KR20010001206A - Shallow trench isolation manufacturing method of semiconductor devices - Google Patents

Shallow trench isolation manufacturing method of semiconductor devices Download PDF

Info

Publication number
KR20010001206A
KR20010001206A KR1019990020274A KR19990020274A KR20010001206A KR 20010001206 A KR20010001206 A KR 20010001206A KR 1019990020274 A KR1019990020274 A KR 1019990020274A KR 19990020274 A KR19990020274 A KR 19990020274A KR 20010001206 A KR20010001206 A KR 20010001206A
Authority
KR
South Korea
Prior art keywords
silicon wafer
trench
nitride layer
pattern
layer
Prior art date
Application number
KR1019990020274A
Other languages
Korean (ko)
Other versions
KR100355870B1 (en
Inventor
김승준
Original Assignee
황인길
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황인길, 아남반도체 주식회사 filed Critical 황인길
Priority to KR1019990020274A priority Critical patent/KR100355870B1/en
Publication of KR20010001206A publication Critical patent/KR20010001206A/en
Application granted granted Critical
Publication of KR100355870B1 publication Critical patent/KR100355870B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE: A method for manufacturing a shallow trench for isolating a semiconductor device is provided to intensify a leakage current characteristic in a corner portion of the trench, by implanting ions into a silicon wafer using a patterned nitride layer as a mask, and by diffusing the implanted ions to the corner portion through an annealing process after etching the trench. CONSTITUTION: After a silicon wafer(11) is thermally oxidized to grow a pad oxidation layer(12), a nitride layer(13) is evaporated on the pad oxidation layer. The nitride layer and the pad oxidation layer are patterned to form a nitride layer pattern for a trench etch. Ions are injected into the entire surface of the silicon wafer by using the nitride layer pattern as a mask. A predetermined depth of the exposed silicon wafer by using the nitride layer pattern is etched to form a trench, and the silicon wafer is annealed. The silicon wafer is thermally oxidized to grow a liner oxidation layer on an inner wall of the trench. An atmospheric pressure chemical vapor deposition(APCVD) process is performed regarding the entire surface of the silicon wafer to form a thick oxidation layer for filling the trench. The oxidation layer is planarized by a chemical mechanical polishing(CMP) process using the nitride layer pattern as a buffer layer. The nitride layer pattern is eliminated by wet etching.

Description

반도체 소자 분리를 위한 얕은 트렌치 제조 방법{SHALLOW TRENCH ISOLATION MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES}Shallow trench manufacturing method for semiconductor device isolation {SHALLOW TRENCH ISOLATION MANUFACTURING METHOD OF SEMICONDUCTOR DEVICES}

본 발명은 반도체 소자 분리를 위한 트렌치를 제조하는 방법에 관한 것으로, 더욱 상세하게는 반도체 집적회로 등의 반도체 소자를 제조하는 공정 중 실리콘웨이퍼에 각 반도체 소자를 전기적으로 격리하기 위한 트렌치를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a trench for semiconductor device isolation, and more particularly, to a trench for electrically isolating each semiconductor device from a silicon wafer during a process of manufacturing a semiconductor device such as a semiconductor integrated circuit. It is about.

일반적으로 반도체 소자를 분리하는 방법으로는 선택적 산화법으로 질화막을 이용하는 LOCOS(local oxidation of silicon) 소자 분리 방법이 이용되어 왔다.In general, a method of separating a semiconductor device has been used a local oxidation of silicon (LOCOS) device separation method using a nitride film as a selective oxidation method.

LOCOS 소자 분리 방법은 질화막을 마스크로 해서 실리콘웨이퍼 자체를 열 산화시키기 때문에 공정이 간소해서 산화막의 소자 응력 문제가 적고, 생성되는 산화막질이 좋다는 큰 이점이 있다.Since the LOCOS device isolation method thermally oxidizes the silicon wafer itself using a nitride film as a mask, the process is simple and there is a great advantage that the device stress problem of the oxide film is small, and the oxide film produced is good.

그러나, LOCOS 소자 분리 방법을 이용하면 소자 분리 영역이 차지하는 면적이 크기 때문에 미세화에 한계가 있을 뿐만 아니라 버즈 비크(bird's beak)가 발생하게 된다.However, when the LOCOS device isolation method is used, the area occupied by the device isolation region is not only limited in miniaturization but also causes a bird's beak.

