KR102621225B1 - 인쇄헤드용 다이 - Google Patents

인쇄헤드용 다이 Download PDF

Info

Publication number
KR102621225B1
KR102621225B1 KR1020217024827A KR20217024827A KR102621225B1 KR 102621225 B1 KR102621225 B1 KR 102621225B1 KR 1020217024827 A KR1020217024827 A KR 1020217024827A KR 20217024827 A KR20217024827 A KR 20217024827A KR 102621225 B1 KR102621225 B1 KR 102621225B1
Authority
KR
South Korea
Prior art keywords
die
fluid supply
fluid
supply holes
printhead
Prior art date
Application number
KR1020217024827A
Other languages
English (en)
Other versions
KR20210113285A (ko
Inventor
제임스 마이클 가드너
안토니 엠 풀러
마이클 더블유 컴비
스코트 에이 린
Original Assignee
휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. filed Critical 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Publication of KR20210113285A publication Critical patent/KR20210113285A/ko
Application granted granted Critical
Publication of KR102621225B1 publication Critical patent/KR102621225B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04543Block driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14072Electrical connections, e.g. details on electrodes, connecting the chip to the outside...
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14145Structure of the manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14153Structures including a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14403Structure thereof only for on-demand ink jet heads including a filter

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)

Abstract

인쇄헤드용 다이가 본 명세서에 설명된다. 다이는 다이의 종축에 평행한 라인으로 배치되는 다수의 유체 공급 홀을 포함하고, 유체 공급 홀은 다이의 기판을 통하여 형성된다. 다수의 유체 액추에이터는 복수의 유체 공급 홀에 근접하며 복수의 유체 공급 홀로부터 수용된 유체를 분사한다. 다이는 복수의 유체 액추에이터를 작동시키는 로직 회로를 포함하고, 로직 회로는 복수의 유체 공급 홀의 제1 측면 상에 배치된다. 복수의 유체 액추에이터에 전력을 공급하는 전력 회로가 로직 회로로부터 유체 공급 홀의 반대 측면 상에 배치된다. 활성화 트레이스는 유체 공급 홀 각각 사이에 배치되어 로직 회로를 전력 회로에 연결한다.

