JP2005064352A - Solid electrolytic capacitor and method for manufacturing the same - Google Patents

Solid electrolytic capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2005064352A
JP2005064352A JP2003294884A JP2003294884A JP2005064352A JP 2005064352 A JP2005064352 A JP 2005064352A JP 2003294884 A JP2003294884 A JP 2003294884A JP 2003294884 A JP2003294884 A JP 2003294884A JP 2005064352 A JP2005064352 A JP 2005064352A
Authority
JP
Japan
Prior art keywords
foil
electrolytic capacitor
solid electrolytic
metal
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003294884A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshimitsu
聡 吉満
Kazumasa Fujimoto
和雅 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP2003294884A priority Critical patent/JP2005064352A/en
Publication of JP2005064352A publication Critical patent/JP2005064352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having a large capacity. <P>SOLUTION: A valve metal oxide deposition film is formed on the surface of plain (unetched) aluminum foil or etched aluminum foil by a metal organic chemical vapor deposition (MOCVD) method using a valve metal alkoxide solution such as a titanium alkoxide (TiOC<SB>n</SB>H<SB>2n+1</SB>), zirconium alkoxide (ZrOC<SB>n</SB>H<SB>2n+1</SB>) or tantalum alkoxide (TaOC<SB>n</SB>H<SB>2n+1</SB>), and is used as anode foil and/or cathode foil for the solid electrolytic capacitor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解コンデンサ及びその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

固体電解質において、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等の導電性高分子又はTCNQ錯塩を用いた固体電解コンデンサが注目されている。これらの電解質を用いた従来例のアルミニウム巻回型固体電解コンデンサの製造方法を下記に示す。   As solid electrolytes, solid electrolytic capacitors using conductive polymers such as polypyrrole, polythiophene, polyfuran, polyaniline, or TCNQ complex salts have attracted attention. A method for producing a conventional aluminum wound solid electrolytic capacitor using these electrolytes will be described below.

まず、図1に示すように、弁作用金属であるアルミニウムからなる箔に、粗面化のためのエッチング処理及び誘電体皮膜形成のための化成処理を施した陽極箔1と、対向陰極箔2とをセパレータ3を介して巻き取り、コンデンサ素子7を形成する。前記陽極化成箔1及び対向陰極箔2には、それぞれリードタブ61,62を介して陽極リード線51及び陰極リード線52が取り付けられている。4は巻き止めテープである。   First, as shown in FIG. 1, an anode foil 1 obtained by subjecting a foil made of aluminum, which is a valve action metal, to an etching process for roughening and a chemical conversion process for forming a dielectric film, and a counter cathode foil 2 Are wound through a separator 3 to form a capacitor element 7. An anode lead wire 51 and a cathode lead wire 52 are attached to the anodized foil 1 and the counter cathode foil 2 via lead tabs 61 and 62, respectively. Reference numeral 4 denotes a winding tape.

その後、前記コンデンサ素子7の切り口化成と280℃の熱処理を行う。次に、前記コンデンサ素子7を、酸化剤溶液として50wt%のp−トルエンスルホン酸第二鉄アルコール溶液に、モノマーとして3,4−エチレンジオキシチオフェンに浸漬後、熱重合させることにより、コンデンサ素子7の両電極間に導電性高分子層を形成させる。   Thereafter, cut formation of the capacitor element 7 and heat treatment at 280 ° C. are performed. Next, the capacitor element 7 is immersed in 3,4-ethylenedioxythiophene as a monomer in a 50 wt% ferric alcohol solution of p-toluenesulfonic acid as an oxidant solution, and then subjected to thermal polymerization to thereby obtain a capacitor element. 7 is formed between the two electrodes.

そして、図2に示すように、前記コンデンサ素子7に封止用ゴムパッキング9を装着し、有底筒状のアルミケース8に収納固定後、前記アルミケース8の開口部を横絞りとカールすることで封止を行い、エージング処理を行う。   Then, as shown in FIG. 2, a sealing rubber packing 9 is attached to the capacitor element 7, and after being stored and fixed in a bottomed cylindrical aluminum case 8, the opening of the aluminum case 8 is curled with a lateral diaphragm. Then, sealing is performed and aging treatment is performed.

その後、前記アルミケース8のカール面にプラスチック製の座板10を装着し、前記リード線51,52を電極端子11としてプレス加工・折り曲げを行い、固体電解コンデンサが完成する。   Thereafter, a plastic seat plate 10 is mounted on the curled surface of the aluminum case 8, and the lead wires 51 and 52 are pressed and bent using the electrode terminals 11 to complete a solid electrolytic capacitor.

市場では大容量・低ESRの電解コンデンサが求められているが、電解コンデンサのサイズを維持したまま大容量化する手段として、特許文献1及び特許文献2に示されているように陰極箔の表面にTiN等の金属窒化物の皮膜を形成させて、容量出現率を向上させるといった方法がある。   In the market, a large capacity / low ESR electrolytic capacitor is required. As a means for increasing the capacity while maintaining the size of the electrolytic capacitor, the surface of the cathode foil is disclosed in Patent Document 1 and Patent Document 2. There is a method of improving the capacity appearance rate by forming a film of metal nitride such as TiN.

しかしながら、これらの手法を用いても、今後市場から要求されるであろう大容量化に対しては、十分対応できるものではない。従って、本発明は、大容量の固体電解コンデンサを提供することを目的とする。
特許第3016421号 特開2000−114108号
However, even if these methods are used, it is not possible to sufficiently cope with the increase in capacity that will be required from the market in the future. Accordingly, an object of the present invention is to provide a large-capacity solid electrolytic capacitor.
Japanese Patent No. 3016421 JP 2000-114108 A

これらの課題を解決するために、プレーン(未エッチド)アルミニウム箔又はエッチドアルミニウム箔の表面に有機金属化学蒸着法(MOCVD)により、チタンアルコキシド(TiOCn2n+1)、ジルコニウムアルコキシド(ZrOCn2n+1)、タンタルアルコキシド(TaOCn2n+1)等の弁金属アルコキシド溶液を用いて弁金属酸化物蒸着膜を形成させ、固体電解コンデンサの陽極箔及び/又は陰極箔として使用する。 In order to solve these problems, titanium alkoxide (TiOC n H 2n + 1 ), zirconium alkoxide (ZrOC n ) is formed on the surface of plain (unetched) aluminum foil or etched aluminum foil by metal organic chemical vapor deposition (MOCVD). H 2n + 1), using a tantalum alkoxide (TaOC n H 2n + 1) valve metal alkoxide solution such as to form a valve metal oxide deposited film is used as the anode foil and / or cathode foil of the solid electrolytic capacitor.

上記の弁金属アルコキシド溶液を用いた有機金属化学蒸着法で弁金属酸化物蒸着膜を形成させることによってアルミニウム箔表面上にアルミニウムより高誘電率を有する酸化チタン、酸化ジルコニウム、酸化タンタルが生成するために箔静電容量が向上する。従って、その固体電解コンデンサの大容量化が可能となる。   To form titanium oxide, zirconium oxide, and tantalum oxide having a dielectric constant higher than that of aluminum on the surface of the aluminum foil by forming a valve metal oxide vapor deposition film by metal organic chemical vapor deposition using the above valve metal alkoxide solution. The foil capacitance is improved. Therefore, the capacity of the solid electrolytic capacitor can be increased.

以下に本発明の実施例について図面に沿って詳述する。図1は、本発明による固体電解コンデンサ内に収納されたコンデンサ素子の斜視図である。   Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view of a capacitor element housed in a solid electrolytic capacitor according to the present invention.

チタンエトキシド溶液に0.6L/分の流量の窒素ガスを流通させて発生したチタンエトキシド蒸気を、350℃に加熱したアルミニウム箔上に30分間導入して、前記アルミニウム箔上に酸化チタン蒸着膜を形成する。さらに、5Vでの化成処理を行った前記アルミニウム箔を陽極箔1とし、陰極箔2との間にセパレータ3を介して円筒状に巻き取ってコンデンサ素子7を形成する。前記陽極箔1及び前記陰極箔2には、それぞれリードタブ61,62を介して陽極リード線51及び陰極リード線52が取り付けられている。4は巻き止めテープである。   Titanium ethoxide vapor generated by flowing nitrogen gas at a flow rate of 0.6 L / min to the titanium ethoxide solution is introduced onto aluminum foil heated to 350 ° C. for 30 minutes, and titanium oxide is deposited on the aluminum foil. A film is formed. Further, the aluminum foil subjected to the chemical conversion treatment at 5 V is used as the anode foil 1, and the capacitor element 7 is formed by winding the aluminum foil between the cathode foil 2 and the cathode foil 2 via the separator 3. An anode lead wire 51 and a cathode lead wire 52 are attached to the anode foil 1 and the cathode foil 2 via lead tabs 61 and 62, respectively. Reference numeral 4 denotes a winding tape.

その後、前記コンデンサ素子7の切り口化成と280℃の熱処理を行う。次に前記コンデンサ素子7にモノマーとして3,4−エチレンジオキシチオフェンを、酸化剤溶液として50wt%のp−トルエンスルホン酸第二鉄ブチルアルコール溶液を含浸し、その後、熱重合することにより前記コンデンサ素子7の両電極間に導電性高分子層を形成させる。そして、前記コンデンサ素子7に封止用ゴムパッキング9を装着し、有底筒状のアルミケース8に収納固定後、前記アルミケース8の開口部を横絞りとカールすることで封止を行い、エージング処理を行う。その後、前記アルミケース8のカール面にプラスチック製の座板10を装着し、前記陽極リード線51及び陰極リード線52を電極端子11としてプレス加工・折り曲げを行い、固体電解コンデンサとして完成させる。   Thereafter, cut formation of the capacitor element 7 and heat treatment at 280 ° C. are performed. Next, the capacitor element 7 is impregnated with 3,4-ethylenedioxythiophene as a monomer and 50 wt% of a ferric butyl alcohol solution of p-toluenesulfonic acid as an oxidant solution, and then thermally polymerized to thereby impregnate the capacitor. A conductive polymer layer is formed between both electrodes of the element 7. And, after mounting the rubber packing 9 for sealing on the capacitor element 7 and storing and fixing it in the bottomed cylindrical aluminum case 8, sealing is performed by curling the opening of the aluminum case 8 with a horizontal aperture, Perform an aging process. Thereafter, a plastic seat plate 10 is mounted on the curled surface of the aluminum case 8, and the anode lead wire 51 and the cathode lead wire 52 are pressed and bent using the electrode terminals 11 to complete a solid electrolytic capacitor.

ジルコニウムエトキシド溶液に0.6L/分の流量の窒素ガスを流通させて発生したジルコニウムエトキシド蒸気を、350℃に加熱したアルミニウム箔上に30分間導入して、前記アルミニウム箔上に酸化ジルコニウム蒸着膜を形成する。さらに、5Vでの化成処理を行った前記アルミニウム箔を陽極箔1として用いて、実施例1と同様に固体電解コンデンサとして完成させる。   Zirconium ethoxide vapor generated by flowing nitrogen gas at a flow rate of 0.6 L / min into the zirconium ethoxide solution is introduced onto the aluminum foil heated to 350 ° C. for 30 minutes, and zirconium oxide is deposited on the aluminum foil. A film is formed. Further, the aluminum foil subjected to the chemical conversion treatment at 5 V is used as the anode foil 1 to complete a solid electrolytic capacitor in the same manner as in Example 1.

タンタルエトキシド溶液に0.6L/分の流量の窒素ガスを流通させて発生したタンタルエトキシド蒸気を、350℃に加熱したアルミニウム箔上に30分間導入して、前記アルミニウム箔上に酸化タンタル蒸着膜を形成する。さらに、5Vでの化成処理を行った前記アルミニウム箔を陽極箔1として用いて、実施例1と同様に固体電解コンデンサとして完成させる。   Tantalum ethoxide vapor generated by flowing 0.6 L / min of nitrogen gas through the tantalum ethoxide solution is introduced onto aluminum foil heated to 350 ° C. for 30 minutes, and tantalum oxide is deposited on the aluminum foil. A film is formed. Further, the aluminum foil subjected to the chemical conversion treatment at 5 V is used as the anode foil 1 to complete a solid electrolytic capacitor in the same manner as in Example 1.

表1に実施例1〜3、及びに記載した従来例で試作したコンデンサ(外径φ6.3mm×H6.0mm、定格2.5V−180μF)の電気特性値(それぞれ、n=20の平均値)を示す。なお、静電容量は120Hz、ESRは100kHzでそれぞれ測定したものである。   Table 1 shows electrical characteristics (average values of n = 20, respectively) of capacitors (outside diameter φ6.3 mm × H6.0 mm, rated 2.5 V−180 μF) prototyped in the conventional examples described in Examples 1 to 3 and ). The capacitance was measured at 120 Hz, and the ESR was measured at 100 kHz.

Figure 2005064352
表1を見てわかるように、有機金属化学蒸着法によって酸化アルミニウムより高誘電率を有する弁金属酸化物蒸着膜を形成させた電極箔を陽極として使用することによって、大容量化を達成することが可能となった。以上のように、本発明によれば、固体電解コンデンサの大幅な大容量化を実現することができる。従って、今後市場で要求されるであろう大容量の固体電解コンデンサを市場に供給することが可能となる。
Figure 2005064352
As can be seen from Table 1, a large capacity can be achieved by using as the anode an electrode foil in which a valve metal oxide deposition film having a higher dielectric constant than aluminum oxide is formed by metal organic chemical vapor deposition. Became possible. As described above, according to the present invention, a large capacity of the solid electrolytic capacitor can be realized. Therefore, a large-capacity solid electrolytic capacitor that will be required in the market in the future can be supplied to the market.

尚、本発明の実施例では、電極箔には陽極箔のみにエッチドアルミニウム箔を、電解質にはポリチオフェン系導電性高分子を用いているが、電極箔においては陽極箔若しくは陰極箔、又はその両方にエッチド又は未エッチドアルミニウム箔を用いても、同様の効果が得られる。又、電解質においては、ポリピロール系、ポリアニリン系等の導電性高分子を用いても同様の効果が得られる。
In the embodiment of the present invention, the electrode foil uses an etched aluminum foil only for the anode foil and the polythiophene-based conductive polymer for the electrolyte. The same effect can be obtained by using etched or unetched aluminum foil for both. In the electrolyte, the same effect can be obtained even when a conductive polymer such as polypyrrole or polyaniline is used.

従来例及び本発明の実施例に係る電解コンデンサ素子の分解斜視図である。It is a disassembled perspective view of the electrolytic capacitor element which concerns on a prior art example and the Example of this invention. 従来例及び本発明の実施例に係る電解コンデンサの断面図である。It is sectional drawing of the electrolytic capacitor which concerns on a prior art example and the Example of this invention.

符号の説明Explanation of symbols

1 陽極箔
2 陰極箔
3 セパレータ
4 巻き止めテープ
7 コンデンサ素子
8 アルミケース
9 ゴムパッキング
10 座板
11 電極端子
51 陽極リード線
52 陰極リード線
61 リードタブ
62 リードタブ

1 Anode foil 2 Cathode foil 3 Separator 4 Winding tape 7 Capacitor element 8 Aluminum case 9 Rubber packing 10 Seat plate 11 Electrode terminal 51 Anode lead wire 52 Cathode lead wire 61 Lead tab 62 Lead tab

Claims (4)

弁作用を有する金属を陽極酸化した陽極箔と、陰極箔とをセパレータを介して巻回したコンデンサ素子を内部に収納した固体電解コンデンサにおいて、前記陽極箔上及び/又は前記陰極箔上に、弁金属アルコキシド溶液を用いた有機金属化学蒸着法(MOCVD)にて弁金属酸化物蒸着膜を形成させたことを特徴とする固体電解コンデンサ。   In a solid electrolytic capacitor containing therein a capacitor element in which an anode foil obtained by anodizing a metal having a valve action and a cathode foil are wound via a separator, the valve is provided on the anode foil and / or the cathode foil. A solid electrolytic capacitor, wherein a valve metal oxide deposition film is formed by metal organic chemical vapor deposition (MOCVD) using a metal alkoxide solution. 電解質として、ポリチオフェン系、ポリピロール系、ポリアニリン系導電性高分子、TCNQ錯塩のうちのいずれか1つを用いることを特徴とする請求項1記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein any one of polythiophene-based, polypyrrole-based, polyaniline-based conductive polymer, and TCNQ complex salt is used as the electrolyte. 有機金属化学蒸着法における前記弁金属アルコキシド溶液として、チタンアルコキシド(TiOCn2n+1)、ジルコニウムアルコキシド(ZrOCn2n+1)、タンタルアルコキシド(TaOCn2n+1)を用いることを特徴とする固体電解コンデンサの製造方法。 Titanium alkoxide (TiOC n H 2n + 1 ), zirconium alkoxide (ZrOC n H 2n + 1 ), tantalum alkoxide (TaOC n H 2n + 1 ) is used as the valve metal alkoxide solution in the metal organic chemical vapor deposition method. A method for producing a solid electrolytic capacitor. 前記弁金属アルコキシド溶液に窒素ガスを流通させて発生した前記弁金属アルコキシドの蒸気を、加熱した金属箔上に導入して、前記金属箔上に前記弁金属の酸化物蒸着膜を形成させ、前記弁金属酸化物蒸着膜が形成された金属箔を陽極箔及び/又は陰極箔に用いることを特徴とする請求項3記載の固体電解コンデンサの製造方法。
Steam of the valve metal alkoxide generated by flowing nitrogen gas through the valve metal alkoxide solution is introduced onto a heated metal foil to form an oxide vapor deposition film of the valve metal on the metal foil, 4. The method for producing a solid electrolytic capacitor according to claim 3, wherein a metal foil on which a valve metal oxide deposition film is formed is used for an anode foil and / or a cathode foil.
JP2003294884A 2003-08-19 2003-08-19 Solid electrolytic capacitor and method for manufacturing the same Pending JP2005064352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294884A JP2005064352A (en) 2003-08-19 2003-08-19 Solid electrolytic capacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294884A JP2005064352A (en) 2003-08-19 2003-08-19 Solid electrolytic capacitor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005064352A true JP2005064352A (en) 2005-03-10

Family

ID=34371283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294884A Pending JP2005064352A (en) 2003-08-19 2003-08-19 Solid electrolytic capacitor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005064352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049664B2 (en) 2018-04-13 2021-06-29 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
US11056285B2 (en) 2018-04-13 2021-07-06 Avx Corporation Solid electrolytic capacitor containing an adhesive film
US11139117B2 (en) 2018-04-13 2021-10-05 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited interior conductive polymer film
US11183339B2 (en) 2018-11-29 2021-11-23 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited dielectric film
US12002631B2 (en) 2022-10-19 2024-06-04 KYOCERA AVX Components Corporation Electrodeposited dielectric for a solid electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049664B2 (en) 2018-04-13 2021-06-29 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
US11056285B2 (en) 2018-04-13 2021-07-06 Avx Corporation Solid electrolytic capacitor containing an adhesive film
US11139117B2 (en) 2018-04-13 2021-10-05 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited interior conductive polymer film
US11948756B2 (en) 2018-04-13 2024-04-02 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
US11183339B2 (en) 2018-11-29 2021-11-23 Avx Corporation Solid electrolytic capacitor containing a sequential vapor-deposited dielectric film
US12002631B2 (en) 2022-10-19 2024-06-04 KYOCERA AVX Components Corporation Electrodeposited dielectric for a solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
WO2006073014A1 (en) Electrolytic capacitor and method for manufacturing same
JP2012049432A (en) Method of manufacturing solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP5328870B2 (en) Electrolytic capacitor
JP2011205028A (en) Method of manufacturing electrolytic capacitor
JP4062787B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005064352A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR20050104368A (en) Solid electrolytic capacitor
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4909246B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005101155A (en) Solid-state electrolyte capacitor and method of manufacturing the same
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005203402A (en) Solid electrolytic capacitor
JP3970063B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JP4114325B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007134351A (en) Manufacture of solid electrolytic capacitor
JP3851128B2 (en) Electrolytic capacitor
JP4042345B2 (en) Solid electrolytic capacitor
JP2010087100A (en) Method of manufacturing solid electrolytic capacitor
JP4204484B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227