이러한 것을 극복하기 위해 LOCOS 소자 분리 방법을 대체하는 기술로서 트렌치 소자 분리(STI ; shallow trench isolation)가 있다. 트렌치 소자 분리에서는 실리콘웨이퍼에 트렌치를 만들어 절연물을 집어넣기 때문에 소자 분리 영역이 차지하는 면적이 작아서 미세화에 유리하다.In order to overcome this, a trench trench isolation (STI) technique is an alternative to the LOCOS isolation scheme. In trench device isolation, since trenches are made in silicon wafers to insulate the insulating material, the area occupied by device isolation regions is small, which is advantageous for miniaturization.

그러면, 도 1a 내지 도 1d를 참조하여 종래 반도체 소자 분리를 위한 얕은 트렌치를 제조하는 방법을 설명한다.1A to 1D, a method of manufacturing a shallow trench for separating a conventional semiconductor device will be described.

먼저 도 1a에 도시한 바와 같이, 실리콘웨이퍼(1)를 열산화하여 열산화막인 패드 산화막(2)을 성장시키고, 그 상부에 화학 기상 증착(chemical vapor deposition, CVD)에 의해 질화막(3)을 증착한다. 그리고, 질화막(3) 상부에 트렌치 식각을 위한 모트(moat) 패턴을 형성한 후, 모트 패턴을 마스크로 드러난 질화막(3)과 패드 산화막(2)을 식각하여 제거하고, 다시 드러난 실리콘웨이퍼(1)를 플라즈마 식각에 의해 일정 깊이로 식각하여 반도체 소자 분리 영역에 얕은 트렌치를 형성하고(모트 식각), 질화막(3) 상부의 모트 패턴을 제거한다.First, as shown in FIG. 1A, the silicon wafer 1 is thermally oxidized to grow a pad oxide film 2, which is a thermal oxidation film, and the nitride film 3 is formed on the upper portion by chemical vapor deposition (CVD). Deposit. In addition, after forming a moat pattern for trench etching on the nitride layer 3, the nitride layer 3 and the pad oxide layer 2 exposed as a mask are etched and removed, and the silicon wafer 1 again exposed. ) Is etched to a certain depth by plasma etching to form shallow trenches in the semiconductor device isolation region (mort etching), and the mort pattern on the nitride film 3 is removed.

그 다음 도 1b에 도시한 바와 같이, 실리콘웨이퍼(1)를 열산화하여 열산화막인 라이너(liner) 산화막(5)을 형성한다. 이때, 질화막(3)이 형성된 활성화 영역 즉, 반도체 소자가 형성될 영역은 열산화막인 라이너 산화막이 성장하지 못하며, 실리콘웨이퍼가 노출된 트렌치 내벽에만 열산화막인 라이너 산화막이 형성된다. 이후, 실리콘웨이퍼(1) 전면에 상압 화학 기상 증착(atmospheric pressure chemical vapor deposition, APCVD)에 의해 산화막(6)을 두껍게 증착하여 트렌치를 완전히 매입하고, 세정하여 실리콘웨이퍼(1) 후면의 불순물을 제거한 후, 어닐링(annealing)하여 산화막(6)의 밀도를 증가시킴으로써 반도체 집적 소자에 필요한 절연 특성을 가지도록 한다.1B, the silicon wafer 1 is thermally oxidized to form a liner oxide film 5 which is a thermal oxide film. In this case, the liner oxide film, which is a thermal oxide film, does not grow in the active region where the nitride film 3 is formed, that is, the region in which the semiconductor device is to be formed, and the liner oxide film, which is a thermal oxide film, is formed only on the inner wall of the trench where the silicon wafer is exposed. Subsequently, the oxide film 6 is thickly deposited by atmospheric pressure chemical vapor deposition (APCVD) on the entire surface of the silicon wafer 1 to completely fill the trench, and to remove impurities from the back surface of the silicon wafer 1. Thereafter, annealing is performed to increase the density of the oxide film 6 so as to have insulating properties necessary for the semiconductor integrated device.

그 다음 도 1c에 도시한 바와 같이, 질화막(3)을 버퍼층으로 하여 산화막(6)을 평탄화한다. 이때, 평탄화를 위해 화학 기계적 연마(chemical mechanical polishing, CMP)를 이용할 경우를 예로 들면, 산화막(6) 상부에 모트 패턴과 반대 형상의 패턴 즉, 리벌스(reverse) 모트 패턴을 형성하고, 리벌스 모트 패턴을 마스크로 드러난 산화막을 식각하여 질화막이 드러나도록 한다. 그리고, 리벌스 모트 패턴을 제거하고 실리콘웨이퍼를 세정한 후, 질화막을 버퍼층으로 화학 기계적 연마에 의해 패터닝된 산화막을 평탄화한다.Next, as shown in FIG. 1C, the oxide film 6 is planarized using the nitride film 3 as a buffer layer. In this case, for example, when chemical mechanical polishing (CMP) is used for planarization, a pattern having a shape opposite to that of the mort pattern, that is, a reverse mort pattern is formed on the oxide film 6, and The nitride film is exposed by etching the oxide film with the mort pattern as a mask. After removing the ribs moat pattern and cleaning the silicon wafer, the patterned oxide film is planarized by chemical mechanical polishing with the nitride film as a buffer layer.

그 다음 도 1d에 도시한 바와 같이, 습식 식각 공정에 의해 실리콘웨이퍼(1)의 활성화 영역에 잔류하는 질화막을 제거함으로써 반도체 소자 분리를 위한 얕은 트렌치를 완성한다.Next, as shown in FIG. 1D, a shallow trench for semiconductor device isolation is completed by removing the nitride film remaining in the active region of the silicon wafer 1 by a wet etching process.

이러한 종래 반도체 소자 분리를 위한 얕은 트렌치를 제조하는 방법에 있어서, 실리콘웨이퍼에 트렌치를 형성하기 위한 모트 식각시 트렌치 코너 부분(도 1a의 4)이 플라즈마 손상을 받게 되어 누설 전류를 발생할 가능성이 많으며, 또한, 트렌치의 평탄화 공정 이후 활성화 영역의 질화막을 제거하는 습식 식각 공정에서 트렌치에 매입된 산화막과 열산화막(패드 산화막, 라이너 산화막)의 식각 속도 차이에 의해 트렌치 매입 산화막이 열산화막을 따라 약간 패여 들어가는 트렌치 코너 결함(도 1d의 7)이 형성되어 상대적으로 낮은 게이트 전압에 의해 채널이 형성되어 누설 전류가 발생할 가능성이 있다.In the conventional method of manufacturing a shallow trench for semiconductor device isolation, a trench corner portion (4 in FIG. 1A) may be damaged during plasma etching to form a trench in a silicon wafer, thereby causing leakage current. In addition, in the wet etching process of removing the nitride layer of the active region after the planarization process of the trench, the trench embedded oxide layer is slightly etched along the thermal oxide layer due to the difference in etching rate between the oxide layer embedded in the trench and the thermal oxide layer (pad oxide layer, liner oxide layer). Trench corner defects (7 in FIG. 1D) are formed and channels are formed by relatively low gate voltages, which may result in leakage currents.

본 발명은 이와 같은 문제점을 해결하기 위한 것으로, 그 목적은 반도체 소자 분리를 위한 트렌치의 코너 부분에서의 누설 전류 특성을 강화하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object thereof is to enhance leakage current characteristics at corner portions of trenches for semiconductor device isolation.

도 1a 내지 도 1d는 종래의 방법에 따라 반도체 소자 분리를 위한 얕은 트렌치를 제조하는 공정을 개략적으로 도시한 것이고,1A to 1D schematically illustrate a process of manufacturing a shallow trench for semiconductor device isolation according to a conventional method,

도 2a 내지 도 2e는 본 발명에 따라 반도체 소자 분리를 위한 얕은 트렌치를 제조하는 공정을 개략적으로 도시한 것이다.2A-2E schematically illustrate a process of manufacturing a shallow trench for semiconductor device isolation in accordance with the present invention.

상기와 같은 목적을 달성하기 위하여, 본 발명은 반도체 소자 분리를 위한 트렌치 형성을 위한 실리콘웨이퍼의 식각 이전에 패터닝된 질화막을 마스크로 실리콘웨이퍼에 이온 주입 하고, 트렌치를 식각한 후 어닐링을 통해 주입된 이온을 트렌치 코너 부분에 확산되도록 하여 트렌치 코너 부분의 누설 전류 특성을 강화하는 것을 특징으로 한다.In order to achieve the above object, the present invention is ion implanted into the silicon wafer with a patterned nitride film before the etching of the silicon wafer for the trench formation for semiconductor device isolation, the trench is etched and then annealed It is characterized in that ions are diffused into the trench corner portions to enhance leakage current characteristics of the trench corner portions.

즉, 실리콘웨이퍼를 열산화하여 패드 산화막을 성장시키고, 그 상부에 질화막을 증착한 다음, 질화막과 패드 산화막을 패터닝하여 트렌치 식각을 위한 질화막 패턴을 형성하고, 이를 마스크로 실리콘웨이퍼 전면에 이온 주입한다. 그리고, 질화막 패턴을 마스크로 드러난 실리콘웨이퍼를 일정 깊이로 식각하여 트렌치를 형성하고, 어닐링하여 트렌치 코너 부분에 주입된 이온을 확산시킨다. 이후, 실리콘웨이퍼를 열산화하여 트렌치 내벽에 라이너 산화막을 성장시키고, 실리콘웨이퍼 전면에 상압 화학 기상 증착으로 산화막을 두껍게 증착하여 트렌치를 매입한 후, 질화막 패턴을 버퍼층으로 산화막을 화학 기계적 연마에 의해 평탄화하고, 질화막 패턴을 습식 식각에 의해 제거하여 반도체 소자 분리를 위한 얕은 트렌치를 완성한다.That is, the silicon oxide is thermally oxidized to grow a pad oxide film, a nitride film is deposited on the silicon wafer, and the nitride film and the pad oxide film are patterned to form a nitride film pattern for trench etching, and ion implanted into the entire surface of the silicon wafer using a mask. . The silicon wafer exposed with the nitride film pattern as a mask is etched to a predetermined depth to form a trench, and then annealed to diffuse ions implanted in the trench corner portion. Thereafter, the silicon wafer is thermally oxidized to grow a liner oxide film on the inner wall of the trench, the oxide film is thickly deposited on the entire surface of the silicon wafer by atmospheric chemical vapor deposition, and the trench is buried, and the nitride film pattern is buffered by chemical mechanical polishing. The nitride layer pattern is removed by wet etching to complete a shallow trench for semiconductor device isolation.

상기 주입되는 이온은 형성하고자 하는 반도체 소자가 P모스일 경우에는 n형을, N모스일 경우에는 p형을 사용하는 것이 바람직하며, 상기 이온 주입 각도는 30°내지 90°로 하는 것이 바람직하다.Preferably, the implanted ions use n-type when the semiconductor device to be formed is P-MOS, and p-type when N-MOS, and the ion implantation angle is preferably 30 ° to 90 °.

또한, 상기 질화막의 증착 두께는 50nm 내지 200nm로 하며, 상기 실리콘웨이퍼의 식각이후 잔류하는 질화막 패턴의 비 균일도는 15%이하가 되도록 하는 것이 바람직하다.In addition, the deposition thickness of the nitride film is 50nm to 200nm, it is preferable that the non-uniformity of the nitride film pattern remaining after the etching of the silicon wafer is 15% or less.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명에 따라 반도체 소자 분리를 위한 얕은 트렌치를 제조하는 공정을 개략적으로 도시한 것이다.2A-2E schematically illustrate a process of manufacturing a shallow trench for semiconductor device isolation in accordance with the present invention.

먼저 도 2a에 도시한 바와 같이, 실리콘웨이퍼(11)를 열산화하여 후속 공정에서 증착되는 질화막과 실리콘웨이퍼 사이의 응력을 감소시키기 위한 열산화막인 패드 산화막(12)을 성장시키고, 그 상부에 화학 기상 증착에 의해 후속 화학 기계적 연마 공정에서 버퍼층의 역할을 하는 질화막(13)을 증착한다. 이때, 증착되는 질화막(13)의 두께는 50nm 내지 200nm로 하는 것이 바람직하다. 그리고, 질화막(13) 상부에 트렌치 식각을 위한 모트 패턴(14)을 형성한 후, 모트 패턴(14)을 마스크로 드러난 질화막(13)과 패드 산화막(12)을 식각하여 제거하고, 모트 패턴(14)을 제거한다. 이때, 잔류하는 질화막(13)의 비 균일도(non-uniformity)는 15%이하가 되도록 하는 것이 바람직하다.First, as illustrated in FIG. 2A, the silicon oxide 11 is thermally oxidized to grow a pad oxide layer 12, which is a thermal oxide layer for reducing the stress between the nitride film and the silicon wafer deposited in a subsequent process, and the chemical structure on top of the silicon wafer 11. The vapor deposition deposits a nitride film 13 which acts as a buffer layer in a subsequent chemical mechanical polishing process. At this time, the thickness of the deposited nitride film 13 is preferably set to 50nm to 200nm. In addition, after forming the mort pattern 14 for trench etching on the nitride layer 13, the nitride layer 13 and the pad oxide layer 12 exposed as the mask are etched and removed, and the mort pattern ( 14) Remove. At this time, it is preferable that the non-uniformity of the remaining nitride film 13 is 15% or less.

이후, 질화막(13)을 마스크로 실리콘웨이퍼(11) 전면에 이온 주입을 실시한다. 이때, 이온은 활성화 영역에 형성하고자 하는 반도체 소자가 P모스일 경우에는 n형 이온을, N모스일 경우에는 p형 이온을 주입한다. 그리고, 모트 패턴(14)을 제거하면 이온 주입 각도가 작아 실리콘웨이퍼 측면(형성될 트렌치의 코너 부분)으로의 이온 주입이 용이하며, 측면으로의 이온 주입이 잘 될수록 트렌치 코너에서의 누설 전류 특성을 향상시킬 수 있다. 즉, "a"와 같이 모트 패턴(14)이 있을 때에는 이온 주입을 하게 되면 실리콘웨이퍼에 이온 주입이 불가능할 가능성이 있지만, "b", "c"에서와 같이 모트 패턴(14)이 없을 때에는 상대적으로 이온 주입 범위가 넓게 형성되므로 측면으로의 이온 주입이 용이하게 된다. 그리고, 도 2a에서는 이온 주입 방향을 우측 상단에서 좌측 하단으로 표시하였지만 실제 상황에서는 모든 방향에서 균일한 이온 주입을 실시한다. 이때, 실리콘웨이퍼로의 이온 주입은 30° 내지 90°로 하여 측면으로의 이온 주입이 잘 되도록 하는 것이 바람직하다.Thereafter, ion implantation is performed on the entire surface of the silicon wafer 11 using the nitride film 13 as a mask. At this time, ions are implanted with n-type ions when the semiconductor element to be formed in the active region is P-MOS and p-type ions when the N-MOS is formed. If the mott pattern 14 is removed, the ion implantation angle is small to facilitate ion implantation into the side of the silicon wafer (the corner portion of the trench to be formed), and the better the ion implantation into the side, the better the leakage current characteristics at the trench corners. Can be improved. That is, if there is a mort pattern 14 such as "a", if ion implantation is possible, ion implantation may not be possible in the silicon wafer. As a result, a wider ion implantation range is provided, thereby making it easier to implant ions into the side surface. In FIG. 2A, the ion implantation direction is indicated from the upper right side to the lower left side, but in practice, uniform ion implantation is performed in all directions. At this time, the ion implantation into the silicon wafer is preferably 30 ° to 90 ° so that the ion implantation to the side is good.

그 다음 도 2b에 도시한 바와 같이, 패터닝된 질화막(13)을 마스크로 드러난 실리콘웨이퍼(11)를 일정 깊이로 플라즈마 식각하여 반도체 소자 분리 영역에 얕은 트렌치를 형성하고(모트 식각), 실리콘웨이퍼(11)를 어닐링하여 트렌치 코너 부분에 주입된 이온(15)을 확산시킨다. 그러면, 이 확산된 이온(15)에 의해 트렌치 코너 부분에서의 누설 전류 특성을 향상시킬 수 있다.Then, as shown in FIG. 2B, the silicon wafer 11 exposed by the patterned nitride film 13 as a mask is plasma-etched to a predetermined depth to form a shallow trench in the semiconductor device isolation region (mot etching), and the silicon wafer ( 11) is annealed to diffuse the ions 15 implanted in the trench corner portions. Then, this diffused ion 15 can improve the leakage current characteristic in a trench corner part.

그 다음 도 2c에 도시한 바와 같이, 실리콘웨이퍼(11)를 열산화하여 열산화막인 라이너 산화막(16)을 형성한다. 이때, 질화막(13)이 형성된 활성화 영역 즉, 반도체 소자가 형성될 영역은 라이너 산화막이 성장하지 못하며, 실리콘웨이퍼가 노출된 트렌치 내벽에만 열산화막인 라이너 산화막(16)이 형성된다. 이후, 실리콘웨이퍼(11) 전면에 상압 화학 기상 증착에 의해 산화막(17)을 두껍게 증착하여 트렌치를 완전히 매입하고, 실리콘웨이퍼(11)를 세정하여 후면의 불순물을 제거한 후, 실리콘웨이퍼(11)를 어닐링하여 산화막(17)의 밀도를 증가시킴으로써 반도체 집적 소자에 필요한 절연 특성을 가지도록 한다.Then, as shown in FIG. 2C, the silicon wafer 11 is thermally oxidized to form a liner oxide film 16 that is a thermal oxide film. In this case, the liner oxide layer does not grow in the active region where the nitride layer 13 is formed, that is, the region where the semiconductor element is to be formed, and the liner oxide layer 16, which is a thermal oxide layer, is formed only on the inner wall of the trench where the silicon wafer is exposed. Subsequently, the oxide film 17 is thickly deposited on the front surface of the silicon wafer 11 by atmospheric chemical vapor deposition to completely fill the trench, and the silicon wafer 11 is cleaned to remove impurities from the back side, and then the silicon wafer 11 is removed. The annealing is performed to increase the density of the oxide film 17 so as to have insulating properties necessary for the semiconductor integrated device.

그 다음 도 2d에 도시한 바와 같이, 질화막(13)을 버퍼층으로 하여 산화막(17)을 평탄화한다. 이때, 평탄화를 위해 화학 기계적 연마(chemical mechanical polishing, CMP)를 이용할 경우를 예로 들면, 산화막(17) 상부에 모트 패턴과 반대 형상의 패턴 즉, 리벌스 모트 패턴을 형성하고, 리벌스 모트 패턴을 마스크로 드러난 산화막(17)을 식각하여 질화막(13)이 드러나도록 한다. 그리고, 리벌스 모트 패턴을 제거하고 실리콘웨이퍼(11)를 세정한 후, 질화막(13)을 버퍼층으로 화학 기계적 연마에 의해 패터닝된 산화막(17)을 평탄화한다.2D, the oxide film 17 is planarized using the nitride film 13 as a buffer layer. In this case, for example, when chemical mechanical polishing (CMP) is used for planarization, a pattern having a shape opposite to that of the mort pattern, that is, a ribs mort pattern is formed on the oxide layer 17, and the ribs mort pattern is formed. The oxide film 17 exposed by the mask is etched to expose the nitride film 13. Then, after removing the ribs mort pattern and cleaning the silicon wafer 11, the patterned oxide film 17 is planarized by chemical mechanical polishing using the nitride film 13 as a buffer layer.

그 다음 도 2e에 도시한 바와 같이, 습식 식각 공정에 의해 실리콘웨이퍼(11)의 활성화 영역에 잔류하는 질화막을 제거함으로써 반도체 소자 분리를 위한 얕은 트렌치를 완성한다. 이때, 종래와 같이 트렌치에 매입된 산화막(17)과 열산화막(12, 16)의 식각 속도 차이에 의해 트렌치 코너 부분이 약간 패여 들어가도 트렌치 코너에 확산되어 있는 이온(15)에 의해 트렌치 코너에서의 누설 전류 특성이 강화되어 있으므로 종래와 같이 상대적으로 낮은 게이트 전압에 의해 채널이 형성되는 것을 방지할 수 있어 반도체 소자의 신뢰성을 향상시킬 수 있다.(맞는지 확인하여 주십시오)Next, as shown in FIG. 2E, a shallow trench for semiconductor device isolation is completed by removing the nitride film remaining in the active region of the silicon wafer 11 by a wet etching process. At this time, even if the trench corner portion is slightly recessed due to the etching rate difference between the oxide film 17 embedded in the trench and the thermal oxide films 12 and 16, the ions 15 diffused in the trench corners in the trench corners. Since the leakage current characteristic is enhanced, the channel can be prevented from being formed by a relatively low gate voltage as in the prior art, so that the reliability of the semiconductor device can be improved.

이와 같이 본 발명은 반도체 소자 분리를 위한 트렌치 형성을 위한 실리콘웨이퍼의 식각 이전에 패터닝된 질화막을 마스크로 실리콘웨이퍼에 이온 주입 하고, 트렌치를 식각한 후 어닐링을 통해 주입된 이온을 트렌치 코너 부분에 확산되도록 하여 트렌치 코너 부분의 누설 전류 특성을 강화함으로써 반도체 소자의 신뢰성을 향상시킬 뿐만 아니라 반도체 소자 제조 공정의 수율을 향상시킬 수 있다.As described above, according to the present invention, ion implanted into the silicon wafer using a patterned nitride film as a mask before etching the silicon wafer to form a trench for semiconductor device isolation, and after the trench is etched, the implanted ion is diffused into the trench corner portion. By enhancing the leakage current characteristics of the trench corner portions, the reliability of the semiconductor device can be improved, and the yield of the semiconductor device manufacturing process can be improved.

Claims (5)

실리콘웨이퍼를 열산화하여 패드 산화막을 성장시키고, 그 상부에 질화막을 증착한 다음, 상기 질화막과 패드 산화막을 패터닝하여 트렌치 식각을 위한 질화막 패턴을 형성하는 단계와;Thermally oxidizing a silicon wafer to grow a pad oxide layer, depositing a nitride layer thereon, and patterning the nitride layer and the pad oxide layer to form a nitride layer pattern for trench etching; 상기 질화막 패턴을 마스크로 상기 실리콘웨이퍼 전면에 이온 주입하는 단계와;Ion implanting the entire surface of the silicon wafer using the nitride film pattern as a mask; 상기 질화막 패턴을 마스크로 드러난 실리콘웨이퍼를 일정 깊이로 식각하여 트렌치를 형성하고, 상기 실리콘웨이퍼를 어닐링하는 단계와;Etching the silicon wafer exposed by the nitride film pattern as a mask to a predetermined depth to form a trench, and annealing the silicon wafer; 상기 실리콘웨이퍼를 열산화하여 상기 트렌치 내벽에 라이너 산화막을 성장시키는 단계와;Thermally oxidizing the silicon wafer to grow a liner oxide layer on the inner wall of the trench; 상기 실리콘웨이퍼 전면에 상압 화학 기상 증착으로 산화막을 두껍게 증착하여 상기 트렌치를 매입하는 단계와;Depositing the trench by depositing a thick oxide film on the entire surface of the silicon wafer by atmospheric chemical vapor deposition; 상기 질화막 패턴을 버퍼층으로 상기 산화막을 화학 기계적 연마에 의해 평탄화하는 단계와;Planarizing the oxide film by chemical mechanical polishing with the nitride film pattern as a buffer layer; 상기 질화막 패턴을 습식 식각에 의해 제거하는 단계를 포함하는 것을 특징으로 하는 반도체 소자 분리를 위한 얕은 트렌치 제조 방법.And removing the nitride layer pattern by wet etching. 제 1 항에 있어서, 상기 질화막 패턴을 마스크로 상기 실리콘웨이퍼 전면에 이온 주입하는 단계에서, 주입되는 이온은 형성하고자 하는 반도체 소자가 P모스일 경우에는 n형을, N모스일 경우에는 p형을 사용하는 것을 특징으로 하는 반도체 소자 분리를 위한 얕은 트렌치 제조 방법.The method of claim 1, wherein in the step of implanting ions into the entire surface of the silicon wafer using the nitride film pattern as a mask, the implanted ions are n-type when the semiconductor device to be formed is P-MOS, and p-type when N-MOS is formed. A shallow trench manufacturing method for semiconductor device isolation, characterized in that it is used. 제 1 항에 있어서, 상기 질화막 패턴을 마스크로 상기 실리콘웨이퍼 전면에 이온 주입하는 단계에서, 이온 주입 각도는 30°내지 90°인 것을 특징으로 하는 반도체 소자 분리를 위한 얕은 트렌치 제조 방법.The method of claim 1, wherein the ion implantation angle is 30 ° to 90 ° in the ion implantation of the nitride film pattern with the mask on the entire surface of the silicon wafer. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 질화막의 증착 두께는 50nm 내지 200nm인 것을 특징으로 하는 반도체 소자 분리를 위한 얕은 트렌치 제조 방법.The method of claim 1, wherein the deposition thickness of the nitride film is in a range of 50 nm to 200 nm. 제 4 항에 있어서, 상기 실리콘웨이퍼의 식각이후 잔류하는 상기 질화막 패턴의 비 균일도는 15%이하가 되도록 하는 것을 특징으로 하는 반도체 소자 분리를 위한 얕은 트렌치 제조 방법.The method of claim 4, wherein the non-uniformity of the nitride layer pattern remaining after etching the silicon wafer is 15% or less.
KR1019990020274A 1999-06-02 1999-06-02 Shallow trench isolation manufacturing method of semiconductor devices KR100355870B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990020274A KR100355870B1 (en) 1999-06-02 1999-06-02 Shallow trench isolation manufacturing method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990020274A KR100355870B1 (en) 1999-06-02 1999-06-02 Shallow trench isolation manufacturing method of semiconductor devices

