 투영영역군 (34m) 에 대응하는 조명셔터 (12) 를 닫아 각 광로를 차광한다. 이로써, 글래스기판 (P) 상에 분할패턴 (52) 이 전사되고, LCD 패턴 (P) 이 합성된다.
본 실시예의 주사노광방법 및 주사노광장치에서는, 상기 제 1 실시예와 동일한 효과가 얻어지는 것에 부가하여, 각 분할패턴의 주사노광 종료마다 다음의 주사노광 개시위치에 마스크 (M) 및 글래스기판 (P) 을 공송하는 제 1 의 실시예에 비교하여 공송이 적기 때문에, 앞의 분할패턴의 주사노광 종료위치로부터 뒤의 분할패턴의 노광개시위치까지의 마스크 (M) 및 글래스기판 (P) 의 이동거리가 짧아지고, 스루풋이 향상된다. 또한, 본 실시예에서는 마스크 (M) 의 분할패턴과 동시에 형성된 얼라인먼트 마크 (57a∼60a, 57b∼60b) 를 검출함으로써, 조명셔터 (12) 에 의한 투영영역군 (34m, 34n) 에 대한 광속의 차광ㆍ조사를 전환하고 있기 때문에, 마스크 스테이지 (4) 및 기판 스테이지 (5) 의 위치를 검출하는 경우와 비교하여, 조명셔터 (12) 의 구동 타이밍이 보다 고정밀하게 된다.
또한, 상기 실시예에서는 이어맞춤용 마스크와 결상특성 보정용의 얼라인먼트 마크를 겸용하는 구성으로 하였으나, 본 발명은 상기 구성에 한정되는 것은 아니고, 전용 마크를 개별적으로 형성할 수도 있다. 또한, 상기 실시예에서는, 분할패턴의 중복부의 위치를 얼라인먼트 마크 등을 사용하여 검출하여 노광하는 경우에 대하여 설명하였으나, 레이저 간섭계 (39, 43) 를 사용하여, 각각의 스테이지의 위치와, 스테이지에 대한 마스크, 기판의 위치에서 노광개시, 종료를 제어할 수도 있다.
또한, 제 1 실시예에서는 동기이동방향을 모두 동일 방향으로 하였으나, 제 2 실시예와 같이, 동기이동방향에서 인접하는 분할패턴 (51, 52 및 53, 54) 끼리만을 동일 방향으로 하거나, 나아가 각 분할패턴 (51, 52 및 53, 54) 마다 개별적으로 동기이동방향을 설정할 수도 있다. 이 경우에는 마스크 (M) 또는 글래스기판 (P) 의 이동거리가 가장 짧은 노광영역을 선택하는 등, 최적화된 노광순서에 따라서 동기이동방향을 설정할 수 있다. 어느 경우나, 동기이동방향에서 인접하는 분할패턴끼리의 중복부가 당해 분할패턴의 동기이동방향의 전방 측에 배치되었을 때는, 중복부가 투영영역에 위치했을 때 노광광을 개방하고, 중복부가 당해 분할패턴의 동기이동방향의 후방측에 배치되었을 때는, 중복부가 투영영역에 위치했을 때 노광광을 차광하면, 동기이동방향에 의존하지 않고, 제 1 실시예에서 설명한 바와 같이, 중복부 (51a∼54a, 51b∼54b, 51c∼54c) 와 비중복부의 노광량 분포가 동일해진다.
게다가, 상기 실시예에서는 중복부 (51a∼54a) 및 중복부 (51c∼54c) 를 투영영역 (34e) 의 단부 (35k) 와 투영영역 (34a) 의 단부 (35j) 에서 중복 노광하는 구성으로 하였으나, LCD 패턴 (LP) 의 Y 방향의 길이에 따라서, 중복 노광에 사용하는 투영영역을 적절히 변경할 수도 있다. 예를 들어, 중복부 (51b, 52b, 51c, 52c) 에 관해서는 투영영역 (34e) 의 단부 (35k) 에서 노광하고, 중복부 (53b, 54b, 53c, 54c) 에 관해서는 투영영역 (34b) 의 단부 (35b) 에서 노광할 수도 있다. 이 경우, 중복부 (53b, 54b, 53c, 54c) 를 노광할 때, 투영영역 (34a) 에 대응하는 조명셔터 (12) 를 노광 중에 닫을 수 있다. 이것은, 단부 (35g) 와 단부 (35j) 에서 중복 노광하는 경우도 마찬가지이다. 이렇게, Y 방향으로 인접하는 분할패턴 끼리의 중복부의 노광에 관해서는 투영영역의 단부 형상에 의존하지 않고, 중복부와 비중복부의 노광량 분포를 동일하게 할 수 있다. 또한, 전술한 바와 같이, 이 경우에도 동기이동방향은 한정되지 않고, 각 분할패턴마다 개별적으로 설정할 수 있다.
또한, 상기 실시예에서는, 투영광학계 (3) 가 복수의 투영계 모듈 (3a∼3e) 로 구성되고, 투영영역군 (34a∼34e) 이 복수 병렬되는 구성으로 하였으나, 본 발명은 상기 구성에 한정되지 않고, 도 18 에 나타낸 바와 같이 단일 투영영역 (34f) 을 가지는 투영광학계를 사용할 수도 있다. 이 경우, 투영영역 (34f) 의 폭은 중복부 (51a∼54a) 의 폭과 동일한 길이 (L13) 로 설정된다. 또한, 투영영역 (34f) 의 단부 (35m, 35n) 의 Y 방향의 폭은, 중복부 (51b∼54b) 의 폭과 동일한 길이 (L23) 로 설정된다.
한편, 상기 실시예에서는 동기이동방향의 투영영역의 폭이 중복부 (51a∼54a, 51c∼54c) 의 X 방향의 폭 (L13) 과 거의 일치하나, 시야조리개 (26) 에 관하여 투영영역의 크기를 가변으로 함으로써, 중복부 (51a∼54a, 51c∼54c) 의 폭을 임의로 설정할 수 있다. 이 경우, 투영영역의 크기가 변함으로써, Y 방향에서 인접하는 투영영역 (34a∼34e) 에 있어서 단부 (35a∼35h) 의 위치가 일치하지 않게 되므로, 투영영역의 변경에 따라서 투영계 모듈 (3a∼3e) 을 이동시키거나, 이미지 시프트기구 (23) 를 조정하여 각 투영영역 (34a∼34e) 의 위치를 Y 방향으로 (경우에 따라서는 X 방향) 시프트시킨다.
나아가, 도 19 에 나타낸 바와 같이 투영영역의 크기를 변경할 때, 각 투영영역 (3a∼3e) 에 있어서, 예를 들어 +X 측의 변 (투영영역군 (34m) 은 짧은 변, 투영영역군 (34n) 은 긴 변) 을 동일 방향으로 길이 (L14) 만큼 이동시키면 Y 방향에서 인접하는 단부 (35a∼35h) 의 Y 방향의 위치가 일치된다. 그래서, 각 투영영역 (34a∼34e) 의 위치를 시프트시킬 필요가 없어지고, 따라서 중복부(51a∼54a, 51c∼54c) 의 폭은 L13+L14 가 되고 임의의 값으로 설정할 수 있다. 이것은 +X 측의 변을 -X 방향으로 이동시키거나 -X 측의 변을 이동시켜도 동일하다.
또한, 상기 실시예에서는, 4 회의 주사노광에 의하여 글래스기판 (P) 상에 LCD 패턴 (LP) 을 화면합성하는 구성으로 하였으나, 본 발명은 상기 구성에 한정되는 것이 아니다. 예를 들어, 3 회 이하의 주사노광에 의하여 글래스기판 (P) 에서 화면합성하거나, 5 회 이상의 주사노광으로 화면합성하는 구성으로 할 수도 있다. 나아가, 광원 (6) 을 하나가 아니고, 각 광로마다 형성하거나 복수의 광원을 형성하고, 라이트 가이드 등을 사용하여 복수의 광원 (또는 1 개) 으로부터 나온 광을 하나로 합성하고, 다시 각 광로마다 광을 분기시키는 구성일 수도 있다. 이 경우, 광원의 광량의 어긋남에 의한 악영향을 배제할 수 있다. 게다가, 광원의 하나가 꺼져도 전체의 광량이 저하될 뿐이므로, 노광된 디바이스를 사용할 수 없게 되는 것을 방지할 수 있다.
또한, 상기 실시예에서는 투영계 모듈 (3a∼3e) 을 통한 광로를 조명셔터 (12) 로 차광하는 구성으로 하였으나, 본 발명은 상기 구성에 한정되지 않는다. 예를 들어, 필터 (21) 에 투과율이 0 인 투과 불능부를 형성하고 광로를 차광하는 경우에는 투과 불능부를 광로에 위치시키는 구성을 취할 수도 있다.
또한, 투영계 모듈 (3a∼3e) 의 배율은, 등배계뿐만 아니라 축소계 및 확대계 중 어느 하나일 수도 있다. 또한, 투영계 모듈 (3a∼3e) 에는, 엑시머레이저 등의 원자외선을 사용하는 경우에는 초재로서 석영이나 형석 등의 원자외선을투과하는 재료를 사용하고, F2 레이저 또는 X 선을 사용하는 경우에는 반사굴절계 또는 굴절계의 광학계 (마스크 (M) 도 반사형 타입의 것을 사용한다) 를 사용할 수 있다. 또한, 본 발명은 투영계 모듈 (3a∼3e) 을 사용하지 않고, 마스크 (M) 와 글래스기판 (P) 을 밀접시켜 마스크 (M) 의 패턴을 노광하는 프록시미티 노광장치에도 적용할 수 있다.
다음으로, 본 발명의 주사노광방법 및 주사형 노광장치의 제 4 실시예를 도 20 내지 도 30 을 참조하여 설명하기로 한다. 여기에서는, 기판으로서 액정표시패널 제조에 사용되는 각형의 글래스기판을 사용하고, 레티클에 형성된 액정표시 디바이스의 회로패턴을 스텝 앤드 스킨 방식의 노광장치에 의하여 글래스기판에 정립 등배로 화면합성하는 경우의 예를 사용하여 설명하기로 한다.
도 20 은 주사형 노광장치 (101) 의 광학계 구성을 나타내는 개략도이다.
주사형 노광장치 (101) 는, 마스크 (M; 레티클) 에 형성된 패턴 (예를 들어 액정표시 디바이스 패턴) 을 레지스트 등이 도포된 감광성의 글래스기판 (P; 기판) 상에 투영전사하는 것으로서, 광원 (102), 조명광학계 (103), 투영광학계 (PL), 마스크 스테이지 (105) 및 기판 스테이지 (106) 로 개략 구성되어 있다. 또한 상기 제 1 실시예와 마찬가지로, 마스크 (M) 및 글래스기판 (P) 은 XY 평면을 따라서 배치되고, 이하에서 마스크 (M) 및 기판 (P) 이 XY 평면을 따라서 배치되어 있는 것으로 하고, Y 평면 중 주사방향 (동기이동방향) 을 X 방향 (도 1 중, 좌우 방향), X 방향과 직교하는 비주사방향을 Y 방향 (도 1 중, 지면에 직교하는 방향) 으로 하고, XY 평면에 직교하는 광축방향을 Z 방향으로 하여 설명하기로 한다.
광원 (102) 은 노광광으로서의 빔 (B) 을 발하는 것으로서, 초고압 수은램프 등으로 구성되어 있다. 이 광원 (102) 에는 회전타원면으로 이루어지는 반사면을 가지고, 광원 (102) 이 발하는 노광광을 집광하는 타원경 (102a) 이 부설되어 있다. 그리고 광원 (102) 은, 타원경 (102a) 의 제 1 초점위치에 위치결정되어 있다. 따라서, 광원 (102) 에서 사출된 조명빔 (B) 은, 반사미러 (107) 를 통하여 타원경 (102a) 의 제 2 초점위치에 광원 상을 형성한다. 이 제 2 초점위치의 근방에는 셔터 (비도시) 가 형성되어 있고, 빔 (b) 에 대한 셔터의 개폐에 의하여 노광상태와 비노광상태을 전환하고 있다.
조명광학계 (103) 는, 반사미러 (107, 108), 파장선택필터 (비도시), 플라이아이렌즈 등의 옵티컬 인테그레이터 (109), 레티클 블라인드 (조명영역 설정장치; 110) 및 렌즈계 (111) 로 개략 구성되어 있다. 그리고, 제 2 초점위치로 수렴된 후에 발산된 빔 (B) 은, 거의 평행하는 광속으로 변환된 후, 소망하는 파장역의 광속만을 투과시키는 파장선택 필터에 입사된다. 파장선택필터를 통하여 선택된 노광파장의 빔 (B) (예를 들어, g 선 또는 i 선 등) 은, 옵티컬 인테그레이터 (109) 에 입사된다.
옵티컬 인테그레이터 (109) 는 다수의 정렌즈 엘리먼트를, 그 중심축선이 광축을 따라서 연장되도록 종횡으로 배열시킴으로써 구성되어 있다. 따라서, 옵티컬 인테그레이터 (109) 에 입사된 빔 (B) 은 다수의 렌즈엘리먼트에 의하여 파면 분할되고, 옵티컬 인테그레이터 (109) 의 사출면 근방에 렌즈엘리먼트의 수와 동일한 수의 광원 상으로 이루어지는 2차광원을 형성한다. 즉, 옵티컬 인테그레이터 (109) 의 사출 측에는 실질적인 면광원이 형성된다.
2차광원에서 나온 빔 (B) 은 레티클 블라인드 (110) 를 조명한다. 레티클 블라인드 (110) 는 광원 (102) 과 마스크 (M) 간에 배치 형성되어 마스크 (M) 의 노광 스포트 (조명영역) 를 설정하는 것으로서, 마스크 (M) 와 광학적으로 거의 공액인 위치에 배치되어 있다. 또한 레티클 블라인드 (110) 의 구성 및 작용에 대하여 후술하기로 한다.
마스크 스테이지 (105) 는 마스크 (M) 를 유지하는 것으로서, 일차원의 주사노광을 행하도록 X 방향으로 긴 스트로크와, 주사방향과 직교하는 Y 방향으로 수 ㎜ 정도의 미소량의 스트로크를 가지고 있다. 마스크 스테이지 (105) 상에는, 도시하지 않은 이동경이 형성되어 있고, 레이저 간섭계 (비도시) 에서 사출된 레이저광이 이동경에서 반사되고, 그 반사광과 입사광의 간섭에 의하여 이동경과 레이저 간섭계간의 거리, 즉 마스크 스테이지 (105) 의 위치 (나아가 마스크 (M) 의 위치) 가 검출된다. 마스크 스테이지 (105) 의 구동은 스테이지 제어부 (112) 에 의하여 제어된다.
투영광학계 (PL) 는, 노광 스포트에 존재하는 마스크 (M) 의 패턴의 이미지를 글래스기판 (P) 상에 등배 정립으로 결상시키는 것이다.
기판 스테이지 (106) 는 글래스기판 (P) 을 유지하는 것으로서, 마스크 스테이지 (105) 와 마찬가지로, 일차원의 주사노광을 행하도록 X 방향으로 긴 스트로크와, 주사방향과 직교하는 Y 방향으로 스텝 이동하기 위한 긴 스트로크를 가지고 있다. 또한, 기판 스테이지 (106) 상에도 이동경 (비도시) 이 형성되어 있고, 레이저 간섭계 (비도시) 에 의하여 이동경과 레이저 간섭계간의 거리, 즉 기판 스테이지 (106) 의 위치 (나아가 글래스기판 (P) 의 위치) 가 검출된다. 이 기판 스테이지 (106) 의 구동도 스테이지 제어부 (112) 에 의하여 제어된다.
마스크 (M) 를 투과한 빔 (B) 은, 투영광학계 (3) 를 통하여 글래스기판 (P) 에 결상된다. 그리고, 글래스기판 (P) 상의 노광영역에는, 마스크 (M) 의 노광 스포트에 있는 패턴 이미지가 형성된다. 그리고, 마스크 스테이지 (105) 및 기판 스테이지 (106) 의 위치를 검출하면서, 빔 (B) 에 대하여 마스크 스테이지 (105) 및 기판 스테이지 (106) 를 통하여 마스크 (M) 와 글래스기판 (P) 을 X 방향으로 동기이동시킴으로써, 노광 스포트에 위치하는 마스크 (M) 의 패턴이 글래스기판 (P) 상에 순차적으로 전사된다.
도 21 에 나타낸 바와 같이, 레티클 블라인드 (110) 는, 한 쌍의 블라인드판 (110a, 110b) 과 한 쌍의 단부 차광 블라인드판 (110c, 110d) 으로 구성되어 있다. 블라인드판 (110a, 110b) 은 마스크 (M) 의 공액면을 사이에 두고, 또한 이 공액면과 거의 평행으로 배치되어 있고, 도 22 에 나타낸 바와 같이, Y 방향의 폭이 W1 으로 설정된 등변의 삼각형상의 단부 (113a, 113b) 와 폭이 W2 로 설정된 직사각형부 (114a, 114b) 로 이루어지는 개구를 각각 가지는 좌우대칭으로 되어 있다. 또한, 각 블라인드판 (110a, 110b) 은, 각각 독립적으로 Y 방향으로 자유롭게 이동할 수 있도록 되어 있고, 각 블라인드판 (110a, 110b) 의 X 방향을 따른 위치를 일치시킴으로써, 각각의 개구가 상이한 영역에 따라서, 마스크 (M) 에 대한 육각형의 노광 스포트 (S) 가 폭 W2 로 설정된다.
따라서, 각 블라인드판 (110a, 110b) 의 Y 방향을 따른 위치를 제어함으로써, 노광 스포트의 비주사방향 (Y 방향) 을 따른 길이가 임의로 변경될 수 있도록 되어 있다. 또한, 비주사방향의 단부 (113a, 113b) 가 삼각 형상을 나타내고 있으므로, 이 부분에서 주사노광된 영역의 조도영역이 경계를 향하여 100∼0 % 로 비교적 감소된다(또한, 도 2 및 도 3 에 나타낸 좌표계는, 편의상 마스크 (M) 상의 노광 스포트에 대응하도록 설정되어 있다.).
단부 차광 블라인드 (110c, 110d) 는 Y 방향으로 각각 독립적으로 자유롭게 이동할 수 있도록 되어 있고, 각 단부 블라인드판 (110c, 110d) 의 이동에 의하여, 단부 (113a, 113b) 를 통과하는 빔 (B) 이 자유롭게 개방ㆍ차광되도록 되어 있다. 또한, 도 20 에 나타낸 바와 같이, 이들 블라인드판 (110a, 110b) 및 단부 차광 블라인드판 (110c, 110d) 의 구동은, 블라인드 제어부 (변경장치; 114) 에 의하여 제어된다. 블라인드 제어부 (114) 에는 블라인드 제어부 (114) 및 상기 스테이지 제어부 (112) 를 총괄적으로 제어하는 주제어부 (115) 가 접속되어 있다. 이 주제어부 (115) 에는 노광량, 마스크 스테이지 (105) 및 기판 스테이지 (106) 의 동기이동속도, 레티클 블라인드 (110) 로 형성되는 노광 스포트의 위치ㆍ형상 등의 노광용 JOB 데이터가 미리 입력되어 있다.
이어서, 본 실시예의 주사노광방법 및 주사형 노광장치에서 사용되는 마스크 (M) 및 글래스기판 (P) 에 대하여 설명하기로 한다.
글래스기판 (P) 에는, 도 23 에 나타낸 바와 같이, 거의 직사각형의 TFT/LCD 패턴 (LP) 이 전사된다. 이 LCD 패턴 (LP) 은, 화소부 (116) 와, 예를 들어 이화소부 (116) 의 +X 방향 및 -Y 방향의 측 둘레를 따라서 소정의 피치로 배치된 복수의 주변회로부 (117) 로 구성되어 있다. 도 24 에 나타낸 바와 같이, 화소부 (116) 에는 게이트선 (118), 신호선 (119), 드레인 (120), 및 화소전극 (121) 으로 이루어지는 화소패턴 (122) 이 단위 패턴으로서, X 방향 및 Y 방향을 따라서 각각 소정의 피치로 반복 배열된다. 주변회로부 (117) 에는, 화소패턴 (122) 의 전극을 구동시키기 위한 드라이버 회로 등이 반복 배열된다.
이러한 LCD 패턴 (LP) 은, 도 23 에 나타낸 바와 같이 18 개의 분할패턴으로 화면을 합성하도록 설정된다. 여기에서, Y 방향에 인접하는 분할패턴끼리는 노광 스포트의 단부 (113a, 113b) 에 대응하는, X 방향으로 연장되는 폭 W1 의 중복부 (JY1∼JY5) 로 서로 중복되고, X 방향으로 인접하는 분할패턴끼리는 노광 스포트의 X 방향의 폭에 대응하는, Y 방향으로 연장되는 폭 (W2) 의 중복부 (JX1, JX2) 로 상호 중복되도록 설정된다.
글래스기판 (P) 상에 상기 LCD 패턴 (LP) 을 전사할 때 사용되는 마스크 (M) 를 도 25 에 나타낸다. 마스크 (M) 에는 LCD 패턴 (LP) 의 화소부 (116), 주변회로부 (117) 에 대응하는 화소부 (123), 주변회로부 (124) 가 각각 형성되어 있다. 그리고, 화소부 (123) 및 주변부 (124) 의 반복성을 살려, 마스크 (M) 에 대한 노광 스포트를 조정하여 마스크 (M) 상의 패턴을 적절히 선택함으로써, LCD 패턴 (LP) 을 구성하는 상기 각 분할패턴을 각각 설정할 수 있도록 되어 있다. 또한, 이들 화소부 (123), 주변회로부 (124) 의 주변에는 차광 벨트 (비도시) 가 형성되어 있다.
이어서, 상기 구성의 주사형 노광장치 (101) 에 의하여 글래스기판 (P) 상에 분할패턴을 이어맞추고 노광하여 LCD 패턴 (LP) 을 화면합성하는 순서를 설명하기로 한다. 여기에서는 18 개의 분할패턴 중의 중복부 (JX1) 를 사이에 두고 X 방향으로 인접하는 분할패턴 (제 1 패턴; P1), 분할패턴 (제 2 패턴; P2) 과, 이들 분할패턴 (P1, P2) 과 중복부 (JY1) 를 사이에 두고 Y 방향으로 인접하고, 또한 중복부 (JX1) 을 사이에 두고 X 방향으로 서로 인접하는 분할패턴 (제 3 패턴; P3), 분할패턴 (P4) 을 이어맞추는 순서를 예로 설명한다.
이 경우, 중복부 (JX1, JX2) 가, 레티클 블라인드 (110) 로 설정되는 노광 스포트의 폭 (W2) 으로 중복 노광되고, 중복부 (JY1∼JY5) 가 노광 스포트의 단부의 폭 (W1) 으로 중복 노광되는 것으로 한다. 또한, 이하에서, 마스크 스테이지 (105), 기판 스테이지 (106) 의 구동은, 스테이지 제어부 (112) 를 통하여 주제어부 (115) 에 의하여 제어되고, 레티클 블라인드 (110) (블라인드판 (110a, 110b), 단부 차광 블라인드판 (110c, 110d)) 의 구동은 주제어부 (115) 의 지시를 토대로 하여 블라인드 제어부 (114) 에 의하여 제어되는 것으로 설명한다.
먼저, 마스크 (M) 와 글래스기판 (P) 을 얼라인먼트하여 위치결정한 후, 노광용 JOB 데이터에 의하여, 마스크 스테이지 (105) 및 기판 스테이지 (106) 를 구동시켜, 분할패턴 (P1) 의 주사 개시위치에 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 이때, 레티클 블라인드 (110) 로, 단부 차광 블라인드판 (110c) 이 개구의 단부 (113a) 를 차광하고, 단부 차광 블라인드판 (110d) 이 단부 (113b) 를 개방함으로써, 마스크 (M) 상에 도 25 에 나타낸 오각형의 노광 스포트 (조명영역;S) 가 형성된다.
여기에서, 마스크 (M) 상의 노광 스포트 (S) 의 X 방향의 위치는, 글래스기판 (P) 에서의 중복부 (JX1) 에 대응하는 폭 (W2) 의 가상영역 (MX1) 상에 설정된다. 또한, 노광 스포트 (S) 의 Y 방향의 위치는, -Y 측에 대해서는 주변회로부 (124) 의 측 둘레를 거의 따르도록, +Y 측에 대해서는 단부 (113b) 가 글래스기판 (P) 에 있어서의 중복부 (JY1) 에 대응하는 폭 (W1) 의 가상영역 (MY1) 상에 위치하도록 설정된다. 이 때의 글래스기판 (P) 상에서의 노광 스포트를 도 23 에 부호 S1 로 나타낸다. 이 경우, 레티클 블라인드 (110) 에 의하여 노광 스포트 (S) 는 형성되나, 빔 (B) 의 광로는 셔터에 의하여 차광되어 있다.
이어서, 셔터를 개방함과 동시에, 마스크 (M) 와 글래스기판 (P) 의 -X 방향에 동기이동시킨다. 여기에서, 본 발명의 주사형 노광장치 (101) 에서는 투영광학계 (PL) 가 등배 정립계이므로, 마스크 (M) 와 글래스기판 (P) 을 서로 동일한 방향으로 동일 속도로 이동시킨다. 또한, 주사노광 개시에서 길이 (W2) 를 주사하는 동안, 적정 노광량 (에너지량) 이 되는 주사속도 (동기이동속도) 에 도달하도록 마스크 (M) 와 글래스기판 (P) 의 구동 (가속도) 을 제어한다. 그 결과, 글래스기판 (P) 이 도 26 의 그래프 좌측에 나타낸 바와 같이, 길이 (W2) 의 범위에서 0 에서부터 적절치를 향하여 비례적으로 증가하는 조도경사의 노광 에너지량으로 노광된다.
주사노광이 진행되고, 노광 스포트 (S) 가 마스크 (M) 의 +X 측의 주변회로부 (124) 를 거쳐 차광 벨트까지 도달하면 셔터를 닫는다. 그 결과, 비중복부에서는 패턴의 최외주까지 적정 노광량으로 노광된다. 그리고 상기 순서에 의하여 글래스기판 (P) 상에 분할패턴 (P1) 이 노광된다.
분할패턴 (P2) 을 노광할 때에는, 다시 마스크 (M) 상의 가상영역 (MX1) 에 노광 스포트 (S) 가 위치하도록 마스크 (M) 를 X 방향으로 이동시킨다. 이 경우, 마스크 (M) 의 가상영역 (MX1) 은, 글래스기판 (P) 상의 중복부 (JX2) 에 대응한다. 동시에 글래스기판 (P) 상의 노광 스포트 (S1) 가 중복부 (JX2) 에 위치하도록 글래스기판 (P) 도 X 방향으로 이동시킨다. 이때, 노광 스포트 (S) 의 단부 (113b) 는 분할패턴 (P1) 을 노광한 경우와 마찬가지로, 마스크 (M) 상에서는 가상영역 (MY1) 에, 글래스기판 (P) 상에서는 중복부 (JY1) 상에 위치하고 있기 때문에, 마스크 (M) 및 글래스기판 (P) 의 Y 방향으로의 이동, 레티클 블라인드 (110) 의 구동은 실행되지 않는다.
이어서, 셔터를 개방함과 동시에, 마스크 (M) 와 글래스기판 (P) 을 -X 방향으로 동기이동시킨다. 여기에서도, 상기 분할패턴 (P1) 을 노광할 때와 마찬가지로, 주사노광 개시부터 길이 (W2) 를 주사하는 동안, 적정 노광량이 되는 주사속도에 도달하도록 마스크 (M) 와 글래스기판 (P) 의 구동을 제어한다. 이 결과, 글래스기판 (P) 상의 중복부 (JX2) 도 0 으로부터 적정값을 향하여 비례적으로 증가되는 조도경사의 노광 에너지량으로 노광된다.
한편, 분할패턴 (P2) 의 노광 종료시에는 중복부 (JX1) 에서의 길이 (W2) 를 주사하는 동안 노광 에너지량이 적정값으로부터 비례적으로 0 이 되도록 주사속도를 제어함과 동시에, 중복부 (JX1) 와 노광 스포트 (S1) 가 일치된 지점에서 셔터를 닫고 빔 (B) 을 차광한다. 이 주사노광에 의하여 중복부 (JX1) 가, 도 26 의 그래프 우측에 나타낸 바와 같이, 길이 (W2) 의 범위에 있어서 +X 방향으로 적정값으로부터 0 을 향하여 비례적으로 감소하는 조도경사의 노광 에너지량으로 노광된다. 따라서, 중복부 (JX1) 가 분할패턴 (P1. P2) 을 주사노광했을 때, 중복되어 2 회 노광되는 결과, 합계된 노광량이 비중복부와 동일한 적정 노광량이 된다.
이 때, 주사 개시위치로서, 중복부 (JX2) 가 아니고 중복부 (JX1) 를 선택하고 (노광 스포트 (S) 는 마스크 (M) 상에서는 가상영역 (MX2) 상에 설정된다), 마스크 (M) 와 글래스기판 (P) 을 노광 스포트 (S) 에 대하여 +X 방향으로 동기이동시킬 수도 있다. 이 경우에도 중복부 (JX1) 가, 도 26 의 그래프 우측에 나타낸 바와 같이, +X 방향으로 적정값으로부터 0 을 향하여 비례적으로 감소되는 조도경사의 노광 에너지량으로 노광되고, 상기와 동일한 효과가 된다.
분할패턴 (P3) 을 노광할 때에는, 레티클 블라인드 (110) 에 있어서 단부 차광 블라인드판 (110c) 을 이동시키고, 단부 (13a) 의 광로도 개방함과 동시에, 단부 (113a, 113b) 가 글래스기판 (P) 상의 중복부 (JY1, JY2) 에 각각 위치하도록, 블라인드판 (110a, 110b) 을 구동한다. 이로써, 마스크 (M) 상에 도 27 에 나타낸 육각형의 노광 스포트 (조명영역; S') 가 형성된다.
이 레티클 블라인드 (110) 의 구동과 병행하여 마스크 스테이지 (105) 및 기판 스테이지 (106) 를 Y 방향으로 스텝 이동시키고, 분할패턴 (P3) 의 주사 개시위치에 마스크 (M) 및 글래스기판 (P) 을 이동시킨다. 이때, 마스크 (M) 상의 노광 스포트 (S') 의 X 방향의 위치는, 중복부 (JX1) 에 대응하는 상기 가상영역 (MX1) 상에 설정된다. 또한, 노광 스포트 (S') 의 Y 방향의 위치는, 단부 (113a, 113b) 가 글래스기판 (P) 에 있어서의 중복부 (JY1, JY2) 에 각각 대응하는 폭 (W1) 의 가상영역 (MY1, MY2) 상에 위치하도록 설정된다. 이때의, 글래스기판 (P) 상에서의 노광 스포트를 도 23 에 부호 S2 로 나타낸다.
그리고, 분할패턴 (P1) 에 대한 주사노광과 마찬가지로, 셔터를 열음과 동시에, 마스크 (M) 와 글래스기판 (P) 을 가속하면서 -X 방향으로 동기이동시킨 후, 비중복부에서는 등속이동시킴으로써, 글래스기판 (P) 상에 분할패턴 (P3) 을 주사노광한다. 이후, 마스크 (M) 와 글래스기판 (P) 을 X 방향으로 이동시키고, 분할패턴 (P2) 과 동일한 순서로 분할패턴 (P4) 을 주사노광한다.
상기 분할패턴 (P1∼P4) 의 주사노광 중, 분할패턴 (P1, P2) 의 노광에 의하여, 글래스기판 (P) 상의 중복부 (JY1) 는 단부 (113b) 에 의하여 +Y 방향을 향하여 0∼100 % 까지 비례적으로 감소되고, 도 28 중에서 부호 m 으로 표시되는 조도경사로 노광된다. 한편, 중복부 (JY1) 는 단부 (113a) 에 의하여 +Y 방향을 향하여 0∼100 % 까지 비례적으로 증가하고, 도 28 중, 부호 n 으로 표시되는 조도경사로 노광된다. 따라서, 글래스기판 (P) 상의 중복부 (JX1) 에서는 분할패턴 (P1∼P4) 을 주사노광했을 때 중복되어 2 회 노광되는 결과, 합계된 노광량이 비중복부와 동일한 적정량으로 노광된다.
여기에서, 상기한 바와 같이 분할패턴 (P1∼P4) 이 노광된 결과, 중복부 (JX1, JY1) 의 직사각형 형상을 이루는 교차부가 4 회 중복되어 노광된다. 그래서 이 부분의 노광량 분포에 대하여 간단히 검증하기로 한다. 여기에서는 도 29 및 도 30 에 나타낸 바와 같이, 교차부의 좌하단부를 x = y = 0 으로 하고, 또한 교차부가 0 ≤x ≤1, 0 ≤y ≤1 의 범위로 되도록 정규화하는 것으로 한다. 또한, 이 범위에서의 노광량을 z 로 표시하고, 비중복부에서의 노광량을 z = 1 로 한다.
먼저 분할패턴 (P1, P2) 은, 도 29 에 나타낸 바와 같이, 교차부가 단부 (113b) 에서 노광된다. 이 경우, 분할패턴 (P1) 의 노광시에는, 교차부가 아래의 수학식 9 의 함수로 표시되는 노광량 분포로 노광된다.
또한, 분할패턴 (P2) 의 노광시에는, 교차부가 아래의 수학식 10 의 함수로 표시되는 노광량 분포로 노광된다.
한편, 분할패턴 (P3, P4) 는, 도 30 에 나타낸 바와 같이, 교차점이 단부 (113a) 로 노광된다. 이 경우, 분할패턴 (P3) 의 노광시에는, 교차부가 아래의수학식 11 의 함수로 표시되는 노광량 분포로 노광된다.
또한, 분할패턴 (P4) 의 노광시에는, 교차부가 아래의 수학식 12의 함수로 표시되는 노광량 분포로 노광된다.
따라서, 분할패턴 (P1, P2) 의 노광시에, 단부 (113b) 에서 노광된 교차부의 노광량 분포는, 상기 수학식 9 와 10 의 함수의 합인 z = 1 - y 의 함수로 표시되는 원활한 경사로 된다. 또한, 분할패턴 (P3, P4) 의 노광시에 단부 (113a) 에서 노광된 교차부의 노광량 분포는 상기 수학식 11 과 12 의 함수의 합인 z = y 의 함수로 표시되는 원활한 경사로 된다. 이상으로부터, 분할패턴 (P1∼P4) 을 노광함으로써, 중복부 (JX1, JY1) 의 교차부에서의 총 노광량은 수학식 9 ~ 12 의 합인 z = 1 로 되어, 비중복부와 동일해진다.
그리고, 상기와 동일한 순서로, 마스크 (M) 상의 노광 스포트를 적절히 선택하면서 글래스기판 (P) 상의 분할패턴을 순차적으로 노광함으로써, LCD 패턴 (LP) 이 동일한 노광량 분포로 화면합성된다. 또한, 분할패턴 중, 도 23 중에서 +Y 측의 단부에 위치하는 분할패턴을 노광할 때에는, 분할패턴 (P1, P2) 의 경우와 반대로, 단부 차광 블라인드판 (110d) 이 개구의 단부 (113b) 를 차광하고, 단부 차광 블라인드판 (110c) 이 단부 (113a) 를 개방함으로써, 좌우 대칭의 오각형을 이루는 노광 스포트가 형성된다. 또한, 각 분할패턴의 노광 순서는, 마스크 스테이지 (105) 및 기판 스테이지 (106) 의 이동거리 (이동시간) 가 가장 짧아지는 경로를 따라서 설정하는 것이 바람직하다.
본 실시예의 주사노광방법 및 주사형 노광장치에서는, 마스크 (M) 와 글래스기판 (P) 을 동기이동방향시켰을 때, 분할패턴끼리를 원활한 노광량 분포로서 일부 중복시키고 있으므로, 이들 분할패턴을 원활하게 이어맞출 수 있게 된다. 따라서, 품질을 저하시키지 않고, 액정표시 디바이스의 고정세 대면적화에 용이하게 대응할 수 있다. 특히, 본 실시예에서는 중복부와 비중복부의 노광량을, 분할패턴끼리의 중복부를 노광시킬 때의 주사속도와 비중복부를 노광할 때의 주사속도를 상이하게 하는 간단한 동작으로 제어하고 있으므로, 장치의 대형화 및 고가격화도 방지할 수 있다.
또한, 본 실시예의 주사노광방법 및 주사형 노광장치에서는 1 장의 마스크 (M) 의 조명영역을 조정함으로써, LCD 패턴 (LP) 을 화면합성할 수 있기 때문에, 소형의 마스크 (M) 를 사용할 수 있고, 마스크 (M) 자체의 오차를 낮게 억제할 수있다. 게다가, 복수 장의 마스크 (M) 를 사용할 때 발생되는 레티클 교환작업의 삭제, 레티클간의 보정작업 및 오차의 거듭되는 저감 등을 실현할 수 있게 되어 보다 고정밀도한 이어맞춤 노광을 실현할 수 있다.
도 31 및 도 32 는, 본 발명의 주사노광방법 및 주사형 노광장치의 제 5 실시예를 나타내는 도면이다. 이들 도면에 있어서, 도 20 내지 도 30 에 나타낸 제 4 실시예의 구성요소와 동일한 요소에 대해서는 동일 부호를 붙여, 그 설명을 생략한다. 제 5 실시예와 상기 제 4 실시예가 상이한 점은, 주사노광 중에 노광 스포트 (S) 의 크기를 변경하는 것이다.
즉, 본 실시예에서는 분할패턴 (P1) 을 노광할 때, 상기 제 4 실시예와 마찬가지로, 마스크 (M) 상의 가상영역 (MX1) 에 노광 스포트 (S) 를 설정한 후, 마스크 (M) 와 글래스기판 (P) 을 -X 방향으로 동기이동시켜 주사노광을 개시함과 동시에 레티클 블라인드 (110) 의 블라인드판 (110b) 을 일정 속도 V 로 +Y 방향으로 이동시킨다. 이 때, 단부 차광 블라인드판 (110d) 을 블라인드판 (110b) 과 동기이동시킬 수도 있으나, 단부 차광 블라인드판 (110d) 가 단부 (113b) 를 차광하지 않는 위치에 있는 경우에는 이동시키지 않을 수도 있다. 또한, 블라인드판 (110a) 및 단부 차광 블라인드판 (110c) 은, X 방향을 따르는 주변회로부 (124) 를 조명하므로, Y 방향으로는 이동시키지 않는다.
그 결과, 노광 스포트 (S) 는 주사노광 중에 +Y 방향으로 확대되고, 단부 (113b) 의 이동궤적으로서 형성되는 마스크 (M) 상의 가상영역 (MY1) 은 주사속도 및 블라인드판 (110b) 의 이동속도가 합성됨으로써, X 방향에 대하여 경사를 가지게 된다. 따라서, 글래스기판 (P) 상에 노광되는 분할패턴 (P1) 에서는, 도 32 에서와 같이, 분할패턴 (P3) 의 중복부 (JY1) 가 X 방향과는 상이한 방향을 따라서 형성된다.
분할패턴 (P2) 을 노광할 때에는, 주사노광 개시시에 노광 스포트 (S) 의 단부 (113b) 를 중복부 (JY1) 의 연장상 그리고 중복부 (JX2) 상에 위치시켜, 상기 분할패턴 (P1) 과 동일한 이동속도 (V) 로 블라인드판 (110b) 을 +Y 방향으로 이동시킨다 (이 때, 마스크 (M) 와 글래스기판 (P) 의 주사속도도 분할패턴 (P1) 을 노광할 때와 동일하게 한다).
나아가, 분할패턴 (P3) 을 노광할 때에는, 글래스기판 (P) 상에 있어서, 노광 스포트의 단부 (113a) 를 중복부 (JX1, JY1) 의 교차부에, 단부 (113b) 를 중복부 (JX1, JY1) 의 교차점에 각각 위치시켜, 주사노광 개시와 동시에 블라인드판 (110a, 110b) 의 쌍방을 +Y 방향으로 속도 V 로 이동시킨다. 또한, 분할패턴 (P4) 을 노광할 때에는, 노광 스포트의 단부 (113a) 를 중복부 (JX2, JY1) 의 교차점에, 단부 (113b) 를 중복부 (JX2, JY2) 의 교차부에 각각 위치시켜, 주사노광 개시와 동시에 블라인드판 (110a, 110b) 의 쌍방을 +Y 방향으로 속도 V 로 이동시킨다.
기타 분할패턴도 동일한 순서로 블라인드판을 +Y 방향으로 이동시키면서 주사노광하지만, 도 32 중, +Y 측의 단부에 위치하는 분할패턴을 노광할 때에는, 분할패턴 (P1, P2) 의 경우와 반대로, 단부 차광 블라인드판 (110d) 이 개구의 단부 (113b) 를 차광하고, 단부 차광 블라인드판 (110c) 이 단부 (113a) 를 개방한 상태에서 블라인드판 (110a) 만을 노광 중에 +Y 방향으로 이동시킨다. 또한, 중복부 (JX1, JX2) 에서의 주사속도의 제어는 제 4 실시예와 동일하다. 이로써, 도 32 에 나타낸 바와 같이, 글래스기판 (P) 상에는, X 방향에 대하여 경사를 가지는 중복부 (JY1∼JY4) 에서 분할패턴이 중복되도록 화면합성된 LCD 패턴 (LP) 이 형성된다.
본 실시예의 주사노광방법 및 주사형 노광장치에서는, 상기 제 4 실시예와 동일한 작용ㆍ효과를 얻을 수 있는 것에 부가하여, 화소패턴 (122) 의 배열방향과 중복부 (JY1∼JY4) 가 연재되는 방향이 상이하므로, 완성된 액정표시 디바이스에서는, 중복부 (JY1∼JY4) 에 인접하는 화소패턴 (122) 내의 구동용 트랜지스터가 상이한 신호선으로 구동되게 된다. 따라서, 동일한 중첩 정밀도이라도 오차 부분이 정연하게 배열되지 않고, 표시품질에 미치는 영향을 작게 할 수 있다.
또한, 상기 제 5 실시예에서는, 블라인드판 (110a, 110b) 을 노광 중에 동일 속도로 이동시키는 구성으로 하였으나, 본 발명은 이에 한정되지 않고, 각 중복부 (JY1∼JY5) 에 있어서, 노광시의 이동속도가 동일하면, 서로 상이한 이동속도로 이동시켜도 된다. 또한, 각 중복부 (JY1∼JY4) 를 노광할 때에, 블라인드판 (110a, 110b) 의 이동속도를 복수 회에 걸쳐 변경해도 된다. 예를 들어, 도 33 에 나타낸 바와 같이, 분할패턴 (P1) 을 주사노광 중에, 블라인드판 (110a) 의 이동방향을 +Y 방향으로부터 -Y 방향으로 변경해도 된다. 마찬가지로, 분할패턴 (P3) 을 주사노광 중에, 블라인드판 (110a, 110b) 의 이동방향을 +Y 방향으로부터 -Y 방향으로 변경 (+Y 측의 단부에 위치하는 분할패턴을 노광할 때에는, 단부 차광 블라인드판 (110d) 이 단부 (113b) 를 차광한 상태에서, 블라인드판 (110a) 의 이동방향만을 노광 중에 +Y 방향으로부터 -Y 방향으로 변경한다)해도 된다. 이 경우, 도 34 에 나타낸 바와 같이, 글래스기판 (P) 상에 지그재그형상으로 굴곡되는 중복부 (JY1∼JY4) 가 형성되고, 그 결과, 구동용 트랜지스터를 구동시키기 위한 신호선이 더욱 분산되어, 표시품질에 미치는 영향을 보다 작게 할 수 있다. 여기에서, 블라인드판 (110a, 110b) 의 이동방향을 변경하지 않고 이동속도 (V) 만을 변경하거나, 이동방향 및 이동속도 쌍방을 변경해도 된다.
또한, 상기 제 4 및 제 5 실시예에서는, 중복부 (JX1, JX2) 의 폭을 노광 스포트 (S) 와 동일한 폭 (W) 으로 하는 구성으로 하였으나, 2중노광함으로써 중복부와 비중복부의 노광량이 동일해지면, 중복부의 폭은 여기에 한정되지 않는다. 노광 스포트의 형상도, 육각형으로 한정되지 않고, 대(臺) 형상이나 평행사변형의 사각형일 수도 있다.
또한, 상기 제 4 및 제 5 실시예에서는, 분할패턴 (P3, P4) 을 노광할 때 블라인드판 (110a, 110b) 를 이동시킴으로써 중복부 (JY1, JY2) 가 연재하는 방향을 X 방향에 대하여 경사지게 하였으나, 노광 스포트의 크기가 변하지 않는 경우에는, 마스크 (M) 및 글래스기판 (P) 을 X 방향으로부터 경사방향으로 동기이동시켜도 된다.
게다가, 마스크 (M) 와 글래스기판 (P) 의 동기이동속도를 중복부와 비중복부에서 변화시킴으로써, 동기이동방향에서 인접하는 중복부의 노광량과 비중복부의 노광량을 일치시키는 본 발명의 기술은, 투영광학계 (PL) 가 복수의 투영계 모듈로구성되고, 인접하는 투영계 모듈의 투영영역의 단부끼리가 Y 방향에서 중복되도록 병렬 배치되고, X 방향으로 주사노광했을 때의 노광량이 동등하게 되도록 설정된, 이른 바 멀티렌즈 구성에 대해서도 적용할 수 있다.
또한, 본 발명을 적용가능한 기판에는, 액정표시 디바이스용 글래스기판 (P) 뿐만 아니라, 반도체 디바이스용 반도체 웨이퍼 또는 박막자기헤드용 세라믹 웨이퍼, 또는 노광장치에서 사용되는 마스크 또는 레티클의 원판 (합성석영, 실리콘웨이퍼) 등을 들 수 있다.
또한, 주사형 노광장치 (1, 101) 의 종류로서는, 글래스기판 (P) 에 액정표시 디바이스 패턴을 노광하는 액정표시 디바이스 제조용 노광장치에 한정되지 않고, 웨이퍼에 반도체 디바이스 패턴을 노광하는 반도체 디바이스 제조용 노광장치 또는 박막자기헤드, 촬상소자 (CCD) 또는 레티클 등을 제조하기 위한 노광장치 등에도 적용할 수 있다.
또한, 광원 (6, 102) 으로서, 초고압 수은램프에서 발생되는 휘선 (g 선 (436 ㎚), h 선 (404.7 ㎚), i 선 (365 ㎚)), KrF 엑시머레이저 (248 ㎚), ArF 엑시머레이저 (193 ㎚), F2 레이저 (157 ㎚) 을 사용할 수 있다.
투영계 모듈 (3a∼3e) 의 배율은, 등배계뿐만 아니라 축소계 및 확대계 중 어느 하나일 수도 있다. 또한, 투영계 모듈 (3a∼3e) 에는, 엑시머레이저 등의 원자외선을 사용하는 경우에는 초재로서 석영 또는 형석 등의 원자외선을 투과하는 재료를 사용하고, F2 레이저 또는 X 선을 사용하는 경우에는 반사굴절계 또는 굴절계의 광학계 (마스크 (M) 도 반사형 타입의 것을 사용한다) 를 사용할 수도 있다.또한, 본 발명은, 투영계 모듈 (3a∼3e) 을 사용하지 않고, 마스크 (M) 와 글래스기판 (P) 을 밀접시켜 마스크 (M) 의 패턴을 노광하는 프록시미티 노광장치에도 적용할 수 있다.
기판 스테이지 (5, 106) 또는 마스크 스테이지 (4, 105) 에 리니어 모터 (USP 5,623,853, 또는 USP 5,528,118 참조) 를 사용하는 경우에는, 에어베어링을 사용한 에어 부상형 및 로렌츠력 또는 리액턴스력을 사용한 자기부상형 중 어느 하나를 사용할 수도 있다. 또한 각 스테이지 (4, 5, 105, 106) 는, 가이드를 따라서 이동하는 타입일 수도 있고, 가이드를 형성하지 않는 가이드리스 타입일 수도 있다.
각 스테이지 (4, 5) 의 구동기구 (37, 40) 로서는, 2차원으로 자석을 배치한 자석 유니트 (영구자석) 과, 2차원으로 코일을 배치한 전기자 유니트를 대향시켜 전자력에 의하여 각 스테이지 (4, 5) 를 구동하는 평면 모터를 사용해도 된다. 이 경우, 자석 유니트와 전기자 유니트 중 어느 한쪽을 스테이지 (4, 5) 에 접속하고 자석 유니트와 전기자 유니트 중 다른 한쪽을 각 스테이지 (4, 5) 의 이동면측 (베이스) 에 설치해도 된다. 부호 (105, 106) 에 나타낸 스테이지의 경우도 동일하다.
기판 스테이지 (5, 106) 의 이동에 의하여 발생되는 반력은, 투영광학계 (3, PL) 에 전달되지 않도록, 일본 공개특허공보 평8-166475 호 (USP 5,828,118) 에 기재되어 있는 바와 같이, 프레임부재를 사용하여 기계적으로 바닥 (대지) 으로 빠져나가게 해도 된다. 본 발명은 이러한 구조를 구비한 노광장치에도 적용할 수 있다.
마스크 스테이지 (4, 105) 의 이동에 의하여 발생되는 반력은, 투영광학계 (3, PL) 에 전달되지 않도록, 일본 공개특허공보 평8-330224 호 (US S/N 08/416,558) 에 기재되어 있는 바와 같이, 프레임 부재를 사용하여 기계적으로 바닥 (대지) 으로 빠져나가게 해도 된다. 본 발명은 이러한 구조를 구비한 노광장치에도 적용할 수 있다.
이상에서와 같이, 본원 실시형태의 기판처리장치인 주사형 노광장치 (1) 는, 본원 특허청구범위에 기재된 각 구성요소를 포함하는 각종 서브시스템을, 소정의 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록, 조립하여 제조된다. 이들 각종 정밀도를 확보하기 위하여, 이의 조립 전후에는, 각종 광학계에 대해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 대해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 대해서는 전기적 정밀도를 달성하기 위한 조정이 행해진다. 각종 서브시스템으로부터 노광장치로의 조립공정에는, 각종 서브시스템 상호의, 기계적 접속, 전기회로의 배선접속, 기압회로의 배관접속 등이 포함된다. 이러한 각종 서브시스템으로부터 노광장치로의 조립공정 전에, 각 서브시스템 개개의 조립공정이 있는 것은 물론이다. 각종 서브시스템의 노광장치로의 조립공정이 종료되면, 종합 조정이 행해지고, 노광장치 전체로서의 각종 정밀도가 확보된다. 또한, 노광장치의 제조는 온도 및 클린도 등이 관리된 클린룸에서 행하는 것이 바람직하다.
또한, 액정표시 디바이스나 반도체 디바이스 등의 디바이스는, 도 20 에 나타낸 바와 같이, 액정표시 디바이스 등의 기능ㆍ성능 설계를 행하는 스텝 (201), 이 설계 스텝에 기초한 마스크 (M; 레티클) 를 제작하는 스텝 (202), 석영 등으로부터 글래스기판 (P), 또는 실리콘 재료로부터 웨이퍼를 제작하는 스텝 (203), 전술한 실시예의 주사형 노광장치 (1) 에 의하여 마스크 (M) 의 패턴을 글래스기판 (P; 또는 웨이퍼) 에 노광하는 스텝 (204), 액정표시 디바이스 등을 조립하는 스텝 (205; 웨이퍼의 경우, 다이싱 공정, 폰딩공정, 패키지 공정을 포함한다), 검사 스텝 (206) 등을 거쳐 제조된다.
본 발명의 주사노광방법 및 주사형 노광장치에 의하면, 조명영역 (S) 의 단부의 궤적이 동기이동방향과 상이한 방향으로 연장되게 된다. 그래서, 기판 (P) 상에서 중복노광되는 패턴 (P1, P3) 을 조명영역 (S) 의 단부에서 조명함으로써, 기판 (P) 상에서 이어맞춤되는 패턴끼리의 중복부 (JY1) 의 방향을 동기이동방향과 상이하게 할 수 있다. 그 때문에, 화소패턴 등의 단위 패턴 (122) 이 동기이동방향을 따라 배열되어 있어도, 화면합성라인에 인접하는 구동용 트랜지스터는 상이한 신호선으로 구동되게 된다. 따라서, 동일한 중첩 정밀도이어도 표시품질에 미치는 영향을 작게 할 수 있다.

Claims (16)

  1. 노광광의 조사에 대하여 마스크와 기판을 동기이동시켜, 상기 마스크의 분할패턴을 상기 기판에 투영하고, 상기 기판상에서 인접하는 복수의 분할패턴을 이어맞춰 노광하는 주사노광방법으로서,
    상기 동기이동방향에 인접하는 상기 분할패턴끼리를 서로 일부 중복시키는 것을 특징으로 하는 주사노광방법.
  2. 제 1 항에 있어서,
    상기 노광광의 조사시에는, 상기 동기이동방향에 인접하는 상기 분할패턴끼리의 중복부에 있어서, 상기 마스크의 분할패턴을 기판에 노광하기 위한 조사와 노광하지 않은 차광을 전환하는 것을 특징으로 하는 주사노광방법.
  3. 제 2 항에 있어서,
    상기 중복부가 상기 분할패턴의 상기 동기이동방향 전방측에 배치될 때에는, 상기 분할패턴에 대한 상기 동기이동 중에 상기 중복부가 상기 조사영역에 위치했을 때 상기 노광광을 개방하고,
    상기 중복부가 상기 분할패턴의 상기 동기이동방향 후방측에 배치될 때에는, 상기 분할패턴에 대한 상기 동기이동 중에 상기 중복부가 상기 조사영역에 위치했을 때에 상기 노광광을 차광하는 것을 특징으로 하는 주사노광방법.
  4. 제 1 항에 있어서,
    상기 조사영역 중, 인접하는 조사영역이, 상기 동기이동방향과 직교하는 방향으로, 서로 일부를 중복시켜 복수 병렬되는 것을 특징으로 하는 주사노광방법.
  5. 제 1 항에 있어서,
    상기 동기이동방향에 인접하는 상기 분할패턴끼리, 상기 동기이동방향을 서로 동일 방향으로 하는 것을 특징으로 하는 것을 특징으로 하는 주사노광방법.
  6. 제 1 항에 있어서,
    상기 동기이동에 인접하는 상기 분할패턴끼리를 노광한 후에, 상기 마스크와 상기 기판을 상기 동기이동방향과 직교하는 방향으로 이동하고,
    이 직교하는 방향에 인접하는 상기 분할패턴끼리를 서로 일부 중복시키는 것을 특징으로 하는 주사노광방법.
  7. 제 1 항에 있어서,
    상기 마스크가, 상기 인접하는 분할패턴의 근방에 이어맞춤마크를 갖고, 이 이어맞춤마크를 사용하여 앞의 분할패턴에 뒤의 분할패턴을 이어맞추는 것을 특징으로 하는 주사노광방법.
  8. 제 1 항에 있어서,
    상기 복수의 분할패턴의 노광순서를, 앞의 분할패턴의 노광종료위치로부터 뒤의 분할패턴의 노광개시위치까지의 상기 마스크의 이동거리에 기초하여 결정하는 것을 특징으로 하는 주사노광방법.
  9. 노광광의 조사영역에 대하여 마스크를 유지하는 마스크 스테이지와 기판을 유지하는 기판 스테이지를 동기이동시켜, 상기 기판상에서 인접하는 복수의 분할패턴을 이어맞춰 노광하는 주사형 노광장치로서,
    상기 노광광을 차광ㆍ개방하는 차광장치; 및
    상기 동기이동 중에 상기 조사영역의 차광상태를 변경하여, 상기 동기이동방향으로 인접하는 상기 분할패턴끼리를 서로 일부 중복시키도록, 상기 마스크 스테이지, 기판 스테이지 및 차광장치를 제어하는 제어장치를 구비하는 것을 특징으로 하는 주사형 노광장치.
  10. 제 9 항에 있어서,
    상기 조사영역 중, 인접하는 조사영역이 상기 동기이동방향과 직교하는 방향으로, 서로 일부를 중복시켜 복수 병렬되고,
    상기 차광장치가 상기 복수의 조사영역마다 배치 형성되는 것을 특징으로 하는 주사형 노광장치.
  11. 제 9 항에 있어서,
    상기 인접하는 분할패턴끼리를 서로 일부 중복시키는 상기 동기이동방향의 중첩폭이, 상기 조사영역의 상기 동기이동방향의 폭과 거의 일치하는 것을 특징으로 하는 주사형 노광장치.
  12. 제 1 패턴과 제 2 패턴을 갖는 마스크와 기판을 동기이동시켜, 상기 제 1 패턴과 상기 제 2 패턴을 상기 기판에 노광하는 주사노광방법에 있어서,
    상기 기판의 상기 동기이동방향을 따라 상기 제 1 패턴과 상기 제 2 패턴을 노광할 때에, 상기 제 1 패턴의 일부와 상기 제 2 패턴의 일부를 중복하여 노광하고,
    상기 중복 노광할 때의 상기 마스크와 상기 기판의 동기이동속도를, 상기 중복 노광하지 않을 때의 상기 마스크와 상기 기판의 동기이동속도와는 상이하게 하는 것을 특징으로 하는 주사노광방법.
  13. 제 12 항에 있어서,
    상기 제 1 패턴과 상기 기판상에서 상기 동기이동방향과 직교하는 방향으로 인접하는 상기 제 3 패턴과는 상이한 소정 방향을 따라 배열된 복수의 단위 패턴을 갖고,
    상기 제 1 패턴과 상기 제 3 패턴을 노광할 때에, 상기 단위 패턴의 배열방향과는 상이한 방향을 따라서 중복시키는 것을 특징으로 하는 주사노광방법.
  14. 패턴을 가진 마스크와 기판을 노광광의 조명영역에 대하여 동기이동시켜, 상기 패턴을 상기 기판에 노광하는 주사노광방법에 있어서,
    상기 동기이동방향과는 상이한 방향의 상기 조명영역의 크기를 상기 동기이동 중에 변경하는 것을 특징으로 하는 주사노광방법.
  15. 제 14 항에 있어서,
    상기 조명영역의 크기를 상기 동기이동 중에 복수 회에 걸쳐 변경하는 것을 특징으로 하는 주사노광방법.
  16. 패턴을 가진 마스크와 기판을 동기이동시켜, 상기 패턴을 상기 기판에 노광하는 주사형 노광장치에 있어서,
    상기 마스크의 조명영역을 설정하는 조명영역 설정장치; 및
    상기 동기이동방향과는 상이한 방향의 상기 조명영역의 크기를 상기 동기이동 중에 변경하는 변경장치를 구비하는 것을 특징으로 하는 주사형 노광장치.
KR1020010004892A 2000-02-02 2001-02-01 주사노광방법 및 주사형 노광장치 KR100849870B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000025661A JP2001215717A (ja) 2000-02-02 2000-02-02 走査露光方法および走査型露光装置
JP2000-025661 2000-02-02
JP2000-026630 2000-02-03
JP2000026630A JP4482998B2 (ja) 2000-02-03 2000-02-03 走査露光方法および走査露光装置並びにデバイス製造方法
JPJP-P-2000-00026630 2000-02-03

Publications (2)

Publication Number Publication Date
KR20010078254A true KR20010078254A (ko) 2001-08-20
KR100849870B1 KR100849870B1 (ko) 2008-08-01

Family

ID=26584750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010004892A KR100849870B1 (ko) 2000-02-02 2001-02-01 주사노광방법 및 주사형 노광장치

Country Status (3)

Country Link
US (1) US6873400B2 (ko)
KR (1) KR100849870B1 (ko)
TW (1) TW495836B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468524B1 (ko) * 2002-01-18 2005-01-27 산에이 기껜 가부시키가이샤 분할 노광방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792029B2 (en) * 2002-03-27 2004-09-14 Sharp Laboratories Of America, Inc. Method of suppressing energy spikes of a partially-coherent beam
CN1659478A (zh) * 2002-04-11 2005-08-24 海德堡显微技术仪器股份有限公司 用于把掩模投影到衬底上的方法和装置
FR2843462B1 (fr) * 2002-08-06 2004-09-24 Thales Sa Procede de fabrication d'une matrice active, dispositifs de visualisation electro-optiques et masque correspondant
US20060033906A1 (en) * 2002-11-15 2006-02-16 Fuji Photo Film Co., Ltd. Exposure device
KR100575230B1 (ko) * 2002-12-28 2006-05-02 엘지.필립스 엘시디 주식회사 노광 장치를 이용한 노광 방법
JP3870196B2 (ja) * 2003-03-27 2007-01-17 キヤノン株式会社 光空間伝送装置
KR101006435B1 (ko) * 2003-09-01 2011-01-06 삼성전자주식회사 노광 마스크, 이를 포함하는 노광 장치 및 이를 이용한표시 장치용 표시판의 제조 방법
US8619313B2 (en) * 2005-10-28 2013-12-31 Hewlett-Packard Development Company, L.P. Scanning device with plural image capture zones on a platen
US8654307B2 (en) * 2006-03-20 2014-02-18 Nikon Corporation Scanning type exposure apparatus, method of manufacturing micro-apparatus, mask, projection optical apparatus, and method of manufacturing mask
JP2008058797A (ja) * 2006-09-01 2008-03-13 Fujifilm Corp 描画装置及び描画方法
SG156564A1 (en) * 2008-04-09 2009-11-26 Asml Holding Nv Lithographic apparatus and device manufacturing method
KR101551777B1 (ko) * 2008-11-06 2015-09-10 삼성전자 주식회사 노광 장치 및 노광 데이터의 압축방법
KR101680754B1 (ko) * 2010-02-18 2016-12-13 삼성디스플레이 주식회사 광학 헤드의 중첩 거리 결정 방법 및 이를 이용한 디지털 노광 장치
FR2966941B1 (fr) * 2010-10-29 2013-07-12 Commissariat Energie Atomique Dispositif de projection homothetique d'un motif a la surface d'un echantillon, procede de lithographie utilisant un tel dispositif
US8767184B2 (en) * 2011-03-14 2014-07-01 Seyed Shamsoddin Mohajerzadeh Optical nanolithography system and method using a tilting transparent medium
CN106292188B (zh) * 2015-05-24 2019-01-18 上海微电子装备(集团)股份有限公司 曝光装置
US10275562B2 (en) * 2016-11-29 2019-04-30 Taiwan Semiconductor Manufacturing Company Limited Method of decomposing a layout for multiple-patterning lithography

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769680A (en) 1987-10-22 1988-09-06 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
US5291240A (en) 1992-10-27 1994-03-01 Anvik Corporation Nonlinearity-compensated large-area patterning system
US6078381A (en) * 1993-02-01 2000-06-20 Nikon Corporation Exposure method and apparatus
US5591958A (en) * 1993-06-14 1997-01-07 Nikon Corporation Scanning exposure method and apparatus
US5854671A (en) * 1993-05-28 1998-12-29 Nikon Corporation Scanning exposure method and apparatus therefor and a projection exposure apparatus and method which selectively chooses between static exposure and scanning exposure
JP3348467B2 (ja) 1993-06-30 2002-11-20 株式会社ニコン 露光装置及び方法
US5729331A (en) 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
EP0940710A3 (en) * 1993-12-07 1999-12-22 Kabushiki Kaisha Toshiba Display device and fabrication method thereof
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5623853A (en) 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JP3711586B2 (ja) 1995-06-02 2005-11-02 株式会社ニコン 走査露光装置
JP4075019B2 (ja) * 1996-01-10 2008-04-16 株式会社ニコン 固体撮像装置
JPH1064782A (ja) 1996-08-14 1998-03-06 Nikon Corp 走査型露光装置
JP4092753B2 (ja) 1997-10-22 2008-05-28 株式会社ニコン 走査型露光装置及び走査露光方法
AU4167199A (en) 1998-06-17 2000-01-05 Nikon Corporation Method for producing mask
TW447009B (en) * 1999-02-12 2001-07-21 Nippon Kogaku Kk Scanning exposure method and scanning type exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468524B1 (ko) * 2002-01-18 2005-01-27 산에이 기껜 가부시키가이샤 분할 노광방법

Also Published As

Publication number Publication date
US6873400B2 (en) 2005-03-29
TW495836B (en) 2002-07-21
KR100849870B1 (ko) 2008-08-01
US20010052966A1 (en) 2001-12-20

Similar Documents

Publication Publication Date Title
KR100849870B1 (ko) 주사노광방법 및 주사형 노광장치
JP3711586B2 (ja) 走査露光装置
JP4362999B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2691319B2 (ja) 投影露光装置および走査露光方法
JP2004335864A (ja) 露光装置及び露光方法
JP2007108559A (ja) 走査型露光装置及びデバイスの製造方法
JP3531297B2 (ja) 投影露光装置及び投影露光方法
KR20000076647A (ko) 주사 노광방법 및 주사형 노광장치
EP1443364B1 (en) Projection exposure apparatus
JP2001297975A (ja) 露光装置及び露光方法
JP2000331909A (ja) 走査型露光装置
JP4144059B2 (ja) 走査型露光装置
JP2001215717A (ja) 走査露光方法および走査型露光装置
JP4482998B2 (ja) 走査露光方法および走査露光装置並びにデバイス製造方法
KR100845761B1 (ko) 주사노광방법 및 주사형 노광장치
JPH0855795A (ja) 走査露光装置及び露光方法
JP2803666B2 (ja) 走査露光方法及び回路パターン製造方法
JP3460159B2 (ja) 露光方法
JP2800731B2 (ja) 走査露光方法、及び走査露光による回路素子製造方法
JP2674579B2 (ja) 走査露光装置および走査露光方法
JP2000058422A (ja) 露光装置
JP4505666B2 (ja) 露光装置、照明装置及びマイクロデバイスの製造方法
JP2001201867A (ja) 露光方法及び露光装置、デバイス製造方法
KR20010098613A (ko) 노광장치 및 노광방법
JP5007538B2 (ja) 露光装置、デバイスの製造方法及び露光方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130705

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180717

Year of fee payment: 11