KR20000014156A - Method for forming dielectric layer of foil used for electrolytic capacitor - Google Patents

Method for forming dielectric layer of foil used for electrolytic capacitor Download PDF

Info

Publication number
KR20000014156A
KR20000014156A KR1019980033398A KR19980033398A KR20000014156A KR 20000014156 A KR20000014156 A KR 20000014156A KR 1019980033398 A KR1019980033398 A KR 1019980033398A KR 19980033398 A KR19980033398 A KR 19980033398A KR 20000014156 A KR20000014156 A KR 20000014156A
Authority
KR
South Korea
Prior art keywords
foil
electrolytic capacitor
titanium oxide
dielectric layer
metal alkoxide
Prior art date
Application number
KR1019980033398A
Other languages
Korean (ko)
Inventor
김재근
Original Assignee
권호택
대우전자부품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권호택, 대우전자부품 주식회사 filed Critical 권호택
Priority to KR1019980033398A priority Critical patent/KR20000014156A/en
Publication of KR20000014156A publication Critical patent/KR20000014156A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE: A method for forming dielectric layer of a foil used for an electrolytic capacitor is provided to form a dielectric layer to foils, which is used to the electrolytic capacitor independently to matters of a foil. CONSTITUTION: The method for forming dielectric layer of a foil used for an electrolytic capacitor comprises the steps of: mixing(S100) a metal alkoxide matter, a diluent, and a stabilizing matter; reacting(S200) the metal alkoxide matter, the diluent, and the stabilizing matter to occur polycondensation and hydrolysis; adding(S300) a foil to titanium oxide solution of colloid state; evaporating(S400) aqueous solution from the foil coated with the titanium oxide solution of colloid state; and drying(S500) the foil and treating the foil with heat.

Description

전해캐패시터용 포일의 유전체층 형성방법Method for forming dielectric layer of foil for electrolytic capacitor

본 발명은 전해캐패시터에 관한 것으로, 보다 상세하게는 전해캐패시터용 포일의 재료에 관계없이 전해캐패시터에 사용되는 모든 포일에 원활하게 유전체층을 형성시킬 수 있는 전해캐패시터용 포일의 유전체층 형성방법에 관한 것이다.The present invention relates to an electrolytic capacitor, and more particularly, to a method for forming a dielectric layer of an electrolytic capacitor foil capable of forming a dielectric layer on all foils used in an electrolytic capacitor, regardless of the material of the electrolytic capacitor foil.

일반적으로 전해캐패시터는 알루미늄 포일 또는 구리 포일을 전극으로 사용하여 대향되는 두 전극판 사이에 유전체를 개재시켜 직류전압을 인가하면 에너지(전하)를 축적하는 기능을 갖는다. 상기 전해캐패시터(electrolytic capacitor)는 알루미늄 포일 또는 구리 포일등을 이용하여 제조되며, 에칭공정, 화성공정, 절단공정, 권취공정, 함침공정, 조립공정 및 재화성공정을 통해 전해캐패시터가 제조된다. 즉, 상기 에칭공정은 압연된 알루미늄 원박의 평활면을 염산 등의 시약을 사용하여 전기화학적으로 표면을 조면화함으로써 그 실효면적을 증가시키는 공정이고, 화성공정은 화성액중에서 에칭박을 양극으로서 전기분해를 하여 전기화학적으로 알루미늄박의 표면에 유전체가 되는 산화 알루미늄 피막(Al2O3)을 생성하여 전해캐패시터의 성능을 조절하는 공정이며, 절단공정은 화성공정에서 화성된 전극박을 제품의 용량에 맞도록 일정한 규격으로 절단하는 공정이다. 그리고 권취공정은 절단공정에서 일정한 규격으로 절단된 전극박에 인출단자를 접속한 후 음극박과 전해지를 넣어 동심원이 되도록 감는 공정이고, 함침공정은 권취한 소자에 전해액을 넣는 공정으로 전해액은 양극박과 음극박의 표면에 침투 밀착하여 양극박 및 음극박의 정전용량이 최대가 되도록 함과 동시에 양극산화 피막의 결함부분을 재화성시 수복하는 기능을 한다. 조립공정은 함침공정에서 전해액에 함침된 소자가 이미 캐패시터로서의 기능을 가지므로 대기 상태에 방치해 두면 전해액이 증발 또는 흡습되어 캐패시터로서의 기능이 저하되므로 이를 방지하기 위하여 금속 케이스에 넣어 밀봉하게 되며, 재화성 공정은 조립공정에서 조립된 캐패시터에 정격전압을 인가함으로써 캐패시터의 기능을 안정화시키는 공정이다. 상기와 같은 Al 전해캐패시터의 제조공정을 이루는 화성공정에서 알루미늄 포일을 에칭하여 알루미늄 포일의 표면적을 향상시키고 에칭포일을 다시 전기화학 반응을 통하여 유전체를 형성시킨다.In general, an electrolytic capacitor has a function of accumulating energy (charge) when a DC voltage is applied through a dielectric between two opposite electrode plates using an aluminum foil or a copper foil as an electrode. The electrolytic capacitor is manufactured by using an aluminum foil or a copper foil, and the electrolytic capacitor is manufactured through an etching process, a chemical conversion process, a cutting process, a winding process, an impregnation process, an assembly process, and a regeneration process. That is, the etching process is to increase the effective area by electrochemically roughening the surface of the rolled aluminum foil using a reagent such as hydrochloric acid, and the chemical conversion process uses the etching foil as an anode in the chemical solution. It is a process of controlling the performance of the electrolytic capacitor by producing an aluminum oxide film (Al 2 O 3 ) that becomes a dielectric on the surface of the aluminum foil by electrolysis, and the cutting process is the capacity of the product It is a process of cutting to a certain standard to fit. In the winding process, the lead terminal is connected to the electrode foil cut to a certain standard in the cutting process, and the cathode foil and the electrolytic cell are put in a concentric circle. The impregnation process is a process of putting the electrolyte in the wound element. It penetrates and adheres to the surface of the negative electrode foil to maximize the capacitance of the positive electrode foil and the negative electrode foil, and at the same time serves to repair the defective portion of the anodized film upon regeneration. In the assembly process, the element impregnated with the electrolyte in the impregnation process already has a function as a capacitor, so if it is left in the standby state, the electrolyte is evaporated or absorbed and the function of the capacitor is degraded. The chemical conversion process is a process of stabilizing the function of a capacitor by applying a rated voltage to the capacitor assembled in the assembly process. In the chemical conversion process forming the Al electrolytic capacitor as described above, the aluminum foil is etched to improve the surface area of the aluminum foil, and the etching foil is formed again through an electrochemical reaction to form a dielectric.

그런데, 상기와 같은 종래의 전해캐패시터에 사용되는 양극 포일은 주로 알루미늄 포일을 사용하여 알루미늄 포일의 표면에 유전체층(Al2O3)을 형성시켜 사용함으로써 다양한 종류의 포일에는 유전율이 높은 유전체층을 형성시키지 못하는 문제점이 있다.By the way, the anode foil used in the conventional electrolytic capacitor as described above is mainly used to form a dielectric layer (Al 2 O 3 ) on the surface of the aluminum foil using aluminum foil to form a dielectric layer having a high dielectric constant on various kinds of foil. There is a problem.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 전해캐패시터에 사용되는 포일의 종류에 관계없이 유전율이 높은 유전체층을 형성시킬 수 있는 전해캐패시터용 포일의 유전체층 형성방법을 제공하는데 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for forming a dielectric layer of an electrolytic capacitor foil capable of forming a dielectric layer having a high dielectric constant regardless of the type of foil used in the electrolytic capacitor. It is.

도 1은 본 발명에 따른 전해캐패시터용 포일에 유전체층을 형성시키는 과정을 개략적으로 나타낸 도면이다.1 is a view schematically showing a process of forming a dielectric layer on a foil for an electrolytic capacitor according to the present invention.

도 2는 본 발명에 따른 전해캐패시터용 포일의 유전체층 형성방법을 나타낸 흐름도이다.2 is a flowchart illustrating a method of forming a dielectric layer of a foil for an electrolytic capacitor according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 용기 20 : 산화티타늄 용액10 container 20 titanium oxide solution

22 : 산화티타늄 30 : 구리포일22 titanium oxide 30 copper foil

상기 목적을 달성하기 위하여 본 발명은 금속알콕시드(Metal Alkoxide)물질과 희석제 및 안정화제 등을 혼합하는 믹싱단계; 상기 믹싱단계 다음에 금속알콕시드(Metal Alkoxide)물질과 희석제 및 안정화제가 서로 반응을 하여 축중합반응과 가수분해가 발생하는 반응단계; 상기 반응단계 다음에 콜로이드상태의 산화티타늄용액에 포일을 함침하는 함침단계; 상기 함침단계 다음에 포일에 코팅되어 있는 산화티타늄용액으로부터 수용액등을 증발시키는 증발단계; 그리고 상기 증발단계 다음에 포일을 건조 및 열처리하는 열처리단계를 포함하는 전해캐패시터용 포일의 유전체층 형성방법을 제공한다.In order to achieve the above object, the present invention comprises a mixing step of mixing a metal alkoxide (Metal Alkoxide) material and diluent and stabilizer; A reaction step in which a metal alkoxide material, a diluent, and a stabilizer react with each other after the mixing step to generate a condensation polymerization reaction and hydrolysis; An impregnation step of impregnating the foil in the colloidal titanium oxide solution following the reaction step; An evaporation step of evaporating an aqueous solution from the titanium oxide solution coated on the foil after the impregnation step; And it provides a method for forming a dielectric layer of a foil for an electrolytic capacitor comprising a heat treatment step of drying and heat treating the foil after the evaporation step.

본 발명에 의하면, 금속알콕시드(Metal Alkoxide)물질에 희석제를 혼합한 후 반응속도를 조절하기 위하여 안정화제를 섞는다. 상기 금속알콕시드(Metal Alkoxide)물질인 티타늄 이소프로폭시드와 희석제인 이소프로필알코올은 안정화제에 의해 서서히 반응을 하여 졸상태인 산화티타늄용액이 얻어진다. 상기 산화티타늄용액이 졸상태이므로 구리 포일 또는 스텐리스 스틸 포일등을 함침시키면서 포일의 표면에 산화티타늄 유전체층을 코팅시킨다. 상기 전해캐패시터용 포일의 표면에 산화티타늄층이 코팅되면 포일을 건조 및 열처리를 함으로써 유전율이 높은 유전체층을 포일의 표면에 형성시킬 수 있다.According to the present invention, a diluent is mixed with a metal alkoxide material and then a stabilizer is mixed to control the reaction rate. Titanium isopropoxide, which is a metal alkoxide, and isopropyl alcohol, which is a diluent, are slowly reacted with a stabilizer to obtain a sol titanium oxide solution. Since the titanium oxide solution is in a sol state, the titanium oxide dielectric layer is coated on the surface of the foil while impregnating a copper foil or a stainless steel foil. When the titanium oxide layer is coated on the surface of the foil for the electrolytic capacitor, the dielectric layer having a high dielectric constant may be formed on the surface of the foil by drying and heat treating the foil.

이하 첨부된 도면을 참조하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 따른 전해캐패시터용 포일에 유전체층을 형성시키는 과정을 개략적으로 나타낸 도면이다. 도 2는 본 발명에 따른 전해캐패시터용 포일의 유전체층 형성방법을 나타낸 흐름도이다.1 is a view schematically showing a process of forming a dielectric layer on a foil for an electrolytic capacitor according to the present invention. 2 is a flowchart illustrating a method of forming a dielectric layer of a foil for an electrolytic capacitor according to the present invention.

도 1 및 도 2를 참조하여 전해캐패시터용 포일의 유전체층 형성방법을 설명하면, 먼저, 일정한 크기의 용기(10)에 금속알콕시드(Metal Alkoxide)물질(Raw Materials)과 희석제 및 안정화제 그리고 물(H2O)을 넣고 믹싱(Mixing)을 한다. 상기 금속알콕시드(Metal Alkoxide)물질은 티타늄 에폭시드 또는 티타늄 이소프록시드(Ti(OC2H5)4)가 사용되고, 희석제는 이소프로필알코올 또는 에탄올을 사용하며, 안정화제로는 CH3COOH가 사용된다. 상기 안정화제는 금속알콕시드(Metal Alkoxide)물질과 희석제가 반응하는 속도를 늦추어주는 기능을 한다. 이때 금속알콕시드(Metal Alkoxide)물질을 티타늄 에폭시드를 사용하면 희석제도 에탄올을 사용하고, 금속알콕시드(Metal Alkoxide)물질로 티타늄 이소프로폭시드를 사용하면 희석제로 이소 프로필알코올을 사용한다. 따라서 상기 용기(10)에 금속알콕시드(Metal Alkoxide)물질로 티타늄 이소프로폭시드를 넣고 희석제로 이소프로필 알코올을 넣은 후 안정화제(CH3COOH) 그리고 물을 넣은 후 믹싱을 하면 축중합반응 및 가수분해가 이루어진다. 상기 가수분해 및 축중합반응이 이루어진 후 용기(10)에는 졸(Sol)상태인 산화티타늄(TiO2)용액(20)이 얻어진다. 상기 산화티타늄용액이 얻어지는 반응식은 Ti(OC2H5)4+ 2H2O → TiO2+ 4(ROH) 이 된다.Referring to FIGS. 1 and 2, a method of forming a dielectric layer of an electrolytic capacitor foil will first be described. First, a metal alkoxide material, diluent, stabilizer, and water ( Add H 2 O) and mix. The metal alkoxide material is titanium epoxide or titanium isooxide (Ti (OC 2 H 5 ) 4 ) is used, the diluent is isopropyl alcohol or ethanol, and CH 3 COOH is used as a stabilizer do. The stabilizer functions to slow down the reaction rate of the metal alkoxide material and the diluent. In this case, when the metal alkoxide material is titanium epoxide, the diluent is ethanol, and when the titanium isopropoxide is used as the metal alkoxide material, isopropyl alcohol is used as the diluent. Therefore, when titanium isopropoxide is added as a metal alkoxide (Metal Alkoxide) material, isopropyl alcohol is used as a diluent, a stabilizer (CH 3 COOH) and water are mixed, followed by mixing and condensation polymerization. Hydrolysis takes place. After the hydrolysis and polycondensation reaction is carried out, a titanium oxide (TiO 2 ) solution 20 in a sol (Sol) state is obtained. The reaction scheme for obtaining the titanium oxide solution is Ti (OC 2 H 5 ) 4 + 2H 2 O → TiO 2 + 4 (ROH).

상기 산화티타늄용액(20)에 구리(Cu)포일 또는 스텐레스스틸 포일(30)등을 함침시키게 된다. 상기 산화티타늄용액(20)에 구리포일(30)을 함침시킨 후 구리포일(30)을 꺼내게 되면 구리포일(30)의 표면에는 산화티타늄(22)이 코팅이 된다. 상기 구리포일(30)의 표면에 코팅되어 있는 졸상태의 산화티타늄(22)을 증발만을 시키게 되면 구리포일(30)에 코팅된 산화티타늄의 두께는 원하는 치수보다 크게 된다. 따라서, 상기 구리포일(30)을 건조 및 열처리시키게 되면 산화티타늄에 포함되어 있던 물등은 모두 증발이 되므로 구리포일(30)의 표면에는 유전체층에 해당하는 산화티타늄층(TiO2)이 형성이 된다. 상기 산화티타늄층의 유전율이 114에 해당하면 산화알루미늄층(Al2O3)의 유전율은 7에 불과하기 때문에 산화티타늄층의 유전율에 의해 구리포일(30)의 정전용량은 크게 증대된다.The titanium oxide solution 20 is impregnated with copper (Cu) foil or stainless steel foil 30. After impregnating the copper foil 30 in the titanium oxide solution 20 and taking out the copper foil 30, the surface of the copper foil 30 is coated with titanium oxide 22. When only the sol titanium oxide 22 coated on the surface of the copper foil 30 is evaporated, the thickness of the titanium oxide coated on the copper foil 30 becomes larger than a desired dimension. Therefore, when the copper foil 30 is dried and heat-treated, all the water contained in the titanium oxide is evaporated, and thus the titanium oxide layer TiO 2 corresponding to the dielectric layer is formed on the surface of the copper foil 30. If the dielectric constant of the titanium oxide layer corresponds to 114, the dielectric constant of the aluminum oxide layer (Al 2 O 3 ) is only 7, the capacitance of the copper foil 30 is greatly increased by the dielectric constant of the titanium oxide layer.

이하 일 실시예를 통해 설명하면, 금속알콕시드(Metal Alkoxide)물질인 티타늄 이소프로폭시드와 희석제인 이소프로필 알코올 및 안정화제(CH3COOH) 그리고 물(H2O)등을 용기(10)에 넣은 후 혼합을 한다(믹싱단계(S100)). 상기 믹싱단계(S100) 다음에 금속알콕시드(Metal Alkoxide)물질과 희석제가 안정화제에 의해 서서히 반응을 하므로써 축중합반응과 가수분해가 이루어진다(반응단계(S200)). 상기 반응단계(S200) 다음에 콜로이드상태의 산화티타늄용액에 구리포일을 함침시키게 된다(함침단계(S300)). 상기 함침단계(S300) 다음에 포일에 코팅되어 있는 산화티타늄용액으로부터 수용액등을 증발시키므로써 산화티타늄용액을 겔상태로 변환시킨다(증발단계(S400)). 그리고 상기 증발단계(S400) 다음에 구리포일을 건조 및 열처리함으로써 구리포일(30)의 표면에 산화티타늄층이 형성되도록 한다(열처리단계(S500)). 상기 열처리단계(S500)에서 구리포일(30)의 표면에는 밸브 메탈(탄탈륨, 알루미늄, 지르코늄 및 산화티타늄)중에서 유전율이 높은 산화티타늄층이 남아 코팅되므로 정전용량이 증대된 유전체층을 얻게 된다.Referring to the following through the embodiment, the metal alkoxide (Metal Alkoxide) material titanium isopropoxide and diluent isopropyl alcohol and stabilizers (CH 3 COOH) and water (H 2 O), such as a container (10) After mixing to mix (mixing step (S100)). After the mixing step (S100), the metal alkoxide (metal alkoxide) material and the diluent are reacted slowly by the stabilizer, thereby condensation polymerization and hydrolysis are performed (reaction step (S200)). After the reaction step (S200) to impregnate the copper foil in the colloidal titanium oxide solution (impregnation step (S300)). After the impregnation step (S300), the titanium oxide solution is converted into a gel state by evaporating an aqueous solution from the titanium oxide solution coated on the foil (evaporation step (S400)). Then, the copper foil is dried and heat treated after the evaporation step S400 to form a titanium oxide layer on the surface of the copper foil 30 (heat treatment step S500). In the heat treatment step (S500), a surface of the copper foil 30 is coated with a titanium oxide layer having a high dielectric constant in the valve metal (tantalum, aluminum, zirconium, and titanium oxide), thereby obtaining a dielectric layer having increased capacitance.

이상 설명에서 알 수 있는 바와 같이, 본 발명은 금속알콕시드(Metal Alkoxide)물질에 희석제를 혼합한 후 반응속도를 조절하기 위하여 안정화제를 섞는다. 상기 금속알콕시드(Metal Alkoxide)물질인 티타늄 이소프로폭시드와 희석제인 이소프로필알코올은 안정화제에 의해 서서히 반응을 하여 졸상태인 산화티타늄용액이 얻어진다. 상기 산화티타늄용액이 졸상태이므로 구리 포일 또는 스텐리스 스틸 포일등을 함침시키면서 포일의 표면에 산화티타늄 유전체층을 코팅시킨다. 상기 전해캐패시터용 포일의 표면에 산화티타늄층이 코팅되면 포일을 건조 및 열처리를 함으로써 유전율이 높은 유전체층을 포일의 표면에 형성시킬 수 있다.As can be seen from the above description, in the present invention, a diluent is mixed with a metal alkoxide material and a stabilizer is mixed to control the reaction rate. Titanium isopropoxide, which is a metal alkoxide, and isopropyl alcohol, which is a diluent, are slowly reacted with a stabilizer to obtain a sol titanium oxide solution. Since the titanium oxide solution is in a sol state, the titanium oxide dielectric layer is coated on the surface of the foil while impregnating a copper foil or a stainless steel foil. When the titanium oxide layer is coated on the surface of the foil for the electrolytic capacitor, the dielectric layer having a high dielectric constant may be formed on the surface of the foil by drying and heat treating the foil.

Claims (1)

금속알콕시드(Metal Alkoxide)물질과 희석제 및 안정화제 등을 혼합하는 믹싱단계; 상기 믹싱단계 다음에 금속알콕시드(Metal Alkoxide)물질과 희석제 및 안정화제가 서로 반응을 하여 축중합반응과 가수분해가 발생하는 반응단계; 상기 반응단계 다음에 콜로이드상태의 산화티타늄용액에 포일을 함침하는 함침단계; 상기 함침단계 다음에 포일에 코팅되어 있는 산화티타늄용액으로부터 수용액등을 증발시키는 증발단계; 그리고 상기 증발단계 다음에 포일을 건조 및 열처리하는 열처리단계를 포함하는 전해캐패시터용 포일의 유전체층 형성방법.A mixing step of mixing a metal alkoxide material with a diluent and a stabilizer; A reaction step in which a metal alkoxide material, a diluent, and a stabilizer react with each other after the mixing step to generate a condensation polymerization reaction and hydrolysis; An impregnation step of impregnating the foil in the colloidal titanium oxide solution following the reaction step; An evaporation step of evaporating an aqueous solution from the titanium oxide solution coated on the foil after the impregnation step; And a heat treatment step of drying and heat treating the foil after the evaporation step.
KR1019980033398A 1998-08-18 1998-08-18 Method for forming dielectric layer of foil used for electrolytic capacitor KR20000014156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980033398A KR20000014156A (en) 1998-08-18 1998-08-18 Method for forming dielectric layer of foil used for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980033398A KR20000014156A (en) 1998-08-18 1998-08-18 Method for forming dielectric layer of foil used for electrolytic capacitor

Publications (1)

Publication Number Publication Date
KR20000014156A true KR20000014156A (en) 2000-03-06

Family

ID=19547505

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980033398A KR20000014156A (en) 1998-08-18 1998-08-18 Method for forming dielectric layer of foil used for electrolytic capacitor

Country Status (1)

Country Link
KR (1) KR20000014156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000640A (en) * 2001-06-26 2003-01-06 파츠닉(주) High capacity solid electrolysis condensor by sol-gel process
KR100441854B1 (en) * 2001-06-22 2004-07-27 파츠닉(주) Making method of capacitor by using solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441854B1 (en) * 2001-06-22 2004-07-27 파츠닉(주) Making method of capacitor by using solid electrolyte
KR20030000640A (en) * 2001-06-26 2003-01-06 파츠닉(주) High capacity solid electrolysis condensor by sol-gel process

Similar Documents

Publication Publication Date Title
JP4650833B2 (en) Anode body, manufacturing method thereof, and solid electrolytic capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
CN1822266B (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0364013A (en) Solid electrolytic capacitor and manufacture thereof
KR20000014156A (en) Method for forming dielectric layer of foil used for electrolytic capacitor
JP2000114109A (en) Solid electrolytic capacitor and its manufacture
JP2964345B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005064352A (en) Solid electrolytic capacitor and method for manufacturing the same
KR100339754B1 (en) Making method of aluminium electrolytic capacitor
KR100280291B1 (en) Dielectric crack recovery method of aluminum thin film for aluminum electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
KR100271321B1 (en) Manufacturing method of AL electrolytic capacitor
JP2005101155A (en) Solid-state electrolyte capacitor and method of manufacturing the same
JP4494377B2 (en) Manufacturing method of solid electrolytic capacitor
KR20000043500A (en) Method for manufacturing an aluminum electrolysis capacitor
KR20000019269A (en) Method for forming dielectric layer of high capacity using exmet to sol-gel method
KR100266774B1 (en) A making method of aluminium solid electrolytic condenser
JPS6298715A (en) Solid electrolytic capacitor
KR20000019855A (en) Aluminium film for electrolytic capacity of aluminium
JPH04280413A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH0365009B2 (en)
JPH0520887B2 (en)
KR20000004061A (en) Dielectric substance forming method on aluminum foil by sol-gel process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application