JPH0364013A - Solid electrolytic capacitor and manufacture thereof - Google Patents

Solid electrolytic capacitor and manufacture thereof

Info

Publication number
JPH0364013A
JPH0364013A JP1199305A JP19930589A JPH0364013A JP H0364013 A JPH0364013 A JP H0364013A JP 1199305 A JP1199305 A JP 1199305A JP 19930589 A JP19930589 A JP 19930589A JP H0364013 A JPH0364013 A JP H0364013A
Authority
JP
Japan
Prior art keywords
forming
anode
electrolytic capacitor
polypyrrole
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199305A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
博 島田
Kiyoshi Sakamoto
清志 坂本
Yutaka Harashima
豊 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP1199305A priority Critical patent/JPH0364013A/en
Publication of JPH0364013A publication Critical patent/JPH0364013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To enhance generation efficiency of a solid electrolyte within a fine hole and a void and improve the electrostatic capacitance and the leakage current by forming an anion interface activation agent or a non-ion interface activation agent on a dielectric oxide film which is formed on an anode surface previously and by forming a solid electrolyte consisting of a conductive polymer film. CONSTITUTION:A lead is attached to an anode foil 1 where a dielectric oxide film 2 is formed and then is dipped into sodium di(2-ethylhexyl)sulfosuccinate solution after reformation, thus forming an anion interface activation agent layer 3. Then, after this anode foil 1 is dipped into an ethanolic solution of pyrrole, it is further dipped into ammonium persulfate solution, thus forming a polypyrrole film 4 by chemical oxidation polymerization on the surface. Then, it is dipped into an acetonitrile solution containing pyrrole monomer and a supporting electrolyte and electrolytic oxidation polymerization is performed with the polypyrrole film 4 as an anode, thus forming a polypyrrole 5. After that, a cathode layer is formed and resin sheathing is provided for obtaining a solid electrolytic capacitor.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野〉 本発明は、ポリピロール、ポリチオフェンなどの導電性
高分子を固体電解質とする固体電解コンデンサ及びその
製造方法にlIIするものである。
[Detailed Description of the Invention] [Object of the Invention] <Industrial Application Field> The present invention is directed to a solid electrolytic capacitor using a conductive polymer such as polypyrrole or polythiophene as a solid electrolyte, and a method for manufacturing the same. .

(従来の技術) 表面に誘電体酸化皮膜を形成したアルミニウムやタンタ
ルなど皮膜形成性金属からなる陽I七体に導電性高分子
、例えばポリピロール、ポリチオフェン、ポリアニリン
、ポリフランなどを電解質とした固体電解コンデンサが
知られている。
(Prior art) A solid electrolytic capacitor with a dielectric oxide film formed on the surface of a positive I7 body made of a film-forming metal such as aluminum or tantalum, and a conductive polymer such as polypyrrole, polythiophene, polyaniline, polyfuran, etc. as an electrolyte. It has been known.

これらの導電性高分子を使用した電解コンデンサは、従
来の液体電解質や有機半導体を使用した電解コンデンサ
に比べ、m度特性や周波数及びtXX負負荷特性寿命〉
などは優れているが、陽極体表面の微細孔や空隙への固
体電解質の生成効率が低く、静電容鯖の減少、耐電圧低
下。
Electrolytic capacitors using these conductive polymers have lower m-degree characteristics, frequency, and tXX negative load characteristic life than electrolytic capacitors using conventional liquid electrolytes or organic semiconductors.
Although these are excellent, the efficiency of solid electrolyte generation in the micropores and voids on the anode surface is low, resulting in a decrease in capacitance and a drop in withstand voltage.

tanb大などが起こりやすい問題があった。There was a problem that large tanb was likely to occur.

(発明が解決しようとする課題) 本発明は、以上のような従来技術の欠点を解消するため
に提案されたものであり、その目的は誘電体酸化皮膜を
形成した陽極表面の微細孔や焼結式陽極体の空隙部に導
電性高分子膜を効率よく生成させることによって、固体
電解質不足によって起こる静電容量減少、耐電圧低下。
(Problems to be Solved by the Invention) The present invention was proposed in order to eliminate the drawbacks of the prior art as described above, and its purpose is to eliminate micropores and sintering on the surface of an anode on which a dielectric oxide film is formed. By efficiently generating a conductive polymer film in the voids of the bonded anode body, the capacitance and withstand voltage drop that occur due to lack of solid electrolyte can be reduced.

tanδ大などを改善することを目的とするものである
The purpose is to improve tan δ and other factors.

[発明の構成] (課題を解決するための手段) 本発明は、陽極表面に形成した誘電体酸化皮膜上に湿潤
、82透作用を有するアニオン界面活性剤又は非イオン
界面活性剤層をあらかじめ形成しておき、その上に導電
性高分子膜からなる固体電解質が形成されている固体電
解コンデンサ及びその製造方法であり、11電性高分子
膜の1!iJ!極微細孔内への生成性を改善することを
特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method of forming in advance an anionic surfactant or a nonionic surfactant layer having a wetting and permeation effect on a dielectric oxide film formed on the surface of an anode. This is a solid electrolytic capacitor on which a solid electrolyte made of a conductive polymer film is formed, and a method for manufacturing the same. iJ! It is characterized by improving the ability to form into ultra-fine pores.

(作用) このように構成された固体電解コンデンサ及びその製造
方法によれば、誘電体酸化皮膜表面に形成しであるアニ
オン界面活性剤は該酸化皮膜表面の濡れ性やi!!潤性
を著しく増太さ仕るので、誘電体酸化皮膜に形成されて
いる微細孔内部まで導電性高分子膜がよく生成され、t
anδの低下や静電容量出現率が向上するなどのコンデ
ンサ特性の改善をもたらす。
(Function) According to the solid electrolytic capacitor and the manufacturing method thereof configured as described above, the anionic surfactant formed on the surface of the dielectric oxide film improves the wettability of the oxide film surface and the i! ! Since the moisture content is significantly increased, a conductive polymer film is often formed inside the micropores formed in the dielectric oxide film, and the t
This brings about improvements in capacitor characteristics such as a reduction in an δ and an increase in the rate of appearance of capacitance.

また、アニオン界面活性剤の代わりに非イオン界面活性
剤を用いでも同様な効果が得られる。
Further, similar effects can be obtained by using a nonionic surfactant instead of an anionic surfactant.

なお、誘電体酸化皮膜を形成した陽極箔と陰極箔をセパ
レータ紙を介して巻回してなるコンデンサ素子でも、前
記界面活性剤を陽極表面あるいは陽極表面と陰極表面に
あらかじめ形成しておくことにより、同様な効果が得ら
れる。
Note that even in a capacitor element formed by winding an anode foil and a cathode foil with a dielectric oxide film formed thereon with a separator paper in between, by forming the surfactant on the anode surface or on the anode surface and the cathode surface in advance, A similar effect can be obtained.

(実施例〉 実施例1 第1図に示すように、粗面化後アジピン酸アンモニウム
水溶液中で90Vを印加し、誘電体験化皮g$2を形成
させた高純度のエツチドアルミニウム箔からなる陽極箔
1にリードを取り付け、再化成後 ジ(2−エチル〉へ
キシルスルホコハク酸ナトリウム1%水溶液に10分間
浸漬し、水洗、乾燥を行い、該アニオン界面活性剤病3
を形成させた。次いで、この陽極箔1をビロール・エタ
ノール溶液に10分間W1漬した後、更に過硫酸アンモ
ニウム水溶液に10分間浸漬して、表面に化学酸化重合
によるポリピロルIt!J4を形成した。次いで、ビロ
ールモノマー及び支持電解質を含むアセトニトリル溶液
に浸漬し、前記化学酸化重合によって形成したポリピロ
ールWA4を陽極とし、120分間電解酸化重合を行い
、ポリピロール5を形成した。しかる後、コロイダルカ
ーボン6及び銀ペースト7の塗布、乾燥を行い陰極層を
形成し、樹脂外装を施して固体電解コンデンサを得た。
(Example) Example 1 As shown in Fig. 1, a high-purity etched aluminum foil was roughened and then 90V was applied in an ammonium adipate aqueous solution to form a dielectric coating g$2. A lead was attached to the anode foil 1, and after reconstitution, it was immersed in a 1% aqueous solution of sodium di(2-ethyl)hexylsulfosuccinate for 10 minutes, washed with water, and dried.
was formed. Next, this anode foil 1 was immersed in a pyrrole-ethanol solution for 10 minutes W1, and then further immersed in an aqueous ammonium persulfate solution for 10 minutes to coat the surface with polypyrrol It! by chemical oxidation polymerization. J4 was formed. Next, it was immersed in an acetonitrile solution containing a pyrrole monomer and a supporting electrolyte, and electrolytic oxidative polymerization was performed for 120 minutes using the polypyrrole WA4 formed by the chemical oxidative polymerization as an anode for 120 minutes to form polypyrrole 5. Thereafter, colloidal carbon 6 and silver paste 7 were applied and dried to form a cathode layer, and a resin exterior was applied to obtain a solid electrolytic capacitor.

え直置ヱ 実施例1において、アニオン界面活性剤の代わりにポリ
エチレングリコール・ノニルフェニルエーテル(エチレ
ンオキサイド10Tニル付加物)0.1%水溶液を用い
、非イオン界面活性剤層を形成させた。
In Example 1, a 0.1% aqueous solution of polyethylene glycol nonylphenyl ether (10T adduct of ethylene oxide) was used instead of the anionic surfactant to form a nonionic surfactant layer.

以下、実施例1と同様にして化学酸化重合によるポリピ
ロール膜、電解酸化重合によるポリピロール膜、コロイ
ダルカーボン6及び銀ペースト7を形成し外装を施して
固体電解コンデンナを得た。
Thereafter, in the same manner as in Example 1, a polypyrrole film by chemical oxidation polymerization, a polypyrrole film by electrolytic oxidation polymerization, colloidal carbon 6 and silver paste 7 were formed, and an exterior was applied to obtain a solid electrolytic condenser.

実施例3 実施例2において、再化成した陽極箔、セパレータ紙及
び陰極箔をそれぞれジ(2−エチル〉へキシルスルホコ
ハク酸ナトリウム1%水溶液に浸漬し、該アニオン界面
活性剤層を形成した後、巻回してコンデンサ素子を作製
した。
Example 3 In Example 2, the reconstituted anode foil, separator paper, and cathode foil were each immersed in a 1% aqueous solution of sodium di(2-ethyl>hexylsulfosuccinate) to form the anionic surfactant layer. A capacitor element was fabricated by winding it.

以下、実m例2と同様に化学及び和解酸化重合により形
成したそれぞれのポリピロール膜を形成し、外装を腸し
て固体電解コンデンサを得た。
Thereafter, each polypyrrole film was formed by chemical and oxidative polymerization in the same manner as in Example 2, and the outer casing was removed to obtain a solid electrolytic capacitor.

実施例4 アルミニウム粉末の多孔質焼結体をアジビン酸アンモニ
ウム水溶液中で処理して誘電体酸化皮膜を形成し陽極素
子を作製した。この陽極素子をポリエチレングリコール
・ノニルフェニルエーテル(エチレンオキサイド15モ
ル付加物)0.5%水溶液に30分間浸漬した後、水洗
Example 4 A porous sintered body of aluminum powder was treated in an ammonium adibate aqueous solution to form a dielectric oxide film, thereby producing an anode element. This anode element was immersed in a 0.5% aqueous solution of polyethylene glycol nonylphenyl ether (15 moles of ethylene oxide) for 30 minutes, and then washed with water.

乾燥を行った。次いで、実施例2と同様に化学酸化重合
によるポリピロール躾及び電解酸化重合によるポリピロ
ール躾を形成し、しかる後、コロイダルカーボン及び銀
ペーストの塗布、乾燥を行い陰極層を形成し、樹脂外装
を施して固体電解コンデンサを得た。
It was dried. Next, a polypyrrole layer was formed by chemical oxidation polymerization and a polypyrrole layer was formed by electrolytic oxidation polymerization in the same manner as in Example 2. After that, colloidal carbon and silver paste were applied and dried to form a cathode layer, and a resin exterior was applied. A solid electrolytic capacitor was obtained.

実施例5 第2図に示すように、高純度エツチドアルくニウム板(
厚さ700μmrL〉を一定寸法に裁断し、リン酸中で
陽極処理した後アジピン酸アンモニウム水溶液中で90
Vを印加し、誘電体酸化皮膜12を形成させ陽極11と
する。この−辺に#l脂を塗布して絶縁病18を形成し
た陽極11をポリエチレングリコールラウリルエーテル
〈エチレンオキサイド 12モル付加物)0.1%水溶
液中に10分間浸漬した後、水洗。
Example 5 As shown in Figure 2, a high-purity etched aluminium plate (
700 μm rL> was cut into a certain size, anodized in phosphoric acid, and then 90 μm thick in ammonium adipate aqueous solution.
V is applied to form a dielectric oxide film 12 to form an anode 11. The anode 11 on which insulation disease 18 was formed by applying #l fat to this side was immersed in a 0.1% aqueous solution of polyethylene glycol lauryl ether (ethylene oxide 12 mole adduct) for 10 minutes, and then washed with water.

乾燥を行って界面活性剤層13を形成した。A surfactant layer 13 was formed by drying.

次いで、実施例2と同様に化学酸化重合及び電PIIF
!i化重合によりポリピロール114e形成した後、表
面にコロイダルカーボン16を塗布し、風乾後、第2図
に示すごとく積層を行い、加熱乾燥した。陽l4i11
の端部及びコロイダルカーボン16端部に銀ペースト層
15を形成し、それぞれ陽極及び陰極とした。
Next, chemical oxidative polymerization and electrolytic PIIF were performed in the same manner as in Example 2.
! After forming polypyrrole 114e by i-polymerization, colloidal carbon 16 was applied to the surface, air-dried, and then laminated as shown in FIG. 2, followed by heating and drying. positive l4i11
A silver paste layer 15 was formed on the end of the colloidal carbon 16 and the end of the colloidal carbon 16 to serve as an anode and a cathode, respectively.

以下、樹脂外装置9を施し固体電解コンデンサを得た。Thereafter, a resin outer device 9 was applied to obtain a solid electrolytic capacitor.

参考例1 実施例1において、ジ(2−エチル)−へキシルスルホ
コハク酸ナトリウムの代わりに、カチオン界面活性剤と
して臭化ラウリルトリメチルアンモニウム1%水溶液を
用いた以外は、実施例1とrF4様にして固体電解コン
デンサを得た。
Reference Example 1 Same as Example 1 and rF4 except that a 1% aqueous solution of lauryltrimethylammonium bromide was used as a cationic surfactant instead of sodium di(2-ethyl)-hexylsulfosuccinate. A solid electrolytic capacitor was obtained.

参考PA2 実施例1において、ジ(2−エチル〉−へキシルスルホ
コハク酸ナトリウムを省略した以外は、実施例1と同様
にして固体電解コンデンサを得た。
Reference PA2 A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that sodium di(2-ethyl>-hexylsulfosuccinate was omitted).

以上述べた実施例及び参考例の特性を法衣に示す。The characteristics of the embodiments and reference examples described above are shown in the vestibule.

表 本発明に使用する界面活性剤は、アニオン部分が界面活
性を示すアニオン(陰イオン〉界面活性剤及びイオンに
解離する基を有していない界面活性剤がよく、好ましく
は、アニオン界面活性剤としては、一般式 %式% で表わされるジアルキルスルホコハク酸エステル塩(エ
ーロゾル・OT)や R,〉Cロー0803Na で表わされる第2扱高級アルコール硫酸エステル塩1分
岐アルキルベンゼンスルホン酸塩。
Table The surfactant used in the present invention is preferably an anion (anion) surfactant whose anionic moiety exhibits surface activity and a surfactant that does not have a group that dissociates into ions, preferably an anionic surfactant. Examples include a dialkyl sulfosuccinate salt (aerosol/OT) represented by the general formula % and a monobranched alkylbenzene sulfonate salt of a second-hand higher alcohol sulfate ester represented by R,〉Crow0803Na.

α−スルホ脂肪酸アルキルエステル地など、全炭素数が
14〜20個で、アルキル基の中心に親水基(−8o 
 Na、−0803Na)が位 − 置しているものが適し、非イオン界面活性剤としてC−
8〜16の中級〜高級アルコール・エチレンオキサイド
付加物及びアルキルフェノール・エチレンオキサイド付
加物で、エチレンオキサイドの付加モル数5〜15の間
のものがアルミニウムやタンタルの誘電体酸化皮膜に対
して適していることが判明した。
The total number of carbon atoms is 14 to 20, such as α-sulfo fatty acid alkyl ester base, and the hydrophilic group (-8o
Suitable are those in which Na, -0803Na) are located, and C- as a nonionic surfactant.
Among intermediate to higher alcohol/ethylene oxide adducts of 8 to 16 and alkylphenol/ethylene oxide adducts, those with an added mole of ethylene oxide of 5 to 15 are suitable for dielectric oxide films of aluminum and tantalum. It has been found.

また、固体電解質もポリピロールを使用した場合につい
て述べたが、ポリチオフェン、ポリアニリン、ポリフラ
ンでも同効である。
Further, although the case where polypyrrole is used as the solid electrolyte has been described, polythiophene, polyaniline, and polyfuran have the same effect.

[発明の効果] 本発明になる固体電解コンデンサ及びその製造方法によ
れば、電解質として導電性高分子を用いた固体電解コン
デンサにおいて、誘電体酸化皮膜を形成した陽極表面あ
るいは陽極表面と陰棒表面に、あらかじめアニオン又は
非イオン界面活性剤層を形成させることにより、細孔・
空隙内への固体電解質の生成効率が上昇し、コンデンサ
の静電容l、tanδ、漏れm流などを著しく改善する
ことができる。
[Effects of the Invention] According to the solid electrolytic capacitor and the manufacturing method thereof according to the present invention, in a solid electrolytic capacitor using a conductive polymer as an electrolyte, the anode surface or the anode surface and the cathode surface on which a dielectric oxide film is formed. By forming an anionic or nonionic surfactant layer in advance, the pores and
The production efficiency of the solid electrolyte in the void increases, and the capacitance l, tan δ, leakage m flow, etc. of the capacitor can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は実施例1に係る
固体電解コンデンサの素子構造を説明するための断面図
、第2図は実施例5に係る固体電解コンデンサの素子構
造を説明するための断面図である。 1・・・lil極箔 2・・・誘電体酸化皮膜 3・・・界面活性剤病 4・・・化学酸化重合によるポリピロール膜5・・・電
解酸化重合によるポリピロール膜6・・・コロイダルカ
ーボン 7・・・銀ペースト ド・・陽極     12・・・誘電体酸化皮膜3・・
・界面活性剤病 14・・・ポリピロール膜5・・・銀
ペースト  16・・・コロイダルカーボン8・・・絶
縁層    19・・・外装樹脂時  許  出  願
  人 マルコン電子株式会社 日本カーリット株式会社
The drawings show embodiments of the present invention; FIG. 1 is a sectional view for explaining the element structure of a solid electrolytic capacitor according to Example 1, and FIG. 2 is a cross-sectional view for explaining the element structure of a solid electrolytic capacitor according to Example 5. FIG. 1... lil polar foil 2... dielectric oxide film 3... surfactant disease 4... polypyrrole film by chemical oxidative polymerization 5... polypyrrole film by electrolytic oxidative polymerization 6... colloidal carbon 7 ...Silver paste...Anode 12...Dielectric oxide film 3...
・Surfactant disease 14...Polypyrrole film 5...Silver paste 16...Colloidal carbon 8...Insulating layer 19...Exterior resin Applicant Applicant Marcon Electronics Co., Ltd. Nippon Carlit Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも表面に誘電体酸化皮膜を形成した皮膜
形成性金属からなる陽極,陰極及び導電性高分子膜の固
体電解質からなる固体電解コンデンサにおいて、 少なくとも固体電解質と接触する誘電体酸化皮膜表面に
界面活性剤層が形成されていることを特徴とする固体電
解コンデンサ。
(1) In a solid electrolytic capacitor consisting of an anode and a cathode made of a film-forming metal with a dielectric oxide film formed on at least the surface, and a solid electrolyte of a conductive polymer film, at least the surface of the dielectric oxide film in contact with the solid electrolyte is A solid electrolytic capacitor characterized by forming a surfactant layer.
(2)界面活性剤がアニオン界面活性剤又は非イオン界
面活性剤である請求項(1)記載の固体電解コンデンサ
(2) The solid electrolytic capacitor according to claim (1), wherein the surfactant is an anionic surfactant or a nonionic surfactant.
(3)固体電解質がポリピロール,ポリチオフエン,ポ
リアニリン,ポリフランである請求項(1)又は(2)
記載の固体電解コンデンサ。
(3) Claim (1) or (2) wherein the solid electrolyte is polypyrrole, polythiophene, polyaniline, or polyfuran.
The solid electrolytic capacitor described.
(4)界面活性剤層を形成してから固体電解質を形成す
る請求項(1)〜(3)のいずれかに記載の固体電解コ
ンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to any one of claims (1) to (3), wherein the solid electrolyte is formed after forming the surfactant layer.
JP1199305A 1989-08-02 1989-08-02 Solid electrolytic capacitor and manufacture thereof Pending JPH0364013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199305A JPH0364013A (en) 1989-08-02 1989-08-02 Solid electrolytic capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199305A JPH0364013A (en) 1989-08-02 1989-08-02 Solid electrolytic capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0364013A true JPH0364013A (en) 1991-03-19

Family

ID=16405591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199305A Pending JPH0364013A (en) 1989-08-02 1989-08-02 Solid electrolytic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0364013A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591035A1 (en) * 1992-09-29 1994-04-06 Commissariat A L'energie Atomique Manufacturing process of electrolytic capacitors with conductive polymer cathode layer and low current leakage
US5461537A (en) * 1993-07-29 1995-10-24 Nec Corporation Solid electrolytic capacitor and method of manufacturing the same
US5591318A (en) * 1996-02-01 1997-01-07 Motorola Energy Systems, Inc. Method of fabricating a conductive polymer energy storage device
US5729428A (en) * 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5798905A (en) * 1996-08-16 1998-08-25 Nec Corporation Solid electrolyte capacitor
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
US6154358A (en) * 1997-07-30 2000-11-28 Nec Corporation Solid electrolytic capacitor using a conducting polymer
JP2002203751A (en) * 2000-12-28 2002-07-19 Nippon Chemicon Corp Solid-state electrolytic capacitor
JP2007180424A (en) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP2010272603A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Method of producing solid electrolytic capacitor
JP2011044730A (en) * 2010-10-28 2011-03-03 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2011199266A (en) * 2010-02-25 2011-10-06 Sanyo Electric Co Ltd Solid electrolyte capacitor
JP2020047755A (en) * 2018-09-19 2020-03-26 カーリットホールディングス株式会社 Method for manufacturing solid electrolytic capacitor
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383123A (en) * 1989-08-28 1991-04-09 Sumitomo Metal Ind Ltd Method for compressing measured data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383123A (en) * 1989-08-28 1991-04-09 Sumitomo Metal Ind Ltd Method for compressing measured data

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591035A1 (en) * 1992-09-29 1994-04-06 Commissariat A L'energie Atomique Manufacturing process of electrolytic capacitors with conductive polymer cathode layer and low current leakage
US5461537A (en) * 1993-07-29 1995-10-24 Nec Corporation Solid electrolytic capacitor and method of manufacturing the same
US5729428A (en) * 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5591318A (en) * 1996-02-01 1997-01-07 Motorola Energy Systems, Inc. Method of fabricating a conductive polymer energy storage device
US5798905A (en) * 1996-08-16 1998-08-25 Nec Corporation Solid electrolyte capacitor
US6024772A (en) * 1996-08-16 2000-02-15 Nec Corporation Solid electrolyte capacitor and method of manufacturing the same
US6210450B1 (en) 1997-07-30 2001-04-03 Nec Corporation Method of making solid electrolyte capacitor using a conducting polymer solid electrolytic capacitor using a conducting polymer method of making
US6154358A (en) * 1997-07-30 2000-11-28 Nec Corporation Solid electrolytic capacitor using a conducting polymer
US6191013B1 (en) 1998-09-30 2001-02-20 Kemet Electronics Corporation Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
JP2002203751A (en) * 2000-12-28 2002-07-19 Nippon Chemicon Corp Solid-state electrolytic capacitor
JP2007180424A (en) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP4703400B2 (en) * 2005-12-28 2011-06-15 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2010272603A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Method of producing solid electrolytic capacitor
JP2011199266A (en) * 2010-02-25 2011-10-06 Sanyo Electric Co Ltd Solid electrolyte capacitor
JP2011044730A (en) * 2010-10-28 2011-03-03 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2020047755A (en) * 2018-09-19 2020-03-26 カーリットホールディングス株式会社 Method for manufacturing solid electrolytic capacitor
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Similar Documents

Publication Publication Date Title
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
JP4050097B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPH0364013A (en) Solid electrolytic capacitor and manufacture thereof
JP3047024B2 (en) Solid electrolytic capacitors
JP2003086459A (en) Solid electrolytic capacitor
JP2000068158A (en) Single plate capacitor element and laminated solid electrolytic capacitor
JP2018032768A (en) Solid electrolytic capacitor element, solid electrolytic capacitor, method for manufacturing solid electrolytic capacitor element, and method for manufacturing solid electrolytic capacitor
JPH0364014A (en) Solid electrolytic capacitor and manufacture thereof
JP6726886B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP2964345B2 (en) Method for manufacturing solid electrolytic capacitor
JP6729179B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, method of manufacturing solid electrolytic capacitor element, and method of manufacturing solid electrolytic capacitor
JP2599116B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5799196B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6735510B2 (en) Electrolytic capacitor
JPH1079326A (en) Capacitor and manufacturing method thereof
JP2005064352A (en) Solid electrolytic capacitor and method for manufacturing the same
WO2022191050A1 (en) Electrolytic capacitor and method for producing same
JP2775762B2 (en) Solid electrolytic capacitors
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2003197471A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH05234826A (en) Manufacture of capacitor