Publications (2)

Publication Number Publication Date
KR20010001206A true KR20010001206A (en) 2001-01-05
KR100355870B1 KR100355870B1 (en) 2002-10-12

Family

ID=19589516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990020274A KR100355870B1 (en) 1999-06-02 1999-06-02 Shallow trench isolation manufacturing method of semiconductor devices

Country Status (1)

Country Link
KR (1) KR100355870B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708530B1 (en) * 2004-12-31 2007-04-16 동부일렉트로닉스 주식회사 Method for preventing divot pattern during the shallow trench isolation process
KR100800868B1 (en) * 2006-08-31 2008-02-04 동부일렉트로닉스 주식회사 Method for manufacturing in semiconductor device
KR100950749B1 (en) * 2003-07-09 2010-04-05 매그나칩 반도체 유한회사 Method for forming element isolation film of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664871B1 (en) * 2004-12-31 2007-01-03 동부일렉트로닉스 주식회사 Method for Improving Profile of Source-Drain Junction in the Vicinity of Shallow Trench Isolation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980942A (en) * 1982-10-29 1984-05-10 Matsushita Electronics Corp Manufacture of semiconductor device
JPS60236247A (en) * 1984-05-10 1985-11-25 Toshiba Corp Manufacture of semiconductor device
JPS6293955A (en) * 1985-10-21 1987-04-30 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH01125935A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd Manufacture of semiconductor device
KR100230817B1 (en) * 1997-03-24 1999-11-15 김영환 Method for manufacturing semiconductor device using shallow trench isolation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950749B1 (en) * 2003-07-09 2010-04-05 매그나칩 반도체 유한회사 Method for forming element isolation film of semiconductor device
KR100708530B1 (en) * 2004-12-31 2007-04-16 동부일렉트로닉스 주식회사 Method for preventing divot pattern during the shallow trench isolation process
KR100800868B1 (en) * 2006-08-31 2008-02-04 동부일렉트로닉스 주식회사 Method for manufacturing in semiconductor device

Also Published As

Publication number Publication date
KR100355870B1 (en) 2002-10-12

Similar Documents

Publication Publication Date Title
US6174785B1 (en) Method of forming trench isolation region for semiconductor device
US6069058A (en) Shallow trench isolation for semiconductor devices
KR100252751B1 (en) Semiconductor element manufacturing method
US6372606B1 (en) Method of forming isolation trenches in a semiconductor device
US7067387B2 (en) Method of manufacturing dielectric isolated silicon structure
US6503802B2 (en) Method of fabricating isolation structure for semiconductor device
KR20020043279A (en) Fabrication method of isolation region for semiconductor devices
US6271147B1 (en) Methods of forming trench isolation regions using spin-on material
KR100355870B1 (en) Shallow trench isolation manufacturing method of semiconductor devices
US6479328B1 (en) Method of fabricating SOI wafer
KR100276124B1 (en) Formation method of mos transistor using trench
KR100540340B1 (en) Method For Manufacturing Semiconductor Devices
KR20010001203A (en) Shallow trench isolation manufacturing method
KR100588643B1 (en) Method for forming shallow trench isolation layer
KR100274978B1 (en) Method for manufacturing shallow trench isolation
KR100328265B1 (en) Shallow trench isolation manufacturing method of semiconductor devices
KR100419754B1 (en) A method for forming a field oxide of a semiconductor device
KR100302878B1 (en) Trench manufacturing method for isolating semiconductor devices
KR20010002305A (en) Shallow trench isolation manufacturing method
JP2000031489A (en) Manufacturing semiconductor device
KR20010061041A (en) Forming method for a field oxide of semiconductor device
KR100325607B1 (en) Shallow trench isolation manufacturing method
KR20010001201A (en) Shallow trench manufacturing method for isolating semiconductor devices
KR100325598B1 (en) method for shallow trench isolation of semiconductor devices
JP2000150870A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110809

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee