KR20010004712A - Method of forming a matal wiring in a semiconductor - Google Patents

Method of forming a matal wiring in a semiconductor Download PDF

Info

Publication number
KR20010004712A
KR20010004712A KR1019990025426A KR19990025426A KR20010004712A KR 20010004712 A KR20010004712 A KR 20010004712A KR 1019990025426 A KR1019990025426 A KR 1019990025426A KR 19990025426 A KR19990025426 A KR 19990025426A KR 20010004712 A KR20010004712 A KR 20010004712A
Authority
KR
South Korea
Prior art keywords
layer
forming
vapor deposition
metal
metal wiring
Prior art date
Application number
KR1019990025426A
Other languages
Korean (ko)
Inventor
이인행
손기근
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990025426A priority Critical patent/KR20010004712A/en
Publication of KR20010004712A publication Critical patent/KR20010004712A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A metallization method for a semiconductor device, particularly using an alloy of aluminum and copper, is provided to lower the electromigration of metallization layers. CONSTITUTION: After an interlayer dielectric(12) is formed on a silicon substrate(11), a metal line(13), the first oxide layer(14), a silicon nitride layer(15) and the second oxide layer(16) are successively formed on the interlayer dielectric(12). Next, a resist pattern as a mask being selectively covering the second oxide layer(16), a contact hole is formed by dual damascene technique to expose the metal line(13). Then, the first copper layer(18), an aluminum layer(19) and the second copper layer(20) are successively formed to fill the contact hole. In particular, the first and second copper layers(18,20) are formed by physical vapor deposition or chemical vapor deposition. Thereafter, through the following heat treatment process, the copper layers(18,20) are diffused in the aluminum layer(19) and thereby an alloy layer of aluminum and copper is formed. The alloy layer is then planarized on a level with the second oxide layer(16).

Description

반도체 소자의 금속 배선 형성방법{Method of forming a matal wiring in a semiconductor}Method of forming a matal wiring in a semiconductor

본 발명은 반도체 소자의 금속 배선 형성방법에 관한 것으로 특히, Al-Cu 합금을 이용한 반도체 소자의 금속 배선 형성방법에 관한것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wirings in semiconductor devices, and more particularly, to a method for forming metal wirings in semiconductor devices using Al—Cu alloy.

일반적으로 반도체 소자에서 금속 배선은 기판 상에 형성된 각 단위 소자들에 대한 전력의 입/출력 및 정보의 교환 역할을 수행한다. 따라서, 반도체 소자의 금속 배선의 저항은 소자의 속도를 결정하는 중요한 요소이므로 저항이 낮은 금속을 배선 재료로 하는 것은 중요한다.In general, metal wirings in semiconductor devices play a role of input / output and information exchange of power for each unit device formed on a substrate. Therefore, since the resistance of the metal wiring of the semiconductor element is an important factor for determining the speed of the element, it is important to use a metal having a low resistance as the wiring material.

종래 반도체 소자의 금속 재료로 대표적인 것이 알루미늄(Al)이다. Al 증착은 물리적 기상증착(Physical Vapor Deposition)방법인 스퍼터링으로 형성한다.A typical metal material of a semiconductor device is aluminum (Al). Al deposition is formed by sputtering, which is a physical vapor deposition method.

Al의 용융점이 660℃로 다른 금속에 비해 비교적 낮다. 따라서, Al 배선 형성 공정은 스퍼터링시 반도체 기판의 온도를 400 내지 500℃ 로 올려 흐름성을 증가 시켜 콘택을 매립한다.The melting point of Al is 660 ° C., which is relatively low compared to other metals. Therefore, in the Al wiring forming process, the temperature of the semiconductor substrate is increased to 400 to 500 ° C. during sputtering to increase the flowability to fill the contact.

Al 배선의 콘택 매립을 더욱 증가 시키기 위하여 상온에서 Al을 얇게 도포한 후 400 내지 500℃에서 다시 Al을 증착하는 2 차 증착법을 이용한다. 이때, Al의 흐름을 개선하기 위하여 웨팅층(Wetting layer)으로 타이타늄(Ti)을 사용한다. 그러나, 상기 방법은 종횡비가 2 이상일 경우에는 콘택 홀의 성공적인 매립이 불가능하다.In order to further increase the contact filling of the Al wiring, a second deposition method is used in which Al is thinly coated at room temperature and then Al is deposited again at 400 to 500 ° C. At this time, in order to improve Al flow, titanium (Ti) is used as a wetting layer. However, this method does not allow successful filling of contact holes when the aspect ratio is two or more.

또한, 화학 기상증착 방법으로 매립하는 Al 금속은 종횡비가 2 이상일 경우에도 콘택 홀을 매립 할 수 있으나, 화학적 기상증착 방법의 특성상 구리(Cu)를 합금 원소로 첨가하기 어려운 단점이 있다. 즉, Al 소오스 가스 및 Cu 소오스 가스의 혼합을 사용하는 공정은 두 기체의 반응성의 차이와 같은 여러 문제점으로 인하여 안정적인 금속 배선을 형성하기 어려운 문제점이 있다.In addition, the Al metal buried by the chemical vapor deposition method may be buried contact hole even when the aspect ratio is 2 or more, but due to the characteristics of the chemical vapor deposition method it is difficult to add copper (Cu) as an alloying element. That is, the process using a mixture of Al source gas and Cu source gas has a problem that it is difficult to form a stable metal wiring due to various problems such as the difference in reactivity of the two gases.

상기한 문제점이 해소 되도록 본 발명은 화학 기상 증착 방법을 이용한 Al 배선 형성시 물리적 기상증착 방법에 의해 증착된 Cu 의 확산을 이용하여 합금화 하는 반도체 소자의 금속 배선 형성방법을 제공하는데 그 목적이 있다.In order to solve the above problems, an object of the present invention is to provide a method for forming metal wirings of a semiconductor device alloyed using diffusion of Cu deposited by physical vapor deposition in forming Al wirings using a chemical vapor deposition method.

상기한 목적을 달성하기 위한 본 발명은 반도체 소자를 구성하기 위한 여러 요소가 구비된 반도체 기판 상에 금속 라인이 노출 되도록 콘택 홀을 형성하는 단계와, 상기 금속 라인과 접촉되도록 제 1 Cu막, Al층 및 제 2 Cu막을 순차적으로 형성하여 콘택 홀을 매립하는 단계와, 상기 제 1 및 2 Cu막이 Al층으로 확산 되도록 열공정을 실시한 후 평탄화 공정을 실시하여 Al-Cu 합금 금속 배선을 형성하는 단계를 포함하는 것을 특징으로 한다.The present invention for achieving the above object is to form a contact hole to expose a metal line on a semiconductor substrate having a number of elements for constituting a semiconductor device, the first Cu film, Al to be in contact with the metal line Forming a layer and a second Cu film sequentially to fill a contact hole, and performing a thermal process to diffuse the first and second Cu films into the Al layer, and then performing a planarization process to form an Al-Cu alloy metal wiring. Characterized in that it comprises a.

도 1a 내지 도 1f는 본 발명에 따른 반도체 소자의 금속 배선 형성방법을 설명하기 위한 소자의 단면도.1A to 1F are cross-sectional views of a device for explaining a method for forming metal wirings of a semiconductor device according to the present invention.

〈도면의 주요 부분에 대한 부호 설명〉<Description of Signs of Major Parts of Drawings>

11 : 실리콘기판 12 : 층간절연막11 silicon substrate 12 interlayer insulating film

13 : 금속 라인 14 : 제 1 산화막13: metal line 14: first oxide film

15 : Si3N4막 16 : 제 2 산화막15 Si 3 N 4 film 16 Second oxide film

17 : 감광막 패턴 18 : 제 1 Cu막17 photosensitive film pattern 18 first Cu film

19 : Al층 20 : 제 2 Cu막19: Al layer 20: 2nd Cu film

21 : Al-Cu합금층21: Al-Cu alloy layer

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1f는 본 발명에 따른 반도체 소자의 금속 배선 형성방법을 설명하기 위한 소자의 단면도이다.1A to 1F are cross-sectional views of devices for explaining a method for forming metal wirings of a semiconductor device according to the present invention.

도 1a를 참조하면, 실리콘기판(11) 상에 층간 절연막(12)을 형성한 후 금속 라인(Line;13), 제 1 산화막(14), Si3N4막(15) 및 제 2 산화막(16)을 순차적으로 형성한다. 그후 전체 상부면에 Al-Cu 금속배선이 형성 될 위치에 감광막 패턴(17)을 형성한다.Referring to FIG. 1A, after forming the interlayer insulating film 12 on the silicon substrate 11, the metal line 13, the first oxide film 14, the Si 3 N 4 film 15, and the second oxide film ( 16) are formed sequentially. Thereafter, the photoresist pattern 17 is formed at a position where the Al-Cu metal wiring is to be formed on the entire upper surface.

도 1b는 감광막 패턴(17)을 마스크로 이용하여 2중 데머신(Dual Damscene) 법으로 식각공정을 실시하여 층모양으로 금속 라인(13)을 노출 시킨 후 감광막 패턴(17)을 제거한 상태의 단면도이다.FIG. 1B is a cross-sectional view of the photoresist pattern 17 having the photoresist pattern 17 removed by performing an etching process using a dual damscene method using the photoresist pattern 17 as a mask to expose the metal line 13 in a layer shape. to be.

도 1c는 전체 상부면에 이온화 금속 물리 기상증착 방법 또는 화학 기상증착 방법으로 제 1 Cu막(18)을 형성한 상태의 단면도이다. 이때, 이온화 금속 물리 기상증착 방법으로 제 1 Cu막(18)을 형성할 경우 타겟 전력을 1 내지 3 kW, 고주파 코일 전력을 1 내지 3kW, 압력을 10 내지 30 mTorr, 증착 온도를 100 내지 300℃ 에서 50 내지 200Å 두께로 형성한다.FIG. 1C is a cross-sectional view of the first Cu film 18 formed on the entire upper surface by an ionized metal physical vapor deposition method or a chemical vapor deposition method. At this time, when the first Cu film 18 is formed by the ionized metal physical vapor deposition method, the target power is 1 to 3 kW, the high frequency coil power is 1 to 3 kW, the pressure is 10 to 30 mTorr, and the deposition temperature is 100 to 300 ° C. At 50 to 200 mm thick.

또한, 화학 기상 증착 방법으로 제 1 Cu막(18)을 형성할 경우 50 내지 200℃의 온도에서 10 내지 30 mTorr의 압력과 0.25 내지 0.5 Å/sec 의 증착 속도로 50 내지 200Å 두께로 형성한다.In addition, when the first Cu film 18 is formed by a chemical vapor deposition method, the first Cu film 18 is formed to a thickness of 50 to 200 kPa at a pressure of 10 to 30 mTorr and a deposition rate of 0.25 to 0.5 kPa / sec at a temperature of 50 to 200 ° C.

또한, 제 1 Cu막(18)을 형성하기 전에 Cu 확산을 방지하고 표면 성질을 개선 하기 위하여 천이계열 금속 또는 금속의 질화물을 라이너(Liner)로 이용할 수 있다. 상기 라이너는 Ti, Ta, TiN, TaN 등을 500 내지 1000Å 두께로 형성한다.In addition, a transition-based metal or a nitride of a metal may be used as a liner to prevent Cu diffusion and improve surface properties before forming the first Cu film 18. The liner forms Ti, Ta, TiN, TaN, or the like to a thickness of 500 to 1000 mm 3.

도 1d는 DMAH(Dimethlyaluminum hydride)를 소오스 가스로 하고 50 내지 200℃ 의 온도 및 1 내지 5 torr 압력 하에서 Al층(19)을 증착한 후 제 2 Cu막(20)을 형성한 상태의 단면도이다.FIG. 1D is a cross-sectional view of a state in which a second Cu film 20 is formed after depositing an Al layer 19 using DMAH (Dimethlyaluminum hydride) as a source gas and at a temperature of 50 to 200 ° C. and a pressure of 1 to 5 torr.

도 1e는 제 1 및 2 Cu막(18 및 20)을 Al층(19)으로 확산하기 위하여 노(Furnace)에서 300 내지 500℃의 온도에서 열처리하여 Al-Cu 합금층(21)을 형성한 상태의 단면도이다.FIG. 1E shows a state in which the Al-Cu alloy layer 21 is formed by heat-treating the first and second Cu films 18 and 20 at a temperature of 300 to 500 ° C. in a furnace in order to diffuse the first and second Cu films 18 and 20 into the Al layer 19. It is a cross section of.

도 1f는 화학적 기계적 연마공정으로 제 2 산화막(16) 과 동일 높이가 되도록 평탄화 공정을 실시한 상태의 단면도이다.FIG. 1F is a cross-sectional view of the state where the planarization process is performed so as to be the same height as the second oxide film 16 by the chemical mechanical polishing process.

상술한 바와같이 본 발명에 따른 금속 배선 형성방법은 화학적 기상증착 방법으로 Al 배선 형성시 Cu를 합금화하므로 금속배선의 일렉트로 마이그레이션 (Electromigration) 현상이 저하되어 소자의 신뢰성 및 안정성이 향상되는 효과가 있다.As described above, the metal wiring forming method according to the present invention has an effect of improving the reliability and stability of the device by reducing the electromigration phenomenon of the metal wiring since Cu is alloyed when the Al wiring is formed by a chemical vapor deposition method.

Claims (7)

반도체 소자를 구성하기 위한 여러 요소가 구비된 반도체 기판 상에 금속 라인이 노출 되도록 콘택 홀을 형성하는 단계와,Forming a contact hole to expose a metal line on the semiconductor substrate having various elements for constituting the semiconductor device; 상기 금속 라인과 접촉되도록 제 1 Cu막, Al층 및 제 2 Cu막을 순차적으로 형성하여 콘택 홀을 매립하는 단계와,Filling a contact hole by sequentially forming a first Cu film, an Al layer, and a second Cu film to be in contact with the metal line; 상기 제 1 및 2 Cu막이 Al층으로 확산 되도록 열공정을 실시한 후 평탄화 공정을 실시하여 Al-Cu 합금 금속 배선을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.And forming a Al-Cu alloy metal wiring by performing a thermal process so as to diffuse the first and second Cu films into the Al layer, and then forming a Al-Cu alloy metal wiring. 제 1 항에 있어서,The method of claim 1, 상기 제 1 및 2 Cu막은 이온화 금속 물리 기상증착 방법 및 화학 기상 증착 방법 중 어느 하나로 형성하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.Wherein the first and second Cu films are formed by any one of an ionized metal physical vapor deposition method and a chemical vapor deposition method. 제 1 또는 2 항에 있어서,The method of claim 1 or 2, 상기 이온화 금속 물리 기상 증착방법으로 제 1 및 2 Cu막을 형성할 경우 타겟 전력을 1 내지 3 kW, 고주파 코일 전력을 1 내지 3kW, 압력을 10 내지 30 mTorr, 증착 온도를 100 내지 300℃ 에서 50 내지 200Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.When the first and second Cu films are formed by the ionized metal physical vapor deposition method, the target power is 1 to 3 kW, the high frequency coil power is 1 to 3 kW, the pressure is 10 to 30 mTorr, and the deposition temperature is 50 to 50 to 300 ° C. A metal wiring forming method for a semiconductor device, characterized in that formed to a thickness of 200Å. 제 1 또는 2 항에 있어서,The method of claim 1 or 2, 상기 화학 기상 증착 방법으로 제 1 및 2 Cu막을 형성할 경우 50 내지 200℃의 온도에서 10 내지 30 mTorr의 압력과 0.25 내지 0.5 Å/sec 의 증착 속도로 50 내지 200Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.When the first and second Cu films are formed by the chemical vapor deposition method, the first and second Cu films are formed at a thickness of 50 to 200 kPa at a pressure of 10 to 30 mTorr and a deposition rate of 0.25 to 0.5 kPa / sec at a temperature of 50 to 200 ° C. Metal wiring formation method of a semiconductor element. 제 1 항에 있어서,The method of claim 1, 상기 열공정은 300 내지 500℃의 온도에서 실시하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.The thermal process is a metal wiring forming method of a semiconductor device, characterized in that carried out at a temperature of 300 to 500 ℃. 제 1 항에 있어서,The method of claim 1, 상기 콘택 홀에 Ti, Ta, TiN 및 TaN 물질 중 어느 하나를 500 내지 1000Å 두께로 증착 한 후 상기 제 1 Cu막 형성 공정을 실시하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.And depositing any one of Ti, Ta, TiN, and TaN materials in the contact hole to a thickness of 500 to 1000 GPa, and then performing the first Cu film forming process. 제 1 항에 있어서,The method of claim 1, 상기 Al층은 DMAH(Dimethlyaluminum hydride)를 소오스 가스로 하고 50 내지 200℃ 의 온도 및 1 내지 5 torr 압력 하에서 형성하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성방법.The Al layer is DMAH (Dimethlyaluminum hydride) as a source gas, the metal wiring forming method of a semiconductor device, characterized in that formed at a temperature of 50 to 200 ℃ and 1 to 5 torr pressure.
KR1019990025426A 1999-06-29 1999-06-29 Method of forming a matal wiring in a semiconductor KR20010004712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025426A KR20010004712A (en) 1999-06-29 1999-06-29 Method of forming a matal wiring in a semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025426A KR20010004712A (en) 1999-06-29 1999-06-29 Method of forming a matal wiring in a semiconductor

Publications (1)

Publication Number Publication Date
KR20010004712A true KR20010004712A (en) 2001-01-15

Family

ID=19597152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025426A KR20010004712A (en) 1999-06-29 1999-06-29 Method of forming a matal wiring in a semiconductor

Country Status (1)

Country Link
KR (1) KR20010004712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900227B1 (en) * 2006-12-07 2009-05-29 주식회사 하이닉스반도체 Method for forming metal interconnection layer of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255632A (en) * 1990-03-05 1991-11-14 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0669205A (en) * 1992-04-27 1994-03-11 Nec Corp Semiconductor device and manufacture thereof
JPH07273109A (en) * 1994-03-30 1995-10-20 Toshiba Corp Semiconductor device
KR100219511B1 (en) * 1996-12-31 1999-09-01 윤종용 A metal line having an uniform diffusion distribution of copper & a method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255632A (en) * 1990-03-05 1991-11-14 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0669205A (en) * 1992-04-27 1994-03-11 Nec Corp Semiconductor device and manufacture thereof
JPH07273109A (en) * 1994-03-30 1995-10-20 Toshiba Corp Semiconductor device
KR100219511B1 (en) * 1996-12-31 1999-09-01 윤종용 A metal line having an uniform diffusion distribution of copper & a method for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900227B1 (en) * 2006-12-07 2009-05-29 주식회사 하이닉스반도체 Method for forming metal interconnection layer of semiconductor device

Similar Documents

Publication Publication Date Title
US6323554B1 (en) Refractory metal capped low resistivity metal conductor lines and vias formed using PVD and CVD
US5925933A (en) Interconnect structure using Al2 -Cu for an integrated circuit chip
US5356836A (en) Aluminum plug process
KR0165813B1 (en) Plug forming method of contact hole
US6740580B1 (en) Method to form copper interconnects by adding an aluminum layer to the copper diffusion barrier
US5677238A (en) Semiconductor contact metallization
JPH07201984A (en) Forming method for aluminum contact
JPH07321112A (en) Metal wiring formation of semiconductor element
JPH09326436A (en) Formation of wiring
KR20000012027A (en) Method for manufacturing a semiconductor device
JP3911643B2 (en) Method for forming buried conductive layer
JPH08298285A (en) Semiconductor element and its manufacture
US20020187624A1 (en) Method for forming metal line of semiconductor device
KR20010004712A (en) Method of forming a matal wiring in a semiconductor
US5948705A (en) Method of forming interconnection line
JP3277909B2 (en) Semiconductor device and manufacturing method thereof
KR100399066B1 (en) Method for aluminium-alloy in semiconductor device
JPH10209276A (en) Wiring forming method
JP3269490B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100358057B1 (en) Method of forming a metal line in a semiconductor device
KR0179559B1 (en) Method of forming anti-corrosion metal interconnector in semiconductor device
KR100247643B1 (en) A reaction chamber for forming metal layer and method for forming metal layer in semiconductor device using the same
KR0185299B1 (en) Forming method of metal wiring
KR20040029868A (en) Fabrication method of semiconductor device
KR100458589B1 (en) Fabrication method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application