Description

인쇄헤드용 다이
유체 분사 시스템의 일례로서, 인쇄 시스템은 인쇄헤드, 인쇄헤드에 액체 잉크를 공급하는 잉크 공급부 및 인쇄헤드를 제어하는 전자 제어기를 포함할 수 있다. 인쇄헤드는 인쇄 유체의 액적을 복수의 노즐 또는 오리피스(orifice)를 통해 인쇄 매체 상으로 분사한다. 적합한 인쇄 유체는 2차원 또는 3차원 인쇄를 위한 잉크 및 작용제(agent)를 포함할 수 있다. 인쇄헤드는 집적 회로 웨이퍼 또는 다이 상에 제조되는 열(thermal) 또는 피에조(piezo) 인쇄헤드를 포함할 수 있다. 구동 전자장치 및 제어 특징부가 먼저 제조되고, 이어서 히터 저항기의 열(columns)이 추가되며, 최종적으로 예를 들어, 포토-이미징가능 에폭시로부터 형성된 구조 층이 추가되고 처리되어 미세유체 분사기 또는 액적 생성기를 형성한다. 몇몇 예에서, 미세유체 분사기는, 인쇄헤드 및 인쇄 매체가 서로에 대해 이동됨에 따라 오리피스로부터의 잉크의 적절히 순서화된 분사가 문자 또는 다른 이미지가 인쇄 매체 상에 인쇄되게 하도록 적어도 하나의 열 또는 어레이로 배열된다.
소정 예들은 다음의 상세한 설명에서 도면을 참조하여 설명된다.
도 1a는 인쇄헤드에 사용되는 다이의 예의 도면이다.
도 1b는 다이의 일부의 확대도이다.
도 2a는 인쇄헤드에 사용되는 다이의 예의 도면이다.
도 2b는 다이의 일부의 확대도이다.
도 3a는 포팅 화합물(potting compound)에 장착된 블랙 다이로 형성된 인쇄헤드의 예의 도면이다.
도 3b는 3가지 컬러의 잉크에 사용될 수 있는 컬러 다이를 사용하여 형성된 인쇄헤드의 예의 도면이다.
도 3c는 고체 섹션을 통해 및 유체 공급 홀을 갖는 섹션을 통해 장착된 다이를 포함하는 인쇄헤드의 단면도를 도시한다.
도 4는 도 3b와 관련하여 설명된 컬러 다이를 통합하는 프린터 카트리지이다.
도 5는 컬러 다이를 형성하는 데 사용되는 층을 도시하는 컬러 다이의 예의 일부의 도면이다.
도 6a 및 도 6b는 컬러 다이의 전원 측 상의 FET에 컬러 다이의 로직 회로를 연결하는 폴리실리콘 트레이스의 예의 확대도를 도시하는 컬러 다이의 도면이다.
도 7a 및 도 7b는 유체 공급 홀 사이의 트레이스의 확대도를 도시하는 컬러 다이의 도면이다.
도 8a 및 도 8b는 2개의 유체 공급 홀 사이의 단면의 전자 현미경 사진의 도면이다.
도 9는 다이를 형성하는 방법의 예의 공정 흐름도이다.
도 10은 복수의 층을 사용하여 다이 상에 컴포넌트를 형성하는 방법의 예의 공정 흐름도이다.
도 11은 다이의 각 측면 상에 트레이스 결합 회로를 갖는 다이 상에 회로를 형성하는 방법의 예의 공정 흐름도이다.
도 12는 쿼드 프리미티브(quad primitive)로 지칭되는 4개의 프리미티브의 세트의 예의 개략도이다.
도 13은 단일 노즐 회로 세트에 의해 달성될 수 있는 단순화를 도시하는, 디지털 회로의 레이아웃의 예의 도면이다.
도 14는 에너지 및 전력 라우팅에 대한 크로스-슬롯 라우팅의 영향을 도시하는 블랙 다이의 예의 도면이다.
도 15는 컬러 다이에 대한 회로 평면도의 예의 도면이다.
도 16은 컬러 다이의 예의 다른 도면이다.
도 17은 반복 구조를 나타내는 컬러 다이의 예의 도면이다.
도 18은 다이의 전체 구조를 나타내는 블랙 다이의 예의 도면이다.
도 19는 반복 구조를 나타내는 블랙 다이의 예의 도면이다.
도 20은 균열 검출을 위한 시스템을 나타내는 블랙 다이의 예의 도면이다.
도 21은 유체 공급 홀의 주위에 라우팅된 균열 검출 트레이스를 나타내는 블랙 다이로부터의 유체 공급 홀의 예의 확대도이다.
도 22는 균열 검출 트레이스를 형성하는 방법의 예의 공정 흐름도이다.
인쇄헤드는 미세유체 분사기 및 미세유체 펌프와 같은 유체 액추에이터를 가진 다이를 사용하여 형성된다. 유체 액추에이터는 열 또는 압전 기술을 기반으로 할 수 있으며, 본 명세서에서 다이로 지칭되는 길고 좁은 실리콘 조각을 사용하여 형성된다. 본 명세서에 사용된 바와 같이, 유체 액추에이터는 챔버로부터 유체를 밀어내는 다이 상의 장치이며, 챔버 및 관련 구조체를 포함한다. 본 명세서에 설명된 예에서, 유체 액추에이터의 일 유형인 미세유체 분사기는 인쇄 및 기타 응용례에 사용되는 다이 내의 액적 분사기 또는 노즐로서 사용된다. 예를 들어, 인쇄헤드는 2차원 및 3차원 인쇄 응용례 및 제약, 실험실, 의료, 생명 과학 및 법의학 응용례를 포함한 기타 고정밀 유체 분배 시스템에서 유체 분사 장치로서 사용될 수 있다.
인쇄헤드의 비용은 흔히 다이에서 사용된 실리콘의 양에 의해 결정되는데, 다이에서 사용되는 실리콘의 총량에 따라 다이 및 제조 공정의 비용이 증가하기 때문이다. 따라서, 기능을 다이에서 다른 집적 회로로 이동시켜 더 작은 다이를 허용함으로써 더 저렴한 인쇄헤드를 형성할 수 있다.
다수의 현재 다이는 유체 액추에이터로 잉크를 가져오기 위해 다이의 중간에 잉크 공급 슬롯을 갖는다. 잉크 공급 슬롯은 일반적으로 다이의 한 면에서 다이의 다른 면으로 신호를 전달하는 장벽을 제공하며, 이는 종종 다이의 각 면에 중복 회로를 필요로 하므로 다이의 크기가 더욱 증가한다. 이 배열에서, 왼쪽 또는 서쪽으로 지칭될 수 있는 슬롯의 한 측면에 있는 유체 액추에이터는 오른쪽 또는 동쪽으로 지칭될 수 있는 잉크 공급 슬롯의 반대 측면에 있는 유체 액추에이터로부터 독립적인 어드레싱 및 전력 버스 회로를 갖는다.
본 명세서에 설명된 예는 액적 분사기의 유체 액추에이터에 유체를 제공하는 새로운 접근법을 제공한다. 이 접근법에서, 잉크 공급 슬롯은 유체 액추에이터에 근접한 다이를 따라 배치된 유체 공급 홀의 어레이로 대체된다. 다이를 따라 배치된 유체 공급 홀의 어레이는 본 명세서에서 공급 구역으로 지칭될 수 있다. 결과적으로, 신호는 유체 공급 홀들 사이에서, 예를 들어, 유체 공급 홀의 한 측면에 위치한 로직 회로에서 유체 공급 홀의 반대 측면에 위치한 전계 효과 트랜지스터(FET)와 같은 인쇄 전력 회로로 공급 구역을 통해 라우팅될 수 있다. 이는 본 명세서에서 크로스-슬롯 라우팅으로 지칭된다. 신호를 라우팅하는 회로는 인접한 잉크 또는 유체 공급 홀 사이의 층에 제공되는 트레이스를 포함한다.
본 명세서에 사용된 바와 같이, 다이의 제1 측면 및 다이의 제2 측면은 다이의 중앙에 또는 그 근처에 배치되는 유체 공급 홀과 정렬되는 다이의 긴 에지를 나타낸다. 또한, 본 명세서에 사용된 바와 같이, 유체 액추에이터는 다이의 전면에 위치되고, 잉크 또는 유체는 다이의 후면 상의 슬롯으로부터 유체 공급 홀로 공급된다. 따라서, 다이의 폭은 다이의 제1 측면의 에지에서 다이의 제2 측면의 에지까지 측정된다. 마찬가지로, 다이의 두께는 다이의 전면에서 다이의 후면까지 측정된다.
크로스-슬롯 라우팅은 예를 들어, 150 마이크로미터(㎛) 이상만큼 다이의 폭을 감소시킬 수 있는 다이 상의 중복 회로의 제거를 허용한다. 몇몇 예에서, 이는 약 450㎛ 또는 약 360㎛ 이하의 폭을 갖는 다이를 제공할 수 있다. 몇몇 예에서, 크로스-슬롯 라우팅에 의한 중복 회로의 제거는 예를 들어, 더 높은 가치의 응용례에서 성능을 향상시키기 위해 다이 상의 회로의 크기를 증가시키는 데 사용될 수 있다. 이러한 예에서, 전력 FET, 회로 트레이스, 전력 트레이스 등은 크기가 증가될 수 있다. 이는 더 높은 액적 중량이 가능한 다이를 제공할 수 있다. 따라서, 몇몇 예에서, 다이는 약 500㎛ 미만, 또는 약 750㎛ 미만, 또는 약 1000㎛ 미만일 수 있다.
전면에서 후면까지 다이의 두께는 유체 공급 홀의 사용으로 얻은 효율성에 의해서도 감소된다. 잉크 공급 슬롯을 사용하는 이전 다이는 약 675μm보다 클 수 있는 반면, 유체 공급 홀을 사용하는 다이는 두께가 약 400μm 미만일 수 있다. 다이의 길이는 설계에 사용되는 유체 액추에이터의 수에 따라 약 10 밀리미터(mm), 약 20mm일 수 있다. 다이의 길이는 회로를 위한 다이의 각 단부에 공간을 포함하므로, 유체 액추에이터는 다이 길이의 일부를 차지한다. 예를 들어, 길이가 약 20mm인 블랙 다이의 경우, 유체 액추에이터는 스워스(swath) 길이인 약 13mm를 차지할 수 있다. 스워스 길이는 인쇄헤드가 인쇄 매체를 가로질러 이동될 때 형성되는 인쇄 대역 또는 유체 분사의 폭이다.
또한, 증가한 효율성 및 레이아웃을 위해 유사한 장치의 공동 배치를 허용한다. 크로스-슬롯 라우팅은 또한 복수의 유체 액추에이터의 왼쪽 및 오른쪽 열 또는 유체 액추에이터 구역이 전원 및 접지 라우팅 회로를 공유할 수 있도록 함으로써 전력 전달을 최적화한다. 좁은 다이는 넓은 다이보다 더 취약할 수 있다. 따라서, 다이는 잉크가 유체 공급 홀로 흐를 수 있게 하도록 반대 측면으로부터 슬롯을 갖는 폴리머 포팅 화합물에 장착될 수 있다. 몇몇 예에서, 포팅 화합물은 에폭시이지만, 아크릴, 폴리카보네이트, 폴리페닐렌 설파이드 등일 수 있다.
크로스-슬롯 라우팅은 회로 레이아웃의 최적화도 허용한다. 예를 들어, 고전압 및 저전압 영역은 유체 공급 홀의 반대 측면에서 분리되어 다이에 대한 신뢰성 및 폼 팩터의 개선을 허용할 수 있다. 고전압 및 저전압 영역의 분리는 기생 전압, 누화 및 다이의 신뢰성에 영향을 미치는 기타 문제를 줄이거나 제거할 수 있다. 또한, 로직 회로, 유체 액추에이터, 유체 공급 홀 및 노즐 세트에 대한 전력 회로를 포함하는 반복 유닛은 매우 좁은 폼 팩터에서 원하는 피치를 제공하도록 설계될 수 있다.
다이의 종축에 평행한 라인으로 배치된 유체 공급 홀은 다이를 기계적 응력으로 인해 손상되기 쉽게할 수 있다. 예를 들어, 유체 공급 홀은 다이의 종축을 따라 유체 공급 홀을 통해 균열이 발생할 가능성을 증가시키는 일련의 천공으로 작용할 수 있다. 제조 중 균열을 검출하기 위해, 예를 들어, 포팅 화합물에 장착하기 전에, 균열 검출 회로가 사행 방식으로 유체 공급 홀 주위에 배치될 수 있다. 균열 검출 회로는 균열이 형성되면 파손되어 저항이 수백 킬로옴과 같은 제1 저항에서 개방 회로로 가게 하는 저항기일 수 있다. 이는 제조 공정이 완료되기 전에 파손된 다이를 식별하여 생산 비용을 낮출 수 있다.
본 명세서에 설명된 바와 같이, 인쇄헤드에 사용되는 다이는 열 팽창에 의한 액적 분사를 발생시키는 유체 액추에이터 내의 유체를 가열하는 데 저항기를 사용한다. 그러나, 다이는 열적 구동 유체 액추에이터에 제한되지 않으며 유체 공급 홀로부터 공급되는 압전 유체 액추에이터를 사용할 수 있다. 본 명세서에 설명된 바와 같이, 유체 액추에이터는 유체 챔버 및 미세유체 분사기용 노즐과 같은 드라이버 및 관련 구조체를 포함한다.
또한, 다이는 분석 기기에 사용되는 미세유체 펌프와 같은 인쇄헤드 외에 다른 응용례를 위한 유체 액추에이터를 형성하는 데 사용될 수 있다. 이 예에서, 유체 액추에이터는 유체 공급 홀로부터 테스트 용액 또는 잉크가 아닌 다른 유체를 공급받을 수 있다. 따라서, 다양한 예에서, 유체 공급 홀 및 잉크는 열 팽창 또는 압전 활성화로부터 액적 분사에 의해 분사되거나 펌핑될 수 있는 유체 재료를 제공하는 데 사용될 수 있다.
도 1a는 인쇄헤드에 사용되는 다이(100)의 예의 도면이다. 다이(100)는 유체 공급 슬롯(104)의 양측에 유체 액추에이터(102)를 작동시키기 위한 모든 회로를 포함한다. 따라서, 모든 전기 접속은 다이(100)의 각 단부에 위치된 패드(106) 상에서 이루어진다. 그 결과, 다이의 폭은 약 1500 μm이다. 도 1b는 다이(100)의 일부의 확대도이다. 이 확대도에서 볼 수 있는 바와 같이, 유체 공급 슬롯(104)은 다이(100)의 중심에서 상당한 양의 공간을 차지하여 다이(100)의 폭(108)을 증가시킨다.
도 2a는 인쇄헤드에 사용되는 다이(200)의 예의 도면이다. 도 2b는 다이(200)의 일부의 확대 단면도이다. 도 1a의 다이(100)와 비교하여, 다이(200)의 설계는 활성화 회로의 일부를 2차 집적 회로 또는 주문형 집적 회로(ASIC)(202)에 허용한다.
다이(100)의 유체 공급 슬롯(104)과 대조적으로, 다이(200)는 열 저항기(208)에 의한 분사를 위해 유체 액추에이터(206)에 잉크와 같은 유체를 제공하는 데 유체 공급 홀(204)을 사용한다. 본 명세서에 설명된 바와 같이, 크로스-슬롯 라우팅은 회로가 유체 공급 홀(204) 사이의 실리콘 브리지(210)를 따라 그리고 다이(200)의 종축(212)을 가로질러 라우팅될 수 있게 한다. 이것은 다이(200)의 폭(214)이 유체 공급 홀(204)을 갖지 않는 이전의 설계에 비해 실질적으로 감소될 수 있게 한다.
다이(200)의 폭(214)의 감소는 예를 들어, 다이(200)의 기판 내의 실리콘의 양을 감소시킴으로써 비용을 실질적으로 감소시킨다. 또한, 다이와 ASIC(202) 사이의 회로 및 기능의 분포는 폭(214)의 추가 감소를 허용한다. 본 명세서에 설명된 바와 같이, 다이(200)는 작동 및 진단을 위한 센서 회로도 포함한다. 몇몇 예에서, 다이(200)는, 예를 들어, 다이의 한 단부 근처에서, 다이의 중앙에서, 다이의 반대쪽 단부 근처에서 다이의 종축을 따라 배치된 열 센서(216)를 포함한다.
도 3a 내지 도 3c는 포팅 화합물로 형성된 폴리머 마운트(polymeric mount)(310)에 다이(302 또는 304)의 장착에 의한 인쇄헤드(300)의 형성의 도면이다. 다이(302 및 304)는 펜 본체에 부착하거나 저장소로부터 유체를 유동적으로 보내기에는 너무 좁다. 따라서, 다이(302 및 304)는 무엇보다도 에폭시 재료와 같은 포팅 화합물로 형성된 폴리머 마운트(310)에 장착된다. 인쇄헤드(300)의 폴리머 마운트(310)는 유체가 저장소로부터 다이(302 및 304) 내의 유체 공급 홀(204)로 흐를 수 있게 하는 개방 영역을 제공하는 슬롯(314)을 갖는다.
도 3a는 포팅 화합물에 장착된 블랙 다이(302)로 형성된 인쇄헤드(300)의 예의 도면이다. 도 3a의 블랙 다이(302)에서, 노즐(320)의 두 라인이 보이고, 두 개의 교대로 배치된 노즐(320)의 각 그룹은 블랙 다이(302)를 따라 유체 공급 홀(204) 중 하나로부터 공급된다. 노즐(320) 각각은 열 저항기 위의 유체 챔버에 대한 개구이다. 열 저항기의 작동은 노즐(320)을 통해 유체를 내보내므로, 열 저항기 유체 챔버와 노즐의 각각의 조합은 유체 액추에이터, 특히 미세유체 분사기를 나타낸다. 유체 공급 홀(204)은 서로 분리되지 않아 유체가 유체 공급 홀(204)에서 근처의 유체 공급 홀(204)로 흐를 수 있게 하여 활성 노즐에 더 높은 유속을 제공한다는 점을 알 수 있다.
도 3b는 3가지 컬러의 잉크에 사용될 수 있는 컬러 다이(304)를 이용하여 형성된 인쇄헤드(300)의 예의 도면이다. 예를 들어, 하나의 컬러 다이(304)는 시안 잉크용으로 사용될 수 있고, 다른 컬러 다이(304)는 마젠타 잉크용으로 사용될 수 있으며, 마지막 컬러 다이(304)는 옐로우 잉크용으로 사용될 수 있다. 각각의 잉크는 별개의 컬러 잉크 저장소로부터 컬러 다이(304)의 관련 슬롯(314) 내로 공급될 것이다. 이 도면은 마운트에 있는 컬러 다이(304) 중 3개만을 보여주지만, 블랙 다이(302)와 같은 제4 다이가 CMYK 다이를 형성하기 위해 포함될 수 있다. 유사하게, 다른 다이 구성이 사용될 수 있다.
도 3c는 고체 섹션(322)을 통해 및 유체 공급 홀(318)을 갖는 섹션(324)을 통해 장착된 다이(302 또는 304)를 포함하는 인쇄헤드(300)의 단면도를 도시한다. 이는 유체 공급 홀(318)이 슬롯(314)에 연결되어 잉크가 슬롯(314)으로부터 장착된 다이(302 및 304)를 통해 흐를 수 있게 한다. 본 명세서에 설명된 바와 같이, 도 3a 내지 도 3c의 구조체는 잉크에 제한되는 것이 아니라 다이 내의 유체 액추에이터에 다른 유체를 제공하는 데 사용될 수 있다.
도 4는 도 3b와 관련하여 설명된 컬러 다이(304)를 통합하는 프린터 카트리지(400)의 예이다. 장착된 컬러 다이(304)는 패드(402)를 형성한다. 본 명세서에 설명된 바와 같이 패드(402)는 다색 실리콘 다이 및 에폭시 포팅 화합물과 같은 폴리머 장착 화합물을 포함한다. 하우징(404)은 패드(402)에 장착된 컬러 다이(304)를 공급하는 데 사용되는 잉크 저장소를 보유한다. 가요성 회로와 같은 가요성 연결부(406)는 프린터 카트리지(400)와 연결하는 데 사용되는 프린터 콘택트 또는 패드(408)를 보유한다. 본 명세서에 설명된 바와 같이, 상이한 회로 설계는 이전 프린터 카트리지에 비해 더 적은 수의 패드(408)가 프린터 카트리지(400)에서 사용될 수 있게 한다.
도 5는 컬러 다이(304)를 형성하는 데 사용된 층(502, 504 및 506)을 보여주는 컬러 다이(304)의 부분(500)의 도면이다. 도 2와 관련하여 동일한 번호가 매겨진 항목이 설명된다. 층을 제조하는 데 사용되는 재료는 폴리실리콘, 알루미늄-구리(AlCu), 탄탈륨(Ta), 금(Au), 임플란트 도핑(Nwell, Pwell 등)을 포함한다. 도면에서, 층(502)은 유체 공급 홀(204) 사이의 컬러 다이(304)의 로직 회로(510)로부터 컬러 다이(304)의 전력 회로(512)를 형성하는 전계 효과 트랜지스터(FET)까지의 층 또는 폴리실리콘 트레이스(508)의 라우팅을 도시한다(도면에 부분적으로 표시됨). 이것은 FET의 활성화가 열 저항기 위의 챔버 외부로 액체를 밀어내기 위해 유체 액추에이터에 전력을 공급하는 열 잉크젯 저항기(TIJ)(514)를 구동시키게 한다. 금속 1(504) 및 금속 2(506)를 포함할 수 있는 추가 층(516 및 518)은 TIJ 저항기(514)로의 전류에 대한 전원 접지 리턴으로서 사용된다. 도 5에 도시된 컬러 다이(304)는 유체 공급 홀(204)의 일 측에만 배치된 TIJ 저항기(514)이며, 이는 액적 정확도를 증가시키기 위해 상이한 액적 크기를 제공하도록 고중량 액적(HWD)과 저중량 액적(LWD) 사이에 교대로 배치된다는 것을 알 수 있다. 액적 중량을 제어하기 위해, HWD에 대한 TIJ 저항기(514) 및 관련 구조체는 도 15와 관련하여 추가로 논의된 바와 같이 LWD에 사용되는 TIJ 저항기(514)보다 크다. 본 명세서에 설명된 바와 같이, 유체 액추에이터 내의 관련 구조체는 미세유체 분사기용 노즐 및 유체 챔버를 포함한다. 블랙 다이(302)에서, TIJ 저항기(514) 및 관련 구조체는 동일한 크기이고 유체 공급 홀(204)의 각 측면 사이에 교대로 배치된다.
도 6a 및 도 6b는 컬러 다이(304)의 전력 회로(512) 내의 FET(604)에 컬러 다이(304)의 로직 회로(510)를 연결하는 트레이스(602)의 확대도를 도시하는 컬러 다이(304)의 도면이다. 동일한 번호가 매겨진 항목은 도 2, 도 3 및 도 5와 관련하여 설명된 바와 같다. 도체는 유체 공급 홀(204)의 어레이(608)의 왼쪽과 오른쪽 사이에 복수의 연결을 허용하도록 적층된다. 예에서, 제조는 상보형 금속-산화물 반도체 기술을 사용하여 수행되고, 폴리실리콘 층, 제1 금속 층 및 제2 금속 층 등과 같은 전도성 층은 이들이 누화와 같은 전기적 간섭 없이 적층될 수 있게 하는 유전체에 의해 분리된다. 이것은 도 7 및 도 8과 관련하여 추가로 설명된다.
도 7a 및 도 7b는 유체 공급 홀(204) 사이의 트레이스의 확대도를 도시하는 컬러 다이(304)의 도면이다. 동일한 번호가 매겨진 항목은 도 2 및 도 5와 관련하여 설명된 바와 같다. 도 7a는 2개의 유체 공급 홀(204)의 도면이고, 도 7b는 선(702)에 의해 도시된 단면의 확대도이다. 이 도면에서 유체 공급 홀(204) 사이의 상이한 층은 탄탈 층(704)을 포함하는 것을 볼 수 있다. 또한, 폴리실리콘 층(508), 금속 1 층(516) 및 금속 2 층(518)을 포함하는 도 5와 관련하여 설명된 층이 도시된다. 몇몇 예에서, 도 20 및 도 21과 관련하여 설명된 바와 같이, 폴리실리콘 트레이스(508) 중 1개는 컬러 다이(304)를 위한 내장된 균열 검출기를 제공하는 데 사용될 수 있다. 층(508, 516 및 518)은 도 8a 및 도 8b와 관련하여 추가로 논의되는 바와 같이 절연을 제공하기 위해 유전체에 의해 분리된다. 도 6a, 도 6b, 도 7a 및 도 7b는 컬러 다이(304)를 도시하지만, 동일한 설계 특징이 블랙 다이(302) 상에 사용된다는 것을 알아야 한다.
도 8a 및 도 8b는 컬러 다이(304)의 2개의 유체 공급 홀(204) 사이의 단면의 전자 현미경 사진의 도면이다. 동일한 번호가 매겨진 항목은 도 2, 도 3 및 도 5와 관련하여 설명된 바와 같다. 이 구조체에서 최상층은 SU-8 프라이머(802)로, 컬러 다이(304)용 노즐(320)을 포함하여 회로 위에 최종 커버링을 형성하는 데 사용된다. 그러나 동일한 층은 블랙 다이(302) 내의 유체 공급 홀(204) 사이에 존재할 수 있다.
도 8b는 컬러 다이(304)의 2개의 유체 공급 홀(204) 사이의 단면(804)이다. 도 8b에 도시된 바와 같이, 유체 공급 홀(204)은 기판으로서 기능하는 실리콘 층(806)을 통해 에칭되어 컬러 다이(304)의 두 측을 연결하는 브리지를 남긴다. 여러 층이 실리콘 층(806)의 상부에 증착된다. 두꺼운 필드 산화물 또는 FOX 층(808)이 실리콘 층(806)의 상부에 증착되어 실리콘 층(806)으로부터 추가 층을 절연시킨다. 금속 1(516)과 동일한 재료로 형성된 스트링거(810)가 FOX 층(808)의 각 측면에 증착된다.
FOX 층(808)의 상부에, 폴리실리콘 층(508)은 예를 들어, 다이(200)의 한 측면 상의 로직 회로를 다이(200)의 반대 측면 상의 전력 트랜지스터에 연결하기 위해 증착된다. 폴리실리콘 층(508)에 대한 다른 용도는 도 20 및 도 21과 관련하여 설명된 바와 같이 유체 공급 홀(204) 사이에 증착된 균열 검출 트레이스를 포함할 수 있다. 폴리실리콘 또는 다결정 실리콘은 고순도의 다결정형의 실리콘이다. 예에서, 그것은 실레인(SiH4)의 저압 화학 기상 증착을 사용하여 증착된다. 폴리실리콘 층(508)은 n-웰 및 p-웰 재료를 형성하기 위해 주입되거나 도핑될 수 있다. 제1 유전체 층(812)은 절연 장벽으로서 폴리실리콘 층(508) 위에 증착된다. 예에서, 제1 유전체 층(812)은 보로포스포실리케이트 유리/테트라에틸 오르토 실리케이트(BPSG/TEOS)로 형성되지만, 다른 재료가 사용될 수 있다.
그 다음 금속 1(516)의 층이 제1 유전체 층(812) 위에 증착될 수 있다. 다양한 예에서, 금속 1(516)은 금과 같은 다른 재료 중에서 질화티타늄(TiN), 알루미늄 구리 합금(AlCu), 또는 질화티타늄/티타늄(TiN/Ti)으로 형성된다. 제2 유전체 층(814)은 절연 장벽을 제공하기 위해 금속 1(516) 층 위에 증착된다. 예에서, 제2 유전체 층(814)은 고밀도 플라즈마 화학 기상 증착(HDP-TEOS/TEOS)에 의해 형성된 TEOS/TEOS 층이다.
그 다음 금속 2(518)의 층이 제2 유전체 층(814) 위에 증착될 수 있다. 다양한 예에서, 금속 2(518)은 금과 같은 다른 재료 중에서 텅스텐 질화규소 합금(WSiN), 알루미늄 구리 합금(AlCu), 또는 질화티타늄/티타늄(TiN/Ti)으로 형성된다. 이어서, 금속 2(518)의 상부 위에 패시베이션 층(816)이 증착되어 절연 장벽을 제공한다. 예에서, 패시베이션 층(816)은 탄화규소/질화규소(SiC/SiN)의 층이다.
탄탈륨(Ta) 층(818)은 패시베이션 층(816) 및 제2 유전체 층(814)의 상부 위에 증착된다. 탄탈륨 층(818)은 잉크와 같은 유체에 대한 잠재적인 노출에 의해 야기되는 열화로부터 트레이스의 컴포넌트를 보호한다. 그런 다음 SU-8(820) 층이 다이(200) 위에 증착되고, 에칭되어 다이(200) 위에 노즐(320) 및 유동 채널(822)을 형성한다. SU-8은 에폭시 기반 네거티브 포토레지스트로, UV 광에 노출된 부품이 교차결합되어 용매 및 플라즈마 에칭에 내성이 생기게 된다. SU-8에 더하여 또는 SU-8을 대신하여 다른 재료가 사용될 수 있다. 유동 채널(822)은 유체 공급 홀 또는 유체 공급 홀(204)으로부터 노즐(320) 또는 유체 액추에이터로 유체를 공급하도록 구성된다. 유동 채널(822) 각각에서, 버튼(824) 또는 돌출부가 SU-8(820)에 형성되어 유체 내의 미립자가 노즐(320) 아래의 분사 챔버로 들어가는 것을 차단한다. 하나의 버튼(826)이 도 8b의 단면에 도시되어 있다.
유체 공급 홀(204) 사이의 실리콘 층(806) 위의 도체의 적층은 유체 공급 홀(204)의 어레이의 좌측과 우측 사이의 연결을 증가시킨다. 본 명세서에 설명된 바와 같이, 폴리실리콘 층(508), 금속 1 층(516), 금속 2 층(818) 등은 모두 이들이 적층될 수 있게 하는 유전체 또는 절연 층(812, 814 및 816)에 의해 분리된 고유한 전도성 층이다. 도 8a 및 도 8b에 도시된 컬러 다이(304)와 같은 설계 구현에 따라, 균열 검출기 등의 다양한 층은 FET 및 TIJ 저항기를 구동하기 위한 VPP, PGND 및 디지털 제어 연결을 형성하기 위해 서로 다른 조합으로 사용된다.
도 9는 다이를 형성하기 위한 방법(900)의 예의 공정 흐름도이다. 방법(900)은 컬러 프린터용 다이로서 사용되는 컬러 다이(304)뿐만 아니라 블랙 잉크용으로 사용되는 블랙 다이(302) 및 유체 액추에이터를 포함하는 다른 유형의 다이를 제조하는 데 사용될 수 있다. 방법(900)은 기판의 종축에 평행한 라인을 따라 실리콘 기판을 통해 유체 공급 홀을 에칭하는 것으로 블록(902)에서 시작한다. 몇몇 예에서, 층이 먼저 증착되고, 그 다음에 층이 형성된 후에 유체 공급 홀의 에칭이 수행된다.
예에서, SU-8과 같은 포토레지스트 폴리머의 층이 다이의 일부 위에 형성되어 에칭되지 않을 영역을 보호한다. 포토레지스트는 빛에 의해 교차결합된 네거티브 포토레지스트 또는 노광에 의해 더 잘 용해되는 포지티브 포토레지스트일 수 있다. 예에서, 마스크는 보호층의 일부를 고정하기 위해 UV 광원에 노출되고, UV 광에 노출되지 않은 부분은 씻겨져 나간다. 이 예에서, 마스크는 유체 공급 홀의 영역을 덮는 보호 층의 부분의 교차결합을 방지한다.
블록(904)에서, 기판 상에 복수의 층이 형성되어 다이를 형성한다. 층은 폴리실리콘, 폴리실리콘 위의 유전체, 금속 1, 금속 1 위의 유전체, 금속 2, 금속 2 위의 패시베이션 층, 및 상부 위의 탄탈륨 층을 포함할 수 있다. 전술한 바와 같이, 그 다음에 SU-8이 다이의 상부 위에 적층될 수 있고, 유동 채널 및 노즐을 구현하도록 패터닝될 수 있다. 층의 형성은 층을 증착하기 위한 화학 기상 증착에 의해 형성될 수 있고, 뒤이어 필요하지 않은 부분을 제거하기 위해 에칭될 수 있다. 제조 기법은 상보형 금속 산화물 반도체(Complementary Metal-Oxide-Semiconductors: CMOS) 형성에 사용되는 표준 제조일 수 있다. 블록(904)에서 형성될 수 있는 층 및 컴포넌트의 위치는 도 10과 관련하여 추가로 논의된다.
도 10은 복수의 층을 사용하여 다이 상에 구성요소를 형성하는 방법(1000)의 예의 공정 흐름도이다. 예에서, 방법(1000)은 도 9의 블록(904)에서 형성될 수 있는 층의 세부사항을 보여준다. 방법은 블록(1002)에서 다이 상에 로직 전력 회로를 형성하는 것으로 시작한다. 블록(1004)에서, 도 12 및 도 13과 관련하여 설명된 바와 같이 프리미티브 그룹에 대한 어드레스 라인을 포함하는 어드레스 라인 회로가 다이 상에 형성된다. 블록(1006)에서, 도 12 및 도 13과 관련하여 설명된 바와 같이, 디코딩 회로를 포함하는 어드레스 로직 회로가 다이 상에 형성된다. 블록(1008)에서, 메모리 회로가 다이 상에 형성된다. 블록(1010)에서 전력 회로가 다이 상에 형성된다. 블록(1012)에서, 다이 내에 전력 라인이 형성된다. 도 10에 도시된 블록은 순차적인 것으로 간주되어서는 안 된다. 당업자라면 그렇듯이, 다양한 층이 형성되는 것과 동시에 다양한 라인 및 회로가 다이에 걸쳐 형성된다. 또한, 도 10과 관련하여 설명된 프로세스는 컬러 다이 또는 흑백 다이 상에 컴포넌트를 형성하는 데 사용될 수 있다.
본 명세서에 설명된 바와 같이, 유체 공급 홀의 사용은 회로가 유체 공급 홀들 사이의 실리콘 위에 형성된 트레이스에서 다이를 가로지를 수 있게 한다. 따라서, 다이의 각 측면 간에 회로가 공유될 수 있어 다이에 필요한 총 회로 양이 감소한다.
도 11은 다이의 각 측면 상에 트레이스 결합 회로를 갖는 다이 상에 회로를 형성하는 방법(1100)의 예의 공정 흐름도이다. 본 명세서에 사용된 바와 같이, 다이의 제1 측면 및 다이의 제2 측면은 다이의 중심 근처에 또는 중심에 배치된 유체 공급 홀과 정렬된 다이의 긴 에지를 나타낸다. 방법(1100)은 블록(1102)에서 다이의 제1 측면을 따라 로직 전력 라인을 형성하는 것으로 시작한다. 로직 전력 라인은 예를 들어, 약 2V 내지 약 7V의 전압에서 로직 회로에 전력을 공급하는 데 사용되는 저전압 라인 및 로직 회로용 관련 접지 라인이다. 블록(1104)에서, 다이의 제1 측면을 따라 어드레스 로직 회로가 형성된다. 블록(1106)에서, 다이의 제1 측면을 따라 어드레스 라인이 형성된다. 블록(1108)에서, 메모리 회로가 다이의 제1 측면을 따라 형성된다.
블록(1110)에서, 분사기 전력 회로가 다이의 제2 측면을 따라 형성된다. 몇몇 예에서, 분사기 전력 회로는 유체가 노즐로부터 분사되도록 만들기 위해 유체를 가열하는 데 사용되는 전계 효과 트랜지스터(FET) 및 열 잉크젯(TIJ) 저항기를 포함한다. 블록(1112)에서, 다이의 제2 측면을 따라 전력 회로 전력 라인이 형성된다. 전력 회로 전력 라인은 분사기 전력 회로에 예를 들어, 약 25 V 내지 35 V의 전압으로 전력을 공급하는 데 사용되는 고전압 전력 라인(Vpp) 및 리턴 라인(Pgnd)이다.
블록(1114)에서, 유체 공급 홀들 사이에서 로직 회로를 전력 회로에 연결하는 트레이스가 형성된다. 본 명세서에 설명된 바와 같이, 트레이스는 다이의 제1 측면에 위치한 로직 회로로부터 다이의 제2 측면에 있는 전력 회로로 신호를 전달할 수 있다. 또한, 본 명세서에 설명된 바와 같이, 유체 공급 홀들 사이의 균열 검출을 수행하기 위해 트레이스가 포함될 수 있다.
노즐 회로가 중앙 유체 공급 슬롯에 의해 분리되는 다이에서, 로직 회로, 어드레스 라인 등이 중앙 유체 공급 슬롯의 각 측면에서 반복된다. 이와 달리, 도 9 내지 도 11의 방법을 사용하여 형성된 다이에서, 다이의 한 측면에서 다른 측면으로 회로를 라우팅하는 기능은 다이의 양 측면에 몇몇 회로를 복제할 필요가 없게 한다. 이것은 다이 상의 물리적 구조 회로를 보면 명확해진다. 본 명세서에 설명된 몇몇 예에서, 노즐은 도 12와 관련하여 추가로 논의되는 바와 같이 프리미티브로 지칭되는 개별적으로 어드레싱된 세트로 그룹화된다.
도 12는 쿼드 프리미티브로 지칭되는 4개의 프리미티브의 세트의 예의 개략도(1200)이다. 프리미티브 및 공유된 어드레싱의 설명을 용이하게 하기 위해, 개략도(1200)의 오른쪽에 있는 프리미티브는 동쪽, 예를 들어, 북동(NE) 및 남동(SE)으로 라벨링된다. 개략도(1200)의 왼쪽에 있는 프리미티브는 서쪽, 예를 들어, 북서(NW) 및 남서(SW)로 라벨링된다. 이 예에서, 각각의 노즐(1202)은 Fx로 라벨링된 FET에 의해 발사되며, x는 1 내지 32이다. 개략도(1200)는 각각의 노즐(120)에 대응하는, Rx로 라벨링된 TIJ 저항기도 나타내며, x도 1 내지 32이다. 노즐이 개략도(1200)에서 유체 공급부의 각 측면에 표시되지만 이것은 가상 배열이다. 현재 기법을 사용하여 형성된 컬러 다이(304)에서, 노즐(1202)은 유체 공급부의 동일한 측면에 있을 것이다.
각각의 프리미티브(NE, NW, SE 및 SW)에서, 0 내지 7로 라벨링된 8개의 어드레스가 발사를 위한 노즐을 선택하는 데 사용된다. 다른 예에서는, 프리미티브당 16개의 어드레스가 있고, 쿼드 프리미티브당 64개의 노즐이 있다. 어드레스는 공유되며, 어드레스는 각각의 그룹의 노즐을 선택한다. 이 예에서, 어드레스 4가 제공되면, FET(F9, F10, F25, 및 F26)에 의해 활성화된 노즐(1204)이 발사를 위해 선택된다. 만약 있다면, 이러한 노즐(1204) 중 어느 것이 발사하는지는 각각의 프리미티브에 고유한 별개의 프리미티브 선택에 의존한다. 발사 신호도 각각의 프리미티브에 전달된다. 프리미티브 내의 노즐은, 그 프리미티브로 전달된 어드레스 데이터가 발사를 위한 노즐을 선택하고, 그 프리미티브 내로 로딩된 데이터가 그 프리미티브에 대해 발사가 발생해야 함을 나타내며, 발사 신호가 전송될 때 발사된다.
몇몇 예에서, 본 명세서에서 발사 펄스 그룹(FPG)으로 지칭되는 노즐 데이터 패킷은 FPG의 시작을 식별하는 데 사용되는 시작 비트, 각각의 프리미티브 데이터에서 노즐(1202)을 선택하는 데 사용되는 어드레스 비트, 각각의 프리미티브에 대한 발사 데이터, 작동 설정을 구성하는 데 사용되는 데이터 및 FPG의 끝을 식별하는 데 사용되는 FPG 정지 비트를 포함한다. FPG가 로딩되었으면, 모든 프리미티브 그룹에 발사 신호가 전송되어 어드레싱된 모든 노즐이 발사될 것이다. 예를 들어, 인쇄헤드 상의 모든 노즐을 발사하기 위해, 인쇄헤드 내의 모든 프리미티브의 활성화와 함께 각각의 어드레스 값마다 FPG가 전송된다. 따라서, 각각 고유한 어드레스 0-7과 연관된 8개의 FPG가 발행될 것이다. 개략도(1200)에 도시된 어드레싱은 유체 누화, 이미지 품질 및 전력 전달 제약의 문제를 해결하도록 수정될 수 있다. FPG는 또한 예를 들어, 노즐을 발사하는 대신에 각각의 노즐과 연관된 비휘발성 메모리 요소에 기록하는 데 사용될 수 있다.
중앙 유체 공급 영역(1206)은 유체 공급 홀 또는 유체 공급 슬롯을 포함할 수 있다. 그러나, 중앙 잉크 공급 영역(1206)이 유체 공급 슬롯이면, 로직 회로 및 어드레싱 라인, 예컨대, 각각의 프리미티브를 발사할 노즐을 선택하기 위한 어드레스 0-7을 제공하는 데 사용되는 이 예의 3개의 어드레스 라인은, 트레이스가 중앙 잉크 공급 영역(1206)을 가로지를 수 없기 때문에 중복된다. 그러나, 중앙 유체 공급 영역(1206)이 유체 공급 홀로 구성되는 경우, 각 측면은 회로를 공유할 수 있어 로직을 단순화한다.
도 12에 설명된 프리미티브 내의 노즐(1202)이 다이의 반대 측면, 예를 들어, 중앙 유체 공급 영역(1206)의 각 측면에 도시되어 있지만, 이것은 가상 배열이다. 중앙 잉크 공급 영역(1206)에 대한 노즐(1202)의 위치는 다음 도면에 설명된 바와 같이 다이의 설계에 의존한다. 예에서, 블랙 다이(302)는 유체 공급 홀의 각 측면에 엇갈리게 배치된 노즐을 갖고, 엇갈리게 배치된 노즐은 동일한 크기를 갖는다. 다른 예에서, 컬러 다이(304)는 다이의 종축에 평행한 라인의 노즐 라인을 가지며, 노즐 라인의 노즐의 크기는 큰 노즐과 작은 노즐 사이를 교번한다.
도 13은 단일 노즐 회로 세트에 의해 달성될 수 있는 단순화를 도시하는, 디지털 회로의 레이아웃(1300)의 예의 도면이다. 레이아웃(1300)은 컬러 다이(304) 또는 블랙 다이(302)에 사용될 수 있다. 레이아웃(1300)에서, 디지털 전력 버스(1302)는 모든 로직 회로에 전력 및 접지를 제공한다. 디지털 신호 버스(1304)는 어드레스 라인, 프리미티브 선택 라인 및 다른 로직 라인을 로직 회로에 제공한다. 이 예에서, 감지 버스(1306)가 도시된다. 감지 버스(1306)는 예를 들어, 온도 센서로부터의 신호 등을 포함하는 센서 신호를 전달하는 공유되거나 다중화된 아날로그 버스이다. 감지 버스(1306)는 비휘발성 메모리 요소를 판독하는 데에도 사용될 수 있다.
이 예에서, 다이의 동쪽과 서쪽 모두에 있는 프리미티브에 대한 로직 회로(1308)는 디지털 전력 버스(1302), 디지털 신호 버스(1304) 및 감지 버스(1306)에 대한 액세스를 공유한다. 또한, 프리미티브 NW 및 NE와 같은 프리미티브 그룹(1310)에 대한 단일 로직 회로에서 어드레스 디코딩이 수행될 수 있다. 결과적으로, 다이에 필요한 전체 회로가 감소한다.
도 14는 에너지 및 전력 라우팅에 대한 크로스-슬롯 라우팅의 영향을 도시하는 블랙 다이(302)의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 2 및 도 6에 대해 설명된 바와 같다. 이 예에서 블랙 다이(302)가 도시되므로, TIJ 저항기는 유체 공급 홀(204)의 양측에 있다. 컬러 다이(304)에서 유사한 구조가 사용될 것이지만, TIJ 저항기는 유체 공급 홀(204)의 단일 측면에 있고 크기는 교번할 것이다. 유체 공급 홀(204) 사이의 실리콘 리브(1404)를 가로질러 전력 스트랩(1402)을 연결하는 것은 TIJ 저항기에 전류를 전달하기 위한 전력 버스의 유효 폭을 증가시킨다. 잉크 공급용 슬롯을 사용하는 이전 솔루션에서는, 오른쪽 및 왼쪽 열 전력 라우팅이 다른 열에 기여할 수 없다. 또한, 금속 1 및 금속 2 층을 유체 공급 홀들 사이에서 구동하는 전력 평면으로서 사용하면 노즐의 왼쪽 열(동쪽)과 오른쪽 열(서쪽)이 공통 접지와 공급 버스를 공유할 수 있다. 블랙 다이(302)의 로직 회로(510)를 블랙 다이(302)의 전력 회로(512) 내의 FET(604)에 연결하는 트레이스(602)도 도면에서 볼 수 있다.
도 15는 컬러 다이(304)에 대한 다수의 다이 구역을 도시하는 회로 평면도의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 2, 도 3 및 도 5에 대해 설명된 바와 같다. 컬러 다이(304)에서, 버스(1502)는 프리미티브 로직 회로(1504)를 위한 제어 라인, 데이터 라인, 어드레스 라인 및 전력 라인을 운반하고, 로직 회로에 대해 약 5V의 공급 전압을 제공하기 위한 공통 로직 전력 라인(Vdd) 및 공통 로직 접지 라인(Lgnd)을 포함하는 로직 전력 구역을 포함한다. 버스(1502)는 노즐의 각각의 프리미티브 그룹에서 노즐에 대한 어드레스를 나타내는 데 사용되는 어드레스 라인을 포함하는 어드레스 라인 구역도 포함한다. 따라서, 프리미티브 그룹은 컬러 다이(304) 상의 유체 액추에이터 중 유체 액추에이터의 그룹 또는 서브세트이다.
어드레스 로직 구역은 프리미티브 로직 회로(1504) 및 디코딩 회로(1506)와 같은 어드레스 라인 회로를 포함한다. 프리미티브 로직 회로(1504)는 프리미티브 그룹에서 노즐을 선택하기 위해 어드레스 라인을 디코딩 회로(1506)에 연결한다. 프리미티브 로직 회로(1504)는 또한 데이터 라인을 통해 프리미티브로 로딩된 데이터 비트를 저장한다. 데이터 비트는 어드레스 라인에 대한 어드레스 값 및 해당 프리미티브가 어드레싱된 노즐을 발사할지 또는 데이터를 저장할지를 선택하는 각각의 프리미티브와 연관된 비트를 포함한다.
디코딩 회로(1506)는 발사할 노즐을 선택하거나 비휘발성 메모리 요소(1508)를 포함하는 메모리 구역에서 메모리 요소를 선택하여 데이터를 수신한다. 버스(1502)의 데이터 라인을 통해 발사 신호가 수신되면, 데이터는 비휘발성 메모리 요소(1508)의 메모리 요소에 저장되거나 컬러 다이(304)의 전력 회로(512) 상의 전력 회로 구역에서 FET(1510 또는 1512)를 활성화하는 데 사용된다. FET(1510 또는 1512)의 활성화는 공유 전력(Vpp) 버스(1514)로부터 대응하는 TIJ 저항기(1516 또는 1518)에 전력을 제공한다. 이 예에서, 트레이스는 TIJ 저항기(1516 또는 1518)에 전력을 공급하는 전력 회로를 포함한다. 다른 공유 전력 버스(1520)는 FET(1510 및 1512)에 대한 접지를 제공하는 데 사용될 수 있다. 몇몇 예에서, Vpp 버스(1514) 및 제2 공유 전력 버스(1520)는 서로 바뀔 수 있다.
유체 공급 구역은 유체 공급 홀(204) 및 유체 공급 홀(204) 사이의 트레이스를 포함한다. 컬러 다이(304)의 경우, 2개의 액적 크기가 사용될 수 있으며, 이는 각각의 노즐과 연관된 열 저항기에 의해 각각 분사된다. 고중량 액적(HWD)은 더 큰 TIJ 저항기(1516)를 사용하여 분사될 수 있다. 저중량 액적(LWD)은 더 작은 TIJ 저항기(1518)를 사용하여 분사될 수 있다. 전기적으로, HWD 노즐은 도 12 및 13과 관련하여 설명된 바와 같이 제1 열, 예를 들어, 서쪽에 있다. LWD 노즐은 도 12 및 13과 관련하여 설명된 바와 같이 제2 열, 예를 들어, 동쪽에서 전기적으로 연결된다. 이 예에서, 컬러 다이(304)의 물리적 노즐은 서로 맞물려 있는데, HWD 노즐과 LWD 노즐이 교대로 배치된다.
레이아웃의 효율성은 TIJ 저항기(1516 및 1518)의 전력 수요와 일치하도록 대응하는 FET(1510 및 1512)의 크기를 변경함으로써 더욱 개선될 수 있다. 따라서, 이 예에서, 대응하는 FET(1510 및 1512)의 크기는 전력이 공급되는 TIJ 저항기(1516 또는 1518)에 기초한다. 큰 TIJ 저항기(1516)는 큰 FET(1512)에 의해 활성화되는 반면, 작은 TIJ 저항기(1518)는 작은 FET(1510)에 의해 활성화된다. 다른 예에서, 작은 TIJ 저항기(1518)에 전력을 공급하는 데 사용되는 FET(1510)를 통해 인출되는 전력은 더 낮지만, FET(1510 및 1512)의 크기는 동일하다.
유사한 회로 평면도가 블랙 다이(302)에 사용될 수 있다. 그러나, 본 명세서의 예에 대해 설명된 바와 같이, 블랙 다이에 대한 FET는 TIJ 저항기 및 노즐의 크기가 동일하기 때문에 동일한 크기이다.
도 16은 컬러 다이(304)의 예의 다른 도면이다. 동일한 번호가 매겨진 항목은 도 3, 도 5 및 도 15에 대해 설명된 바와 같다. 도면에서 알 수 있듯이, TIJ 저항기(1516 및 1518)는 유체 공급 홀(204)의 일 측을 따라 컬러 다이(304)의 종축에 평행한 라인으로 배치된다. 유체 공급 홀(204)과 TIJ 저항기(1516, 1518)의 그룹은 MEMS(micro-electrical mechanical systems) 영역(1604)으로 지칭될 수 있다. 또한, 이 도면에서, 디코딩 회로(1506) 및 비휘발성 메모리 요소(1508)는 회로 섹션(1602)에 함께 포함된다. FET(1510 및 1512)는 도 16의 도면에서 동일한 크기로 도시되어 있다. 그러나, 몇몇 예에서 더 작은 TIJ 저항기(1518)를 활성화하는 FET(1510)는, 도 15와 관련하여 설명된 바와 같이, 더 큰 TIJ 저항기(1516)를 활성화하는 FET(1512)보다 작다. 따라서, 컬러 및 블랙 다이는 다이의 크기를 최소화하면서 인쇄헤드의 전력 전달 능력을 최적화하는 반복 구조를 갖는다.
도 17은 반복 구조(1702)를 도시하는 컬러 다이(304)의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 5 및 도 16에 대해 설명된 바와 같다. 본 명세서에서 논의된 바와 같이, 유체 공급 홀(204)의 사용은 로직 회로로부터의 저전압 제어 신호의 라우팅이 유체 공급 홀(204) 사이의 고전압 FET에 연결할 수 있게 한다. 그 결과, 반복 구조(1702)는 2개의 FET(604), 2개의 노즐(320) 및 1개의 유체 공급 홀(204)을 포함한다. 인치당 도트 수가 1200인 컬러 다이(304)의 경우, 이는 42.33㎛의 반복 피치를 제공한다. FET(604) 및 노즐(320)이 유체 공급 홀(204)의 한 측면에만 있기 때문에, 회로 영적 요구사항이 감소하여 블랙 다이(302)에 비해 컬러 다이(304)의 크기가 더 작아진다.
도 18은 다이의 전체 구조를 나타내는 블랙 다이(302)의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 2, 도 3, 도 6 및 도 16에 대해 설명된 바와 같다. 이 예에서, TIJ 저항기(1802)는 유체 공급 홀(204)의 양쪽에 있어서 가까운 수직 간격 또는 도트 피치를 유지하면서 노즐이 유사한 크기가 될 수 있게 한다. 이 예에서, FET(604)는 TIJ 저항기(1802)를 구동하기 위해 모두 동일한 크기이다. 블랙 다이(302)의 로직 회로(510)는 도 15와 관련하여 설명된 컬러 다이(304)의 로직 회로(510)와 동일한 구성으로 배치된다. 따라서, 트레이스(602)는 로직 회로(510)를 전력 회로(512) 내의 FET(604)에 연결한다.
도 19는 반복 구조(1702)를 도시하는 블랙 다이(302)의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 5, 도 6, 도 16 및 도 17에 대해 설명된 바와 같다. 컬러 다이(304)와 관련하여 설명된 바와 같이, 고전압 FET에 연결하는 저전압 제어 신호가 유체 공급 홀(204) 사이에서 라우팅될 수 있기 때문에 새로운 열 회로 아키텍처 및 레이아웃이 가능하다. 이 레이아웃은 2개의 FET(604), 2개의 노즐(320) 및 1개의 유체 공급 홀(204)을 갖는 반복 구조(1702)를 포함한다. 이것은 컬러 다이(304)의 반복 구조와 유사하다. 그러나, 이 예에서, 반복 구조(1702)에서 하나의 노즐(320)은 유체 공급 홀(204)의 왼쪽에 있고 하나의 노즐(320)은 유체 공급 홀(204)의 오른쪽에 있다. 이 설계는 더 낮은 회로 영역 요구사항을 유지하고 더 작은 다이를 허용하도록 레이아웃을 최적화하면서 더 높은 잉크 액적 용량을 위해 더 큰 발사 노즐을 수용한다. 컬러 다이(304)의 경우, 크로스-슬롯 라우팅은 무엇보다도 폴리실리콘 층 및 알루미늄 구리 층을 포함하는, 자연스럽게 말하면 복수의 금속 층 출구에서 수행된다.
노즐(320)이 유체 공급 홀(204)의 양측에 있기 때문에, 블랙 다이(302)는 컬러 다이(304)보다 넓다. 몇몇 예에서, 블랙 다이(302)는 약 400 ㎛ 내지 약 450 ㎛이다. 몇몇 예에서, 컬러 다이(304)는 약 300 ㎛ 내지 약 350 ㎛이다.
도 20은 균열 검출을 위한 시스템을 나타내는 블랙 다이(302)의 예의 도면이다. 동일한 번호가 매겨진 항목은 도 2, 도 3, 도 5, 도 6 및 도 16에 대해 설명된 바와 같다. 블랙 다이(302)의 종축에 평행한 라인에 유체 공급 홀(204)의 어레이의 도입은 다이의 취약성을 증가시킨다. 본 명세서에 설명된 바와 같이, 유체 공급 홀(204)은 블랙 다이(302) 또는 컬러 다이(304)의 종축을 따라 천공 라인처럼 작용할 수 있어, 균열(2002)이 이들 특징부 사이에 형성되도록 할 수 있다. 이들 균열(2002)을 검출하기 위해, 트레이스(2004)가 내장된 균열 검출기로서 기능하도록 각각의 유체 공급 홀(204) 사이에 라우팅된다. 예에서, 균열이 형성되면 트레이스(2004)가 끊어진다. 그 결과, 트레이스(2004)의 전도율은 0으로 떨어진다.
유체 공급 홀(204) 사이의 트레이스(2004)는 취성 재료(brittle material)로 만들어질 수 있다. 금속 트레이스가 사용될 수 있지만, 금속의 연성으로 인해 균열을 검출하지 않고 형성된 균열을 가로질러 구부러질 수 있다. 따라서, 몇몇 예에서 유체 공급 홀(204) 사이의 트레이스(2004)는 폴리실리콘으로 만들어진다. 블랙 다이(302) 전체에 걸쳐 유체 공급 홀(204) 사이의 트레이스, 유체 공급 홀(204) 옆 및 사이 모두가 폴리실리콘으로 만들어졌으면, 저항은 수 메가옴만큼 높을 수 있다. 몇몇 예에서, 전체 저항을 감소시키고 균열의 검출성을 개선하기 위해, 유체 공급 홀(204) 옆에 형성되고 유체 공급 홀(204) 사이의 트레이스(2004)를 연결하는 트레이스(2004)의 부분(2006)은 그 중에서도 알루미늄-구리와 같은 금속으로 만들어진다.
도 21은 인접한 유체 공급 홀(204) 사이에 라우팅된 트레이스(2004)를 도시하는 블랙 다이(302)로부터의 유체 공급 홀(204)의 확대도이다. 이 예에서, 유체 공급 홀(204) 사이의 트레이스(2004)는 폴리실리콘으로 형성되고 유체 공급 홀(204) 옆의 트레이스(2004)의 부분(2006)은 금속으로 형성된다.
도 22는 균열 검출 트레이스를 형성하는 방법(2200)의 예의 공정 흐름도이다. 방법은 기판의 종축에 평행한 라인의 다수의 유체 공급 홀을 에칭하는 것으로 블록(2202)에서 시작한다.
블록(2204)에서, 균열 검출기 트레이스를 형성하기 위해 기판 상에 다수의 층이 형성되고, 균열 검출기 트레이스는 기판 상의 복수의 유체 공급 홀 각각 사이에 라우팅된다. 본 명세서에 설명된 바와 같이, 층은 다이의 좌우로, 각각의 인접한 유체 공급 홀 쌍 사이에, 다음 유체 공급 홀의 바깥쪽을 따라, 그리고 이어서 다음의 인접한 유체 공급 홀 쌍 사이에서 루프하도록 형성된다. 예에서, 균열 검출기 트레이스를 도 2와 관련하여 설명된 열 센서와 같은 다이 상의 다른 센서가 공유하는 감지 버스에 연결하도록 층이 형성된다. 감지 버스는 패드에 연결되어 센서 신호가 도 2와 관련하여 설명된 ASIC과 같은 외부 장치에 의해 판독될 수 있게 한다.
본 예는 다양한 수정 및 대안적 형태가 가능할 수 있으며 예시 목적으로만 도시되었다. 또한, 본 기법은 본 명세서에 개시된 특정 예에 제한되는 것으로 의도되지 않음을 이해해야 한다. 실제로, 첨부된 청구항의 범위는 개시된 출원 대상이 속하는 기술 분야의 숙련자에게 명백한 모든 대안, 수정 및 균등물을 포함하는 것으로 간주된다.

Claims (16)

  1. 인쇄헤드용 다이로서,
    기판을 관통하여 형성된 복수의 유체 공급 홀을 갖는 상기 기판 - 상기 복수의 유체 공급 홀은 상기 다이의 종축에 평행한 라인으로 배치됨 - 과,
    상기 복수의 유체 공급 홀에 근접하며 상기 복수의 유체 공급 홀로부터 수용된 유체를 분사하는 복수의 유체 액추에이터와,
    상기 복수의 유체 액추에이터를 작동시키는 로직 회로 - 상기 로직 회로는 상기 복수의 유체 공급 홀의 제1 측면 상에 배치됨 - 와,
    상기 복수의 유체 액추에이터에 전력을 공급하는 전력 회로 - 상기 전력 회로는 상기 로직 회로로부터 상기 복수의 유체 공급 홀의 반대 측면 상에 배치됨 - 와,
    상기 복수의 유체 공급 홀 각각 사이에 배치되어 상기 로직 회로를 상기 전력 회로에 연결하는 활성화 트레이스를 포함하는
    인쇄헤드용 다이.
  2. 제1항에 있어서,
    상기 로직 회로에 근접하며 상기 로직 회로에 저전압 전력을 제공하는 공통 전력 트레이스 및 공통 접지 트레이스를 더 포함하는
    인쇄헤드용 다이.
  3. 제1항 또는 제2항에 있어서,
    상기 전력 회로에 근접하며 상기 전력 회로에 고전압 전력을 제공하는 공통 전력 트레이스 및 공통 접지 트레이스를 더 포함하는
    인쇄헤드용 다이.
  4. 제1항 또는 제2항에 있어서,
    상기 제1 측면 상의 상기 로직 회로에 근접한 복수의 어드레스 라인을 더 포함하는
    인쇄헤드용 다이.
  5. 제1항 또는 제2항에 있어서,
    유체 공급 홀의 외부 에지 주위에 배치된 균열 검출기 트레이스를 더 포함하되,
    상기 균열 검출기 트레이스는 인접한 유체 공급 홀 사이에서 상기 기판을 가로지르고 상기 인접한 유체 공급 홀의 외부 에지 주위에 배치되는
    인쇄헤드용 다이.
  6. 제5항에 있어서,
    상기 균열 검출기 트레이스는 상기 기판 상의 상기 복수의 유체 공급 홀의 전부 주위에 배치되는
    인쇄헤드용 다이.
  7. 제1항 또는 제2항에 있어서,
    상기 복수의 유체 액추에이터의 각각은 유동 채널에 연결되고, 상기 유동 채널은 상기 복수의 유체 공급 홀 전부에 유동적으로 연결되는
    인쇄헤드용 다이.
  8. 제1항 또는 제2항에 있어서,
    상기 다이의 각 단부에 배치된 열 센서를 더 포함하는
    인쇄헤드용 다이.
  9. 제1항 또는 제2항에 있어서,
    상기 다이의 중심 지점에 배치된 열 센서를 더 포함하는
    인쇄헤드용 다이.
  10. 다이를 포함하는 인쇄헤드로서,
    상기 다이는,
    상기 다이의 종축에 평행한 제1 라인을 따른 유체 공급 홀 어레이를 갖는 기판 - 상기 유체 공급 홀 어레이는 상기 기판을 관통하여 형성된 복수의 유체 공급 홀을 포함함 - 과,
    상기 제1 라인에 평행한 제2 라인을 따른 복수의 유체 액추에이터 - 각각의 유체 액추에이터는 인에이블되고 활성화되도록 구성됨 - 와,
    상기 제1 및 제2 라인에 평행한 제3 라인을 따른 저전압 제어 회로와,
    상기 제1, 제2 및 제3 라인에 평행한 제4 라인을 따른 전계 효과 트랜지스터(FET)의 어레이 - 상기 제4 라인은 상기 제3 라인으로부터 상기 제1 라인의 반대 측면 상에 있음 - 를 포함하는
    인쇄헤드.
  11. 제10항에 있어서,
    상기 다이는 상기 제1 라인에 평행한 제5 라인을 따라 상기 제2 라인으로부터 상기 제1 라인의 반대 측면 상에 제2 복수의 유체 액추에이터를 더 포함하는
    인쇄헤드.
  12. 제10항 또는 제11항에 있어서,
    상기 다이를 보유하는 폴리머 마운트를 더 포함하고,
    상기 폴리머 마운트는 상기 다이의 후면을 따라 배치되어 상기 유체 공급 홀 어레이에 유체를 제공하는 슬롯을 포함하는
    인쇄헤드.
  13. 인쇄헤드용 다이를 형성하는 방법으로서,
    기판 내에 상기 기판의 종축에 평행한 라인의 복수의 유체 공급 홀을 에칭하는 단계와,
    상기 기판 상에 복수의 층을 증착하여,
    상기 복수의 유체 공급 홀의 제1 측면을 따라,
    공통 저전압 전력 라인 및 공통 저전압 접지 라인을 포함하는, 상기 기판의 하나의 에지를 따른 로직 전력 회로와,
    복수의 유체 액추에이터의 유체 액추에이터 그룹으로부터 유체 액추에이터를 선택하기 위한 어드레스 로직을 포함하는 어드레스 로직 회로 - 상기 복수의 유체 엑추에이터는 상기 복수의 유체 공급 홀에 근접하여 상기 복수의 유체 공급 홀로부터 수신된 유체를 분사함 - 와,
    어드레스 라인과,
    각각의 유체 액추에이터 그룹에 대한 메모리 요소를 포함하는 메모리 회로를 형성하고,
    상기 복수의 유체 공급 홀의 제2 측면을 따라 상기 제1 측면에 대향하여,
    공통 고전압 전력 라인 및 공통 고전압 접지 라인을 포함하는 전력 버스 회로와,
    상기 복수의 유체 액추에이터 각각에 대한 열 저항기에 전력을 공급하는 전력 회로를 포함하는 인쇄 전력 회로를 형성하며,
    상기 제1 측면에서 상기 제2 측면까지, 상기 복수의 유체 공급 홀 사이에서 상기 어드레스 로직 회로를 상기 인쇄 전력 회로에 연결하는 트레이스를 형성하는, 단계를 포함하는
    방법.
  14. 제13항에 있어서,
    상기 복수의 유체 공급 홀의 각 측면을 따라 상기 복수의 유체 공급 홀에 평행하게 배치된 복수의 열 저항기를 형성하는 단계를 더 포함하되,
    상기 복수의 열 저항기는 상기 인쇄 전력 회로에 전기적으로 연결되고,
    상기 복수의 유체 공급 홀의 한 측면 상의 상기 복수의 열 저항기는 상기 복수의 유체 공급 홀의 반대 측면 상의 상기 복수의 열 저항기와 엇갈리게 배치되는
    방법.
  15. 제13항 또는 제14항에 있어서,
    상기 복수의 유체 공급 홀의 한 측면을 따라 일렬로 상기 복수의 유체 공급 홀에 평행하게 배치된 복수의 열 저항기를 형성하는 단계를 더 포함하되,
    상기 복수의 열 저항기는 상기 인쇄 전력 회로에 전기적으로 연결되고,
    상기 복수의 열 저항기는 더 작은 열 저항기와 교대로 배치되는 더 큰 열 저항기를 포함하는
    방법.
  16. 제13항 또는 제14항에 있어서,
    폴리머 마운트에 상기 기판을 내장하는 단계를 포함하되,
    상기 폴리머 마운트는 상기 유체 공급 홀에 유체를 공급하기 위해 상기 기판 뒤에 배치된 개방 영역을 포함하는
    방법.
KR1020217024827A 2019-02-06 2019-02-06 인쇄헤드용 다이 KR102621225B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2019/016836 WO2020162924A1 (en) 2019-02-06 2019-02-06 Die for a printhead

Publications (2)

Publication Number Publication Date
KR20210113285A KR20210113285A (ko) 2021-09-15
KR102621225B1 true KR102621225B1 (ko) 2024-01-04

Family

ID=65598714

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217024827A KR102621225B1 (ko) 2019-02-06 2019-02-06 인쇄헤드용 다이

Country Status (12)

Country Link
US (1) US11413864B2 (ko)
EP (2) EP3710261B1 (ko)
JP (1) JP7146094B2 (ko)
KR (1) KR102621225B1 (ko)
CN (1) CN113396065B (ko)
AU (1) AU2019428015B2 (ko)
BR (1) BR112021014843A2 (ko)
CA (1) CA3126057C (ko)
IL (1) IL284503A (ko)
MX (1) MX2021008855A (ko)
PL (1) PL3710261T3 (ko)
WO (1) WO2020162924A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162139B2 (ja) * 2019-02-06 2022-10-27 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. プリントヘッド用のダイ
CA3126051C (en) 2019-02-06 2023-08-22 Hewlett-Packard Development Company, L.P. Die for a printhead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129790A1 (en) * 2006-12-05 2008-06-05 Canon Kabushiki Kaisha Head substrate, printhead, head cartridge, and printing apparatus
US20150145925A1 (en) * 2012-05-31 2015-05-28 Rio Rivas Printheads with conductor traces across slots
US20160001552A1 (en) * 2013-02-28 2016-01-07 Hewlett-Packard Development Company, L.P. Molded print bar

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376314A (ja) * 1989-08-17 1991-04-02 Yokogawa Electric Corp カウンタテスト方法
JPH09123450A (ja) 1995-11-07 1997-05-13 Hitachi Denshi Ltd 記録液体噴出による記録装置
US5942900A (en) * 1996-12-17 1999-08-24 Lexmark International, Inc. Method of fault detection in ink jet printhead heater chips
AU1139100A (en) 1998-10-16 2000-05-08 Silverbrook Research Pty Limited Improvements relating to inkjet printers
JP4587417B2 (ja) 1999-06-04 2010-11-24 キヤノン株式会社 液体吐出ヘッド用基板、液体吐出ヘッド、及び前記液体吐出ヘッドの駆動方法
US6582062B1 (en) 1999-10-18 2003-06-24 Hewlett-Packard Development Company, L.P. Large thermal ink jet nozzle array printhead
SG89371A1 (en) 2000-01-31 2002-06-18 Canon Kk Printhead, printhead driving method, and data output apparatus
RU2176600C2 (ru) 2000-02-01 2001-12-10 Насибов Александр Сергеевич Способ и устройство для печати
AU5374500A (en) 2000-06-30 2002-01-21 Silverbrook Res Pty Ltd Controlling the timing of printhead nozzle firing
EP1219426B1 (en) 2000-12-29 2006-03-01 Eastman Kodak Company Cmos/mems integrated ink jet print head and method of forming same
US6502925B2 (en) 2001-02-22 2003-01-07 Eastman Kodak Company CMOS/MEMS integrated ink jet print head and method of operating same
EP1221372B1 (en) 2001-01-05 2005-06-08 Hewlett-Packard Company Integrated programmable fire pulse generator for inkjet printhead assembly
US6478396B1 (en) 2001-03-02 2002-11-12 Hewlett-Packard Company Programmable nozzle firing order for printhead assembly
US6922203B2 (en) 2001-06-06 2005-07-26 Hewlett-Packard Development Company, L.P. Barrier/orifice design for improved printhead performance
US6626523B2 (en) 2001-10-31 2003-09-30 Hewlett-Packard Development Company, Lp. Printhead having a thin film membrane with a floating section
US6726300B2 (en) 2002-04-29 2004-04-27 Hewlett-Packard Development Company, L.P. Fire pulses in a fluid ejection device
US6789871B2 (en) * 2002-12-27 2004-09-14 Lexmark International, Inc. Reduced size inkjet printhead heater chip having integral voltage regulator and regulating capacitors
TWI246462B (en) 2003-06-10 2006-01-01 Canon Kk Ink-jet printhead substrate, driving control method, ink-jet printhead and ink-jet printing apparatus
US7497536B2 (en) 2004-04-19 2009-03-03 Hewlett-Packard Development Company, L.P. Fluid ejection device
US7384113B2 (en) 2004-04-19 2008-06-10 Hewlett-Packard Development Company, L.P. Fluid ejection device with address generator
DE602004010624T2 (de) 2004-05-26 2008-12-18 International United Technology Co., Ltd., Chu-Pei Druckkopf-Controller
US7314261B2 (en) 2004-05-27 2008-01-01 Silverbrook Research Pty Ltd Printhead module for expelling ink from nozzles in groups, alternately, starting at outside nozzles of each group
JP4194580B2 (ja) 2004-06-02 2008-12-10 キヤノン株式会社 ヘッド基板、記録ヘッド、ヘッドカートリッジ、及び記録装置
US7182422B2 (en) 2004-08-23 2007-02-27 Silverbrook Research Pty Ltd Printhead having first and second rows of print nozzles
AU2004322632B2 (en) 2004-08-23 2008-07-17 Memjet Technology Limited Symmetric nozzle arrangement
US7195341B2 (en) * 2004-09-30 2007-03-27 Lexmark International, Inc. Power and ground buss layout for reduced substrate size
US7350902B2 (en) 2004-11-18 2008-04-01 Eastman Kodak Company Fluid ejection device nozzle array configuration
TWI253395B (en) 2005-01-13 2006-04-21 Benq Corp Fluid injector
GB0503996D0 (en) 2005-02-26 2005-04-06 Xaar Technology Ltd Droplet deposition apparatus
US20060243701A1 (en) 2005-04-19 2006-11-02 Shogo Ono Liquid discharge head and liquid discharge head manufacturing method, chip element, and printing apparatus
US7845765B2 (en) 2005-10-11 2010-12-07 Silverbrook Research Pty Ltd Inkjet printers with elongate chambers, nozzles and heaters
US7857422B2 (en) 2007-01-25 2010-12-28 Eastman Kodak Company Dual feed liquid drop ejector
US7946690B2 (en) 2007-02-20 2011-05-24 Mvm Technologies, Inc. Printhead fabricated on flexible substrate
US7712859B2 (en) 2007-07-30 2010-05-11 Silverbrook Research Pty Ltd Printhead with multiple nozzles sharing single nozzle data
US8109586B2 (en) 2007-09-04 2012-02-07 Hewlett-Packard Development Company, L.P. Fluid ejection device
JP5180595B2 (ja) * 2008-01-09 2013-04-10 キヤノン株式会社 ヘッド基板、記録ヘッド、ヘッドカートリッジ、及び記録装置
US7815273B2 (en) 2008-04-01 2010-10-19 Hewlett-Packard Development Company, L.P. Fluid ejection device
EP2296897B1 (en) 2008-05-22 2022-05-04 FUJIFILM Corporation Actuatable device with die and integrated circuit element
JP5534683B2 (ja) 2009-02-06 2014-07-02 キヤノン株式会社 インクジェット記録ヘッド
JP5225132B2 (ja) 2009-02-06 2013-07-03 キヤノン株式会社 液体吐出ヘッドおよびインクジェット記録装置
EP2485898A1 (en) 2009-10-08 2012-08-15 Hewlett-Packard Development Company, L.P. Inkjet printhead with cross-slot conductor routing
EP2497643B1 (en) 2009-11-05 2015-09-30 Canon Kabushiki Kaisha Substrate for liquid ejection head, and liquid ejection head
US8960860B2 (en) 2011-04-27 2015-02-24 Hewlett-Packard Development Company, L.P. Printhead die
JP5787603B2 (ja) 2011-04-28 2015-09-30 キヤノン株式会社 インクジェット記録ヘッドおよびインクジェット記録装置
US8348385B2 (en) 2011-05-31 2013-01-08 Hewlett-Packard Development Company, L.P. Printhead die
JP5847444B2 (ja) 2011-06-07 2016-01-20 キヤノン株式会社 インクジェットヘッド
BR112013031746B1 (pt) 2011-06-29 2020-10-20 Hewlett-Packard Development Company, L.P pilha de pastilhas piezelétricas de jato de tinta e cabeçote impressor piezelétrico
JP6049393B2 (ja) 2011-11-15 2016-12-21 キヤノン株式会社 インクジェット記録ヘッド
JP6157184B2 (ja) 2012-04-10 2017-07-05 キヤノン株式会社 液体吐出ヘッドの製造方法
JP6043101B2 (ja) * 2012-06-18 2016-12-14 キヤノン株式会社 記録装置及びその記録方法
US8608283B1 (en) 2012-06-27 2013-12-17 Eastman Kodak Company Nozzle array configuration for printhead die
BR112015013634B1 (pt) 2012-12-10 2021-10-13 Hewlett-Packard Development Company, L.P. Sistema de impressão, método de operar o referido sistema e mídia de armazenamento não transitório legível por computador
CN104853923B (zh) 2012-12-20 2016-08-24 惠普发展公司,有限责任合伙企业 具有颗粒耐受层延伸部的流体喷射装置
US9656469B2 (en) 2013-02-28 2017-05-23 Hewlett-Packard Development Company, L.P. Molded fluid flow structure with saw cut channel
US9156254B2 (en) * 2013-08-30 2015-10-13 Hewlett-Packard Development Company, L.P. Fluid ejection device
JP6287341B2 (ja) 2014-03-03 2018-03-07 セイコーエプソン株式会社 液体吐出装置および液体吐出装置の制御方法
WO2015134042A1 (en) 2014-03-07 2015-09-11 Hewlett-Packard Development Company, Lp Fluid ejection device with ground electrode exposed to fluid chamber
US9434165B2 (en) * 2014-08-28 2016-09-06 Funai Electric Co., Ltd. Chip layout to enable multiple heater chip vertical resolutions
JP6443898B2 (ja) 2014-10-29 2018-12-26 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. ワイドアレイプリントヘッドモジュール
CN107000438B (zh) 2014-10-30 2019-05-31 惠普发展公司,有限责任合伙企业 打印系统和打印头
JP6470570B2 (ja) 2015-01-06 2019-02-13 キヤノン株式会社 素子基板、液体吐出ヘッド及び記録装置
US9597893B2 (en) 2015-01-06 2017-03-21 Canon Kabushiki Kaisha Element substrate and liquid discharge head
ES2762148T3 (es) 2015-02-13 2020-05-22 Hewlett Packard Development Co Montaje de eyección de fluido, sistema de impresión y método de operación de un cabezal de impresión
WO2016167763A1 (en) 2015-04-15 2016-10-20 Hewlett-Packard Development Company, L.P. Printheads with high dielectric eprom cells
GB2539052B (en) 2015-06-05 2020-01-01 Xaar Technology Ltd Inkjet printhead
US10442188B2 (en) 2016-02-10 2019-10-15 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
WO2017146699A1 (en) * 2016-02-24 2017-08-31 Hewlett-Packard Development Company, L.P. Fluid ejection device including integrated circuit
JP6724480B2 (ja) 2016-03-30 2020-07-15 ブラザー工業株式会社 印刷装置
JP6806464B2 (ja) 2016-05-30 2021-01-06 キヤノン株式会社 記録素子基板、液体吐出ヘッドおよび液体吐出装置
JP6853627B2 (ja) * 2016-07-29 2021-03-31 キヤノン株式会社 素子基板、記録ヘッド、及び記録装置
WO2018026367A1 (en) * 2016-08-03 2018-02-08 Hewlett-Packard Development Company, L.P. Conductive wire disposed in a layer
US10857786B2 (en) 2017-01-19 2020-12-08 Hewlett-Packard Development Company, L.P. Fluid driver actuation control using offset
EP3548288B1 (en) 2017-04-14 2022-08-17 Hewlett-Packard Development Company, L.P. Fluidic die
US10479075B2 (en) 2017-05-09 2019-11-19 Canon Kabushiki Kaisha Print head substrate and method of manufacturing the same, and semiconductor substrate
WO2019017867A1 (en) 2017-07-17 2019-01-24 Hewlett-Packard Development Company, L.P. FLUIDIC MATRIX
US20200122456A1 (en) 2018-05-17 2020-04-23 Tecglass Sl Machine and method for single-pass digital printing on glass
PL3710276T3 (pl) * 2019-02-06 2022-02-14 Hewlett-Packard Development Company, L.P. Struktura półprzewodnikowa do głowicy drukującej
JP7162139B2 (ja) * 2019-02-06 2022-10-27 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. プリントヘッド用のダイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129790A1 (en) * 2006-12-05 2008-06-05 Canon Kabushiki Kaisha Head substrate, printhead, head cartridge, and printing apparatus
US20150145925A1 (en) * 2012-05-31 2015-05-28 Rio Rivas Printheads with conductor traces across slots
US20160001552A1 (en) * 2013-02-28 2016-01-07 Hewlett-Packard Development Company, L.P. Molded print bar

Also Published As

Publication number Publication date
CA3126057C (en) 2023-08-22
AU2019428015B2 (en) 2023-05-11
MX2021008855A (es) 2021-09-08
US20210354461A1 (en) 2021-11-18
PL3710261T3 (pl) 2024-05-27
JP2022514926A (ja) 2022-02-16
AU2019428015A1 (en) 2021-09-16
US11413864B2 (en) 2022-08-16
JP7146094B2 (ja) 2022-10-03
IL284503A (en) 2021-08-31
EP3710261B1 (en) 2024-03-27
EP4344878A3 (en) 2024-06-12
KR20210113285A (ko) 2021-09-15
EP4344878A2 (en) 2024-04-03
CN113396065A (zh) 2021-09-14
CN113396065B (zh) 2022-11-18
EP3710261A1 (en) 2020-09-23
EP3710261C0 (en) 2024-03-27
CA3126057A1 (en) 2020-08-13
WO2020162924A1 (en) 2020-08-13
BR112021014843A2 (pt) 2021-10-05

Similar Documents

Publication Publication Date Title
KR102637879B1 (ko) 인쇄헤드용 다이
CN113423578B (zh) 用于打印头的管芯和用于形成用于打印头的管芯的方法
KR102621225B1 (ko) 인쇄헤드용 다이
CN113396066B (zh) 用于打印头的管芯及在管芯上形成裂纹检测器迹线的方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant