KR20000055377A - Manufacturing method for mos transistor - Google Patents

Manufacturing method for mos transistor Download PDF

Info

Publication number
KR20000055377A
KR20000055377A KR1019990003961A KR19990003961A KR20000055377A KR 20000055377 A KR20000055377 A KR 20000055377A KR 1019990003961 A KR1019990003961 A KR 1019990003961A KR 19990003961 A KR19990003961 A KR 19990003961A KR 20000055377 A KR20000055377 A KR 20000055377A
Authority
KR
South Korea
Prior art keywords
oxide film
single crystal
gate
depositing
crystal silicon
Prior art date
Application number
KR1019990003961A
Other languages
Korean (ko)
Inventor
김성우
Original Assignee
김영환
현대반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체 주식회사 filed Critical 김영환
Priority to KR1019990003961A priority Critical patent/KR20000055377A/en
Publication of KR20000055377A publication Critical patent/KR20000055377A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing a MOS transistor is to reduce a manufacturing step thus to save a manufacturing cost without an oxidation layer and a well. CONSTITUTION: A manufacturing method of a MOS transistor comprises the steps of: depositing an oxidation layer(2), depositing a polycrystal silicon on the same layer, and patterning the polycrystal silicon, so as to form a gate electrode; depositing a gate oxidation layer(4) on the gate electrode layer and the oxidation layer so as to form a gate; depositing a single crystal silicon(5) on the gate oxidation layer and implanting an impurity ion for regulating a threshold voltage into the polycrystal silicon, so as to form a substrate region; depositing an oxidation layer on the single crystal silicon and patterning the same to form a pattern, and implanting an impurity ion into the exposed single crystal so as to form a source/drain.

Description

모스 트랜지스터 제조방법{MANUFACTURING METHOD FOR MOS TRANSISTOR}MOS transistor manufacturing method {MANUFACTURING METHOD FOR MOS TRANSISTOR}

본 발명은 모스 트랜지스터 제조방법에 관한 것으로, 특히 소자분리영역을 형성하지 않아 공정단계를 감소시키며, 집적도를 향상시키는데 적당하도록 한 모스 트랜지스터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a MOS transistor, and more particularly, to a method of manufacturing a MOS transistor, in which a device isolation region is not formed, thereby reducing process steps and improving integration.

도1a 내지 도1d는 종래 모스 트랜지스터의 제조공정 수순단면도로서, 이에 도시한 바와 같이 기판(1)에 필드산화막(2)을 형성하여, 소자형성영역을 정의하고, 그 소자형성영역의 상부에 게이트산화막과 다결정실리콘을 순차적으로 증착한 후, 사진식각공정을 통해 상기 다결정실리콘과 게이트산화막을 패터닝하여 게이트(3)를 형성한 다음, 그 게이트(3)의 측면 기판(1)하부에 저농도 소스 및 드레인(4)을 형성하는 단계(도1a)와; 상기 게이트(3)가 형성된 기판(1)의 상부전면에 절연막을 증착하고, 건식식각하여 상기 게이트(3)의 측면에 측벽(5)을 형성하는 단계(도1b)와; 상기 측벽(5)의 측면 기판(1)에 불순물 이온을 주입하여 고농도 소스 및 드레인(6)을 형성하는 단계(도1c)로 구성된다.1A to 1D are cross-sectional views of a manufacturing process of a conventional MOS transistor. As shown in FIG. 1, a field oxide film 2 is formed on a substrate 1 to define an element formation region, and a gate is formed on the element formation region. After depositing an oxide film and polysilicon sequentially, a gate 3 is formed by patterning the polysilicon and the gate oxide film through a photolithography process, and then a low concentration source and Forming a drain 4 (FIG. 1A); Depositing an insulating film on the upper surface of the substrate (1) on which the gate (3) is formed and dry etching to form sidewalls (5) on the side of the gate (3); Injecting impurity ions into the side substrate 1 of the side wall 5 to form a high concentration source and drain 6 (Fig. 1C).

이하, 상기와 같이 구성된 종래 모스 트랜지스터 제조방법을 좀 더 상세히 설명한다.Hereinafter, the conventional MOS transistor manufacturing method configured as described above will be described in more detail.

먼저, 도1a에 도시한 바와 같이 기판(1)의 상부에 패드산화막과 질화막을 순차적으로 증착하고, 그 질화막을 패터닝시켜 패드산화막의 일부를 노출시킨 후, 노출된 패드산화막에 열산화막을 성장시켜, 필드산화막(2)을 형성하여, 소자가 형성될 영역을 정의하고, 그 소자형성영역간의 전기적인 절연을 실시한다.First, as illustrated in FIG. 1A, a pad oxide film and a nitride film are sequentially deposited on the substrate 1, the nitride film is patterned to expose a portion of the pad oxide film, and then a thermal oxide film is grown on the exposed pad oxide film. The field oxide film 2 is formed to define the region where the element is to be formed and to electrically insulate between the element formation regions.

그 다음, 상기 패드산화막과 질화막을 제거하여 소자형성영역인 기판(1)을 노출시킨다.Next, the pad oxide film and the nitride film are removed to expose the substrate 1, which is an element formation region.

그 다음, 도1b에 도시한 바와 같이 상기 필드산화막(2)이 형성된 기판(1)의 상부전면에 게이트산화막과 다결정실리콘을 순차적으로 증착하고, 그 다결정실리콘의 상부에 포토레지스트를 도포한 후, 노광 및 현상하여 포토레지스트 패턴을 형성한 후, 그 패턴을 식각마스크로 사용하는 식각공정으로 상기 다결정실리콘과 게이트산화막을 식각하여 게이트(3)를 형성한다.Subsequently, as shown in FIG. 1B, a gate oxide film and polysilicon are sequentially deposited on the upper surface of the substrate 1 on which the field oxide film 2 is formed, and a photoresist is applied on the polysilicon. After exposure and development to form a photoresist pattern, the polysilicon and the gate oxide film are etched by an etching process using the pattern as an etching mask to form a gate 3.

그 다음, 상기 게이트(3)의 측면 기판(1) 하부에 저농도 불순물 이온을 이온주입하여 저농도 소스 및 드레인(4)을 형성한다.Next, low concentration impurity ions are implanted into the lower side substrate 1 of the gate 3 to form the low concentration source and drain 4.

그 다음, 도1c에 도시한 바와 같이 상기 저농도 소스 및 드레인(4)과 게이트(3)가 형성된 영역의 상부전면에 질화막등의 절연막을 증착하고, 그 증착된 절연막을 건식식각하여 상기 게이트(3)의 측면 기판(1)의 상부에 게이트측벽(5)을 형성한다.Then, as shown in FIG. 1C, an insulating film such as a nitride film is deposited on the upper surface of the region where the low concentration source and drain 4 and the gate 3 are formed, and the deposited insulating film is etched dry to form the gate 3. The gate side wall 5 is formed on the side substrate 1 of FIG.

그 다음, 도1d에 도시한 바와 같이 상기 게이트측벽(5)의 측면 기판하부에 고농도 불순물을 이온주입하여 고농도 소스 및 드레인(6)을 형성한다.Then, as shown in Fig. 1D, high concentration impurities are implanted under the side substrate of the gate side wall 5 to form a high concentration source and drain 6.

상기한 바와 같이 종래 모스 트랜지스터 제조방법은 모스 트랜지스터의 형성이전에 필드산화막을 형성하여 각 소자간의 절연을 실시하고, 기판 또한 그 모스 트랜지스터의 도전형에 따라 선택적으로 사용해야 하기 때문에 특정 도전형의 웰을 형성해야 함으로써, 제조공정의 단계가 증가하는 문제점과 아울러 상기 필드산화막의 형성으로 소자의 집적도가 감소하는 문제점이 있었다.As described above, in the conventional method of manufacturing a MOS transistor, a field oxide film is formed before the formation of the MOS transistor to insulate the elements, and the substrate also needs to be selectively used according to the conductivity type of the MOS transistor. As a result of the formation, there is a problem in that the step of the manufacturing process is increased and the degree of integration of the device is reduced due to the formation of the field oxide film.

이와 같은 문제점을 감안한 본 발명은 필드산화막을 형성하지 않고, 소자간의 전기적 분리를 가능하게 하며, 기판의 도전형과 관계없이 특정 도전형의 소자를 형성할 수 있는 모스 트랜지스터 제조방법을 제공함에 그 목적이 있다.In view of the above problems, the present invention provides a method of manufacturing a MOS transistor which enables electrical separation between devices without forming a field oxide film and can form devices of a specific conductivity type regardless of the conductivity type of the substrate. There is this.

도1a 내지 도1c는 종래 모스 트랜지스터의 제조공정 수순단면도.1A to 1C are cross-sectional views illustrating a manufacturing process of a conventional MOS transistor.

도2a 내지 도2d는 본 발명 모스 트랜지스터의 제조공정 수순단면도.2A to 2D are cross-sectional views of a manufacturing process of the MOS transistor of the present invention.

***도면의 주요부분에 대한 부호의 설명****** Explanation of symbols for main parts of drawing ***

1:기판2:산화막1: Substrate 2: Oxide Film

3:게이트전극4:게이트산화막3: gate electrode 4: gate oxide film

5:단결정실리콘층6:절연층5: single crystal silicon layer 6: insulating layer

7:소스 및 드레인7: Source and Drain

상기와 같은 목적은 기판의 상부에 산화막을 증착하고, 그 산화막의 상부전면에 다결정실리콘을 증착 및 패터닝하여 게이트전극을 형성한 후, 그 게이트전극과 산화막의 상부전면에 게이트산화막을 증착하는 게이트형성단계와; 상기 게이트산화막의 상부전면에 단결정실리콘을 증착하고, 그 다결정실리콘에 문턱전압조절용 불순물 이온을 이온주입하는 기판영역 형성단계와; 상기 단결정실리콘의 상부전면에 산화막을 증착하고, 패터닝하여 상기 단결정실리콘의 일부영역을 노출시키는 패턴을 형성한 후, 그 노출된 단결정실리콘에 불순물 이온을 이온주입하여 소스 및 드레인을 형성하는 소스 및 드레인 형성단계로 구성함으로써 달성되는 것으로, 이와 같은 본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.The purpose of the above is to form a gate electrode by depositing an oxide film on top of the substrate, and depositing and patterning polycrystalline silicon on the top surface of the oxide film, and then forming a gate oxide film on the top surface of the gate electrode and the oxide film. Steps; A substrate region forming step of depositing single crystal silicon on the upper surface of the gate oxide film and ion implanting impurity ions for adjusting the threshold voltage into the polycrystalline silicon; An oxide film is deposited on the upper surface of the single crystal silicon and patterned to form a pattern for exposing a portion of the single crystal silicon, and then a source and a drain are formed by implanting impurity ions into the exposed single crystal silicon to form a source and a drain. It is achieved by forming in a forming step, described in detail with reference to the accompanying drawings, the present invention as follows.

도2a 내지 도2d는 본 발명 모스 트랜지스터의 제조공정 수순단면도로서, 이에 도시한 바와 같이 기판(1)의 상부에 산화막(2)을 증착하고, 그 산화막(2)의 상부전면에 다결정실리콘을 증착한 후, 패터닝하여 게이트전극(3)을 형성한 다음, 그 게이트전극(3)과 산화막(2)의 상부전면에 게이트산화막(4)을 증착하는 단계(도2a)와; 상기 게이트산화막(4)의 상부전면에 단결정실리콘층(5)을 성장시키고 그 단결정실리콘층(5)에 문턱전압 조절을 위한 불순물을 주입하는 단계(도2b)와; 상기 단결정실리콘층(5)의 상부전면에 절연층(6)을 형성하고, 그 절연층(6)의 일부를 식각하여 그 하부의 단결정실리콘층(5)의 일부를 노출시키고, 그 노출된 단결정실리콘층(5)에 불순물 이온을 이온주입하여 소스 및 드레인(7)을 형성하는 단계(도2c)와; 상기 절연층(6)을 제거하는 단계(도2d)로 구성된다.2A to 2D are cross-sectional views of a manufacturing process of a MOS transistor according to an embodiment of the present invention, in which an oxide film 2 is deposited on an upper portion of a substrate 1 and polysilicon is deposited on an upper surface of the oxide film 2. Then, patterning to form a gate electrode 3, and then depositing a gate oxide film 4 on the upper surface of the gate electrode 3 and the oxide film 2 (FIG. 2A); Growing a single crystal silicon layer (5) on the upper surface of the gate oxide film (4) and injecting impurities into the single crystal silicon layer (5) for controlling the threshold voltage (FIG. 2B); The insulating layer 6 is formed on the upper surface of the single crystal silicon layer 5, and a part of the insulating layer 6 is etched to expose a part of the single crystal silicon layer 5 below the exposed single crystal. Implanting impurity ions into the silicon layer 5 to form a source and a drain 7 (FIG. 2C); The insulating layer 6 is removed (Fig. 2d).

이하, 상기와 같은 본 발명 모스 트랜지스터 제조방법을 좀 더 상세히 설명한다.Hereinafter, the method of manufacturing the MOS transistor of the present invention as described above will be described in more detail.

먼저, 도2a에 도시한 바와 같이 기판(1)의 상부에 산화막(2)을 증착한다. 이때의 기판은 실제 모스 트랜지스터의 동작에는 관여하지 않은 것으로, 특정 도전형에 제한되지 않는다.First, as shown in FIG. 2A, an oxide film 2 is deposited on the substrate 1. The substrate at this time is not involved in the actual operation of the MOS transistor, and is not limited to a specific conductivity type.

그 다음, 상기 산화막(2)의 상부전면에 다결정실리콘을 증착하고, 사진식각공정을 통해 패터닝하여 게이트전극(3)을 형성한다.Next, polysilicon is deposited on the upper surface of the oxide film 2 and patterned through a photolithography process to form a gate electrode 3.

그 다음, 상기 게이트전극(3)과 산화막(2)의 상부전면에 게이트산화막(4)을 증착한다. 이와 같은 과정에서 알수 있는 바와 같이 본 발명은 기판(1)으로 부터 순차적으로 게이트산화막과 게이트전극을 적층한 게이트를 갖는 구조가 아니며, 종래 일반적인 형상을 역전시킨 형태로 게이트를 형성한다.Next, a gate oxide film 4 is deposited on the upper surface of the gate electrode 3 and the oxide film 2. As can be seen in this process, the present invention does not have a structure in which a gate oxide film and a gate electrode are sequentially stacked from the substrate 1, and forms a gate in a form in which a conventional general shape is reversed.

그 다음, 도2b에 도시한 바와 같이 상기 게이트산화막(4)의 상부전면에 단결정실리콘층(5)을 성장시킨다. 상기 단결정실리콘층(5)은 소스 및 드레인과 채널이 형성되는 영역을 정의하는 것이며, 이때 증착된 단결정실리콘층(5)을 패터닝하여 이웃한 소자와 절연을 하게 된다. 즉, 단결정실리콘층(5)을 종래의 기판역할을 하며, 그 단결정실리콘층(5)이 식각되어 그 하부의 게이트산화막(4)이 노출되는 영역은 종래 필드산화막의 역할과 같이 인접한 소자간의 전기적인 분리를 시키는 것이다.Next, as shown in FIG. 2B, the single crystal silicon layer 5 is grown on the upper front surface of the gate oxide film 4. The single crystal silicon layer 5 defines a region where a source, a drain, and a channel are formed, and in this case, the deposited single crystal silicon layer 5 is patterned to insulate the neighboring device. That is, the single crystal silicon layer 5 serves as a conventional substrate, and the region in which the single crystal silicon layer 5 is etched and the gate oxide film 4 under the exposed portion is exposed to electricity between adjacent elements as in the role of the conventional field oxide film. It is to make a separate separation.

그 다음, 상기 성장된 단결정실리콘층(5)에 불순물 이온을 이온주입하여 모스 트랜지스터의 동작전압인 문턱전압을 설정하게 된다.Then, impurity ions are implanted into the grown single crystal silicon layer 5 to set a threshold voltage which is an operating voltage of the MOS transistor.

그 다음, 도2c에 도시한 바와 같이 상기 단결정실리콘층(5)의 상부전면에 절연층(6)을 증착한 다음, 그 절연층(6)의 상부전면에 포토레지스트(도면 미도시)를 도포하고, 노광 및 현상하여 상기 절연층(6)의 상부일부를 노출시키는 패턴을 형성한후, 그 포토레지스트 패턴을 식각마스크로 하는 식각공정으로, 상기 노출된 절연층(6)을 식각하여 상기 게이트전극(3)의 측면 상부에 위치하는 단결정실리콘층(5)의 상부를 노출시킨다.Next, as illustrated in FIG. 2C, an insulating layer 6 is deposited on the upper surface of the single crystal silicon layer 5, and then a photoresist (not shown) is applied to the upper surface of the insulating layer 6. After exposure and development to form a pattern exposing a portion of the upper portion of the insulating layer 6, an etching process using the photoresist pattern as an etching mask, the exposed insulating layer 6 is etched to the gate An upper portion of the single crystal silicon layer 5 positioned on the upper side of the electrode 3 is exposed.

그 다음, 상기 포토레지스트 패턴을 제거하고, 상기 절연층(6)을 이온주입의 마스크로 사용하는 이온주입공정으로 상기 노출된 단결정실리콘층(5)에 불순물 이온을 이온주입하여 소스 및 드레인(7)을 형성한다.Subsequently, the photoresist pattern is removed and an ion implantation process using the insulating layer 6 as a mask for ion implantation implants impurity ions into the exposed single crystal silicon layer 5 so as to provide a source and a drain 7. ).

그 다음, 도2d에 도시한 바와 같이 상기 절연층(6)을 식각하여 모스 트랜지스터를 형성하게 된다.Next, as shown in FIG. 2D, the insulating layer 6 is etched to form a MOS transistor.

상기한 바와 같이 본 발명은 필드산화막을 형성하지 않고, 웰을 형성할 필요가 없어 제조공정단계를 줄여 비용을 절감하는 효과와 아울러 상기 게이트의 상부측에 증착하는 단결정실리콘의 패터닝을 통해 필드산화막의 역할인 소자간의 분리를 실시하여 필드산화막보다 작은 영역을 사용하며 동일한 효과를 나타내어, 집적도를 향상시키는 효과가 있다.As described above, the present invention does not form a field oxide film and does not need to form a well, thereby reducing the manufacturing process step and reducing the cost, as well as patterning of the field oxide film through patterning of single crystal silicon deposited on the upper side of the gate. The separation between the elements, which is a role, uses a smaller area than that of the field oxide film and has the same effect, thereby improving the degree of integration.

Claims (1)

기판의 상부에 산화막을 증착하고, 그 산화막의 상부전면에 다결정실리콘을 증착 및 패터닝하여 게이트전극을 형성한 후, 그 게이트전극과 산화막의 상부전면에 게이트산화막을 증착하는 게이트형성단계와; 상기 게이트산화막의 상부전면에 단결정실리콘을 증착하고, 그 다결정실리콘에 문턱전압조절용 불순물 이온을 이온주입하는 기판영역 형성단계와; 상기 단결정실리콘의 상부전면에 산화막을 증착하고, 패터닝하여 상기 단결정실리콘의 일부영역을 노출시키는 패턴을 형성한 후, 그 노출된 단결정실리콘에 불순물 이온을 이온주입하여 소스 및 드레인을 형성하는 소스 및 드레인 형성단계로 이루어진 것을 특징으로 하는 모스 트랜지스터 제조방법.Depositing an oxide film on the substrate, depositing and patterning polycrystalline silicon on the upper surface of the oxide film to form a gate electrode, and then forming a gate oxide film on the gate electrode and the upper surface of the oxide film; A substrate region forming step of depositing single crystal silicon on the upper surface of the gate oxide film and ion implanting impurity ions for adjusting the threshold voltage into the polycrystalline silicon; An oxide film is deposited on the upper surface of the single crystal silicon and patterned to form a pattern for exposing a portion of the single crystal silicon, and then a source and a drain are formed by implanting impurity ions into the exposed single crystal silicon to form a source and a drain. A MOS transistor manufacturing method comprising the forming step.
KR1019990003961A 1999-02-05 1999-02-05 Manufacturing method for mos transistor KR20000055377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990003961A KR20000055377A (en) 1999-02-05 1999-02-05 Manufacturing method for mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990003961A KR20000055377A (en) 1999-02-05 1999-02-05 Manufacturing method for mos transistor

Publications (1)

Publication Number Publication Date
KR20000055377A true KR20000055377A (en) 2000-09-05

Family

ID=19573509

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990003961A KR20000055377A (en) 1999-02-05 1999-02-05 Manufacturing method for mos transistor

Country Status (1)

Country Link
KR (1) KR20000055377A (en)

Similar Documents

Publication Publication Date Title
KR100486253B1 (en) Manufacturing method for vertical transistor
KR100232197B1 (en) Method of manufacturing semiconductor device
KR100298874B1 (en) Method for forming transistor
KR100485163B1 (en) MOS transistor and fabrication method thereof
KR20000055377A (en) Manufacturing method for mos transistor
KR100319633B1 (en) Manufacturing method for mos transistor
KR20040019167A (en) Method for forming the high voltage transistor
KR100307541B1 (en) Manufacturing method for mos transistor
KR100266688B1 (en) Method for fabricating high voltage vertical diffused mos transistor
KR0165381B1 (en) High voltage mosfet manufacturing method
KR100319634B1 (en) Manufacturing method for semiconductor device
KR100313505B1 (en) Manufacturing method for semiconductor memory
KR100273299B1 (en) Method for fabricating mos transistor
KR20000067000A (en) Manufacturing method for mos transistor
KR100518239B1 (en) Semiconductor device manufacturing method
KR100950467B1 (en) Method for fabricating of transistor in semiconductor device
KR0125296B1 (en) Fabrication method of mosfet
KR0152936B1 (en) Method of fabricating semiconductor device
KR100567047B1 (en) Menufacturing method for mos transistor
KR970001349B1 (en) Transistor manufacturing method
KR100244498B1 (en) Method for manufacturing mosfet
KR100280798B1 (en) Transistor manufacturing method of semiconductor device
KR100587379B1 (en) Method for manufacturing of semiconductor device
KR20040029588A (en) Method for forming the semiconductor device
KR20010035684A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination