KR102582416B1 - 신남알데히드 대량 생산을 위한 재조합 대장균 - Google Patents

신남알데히드 대량 생산을 위한 재조합 대장균 Download PDF

Info

Publication number
KR102582416B1
KR102582416B1 KR1020200176147A KR20200176147A KR102582416B1 KR 102582416 B1 KR102582416 B1 KR 102582416B1 KR 1020200176147 A KR1020200176147 A KR 1020200176147A KR 20200176147 A KR20200176147 A KR 20200176147A KR 102582416 B1 KR102582416 B1 KR 102582416B1
Authority
KR
South Korea
Prior art keywords
coli
cinnamaldehyde
recombinant
productivity
dna
Prior art date
Application number
KR1020200176147A
Other languages
English (en)
Other versions
KR20220086044A (ko
Inventor
정기준
김선창
방현배
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020200176147A priority Critical patent/KR102582416B1/ko
Publication of KR20220086044A publication Critical patent/KR20220086044A/ko
Application granted granted Critical
Publication of KR102582416B1 publication Critical patent/KR102582416B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/99Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
    • C12Y102/99006Carboxylate reductase (1.2.99.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08007Holo-[acyl-carrier-protein] synthase (2.7.8.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01024Phenylalanine ammonia-lyase (4.3.1.24)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에서, (i) 카르복시산 환원효소 (carboxylic acid reductase)를 인코딩하는 유전자; 및 (ii) 포스포판테테이닐 전이효소 (phosphopantetheinyl transferase)를 인코딩하는 유전자가 도입되어 있는 신남알데히드 생산성이 향상된 재조합 대장균에 관한 것으로, 본 발명에 따른 재조합 대장균을 이용하는 경우, 환경친화적이면서도 우수한 효율로 신남알데히드 및 페닐알라닌을 생산할 수 있는 효과가 있다.

Description

신남알데히드 대량 생산을 위한 재조합 대장균 {Engineering of Escherichia coli for enhanced production of cinnamaldehyde}
본 발명은 신남알데히드 대량 생산을 위한 재조합 대장균에 관한 것으로, 더 상세하게는 PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에, (i) 카르복시산 환원효소 (carboxylic acid reductase)를 인코딩하는 유전자 및 (ii) 포스포판테테이닐 전이효소 (phosphopantetheinyl transferase)를 인코딩하는 유전자가 도입되어 있는 신남알데히드 생산성이 향상된 재조합 대장균에 관한 것이다.
선충 감염은 농업 및 원예 분야에서 매우 심각한 문제 중의 하나로 인식되고 있다. 이 식물 기생 생물인 선충은 식물의 뿌리를 통해 감염됨으로써, 식물 내부의 영양분을 먹으며 성장한다. 이로 인해 매년 40% 이상의 심각한 경제적 손실이 야기되고 있다. 이러한 점을 해결하기 위해 다양한 화학 농약이 개발되고 사용되고 있으나, 환경 오염 및 잔류 문제 등으로 인해 점차적으로 사용에 제한이 되고 있다.
신남알데하이드는 노란색의 휘발성 및 점성을 가지고 있는 액체로, B형 간염 치료제, 항암제, 항진균제 등의 다양한 약물의 전구체로 사용이 될 수 있는 활성을 가지고 있다. 그 중에서도 매우 높은 선충 퇴치 활성을 가지고 있는데, 이러한 점을 이용하여 많은 살선충제에는 신남알데하이드가 포함되어 있다. 기존 신남알데하이드를 생산하는 방법으로는 계피 나무로부터 직접적으로 추출하거나, 화학적인 방법으로 합성하는 두 가지의 방법이 존재하고 사용되고 있다. 하지만 이러한 방법들은 환경친화적이지 못하거나, 발암 물질을 사용해야하는 단점들이 존재하고 있다. (대한민국 등록특허 10-1515781; Kim MY et al., ACS Catal. (2017)7:6256-6267; Kunjapur AM et al., J. Am. Chem. Soc. (2014)136(33)11644-11654).
한편, 신남알데하이드를 생물학적 방법으로 합성할 수 있는 방법이 개시된 바는 있으나 (Bang et al., Microb. Cell Fact. (2016)15:16; 대한민국 등록특허 10-1797713; 미국 등록특허 10301654), 이들 방법에 의하는 경우 신남알데하이드 생산성 (75 mg/L)이 매우 낮고, 전구체인 페닐알라닌의 생산성을 증가시키기 위해 두 개의 아미노산 (L-Trp, L-Tyr) 생성 저해 균주로 개량되었을 뿐만 아니라, 신남알데히드 생산을 위한 두 개의 플라스미드 시스템 사용으로 인해 항생제 및 발현 유도제 (inducer)를 사용하여야 하기 때문에 산업화를 하기에는 문제점이 있었다.
이에, 본 발명자들은 산업적 이용가능성이 매우 높은 대장균을 이용하여 신남알데히드를 대량 생산할 수 있는 방법을 모색하던 중, PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에 유전자를 도입 및 결손시키는 일련의 과정을 통해 신남알데히드 생산량을 현저히 향상시킬 수 있음을 확인함으로써 본 발명을 완성하게 되었다.
대한민국 등록특허 10-1515781; 대한민국 등록특허 10-1797713; 미국 등록특허 10301654
Kim MY et al., ACS Catal. (2017)7:6256-6267; Kunjapur AM et al., J. Am. Chem. Soc. (2014)136(33)11644-11654; Bang et al., Microb. Cell Fact. (2016)15:16
본 발명의 목적은 신남알데히드 생산성이 향상된 신규한 재조합 대장균 및 이를 이용하여 신남알데히드를 생산하는 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 페닐알라닌 생산성이 향상된 신규한 재조합 대장균 및 이를 이용하여 페닐알라닌을 생산하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에,
(i) 카르복시산 환원효소 (carboxylic acid reductase)를 인코딩하는 유전자; 및/또는 (ii) 포스포판테테이닐 전이효소 (phosphopantetheinyl transferase)를 인코딩하는 유전자 도입되어 있는 신남알데히드 생산성이 향상된 재조합 대장균을 제공한다.
본 발명은 또한, 다음 단계를 포함하는 신남알데히드의 생산방법을 제공한다:
(a) 상기 재조합 대장균을 배양하여 신남알데히드를 생성시키는 단계; 및
(b) 상기 생성된 신남알데히드를 회수하는 단계.
본 발명은 또한, PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에서,
(i) crr (glucose-specific enzyme IIA components of PTS), tyrR (DNA-binding transcriptional dual regulator) 및 pykA (pyruvate kinase)로 구성된 군에서 선택되는 어느 하나 이상의 유전자가 결실; 및/또는
(ii) aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) 및/또는 pheA (fused chorismate mutase P and prephenate dehydratase)의 피드백 저항성이 향상되도록 변이되어 있는, 페닐알라닌 생산성이 향상된 재조합 대장균을 제공한다.
본 발명은 또한, 다음 단계를 포함하는 페닐알라닌의 생산방법을 제공한다:
(a) 상기 재조합 대장균을 배양하여 페닐알라닌를 생성시키는 단계; 및
(b) 상기 생성된 페닐알라닌을 회수하는 단계.
본 발명에 따른 재조합 대장균을 이용하는 경우, 환경친화적이면서도 우수한 효율로 신남알데히드 및 페닐알라닌을 생산할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에서 사용된 대장균 균주 개량에 대한 모식도를 나타낸 것이다.
도 2은 개량된 대장균 균주에서 생산된 페닐알라닌의 농도를 정량하여 나타낸 것이다.
도 3은 본 발명에서 효소 활성 비교를 위해 CAR, PPTase를 발현하는 대장균 균주에 트랜스 신남산 (trans-cinnamic acid)를 공급하여 전환되는 신남알데하이드 (cinnamaldehyde)의 농도를 정량하여 나타낸 것이다. CA, trans-cinnamic acid; CAD, cinnamaldehyde; CAL, cinnamyl alcohol.
도 4는 대장균 균주의 추가 개량(H-02mR: H-02 derivative, △dkgB △yahK △yeaE △yjgB △yqhC △yqhD △dkgA △gldA △ybbO △yqhA)을 통한 부산물 생성 저해를 정량하여 나타낸 것이다.
도 5은 최종적으로 선정된 효소를 도입하여 개량된 세포(H-02mR strain harboring pHB-Tac-CA and pBBR1Tac-MmCAR-NiNpt)의 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle)와 이에 따른 신남알데하이드의 농도 (Production titer (mg/L); red circle)를 나타낸 것이다
도 6은 자동 유도 (auto-inducible) 발현 시스템을 이용하여 대장균의 유전자 내부에 삽입함으로써 형질 전환된 균주(H-07OmR: H-02mR derivative, (gidB-atpI)::(PBBa_J23100-SmPAL-rrnB), aslAB::(PosmB-MmCAR-NiNpt))를 이용하여 세포 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle)와 이에 따른 신남알데하이드의 농도 (Production titer (mg/L); red circle)를 나타낸 것이다.
도 7은 NADPH 대량 생산을 위해 형질 전환된 균주(H-08OmR: H-07OmR derivative, △PpntAB::PM1-46, △PyfjB::PM1-37)를 이용하여 세포 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle), 포도당 (glucose; black diamond), 젖산 (lactate; red diamond), 아세트산 (acetate; green diamond)와 이에 따른 신남알데하이드의 농도 (Production titer (mg/L); red circle)를 나타낸 것이다.
도 8은 아세트산 (acetate) 생성 저해를 위해 형질 전환된 균주(H-09OmR: H-08OmR derivative, △poxB △(pta-ackA))를 이용하여 세포 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle), 포도당 (glucose; black diamond), 젖산 (lactate; red diamond), 아세트산 (acetate; green diamond)와 이에 따른 신남알데하이드의 농도 (Production titer (g/L); red circle)를 나타낸 것이다.
도 9는 coenzyme A 대량 생산을 위해 형질 전환된 균주(H-10SmR: H-09OmR derivative, △PcoaA::PBBa_J23100)를 이용하여 세포 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle)와 이에 따른 신남알데하이드의 농도 (Production titer (g/L); red circle)를 나타낸 것이다.
도 10은 ATP 대량 확보를 위해 형질 전환된 균주(H-11MPmR: H-10SmR derivative, △lacZ::(PR-metK sRNA, PR-proB sRNA))를 이용하여 세포 고농도 배양을 진행한 후, 시간대 별로 측정한 광학 밀도 (OD (at 600 nm); grey circle)와 이에 따른 신남알데하이드의 농도 (Production titer (g/L); red circle)를 나타낸 것이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는, 대장균에 카르복시산 환원효소를 인코딩하는 유전자 및 포스포판테테이닐 전이효소를 인코딩하는 유전자가 도입하는 경우, 대장균의 신남알데히드를 생산하는 능력이 현저히 개선될 수 있음을 확인하였고, 대장균에 내재적으로 존재하는 일부 유전자의 발현을 강화시키고 일부 유전자의 발현을 억제하는 경우 대장균의 신남알데히드를 생산하는 능력이 추가로 향상될 수 있음을 확인하였다.
따라서, 본 발명은 일 관점에서, PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에, (i) 카르복시산 환원효소 (carboxylic acid reductase)를 인코딩하는 유전자; 및/또는 (ii) 포스포판테테이닐 전이효소 (phosphopantetheinyl transferase)를 인코딩하는 유전자가 도입되어 있는 신남알데히드 생산성이 향상된 재조합 대장균에 관한 것이다.
본 발명에 있어서, 상기 카르복시산 환원효소는 마이코박테리움 마리눔(Mycobacterium marinum) 또는 노카디아 이오웬시스(Nocardia iowensis) 유래인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 카르복시산 환원효소를 인코딩하는 유전자는 마이코박테리움 마리눔(Mycobacterium marinum) 또는 노카디아 이오웬시스(Nocardia iowensis) 유래의 car 유전자인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 포스포판테테이닐 전이효소는 바실러스 서틸리스(Bacillus subtilis) 또는 노카디아 이오웬시스(Nocardia iowensis) 유래인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 포스포판테테이닐 전이효소를 인코딩하는 유전자는 바실러스 서틸리스(Bacillus subtilis) 유래의 sfp 유전자 또는 노카디아 이오웬시스(Nocardia iowensis) 유래의 npt 유전자인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은 (i) crr (glucose-specific enzyme IIA components of PTS), tyrR (DNA-binding transcriptional dual regulator) 및 pykA (pyruvate kinase)로 구성된 군에서 선택되는 어느 하나 이상의 유전자가 결실; 및/또는 (ii) aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) 및/또는 pheA (fused chorismate mutase P and prephenate dehydratase)의 피드백 저항성이 억제되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase)는 aroG8/15로 교체되어 피드백 저항성이 억제되고, pheA (fused chorismate mutase P and prephenate dehydratase)는 pheA fbr/dm 로 교체되어 피드백 저항성이 억제되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase)는 aroG8/15로 교체 및/또는 pheA (fused chorismate mutase P and prephenate dehydratase)는 pheA fbr/dm 로 교체되어 있고,
상기 교체된 aroG8/15 및/또는 pheA fbr/dm 의 프로모터는 강력한 상시 발현 프로모터인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은 야생형 대장균에 내재적으로 존재하는 galP (D-galactose transporter) 및/또는 glk (glucokinase) 유전자의 프로모터가 강력한 상시 발현 프로모터로 교체되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 dkgB(2,5-diketo-D-gluconate reductase B), yahK(oxidoreductase), yeaE(oxidoreductase), yjgB(alcohol dehydrogenase), yqhC(DNA-binding transcriptional regulator), yqhD(alcohol dehydrogenase), dkgA(2,5-diketo-D-gluconate reductase A), gldA(glycerol dehydrogenase), ybbO(oxidoreductase), yqhA(inner membrane protein) 로 구성된 군에서 선택되는 어느 하나 이상의 유전자가 추가로 결실되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 페닐알라닌 암모니아 분해효소(phenylalanine ammonia lyase)를 인코딩하는 유전자가 추가로 도입되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 강력한 상시 발현 프로모터 하에 도입되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 페닐알라닌 암모니아 분해효소는 스트렙토미세스 마리티무스(Streptomyces maritimus) 유래인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 스트렙토미세스 마리티무스(Streptomyces maritimus) 유래의 pal 유전자인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 대장균에 내재적으로 존재하는 gidB (methyltransferase)와 atpI (ATP synthase) 유전자 사이에 삽입되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은 마이코박테리움 마리눔 유래의 카르복시산 환원효소를 인코딩하는 유전자 및 노카디아 이오웬시스 유래의 포스포판테테이닐 전이효소를 인코딩하는 유전자가 도입되어 있고, 상기 카르복시산 환원효소를 인코딩하는 유전자 및 포스포판테테이닐 전이효소를 인코딩하는 유전자는 야생형 대장균에 내재적으로 존재하는 aslA (putative anaerobic sulfatase maturation enzyme AslB)와 aslB (putative anaerobic sulfatase maturation enzyme AslB) 유전자 사이에 삽입되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 pntAB (pyridine nucleotide transhydrogenase α & β및/또는 yfjB (NAD kinase) 유전자의 프로모터가 강력한 상시 발현 프로모터로 교체되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 pta-ackA (phosphate acetyltransferase & acetate kinase A) 및/또는 poxB (pyruvate dehydrogenase) 유전자가 결실되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 coaA (pantothenate kinase) 유전자의 프로모터가 강력한 상시 발현 프로모터로 교체되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 metK (methionine adenosyltransferase) 및/또는 proB (γkinase) 유전자가 추가로 억제되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, metK 및/또는 proB 유전자의 기능이 추가로 억제되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 강력한 상시 발현 프로모터는 BBa_J23100, BBa_J23106, M1-46, M1-37 및 bacteriophage λ PR로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명은 또한, 다음 단계를 포함하는 신남알데히드의 생산방법에 관한 것이다:
(a) 상기 재조합 대장균을 배양하여 신남알데히드를 생성시키는 단계; 및
(b) 상기 생성된 신남알데히드를 회수하는 단계.
한편, 본 발명에서는 PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에서, 일부 유전자를 결실시키거나 일부 유전자를 치환, 또는 발현을 강화시킴으로써, 페닐알라닌 생산성이 향상될 수 있음을 확인하였다.
따라서, 본 발명은 다른 관점에서, PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에서,
(i) crr (glucose-specific enzyme IIA components of PTS), tyrR (DNA-binding transcriptional dual regulator), pykA (pyruvate kinase)로 구성된 군에서 선택되는 어느 하나 이상의 유전자가 결실; 및/또는 (ii) aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) 및/또는 pheA (fused chorismate mutase P and prephenate dehydratase)의 피드백 저항성이 억제되어 있는, 페닐알라닌 생산성이 향상된 재조합 대장균에 관한 것이다.
본 발명에 있어서, 상기 aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase)는 aroG8/15로 교체되어 피드백 저항성이 억제되고, 상는 pheA (fused chorismate mutase P and prephenate dehydratase)는 pheA fbr/dm 로 교체되어 피드백 저항성이 억제되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 교체된 aroG8/15 및/또는 pheA fbr/dm 의 프로모터는 강력한 상시 발현 프로모터인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 강력한 상시 발현 프로모터는 BBa_J23100, BBa_J23106, M1-46, M1-37 및 bacteriophage λ로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 페닐알라닌 생산성이 향상된 재조합 대장균은 야생형 대장균에 내재적으로 존재하는 galP (D-galactose transporter) 및/또는 glk (glucokinase) 유전자의 프로모터가 강력한 상시 발현 프로모터로 교체되어 있는 것을 특징으로 할 수 있다.
본 발명은 또한, 다음 단계를 포함하는 페닐알라닌의 생산방법에 관한 것이다:
(a) 상기 재조합 대장균을 배양하여 페닐알라닌를 생성시키는 단계; 및
(b) 상기 생성된 페닐알라닌을 회수하는 단계.
본 발명에서 유전자가 도입되어 있다는 것은, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질이 숙주 미생물에 없는 경우 이를 인위적으로 숙주 미생물에서 발현하도록 하여 펩타이드 또는 단백질의 활성 또는 기능을 갖도록 하는 것을 의미한다.
본 발명에서 "결실"이란 해당유전자의 일부 또는 전체염기를 변이, 치환 또는 삭제시키는 방법을 통해 해당유전자가 발현되지 않도록 하거나 발현되더라도 활성 또는 기능을 나타내지 못하도록 하는 것으로, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질의 활성 또는 기능이 내재적 활성 또는 기능에 비하여 약화되도록 변형됨을 포괄하는 개념이다.
본 발명에서, 일부 유전자는 그 유전자의 발현을 조절하는 내재적 프로모터가 강력한 상시 발현 프로모터로 교체되어, 상기 유전자의 과발현 등을 유도함으로써, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질의 활성 또는 기능이 내재적 활성 또는 기능에 비하여 강화되도록 변형될 수 있다.
본 발명에서 사용되는 용어 "내재적 활성 또는 기능"이란, 본래 미생물이 변형되지 않은 상태에서 가지고 있는 효소, 펩타이드, 단백질 등이 보유하는 활성 또는 기능을 의미한다.
본 발명에서 "내재적 활성 또는 기능에 비하여 강화되도록 변형"되었다는 것은, 활성 또는 기능을 나타내는 유전자가 도입되거나 또는 당해 유전자의 카피수 증가(예를 들어, 유전자가 도입된 플라스미드를 이용한 발현), 상기 유전자 발현의 억제 조절 인자의 결실 또는 발현조절 서열의 변형, 예를 들어 개량된 프로모터의 사용 등과 같이, 조작이 이루어지기 전의 미생물이 가지는 활성에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 활성 또는 기능이 증가된 상태를 의미한다.
본 발명에서 "내재적 활성 또는 기능에 비하여 약화되도록 변형"되었다는 것은, 활성 또는 기능을 나타내는 유전자의 결실이나 유전자의 불활성화(예를 들어, 돌연변이 유전자로의 치환), 유전자 발현의 약화(예를 들어, 약한 프로모터로의 치환, siRNA, gRNA, sRNA 등의 도입, 시작 코돈을 ATG에서 GTG 등으로의 치환), 유전자에 의해 발현된 펩타이드의 기능 억제(예를 들어, 비경쟁적 억제자 또는 경쟁적 억제자 첨가) 등과 같은 조작이 이루어지기 전의 미생물이 가지는 기능에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 기능이 감소된 상태를 의미한다.
본 발명에서, 유전자 또는 프로모터의 "교체"란 종래 유전자 또는 프로모터를 제거하고 이와 상이한 유전자 (예컨대, 변이 유전자 등) 또는 강도가 상이한 프로모터를 새로이 도입하는 것을 의미하는 것으로, 상기 종래 유전자 또는 프로모터를 제거한다는 것은 해당 유전자 또는 프로모터를 결실시키는 것뿐만 아니라 그 기능을 억제시키거나 감소시키는 것도 포괄하는 개념이다.
본 발명에서 "과발현"이란 보통상태에서 세포내 해당유전자가 발현되는 수준보다 높은 수준의 발현을 일컫는 것으로써, 유전체 상에 존재하는 유전자의 프로모터를 강력한 프로모터로 치환하거나, 발현벡터에 해당유전자를 클로닝하여 세포에 형질전환시키는 방법을 통해 발현량을 증가시키는 것 등을 포함하는 개념이다.
본 발명에서 "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.
상기 벡터의 프로모터는 구성적 또는 유도성일 수 있으며, 본 발명의 효과를 위해 추가적으로 변형될 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원(Ori)을 포함한다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다. 바람직하게는 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것이 바람직하다.
염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능 하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및/또는 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및/또는 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.
아울러, 본 발명에서 도입된 유전자는 숙주세포의 게놈에 도입되어 염색체 상 인자로서 존재하는 것을 특징으로 할 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.
본 발명에서는 특정 유전자 명을 기재하였으나, 본 발명이 해당 유전자에 한정되는 것이 아님은 당업자에게 자명할 것이다.
즉, 본 발명의 일 실시예에서는 대장균 균주 W3110에 기초하여 실험을 진행한 바, 해당 대장균에 내재적으로 존재하는 유전자 명을 기재하였으나, 당업자는 PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 다른 대장균에도 본 발명의 기술적 특징이 그대로 적용되어 재현될 수 있음을 이해할 것이고, 해당 대장균에서 본 발명에서 특정한 유전자에 상응하는 내재적 유전자를 결실 또는 교체하거나 발현을 강화시킴으로써 본 발명을 용이하게 재현할 수 있을 것이다.
한편, 본 발명에서 도입한 유전자에 있어서도 특정 미생물 유래의 유전자 명을 기재하였으나, 본 발명의 보호범위가 해당 유전자 명에 한정되는 것은 아니고, 당업자가 해당 유전자와 동일한 기능을 가진 것이라고 인정할 수 있는 범위 내에서 유전자 명을 달리하는 다른 미생물 유래의 유전자를 본 발명의 기술적 특징에 따라 도입하는 경우, 해당 재조합 미생물도 본 발명의 보호범위에 속할 수 있음은 자명하다.
이하 본 발명을 실시예 및 실험예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예 및 실험예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.
<실시예 1> 페닐알라닌 대량 생산 균주 개량
신남알데하이드 생합성을 위한 전구체인 페닐알라닌을 대량으로 생산하기 위한 균주 개량을 위하여 대장균 균주 W3110 (ATCC # 27325)를 모체로 하였다.
pECmuloxC 플라스미드 (Song and Lee, Biotechnol. J. (2013)8(7)776-784 참조)의 lox71-Cm-lox66 유전자를 주형으로 하여 표 1에 기재된 서열의 1F/1R (crr (Accession # P69783)), 2F/2R (tyrR (Accession # P07604)), 3F/3R (pykA (Accession # P21599))를 이용하여 중합효소 연쇄반응을 통해 유전자를 준비하였다. PCR 반응은 10 μM forward and 10 μM reverse primers, 0.2 mM dNTP, 1 μL template, 1 μL DNA polymerase, 및 reaction buffer를 이용하여 57 ℃annealing temperature, 2 min extension time, 30 cycles로 진행하였다. 이하의 실시예에서, 중합효소 연쇄반응에 대해 별다른 기재가 없으면 이와 동일한 조건으로 PCR 반응을 진행하였다. λ와 cre recombinase를 발현하기 위하여 pCW611 플라스미드 (Song and Lee, Biotechnol. J. (2013)8(7)776-784 참조)가 형질전환된 균주 W3110의 염색체 DNA에서 각 유전자를 순차적으로 제거하여 YHP06으로 개량하였다. 본 발명에 따른 형질전환은 Sambrook and Russell, Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press. 2001에 기초하여 진행하였다.
구체적으로는, 우선 30℃배양 조건에서 pCW611 플라스미드로부터 0.2% (w/v) arabinose를 이용하여 λ-Red recombinase를 발현시킨 후, 10% (v/v) PCR product를 형질전환하였다. 암피실린과 클로람페니콜 선별 배지로부터 염색체에 삽입된 균주를 1 mM IPTG를 이용하여 cre recombinase를 발현시킴으로써, 클로람페니콜 유전자를 제거한 이후, 37℃배양을 진행함으로써 pCW611 플라스미드를 제거하였다.
또한 되먹임 저해 (feedback inhibition)를 받는 효소를 되먹임 저항(feedback resistant) 효소로 개량하기 위하여 하기 표 1에 기재된 서열의 4F/4R (aroG (Accession # P0AB91)), 5F/5R (pheA (Accession # P0A9J8))를 이용하여 pECmuloxC 플라스미드의 lox71-Cm-lox66 유전자를 주형으로 하여 상기 기재된 반응과 같은 중합효소 연쇄반응을 통해 염색체 DNA의 aroG, pheA 유전자를 제거하였다.
이후 aroG8/15-pheA fbr/dm 유전자를 강력한 상시 발현 프로모터 BBa_J23100 (Anderson et al., J. Biol. Eng. (2010)4:1 참조)를 이용하여 발현하는 시스템을 구축하였다. pYHP 플라스미드 (Bang et al., Microb. Cell Fact. (2016)15:16 참조) 유전자를 주형으로 표 1에 기재된 서열의 6F/6R을 이용하여 중합효소 연쇄반응을 진행한 후, 제한 효소 PstI-BamHI으로 37℃에서 처리하였다. 이후 플라스미드 pKIKOrbsARCm (Addgene # 46765) (Sabri et al., Microb. Cell Fact. (2013)12:60 참조)을 같은 제한 효소로 처리한 후 상온에서 라이게이션 (반응 버퍼에서 1 μL T4 DNA ligase, 25 ℃) 함으로써 pKIKO-Fw를 준비하였다. 이후, λ-Red recombinase와 flippase를 발현하는 YHP06 균주의 염색체 DNA 내 rbsAR 위치에 삽입하여 H-01 균주를 구축하였다.
이를 위하여 우선 30℃배양 조건에서 pCW611 플라스미드로부터 0.2% (w/v) arabinose를 이용하여 λRed recombinase를 발현시킨 후, 10% (v/v) pKIKO-Fw 플라스미드를 형질전환하였다. 암피실린과 클로람페니콜 선별 배지로부터 염색체에 삽입된 균주를 37℃배양을 진행함으로써 pCW611 플라스미드를 제거하였다. 이후 pCP20 플라스미드 (The coli Genetic Stock Center, Yale University, USA)를 형질전환한 후, 30℃배양을 진행함으로써 클로람페니콜 유전자를 제거하고, 37℃배양을 진행함으로써 pCP20 플라스미드를 제거하였다 (Cherepanov and Wackernagel, Gene. (1995)158:9-14 참조). aroG8/15는 원래의 aroG 효소에 D146N과 A202T 돌연변이를 포함하는 것이며, pheAfbr/dm 는 원래의 pheA 효소에 E159A E232A 돌연변이를 포함하며 총 길이 386 중 1-300 아미노산 서열로 이루어진 돌연변이를 포함한다.
이후 pECmuloxC 플라스미드의 lox71-Cm-lox66 유전자를 주형으로 표 1에 기재된 서열의 7F/7R (galP (Accession # P0AEP1)), 8F/8R (glk (Accession #P37747))를 이용하여 중합효소 연쇄반응을 통해 유전자를 준비한 후, λ와 cre recombinase를 발현하는 H-01 염색체 DNA에서 각 유전자를 순차적으로 교체하여 염색체 DNA 내의 galP, glk 유전자에 대한 프로모터를 강력한 상시 발현 프로모터 BBa_J23106 (Anderson et al., J. Biol. Eng. (2010)4:1)으로 교체함으로써 H-02 균주로 개량하였다.
이후 pECmuloxC 플라스미드의 lox71-Cm-lox66 유전자를 주형으로 표 1에 기재된 서열의 9F/9R (ydiB (Accession # P0A6D5)), 10F/10R (aroK (Accession # P0A6D7))를 이용하여 중합효소 연쇄반응을 통해 유전자를 준비한 후, λ와 cre recombinase를 발현하는 H-02 염색체 DNA에서 각 유전자를 순차적으로 교체하여 염색체 DNA 내의 ydiB, aroK 유전자에 대한 프로모터를 강력한 상시 발현 프로모터 BBa_J23106으로 교체함으로써 H-03 균주로 개량하였다.
완성된 대장균 균주 H-01, H-02, H-03의 페닐알라닌 생산성을 확인하기 위해 semi-defined PHE 배지 (5 g/L ammonium sulfate, 3 g/L potassium dihydrogen phosphate, 1.5 g/L sodium citrate, 1 g/L sodium chloride, 0.075 g/L thiamine-hydrochloride, 0.015 g/L calcium chloride dihydrate, 0.01125 g/L iron (II) sulfate heptahydrate, 20 g/L glucose, 3 g/L magnesium sulfate heptahydrate, 3 g/L yeast extract, 1.5 mL/L trace element solution (TES; 15 g/L zinc sulfate heptahydrate, 14.64 g/L manganese (II) sulfate hydrate, 12 g/L calcium carbonate, 3 g/L sodium molybdate dihydrate, 2.5 g/L copper (II) sulfate pentahydrate, 2.5 g/L nickel (II) sulfate hexahydrate, 2 g/L aluminium sulfate octadecahydrate, 0.75 g/L cobalt sulfate heptahydrate, 0.5 g/L boric acid, 10 mL/L hydrochloride, pH 6.8)를 이용하여 플라스크 배양을 진행하였다 (Bang et al., Microb. Cell Fact. (2016)15:16). 플라스크 배양 조건으로는 37℃rpm 조건으로 진행하였으며, 48 시간 배양을 진행한 결과, 도 2에 나타난 것과 같이, H-02 균주를 사용하였을 경우 최대 3.6 g/L의 페닐알라닌 생산성을 보임을 확인하였다.
<실시예 2> 재조합 유전자 발현을 위한 균주 및 플라스미드 제작
마이코박테리움 마리눔 (Mycobacterium marinum) (ATCC BAA-535D-5TM) 유전체 DNA 또는 노카디아 이오웬시스 (Nocardia iowensis) (GenBank # AY495697.1) 합성유전체 DNA를 주형으로 하여, 각각 표 1에 기재된 서열의 11F/11R (mmcar (Accession # RFZ05356)) 또는 12F/12R (nicar (Accession # AAR91681))을 이용하여 중합효소 연쇄반응을 통해 car 유전자를 증폭하였다. PCR 반응은 10 μM forward and 10 μM reverse primers, 0.2 mM dNTP, 1 μL template, 1 μL DNA polymerase, 및 반응 버퍼를 이용하여, 57 ℃temperature, 8 min extension time, 30 cycles로 진행하였다.
증폭산물을 제한효소 XbaI-HindIII로 37℃에서 처리한 후 동일한 효소로 처리한 pBBR1Tac 플라스미드에 라이게이션 함으로써, pBBR1Tac-NiCAR 또는 pBBR1Tac-MmCAR 플라스미드를 구축하였다.
이후, 바실러스 서틸리스 (Bacillus subtilis) (ATCC 23857D-5TM) 또는 노카디아 이오웬시스 (Nocardia iowensis) 유전체 DNA를 주형으로 표 1에 기재된 서열의 13F/13R (bssfp (Accession # ACG68433)) 또는 14F/14R (ninpt (Accession # ABI83656))을 이용하여 중합효소 연쇄반응을 통해 증폭하였다. PCR 반응은 10 μM forward and 10 μM reverse primers, 0.2 mM dNTP, 1 μL template, 1 μL DNA polymerase 및 반응 버퍼를 이용하여, 57 ℃temperature, 2 min extension time, 30 cycles로 진행하였다.
증폭산물을 제한효소 HindIII로 37℃에서 처리한 후 앞서 구축한 pBBR1Tac-NiCAR 또는 pBBR1Tac-MmCAR 플라스미드를 동일한 제한 효소로 처리 및 라이게이션을 진행함으로써 최종적으로 pBBR1Tac-NiCAR-BsSfp, pBBR1Tac-NiCAR-NiNpt, pBBR1Tac-MmCAR-BsSfp, pBBR1Tac-MmCAR-NiNpt를 구축하였다.
라이게이션이 완료된 pBBR1Tac-NiCAR-NiNpt, pBBR1Tac-NiCAR-BsSfp, pBBR1Tac-MmCAR-NiNpt, 또는 pBBR1Tac-MmCAR-BsSfp 플라스미드는 대장균 균주 XL1-Blue (Agilent # 200249)를 거쳐 H-02에 형질전환 시켰다.
<실시예 3> 효소의 활성 분석
우선, MmCAR, NiCAR, BsSfp, NiNpt의 활성 분석을 위하여 앞서 구축한 플라스미드 pBBR1Tac-NiCAR-NiNpt, pBBR1Tac-NiCAR-BsSfp, pBBR1Tac-MmCAR-NiNpt, 또는 pBBR1Tac-MmCAR-BsSfp가 형질전환 된 대장균 균주 H-02를 2% 포도당과 35 μg/mL 클로람페니콜을 포함하는 LB (Luria-Bertani) 배지에 접종하였다. 이를 37℃rpm 조건으로 12시간 동안 배양한 후, 각각 1/100 부피만큼을 0.5 mM의 IPTG (isopropyl-β와 500 mg/L 트랜스-신남산 (trans-cinnamic acid)을 포함하는 신선한 LB 배지에 옮겼다.
상기 반응을 30℃200 rpm에서 12시간 동안 진행하면서 3시간 마다 CAR 효소에 의해 생성된 신남알데하이드 (cinnamaldehyde)를 역상 고성능 액체 크로마토그래피 (reverse-phase high-performance liquid chromatography, reverse-phase HPLC)를 통해 분석하였다 (Microb. Cell Fact. (2016)15:16). 구체적으로, Zorbax Eclipse AAA 컬럼 (150 X 4.6 mm; 3.5 μm; Agilent, CA, USA)에서, 이동상 A (mobile phase A)는 0.1% 트리플루오로아세트산 (trifluoroacetic acid), 이동상 B (mobile phase B)는 아세토나이트릴 (acetonitrile)을 사용하였다. 아세토나이트릴 (acetonitrile)의 비율은 처음 1분 간은 10%, 이후 18분 간 70%로 점차적으로 변경하였으며, 이후 5분 간 10%로 점차적으로 변경하였고, 이후 3분 간 10%를 유지하였다. 컬럼의 온도는 40℃유속은 1 mL/min으로 고정하였다.
그 결과, 도 3에 나타난 것과 같이, NiCAR 및 BsSfp에 비하여, MmCAR와 NiNpt 조합의 활성이 우수한 것으로 나타났다.
<실시예 4> 부산물 저해 균주 개량
생성되는 신남알데하이드의 대부분이 신남 알코올 (cinnamyl alcohol)로 전환되는 것을 억제하기 위해, 개량된 균주 H-02를 모체 균주로 하여 추가 개량을 진행하였다. pECmuloxC 플라스미드의 lox71-Cm-lox66 유전자를 주형으로 하기 표 1에 기재된 서열의 15F/15R (dkgB (Accession # VWQ00989)), 16F/16R (yahK (Accession # VWQ01157)), 17F/17R (yeaE (Accession # QHF78366)), 18F/18R (yjgB (Accession # CDU40425)), 19F/19R (yqhC-yqkD-dkgA (Accession # ADK47403, ADK47404, ADK47405)), 20F/20R (gldA (Accession # VWQ00154)), 21F/21R (ybbO (Accession # BCL04514)), 22F/22R (yqhA (Accession # BCL02055)) 프라이머 세트를 이용하여 중합효소 연쇄반응을 통해 각각의 유전자를 준비한 후, λ와 cre recombinase를 발현하기 위해 pCW611 플라스미드가 형질전환 된 H-02 균주의 염색체 DNA에서 알데하이드를 알코올로 전환하는 여러 효소 중, dkgB, yahK, yeaE, yjgB, yqhC, yqhD, dkgA, gldA, ybbO, yqhA 총 10개 유전자를 제거함으로써 H-02mR 균주로 개량하였다 (실험방법은 상기 실시예 1과 같음). 또한 알코올 생성 반응 억제를 확인하기 위하여 pBBR1Tac-MmCAR-NiNpt 플라스미드가 형질전환된 H-02 또는 H-02mR 균주를 0.5 mM IPTG와 500 mg/L trans-cinnamic acid를 포함하는 LB 배지에서 12시간 동안 배양하였다 (실험 방법은 상기 실시예 3과 같음). 이후 역상 고성능 액체 크로마토그래피 (HPLC) 분석 결과, 도 4에 나타난 것과 같이, H-02 균주를 사용하였을 때 생성되던 cinnamyl alcohol이 H-02mR 균주에서는 거의 억제가 됨으로써, 신남알데하이드가 축적되는 것을 확인하였다.
<실시예 5> 신남알데하이드 생산 시스템 구축
신남알데하이드 생산 시스템을 구축하기 위해 먼저, 코돈 최적화되어 합성한 스트렙토마이세스 마리티무스 (Streptomyces maritimus) pal 유전자 (Bang et al., Microb. Cell Fact. (2016)15:16)를 주형으로 하기 표 1에 기재된 서열의 23F/23R을 이용하여 중합효소 연쇄반응을 통해 증폭한 후(증폭 조건은 상기 실시예 1 참조), 제한효소 SacI-KpnI으로 37℃에서 처리하였다. 이후 동일한 효소로 처리한 pTac15k (Accession # MH488908) 플라스미드에 라이게이션 함으로써 (실험 방법은 상기 실시예 1과 같음) pHB-Tac-CA를 구축하였다 (Bang et al., Proc. Biochem. (2018)68:30-36). 이후 pHB-Tac-CA와 함께 앞서 구축한 pBBR1Tac-MmCAR-NiNpt 플라스미드를 대장균 균주 H-02mR에 형질전환시켰다.
이후 신남알데하이드의 생산성을 확인하기 위한 세포 고농도 배양을 진행하였다 (Bang et al., Proc. Biochem. (2018)68:30-36). 앞서 실시예 1에서 언급한 semi-defined PHE 배지를 기반으로, 35 μg/mL 클로람페니콜과 40 μg/mL 카나마이신 을 첨가한 후 37℃rpm 조건으로 12시간 동안 배양하였다. 이후 신선한 1.8 L의 PHE 배지에 200 mL의 inoculum을 접종한 후 37℃에서 배양하였다. 용존 산소 (dissolved oxygen, DO)는 40%로 유지하였으며, 점차적으로 휘저음 속도 (agitation rate)를 증가시키며 최대 1000까지 증가시켰다. pH는 6.97보다 낮아질 경우 25% (v/v)의 암모니아를, 7.06보다 높아질 경우에는 700 g/L 포도당과 20 g/L MgSO47H2O로 이루어진 먹이 배지 (feeding solution)가 첨가되었다. 거품 억제제는 멸균 후 수동으로 공급하였다. OD600=80에 도달한 이후에는 30℃로 변경한 이후 1 mM의 IPTG (isopropyl-β를 첨가하였다. 배양한 대장균 균주는 시간대 별로 광학 밀도 (OD600)가 4가 되도록 따로 모아두어 단백질 분석에 이용하였으며, 원심분리를 통하여 얻어진 배양 상등액은 0.22 μm 필터링 (filter)하여 역상 고성능 액체 크로마토그래피 (reverse-phase HPLC) 분석을 통해 신남알데하이드 정량에 이용하였다 (Bang et al., Microb. Cell Fact. (2016)15:16).
그 결과, 도 5에 나타난 것과 같이 pHB-Tac-CA 플라스미드와 pBBR1Tac-MmCAR-NiNpt 플라스미드가 형질전환된 H-02mR 균주의 OD600은 최대 89.4까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 501.3 mg/L가 생산되었다.
<실시예 6> 신남알데하이드 유전자가 삽입된 대장균주 개량
실시예 5에서 도입한 pHB-Tac-CA 플라스미드와 pBBR1Tac-MmCAR-NiNpt 플라스미드를 대장균 염색체 삽입되어 안정적으로 발현되도록 하였다.
먼저, 첫 번째 효소 유전자인 Smpal을 삽입하기에 앞서, 강한 상시발현 프로모터인 BBa_J23100 프로모터를 이용하여 시스템을 구축하였다. 앞서 구축한 pHB-Tac-CA 플라스미드를 주형으로 하기 표 1에 기재된 서열의 24F/24R을 이용하여 중합효소 연쇄반응을 통해 실시예 1과 같은 방법으로 증폭한 후, 제한효소 EcoRI-SphI으로 37℃에서 처리하였다. 이후 동일한 효소로 처리한 pKIKOarsBCm 플라스미드 (Addgene # 46763) (Sabri et al., Microb. Cell Fact. (2013)12:60)에 라이게이션 함으로써 pKIKOarsB-PJ23100-SmPAL-rrnB를 구축하였다. 이후 발현양을 최대로 높이기 위해 대장균의 유전자 origin에 가장 가까운 위치에 있는 gidBatpI 유전자 사이에 삽입하였다. 대장균 W3110의 유전자 (genomic DNA)를 주형으로 하기 표 1에 기재된 서열의 25F/25R (gidB HR1 (Accession # BBF21865))과 26F/26R (atpI HR2 (Accession # QKU51775))을 이용하여 중합효소 연쇄반응을 통해 실시예 1과 같은 방법으로 증폭한 후, 제한효소 SalI-EcoRI (gidB HR1) 또는 ScaI (atpI HR2)로 37℃에서 처리하였다. 이후 동일한 효소로 처리한 pKIKOarsB-PJ23100-SmPAL-rrnB 플라스미드에 순차적으로 라이게이션함으로써 pKIKOgidB-PJ23100-SmPAL-rrnB를 구축하였다. 이후 λ-Red recombinase와 flippase를 발현하는 H-02mR 균주의 염색체 DNA에 플라스미드 pKIKOgidB-PJ23100-SmPAL-rrnB를 이용하여 유전자 삽입을 진행함으로써 H-04GJmR 균주를 구축하였다.
이어 나머지 유전자인 MmCAR-NiNpt 효소의 유전자를 자동 유도 프로모터 (auto-inducible promoter) (PosmB)를 이용하여 시스템을 재구축 및 삽입하였다. 대장균의 유전자 (genomic DNA)를 주형으로 하기 표 1에 기재된 서열의 27F/27R (PosmB), 28F/28R (aslA HR1 (Accession # QHF80945)), 29F/29R (aslB HR2 (Accession # BCL05523))를, pECmuloxC 플라스미드의 lox71-Cm-lox66를 주형으로 30F/30R (Cm)을, pKIKO-Fw를 주형으로 31F/31R (R6K ori)를 각각 이용하여 중합효소 연쇄반응을 통해 증폭한 후 (실험 방법은 상시 실시예 1과 같음), 제한효소 NcoI-EcoRI (aslA HR1), 또는 PstI-SfiI (aslB HR2), 또는 EcoRI-BamHI (PosmB), 또는 SpeI-PstI (Cm), 또는 SfiI-NcoI (R6K ori)로 처리하였다. 앞서 실시예 2에서 구축한 pBBR1Tac-MmCAR-NiNpt 플라스미드는 BamHI-SpeI를 처리하였다. 이후 총 6개의 조각들을 한꺼번에 라이게이션함으로써, pR6K-PosmB-MmCAR-NiNpt를 구축하였다. 이후 λ recombinase와 cre recombinase를 발현하기 위해 pCW611이 형질전환 된 H-04GJmR 염색체 DNA에 pR6K-PosmB-MmCAR-NiNpt 플라스미드의 유전자 삽입을 진행함으로써 H-07OmR 균주를 구축하였다.
이후 신남알데하이드의 생산성을 확인하기 위한 세포 고농도 배양을 실시예 5와 같은 방법으로 진행하였다. 그 결과, 도 6에 나타난 것과 같이 H-07OmR 균주의 OD600은 최대 119.8까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 559.9 mg/L가 생산되었다.
<실시예 7> NADPH 생산량 증가를 위한 균주 개량
신남알데하이드의 생산성을 증가시키기 위해 반응에 필요한 보조 인자 (cofactor) 중 하나인 NADPH의 양을 증가시키기 위한 균주 개량을 도입하였다. 우선 λrecombinase와 Cas9 (from Streptococcus pyogenes)를 발현하는 플라스미드 pB-Cas9을 구축하였다. λ-Red recombinase와 cre recombinase를 발현할 수 있는 pCW611 플라스미드를 제한효소 XbaI/SacII로 처리하여 cre recombinase 유전자를 제거하였다. 그리고 S. pyogenes 유전자를 주형으로, 하기 표 1에 기재된 서열의 32F/32R (Cas9)을 이용하여 실시예 2와 같은 방법으로 중합효소 연쇄반응을 진행하여 증폭한 Cas9 DNA를 확보하였다. 이후 같은 제한효소 XbaI/SacII로 처리한 후 라이게이션 함으로써 pCW611-Cas9 플라스미드를 구축하였다. 이어 대장균 W3110의 게놈 DNA를 주형으로, 하기 표 1에 기재된 서열의 33F/33R (gRNA)을 이용하여 실시예 1에서와 같이 중합효소 연쇄반응을 통해 증폭한 gRNA DNA를 확보하였다. 이후 제한효소 SfiI/SacII로 처리한 후, 같은 제한효소로 처리한 pCW611-Cas9 플라스미드와 함께 라이게이션 함으로써 pB-Cas9 플라스미드를 구축하였다.
대장균 유전자 중 pntAB, yfjB 두 유전자를 강화하기 위해, pECmuloxC 플라스미드 내의 Cm 유전자를 주형으로 (Song and Lee, Biotechnol. J. (2013)8(7)776-784) 하기 표 1에 기재된 서열의 34F/34R (pntAB (Accession # VWQ02559,VWQ02558)), 35F/35R (yfjB (Accession # CUU94844)) 프라이머 세트를 이용하여 실시예 1과 같은 방법으로 중합효소 연쇄반응을 통해 증폭한 DNA를 확보하였다. 이후 λ-Red recombinase와 Cas9 (from Streptococcus pyogenes)를 발현하기 위해 pB-Cas9 플라스미드가 형질전환된 균주 H-07OmR의 염색체 DNA에 증폭한 DNA의 형질전환을 각각 진행하였다. 이로부터 pntAB, yfjB 두 유전자에 대한 프로모터를 강력한 상시 발현 프로모터 M1-46, M1-37 (Shi et al., 2013)으로 교체함으로써 H-08SmR 균주를 구축하였다.
이를 위하여, 우선 30℃배양 조건에서 pB-Cas9 플라스미드로부터 0.2% (w/v) arabinose를 이용하여 λ를 발현시킨 후, 10% (v/v) PCR 산물을 형질전환 하였다. 암피실린과 클로람페니콜 선별 배지로부터 염색체에 삽입된 균주를, 0.2% (w/v) arabinose와 1 mM IPTG를 동시에 이용하여 Cas9을 발현시킴으로써 클로람페니콜 유전자를 제거한 이후, 37℃배양을 진행함으로써 pB-Cas9 플라스미드를 제거하였다.
이후 신남알데하이드의 생산성을 확인하기 위하여, 실시예 5에서와 같이 세포 고농도 배양을 진행하였다. 그 결과, 도 7에 나타난 것과 같이 H-08SmR 균주는 OD600에서 최대 54.6까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 726.3 mg/L가 생산되었다.
<실시예 8> 균주 성장 저해를 완화시키기 위한 균주 개량
개량된 균주 H-08OmR이 세포 성장이 늦어지는 문제를 해결하기 위해 대장균이 자체적으로 보유하고 있는 아세트산 생성 경로를 억제하는 균주를 개량하였다. pECmuloxC 플라스미드 내의 Cm 유전자를 주형으로 하기 표 1에 기재된 서열의 36F/36R (pta-ackA (Accession # VWQ05064, VWQ05065)), 37F/37R (poxB (Accession # VWQ01675))를 이용하여 실시예 1에서와 같이 중합효소 연쇄반응을 통해 증폭한 DNA를 확보하였다. 이후 λ-Red recombinase와 Cas9 (from Streptococcus pyogenes)를 발현하기 위해 pB-Cas9 플라스미드가 형질전환된 균주 H-08OmR의 염색체 DNA에서 유전자 제거를 실시예 7에서와 같은 방법으로 진행함으로써 H-09OmR 균주를 구축하였다.
이후 신남알데하이드의 생산성을 확인하기 위하여 실시예 5에서와 같이 세포 고농도 배양을 진행하였다. 그 결과, 도 8에 나타난 것과 같이 H-09OmR 균주의 OD600은 최대 129.2까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 1.38 g/L가 생산되었다.
<실시예 9> coenzyme A 생산량 증가를 위한 균주 개량
신남알데하이드의 생산성을 증가시키기 위해 반응에 필요한 보조 인자 (cofactor) 중 하나인 coenzyme A의 양을 증가시키기 위한 균주 개량을 도입하였다. 대장균 유전자 중 coenzyme A 합성 효소인 coaA의 유전자를 강화하기 위해, pECmuloxC 플라스미드 내의 Cm 유전자를 주형으로 하기 표 1에 기재된 서열의 38F/38R (coaA (Accession # CUU96269))를 이용하여 중합효소 연쇄반응을 통해 증폭한 DNA를 확보하였다 (실험 방법은 상기 실시예 1과 같음). 이후 λ-Red recombinase와 Cas9 (from Streptococcus pyogenes)를 발현하기 위해, pB-Cas9 플라스미드가 형질전환 된 균주 H-09OmR에 증폭한 DNA의 형질전환을 진행하였다. 이로부터 H-09OmR 염색체 DNA 내의 coaA 유전자에 대한 프로모터를 상기 실시예 7과 같은 방법으로 강력한 상시 발현 프로모터 BBa_J23100으로 교체함으로써 H-10SmR 균주를 구축하였다.
이후 신남알데하이드의 생산성을 확인하기 위하여, 실시예 5에서와 같은 방법으로 세포 고농도 배양을 진행하였다. 그 결과, 도 9에 나타난 것과 같이 H-10SmR 균주의 OD600은 최대 108.2까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 2.33 g/L가 생산되었다.
<실시예 10> 이용 가능한 ATP양 증가를 위한 균주 개량
신남알데하이드의 생산성을 증가시키기 위해 반응에 필요한 보조 인자 (cofactor) 중 하나인 ATP의 양을 증가시키기 위한 균주 개량을 도입하였다. 대장균 유전자 중 ATP 소모 반응인 MetK (Accession # CUU95031)와 ProB (Accession # QDB64248)의 발현양을 감소시키기 위해, pECmuloxC 플라스미드 내의 Cm 유전자를 주형으로 하기 표 1에 기재된 서열의 39F/39R (metK-proB)를 이용하여 실시예 1에서와 같은 방법으로 중합효소 연쇄반응을 통해 증폭한 DNA를 확보하였다. 이후 λ-Red recombinase와 Cas9 (from Streptococcus pyogenes)를 발현하기 위해, pB-Cas9 플라스미드가 형질전환된 균주 H-10SmR에 증폭한 DNA의 형질전환을 진행하였다. 이로부터 H-10SmR 염색체 DNA 내의 lacZ (Accession # VWQ01169) 위치에 metK-proB sRNA 시스템이 삽입됨으로써 H-11MPmR 균주를 구축하였다.
이후 신남알데하이드의 생산성을 확인하기 위하여 실시예 5와 같은 방법으로 세포 고농도 배양을 진행하였다. 그 결과, 도 10에 나타난 것과 같이 H-11MPmR 균주는 OD600은 최대 126.6까지 성장하였으며 이후 점차적으로 감소하였다. 그리고 신남알데하이드는 최대 3.78 g/L가 생산되었다.
<실시예 11> 서열정보
car - Nocardia iowensis (서열번호 1)
car - Mycobacterium marinum (서열번호 2)
sfp - Bacillus subtilis (서열번호 3)
npt - Nocardia iowensis (서열번호 4)
crr - Escherichia coli (서열번호 5)
tyrR - Escherichia coli (서열번호 6)
pykA - Escherichia coli (서열번호 7)
aroG - Escherichia coli (서열번호 8)
aroG8/15 - Escherichia coli (서열번호 9)
pheA- Escherichia coli (서열번호 10)
pheA fbr/dm - Escherichia coli (서열번호 11)
BBa_J23100 - 합성 프로모터 (서열번호 12)
BBa_J23106 - 합성 프로모터 (서열번호 13)
galP - Escherichia coli (서열번호 14)
glk - Escherichia coli (서열번호 15)
dkgB - Escherichia coli (서열번호 16)
yahK - Escherichia coli (서열번호 17)
yeaE - Escherichia coli (서열번호 18)
yjgB - Escherichia coli (서열번호 19)
yqhC - Escherichia coli (서열번호 20)
yqhD - Escherichia coli (서열번호 21)
dkgA - Escherichia coli (서열번호 22)
gldA - Escherichia coli (서열번호 23)
ybbO - Escherichia coli (서열번호 24)
yqhA - Escherichia coli (서열번호 25)
pal - Streptomyces maritimus (서열번호 26)
gidB - Escherichia coli (서열번호 27)
atpI - Escherichia coli (서열번호 28)
PosmB - Escherichia coli (promoter) (서열번호 29)
aslA - Escherichia coli (서열번호 30)
aslB - Escherichia coli (서열번호 31)
pntAB - Escherichia coli (서열번호 32)
yfjB - Escherichia coli (서열번호 33)
PM1-46- 합성 프로모터 (서열번호 34)
PM1-37 - 합성 프로모터 (서열번호 35)
pta-ackA - Escherichia coli (서열번호 36)
poxB - Escherichia coli (서열번호 37)
coaA - Escherichia coli (서열번호 38)
metK sRNA - sRNA targeting to Escherichia coli metK (서열번호 39)
proB sRNA - sRNA targeting to Escherichia coli proB (서열번호 40)
lacZ - Escherichia coli (서열번호 41)
프라이머 서열
Name sequence (5'3') target
1F ATGGGTTTGTTCGATAAACTGAAATCTCTGGTTTCCGACGACAAGAAGGATACCGGAACTATTGAGATCATTGCTCCGCTCTCTGGCGAGATCGTCAATAGACACTATAGAACGCGGCCG crr
1R TTACTTCTTGATGCGGATAACCGGGGTTTCACCCACGGTTACGCTACCGGACAGTTTGATCAGTTCTTTGATTTCGTCCATGTTGGAGATAACAACCGGACCGCATAGGCCACTAGTGGA
2F ATGCGTCTGGAAGTCTTTTGTGAAGACCGACTCGGTCTGACCCGCGAATTACTCGATCTACTCGTGCTAAGAGGCATTGATTTACGCGGTATTGAGATTGGACACTATAGAACGCGGCCG tyrR
2R TTACTCTTCGTTCTTCTTCTGACTCAGACCATATTCCCGCAACTTATTGGCAATCGCGGTATGTGAAACGCCGAGACGTTTTGCCAGTTTGCGCGTGCTGCCGCATAGGCCACTAGTGGA
3F ATGTCCAGAAGGCTTCGCAGAACAAAAATCGTTACCACGTTAGGCCCAGCAACAGATCGCGATAATAATCGACACTATAGAACGCGGCCG pykA
3R TTACTCTACCGTTAAAATACGCGTGGTATTAGTAGAACCCACGGTACTCATCACGTCGCCCTGGGTGACACCGCATAGGCCACTAGTGGA
4F CAGGTGAATATAAGGCATTGGTTTAAGATTTCAGCCAGGTTATGAAACGCAGCAGAGAATCTTGAAATAAGACACTATAGAACGCGGCCG aroG
4R TTACCCGCGACGCGCTTTTACTGCATTCGCCAGTTGACGTAACAGAGCATCGGTATCTTCCCAGCCGATGCCGCATAGGCCACTAGTGGA
5F CAACTTCGTCGAAGAAGTTGAAGAAGAGTAGTCCTTTATATTGAGTGTATCGCCAACGCGCCTTCGGGCGGACACTATAGAACGCGGCCG pheA
5R TCAGGTTGGATCAACAGGCACTACGTTCTCACTTGGGTAACAGCCCAATACCTTCATTGAACGGGTGATTCCGCATAGGCCACTAGTGGA
6F TCCTGCAGTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCCGACAAAAAGAAAGGAGCATCTAACA aroG8/15-pheAfbr/dm
6R GCAGGATCCTCACAACGTGGTTTTCGCCGGAA
7F CTGCTGCGCGATGCTGCCGGTCTGAAGTAATCTTTCTTCACCTGCGTTCAAAGGCCAGCCTCGCGCTGGCGACACTATAGAACGCGGCCG galP
7R CAAGGAAGCAGACGAAAAACGTCATTGCCTTGTTTGACCGCCCCTGTTTTTTAGCGTCAGGCATATGTATATCTCCTTCTTAAAGTTCAAGCTAGCACTATACCTAGGACTGAGCTAGCCGTAAACCGCATAGGCCACTAGTGGA
8F CTTTCCGGCGTTGTTGTTATGCCCCCAGGTATTTACAGTGTGAGAAAGAATTATTTTGACTTTAGCGGAGGACACTATAGAACGCGGCCG glk
8R TATCACACAGAGCAAGACGTGCGTTGGTGCCGCCCACATCACCGACTAATGCATACTTTGTCATATGTATATCTCCTTCTTAAAGTTCAAGCTAGCACTATACCTAGGACTGAGCTAGCCGTAAACCGCATAGGCCACTAGTGGA
9F TGAAAATGATGTGCGGTTTGGCGAGCGTAAATTTTGCACCCGGTTAAACACAATTAAGCATAGAGGTTAAGACACTATAGAACGCGGCCG ydiB
9R ATAAACTGTGGCGGATAGGATAGGCCATCAACCCAATCAATTCGTATTTTGCGGTAACATCCATATGTATATCTCCTTCTTAAAGTTCAAGCTAGCACTATACCTAGGACTGAGCTAGCCGTAAACCGCATAGGCCACTAGTGGA
10F ATCACGCCACGACTGGTTTCCAGTGAGTAAACAGCCGTAAAAGCGGTAATGTTTTTACGCTGAACGTGTTGACACTATAGAACGCGGCCG aroK
10R GCCCAATAGTGCTTTTTCCGGCACCCATAGGCCCAACCAGAAAGATATTGCGTTTCTCTGCCATATGTATATCTCCTTCTTAAAGTTCAAGCTAGCACTATACCTAGGACTGAGCTAGCCGTAAACCGCATAGGCCACTAGTGGA
11F GCATTCTAGATTGAACTTTAAGAAGGAGATATACATATGCACCACCACCATCACCATTCGCCAATCACGCGTGAAG MmCAR
11R ATGCAAGCTTTTATCAGAGCAGGCCGAGTAGGCG
12F GCATTCTAGATTGAACTTTAAGAAGGAGATATACATATGCACCACCACCATCACCATGCAGTGGATTCACCGGAT NiCAR
12R ATGCAAGCTTTTATCAGAGCAGCTGAAGCAGTTCCAG
13F ATAAAAGCTTTTGAACTTTAAGAAGGAGATATACATATGAAGATTTACGGAATTTATATGGACCG BsSfp
13R GCCAAGCTTATCAATGGTGATGGTGGTGGTGTAAAAGCTCTTCGTACGAGACC
14F ATAAAAGCTTTTGAACTTTAAGAAGGAGATATACATATGATCGAGACAATTTTGCCTG NiNpt
14R GCCAAGCTTATCAATGGTGATGGTGGTGGTGGGCGTACGCGATCGCGGT
15F ATGGCTATCCCTGCATTTGGTTTAGGTACTTTCCGTCTGAAAGACGACGTTGTTATTTCATCTGTGATAAGACACTATAGAACGCGGCCG dkgB
15R TTAATCCCATTCAGGAGCCAGACCTTCCGGGCTAACCAGGCGGTCGTTGCAATCCAGTGCGGCGATCGCTCCGCATAGGCCACTAGTGGA
16F ATGAAGATCAAAGCTGTTGGTGCATATTCCGCTAAACAACCACTTGAACCGATGGATATCACCCGGCGTGGACACTATAGAACGCGGCCG yahK
16R TCAGTCTGTTAGTGTGCGATTATCGATAACAAAACGATATTTCACATCACCGCGCAGCATTCGCTCATAGCCGCATAGGCCACTAGTGGA
17F ATGCAACAAAAAATGATTCAATTTAGTGGCGATGTCTCACTGCCAGCCGTAGGGCAGGGAACATGGTATAGACACTATAGAACGCGGCCG yeaE
17R TCACACCATATCCAGCGCAGTTTTTCCTTTTGGTGCCGGATATGCCTTATCCAGCATAGCTAATTCCGCTCCGCATAGGCCACTAGTGGA
18F ATGTCGATGATAAAAAGCTATGCCGCAAAAGAAGCGGGCGGCGAACTGGAAGTTTATGAGTACGATCCCGGACACTATAGAACGCGGCCG yjgB
18R TCAAAAATCGGCTTTCAACACCACGCGGTAACGCGCCTTACCGTCGCGCACATGCTGGATGGCGTCGTTACCGCATAGGCCACTAGTGGA
19F CCGATTTTATGCCCGGAAAAGAGAATTATGATGCCAGGCTCGTACATCACCGGTGTACGTGCGAAAGGCGGACACTATAGAACGCGGCCG yqhC-yqhD-dkgA
19R TTCCACAGCTTAGTGGTGATGAACAGTTCTTCTCTGTTGACTGAGGCATTTTTCAGGGCTTTGCCGACACCCGCATAGGCCACTAGTGGA
20F ATGGACCGCATTATTCAATCACCGGGTAAATACATCCAGGGCGCTGATGTGATTAATCGTCTGGGCGAATGACACTATAGAACGCGGCCG gldA
20R TCCACTAGTGGCCTATGCGGGCCAGATCAGGTTTACGCCGCTCTGCTGGTAGCCGACCAGTACGGTCAGCGTTTCCTGCAAGAGTGGGAA
21F ATGACTCATAAAGCAACGGAGATCCTGACAGGTAAAGTTATGCAAAAATCGGTCTTAATTACCGGATGTTGACACTATAGAACGCGGCCG ybbO
21R TCCACTAGTGGCCTATGCGGGGTGACCTGGGCGGTAATGGTGCTTAAGCGCCTGCTGCCGGGGCGCGTGATGGACAAAATATTGCAGGGG
22F ATGGAACGTTTTCTTGAAAATGCAATGTATGCTTCTCGCTGGCTGCTTGCCCCCGTGTACTTTGGCCTTTGACACTATAGAACGCGGCCG yqhA
22R TCCACTAGTGGCCTATGCGGTATCCATCTGACGTTTGTGCTTTCTGCATTTGTGATGGGCTATCTTGACCGACTGACTCGTCATAATCAC
23F GCATGAGCTCTTGAACTTTAAGAAGGAGATATACATATGGGGACCTTCGTTATTGAACT SmPAL
23R ACTGGTACCTTATCACTTGTCATCGTCATCCTTGTAGTC
24F GCTAGAATTCTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCTTGAACTTTAAGAAGGAGATATACATATGGGGACCTTCGTTATTGAACTGGATAT SmPAL
24R ATGCATGCTCTCATGAGCGGATACATATTTGAATGTAT
25F GCTAGTCGACGCAAGGCCGTTTCTACGCGC gidB HR1
25R ATCGAATTCACAACAAAAACCACCCATTGACA
26F GCTAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAGGCGCGCCATTTAAATGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTACGATTATAAATATGCTGTGCGCGAAC atpI HR2
26R ATGAGTACTCTCACGAGCGACACAGACAT
27F GCATGAATTCCCATTTCCCTTCTCTACGGATGATT PosmB
27R ATGCGGATCCAATACTCTCTCCTGAATTTATGATTCACG
28F GCATCCATGGAAAGGGATGATCCAACCG aslA HR1
28R ATGCGAATTCAGCGATAGCGCCGGCTTAGT
29F GCATCTGCAGGAGATCTGCCTTTGCCGGAT aslB HR2
29R CATGGGCCACAGTGGCCGGGAGGCTGCCCGAAACACC
30F GCATACTAGTAGGATCTGATGGGTACCGTTC Cm
30R ATGCTGCAGTAGGTGACACTATAGAACGCGGCCGCCAGCTGAAGCTTTACCGTTCGTATAGCATACATTATAC
31F GCATGGCCACAGTGGCCGGTCAGACCAAGTT R6K ori
31R ATGCCATGGCATGGCTAATTCCCATGTCAGCCGTTAAGTGTTCC
32F CACGGCTGAATCGTTAATATTTTGCGAGTTCACGCCGAAATACTGATTTTTGGCGCTAGATCACAGGCATGACACTATAGAACGCGGCCG pntAB
32R CCACTGTTTTTGGCGTTGCTGCAACACGGGTTTCATTGGTTAACCGTTCTCTTGGTATGCCAATTCGCATAGCTGTTTCCTGGTTTAAACCGAATTGGTGGGGCGAGAGGCTCAATTATATCAACGTTGTTATCTCTTGTCAACACCGCCAGAGATAACCGCATAGGCCACTAGTGGA
33F TCGCTAACTTCGCTTATTATGGGGATCAGTTTCAGGGTTTCAAGGGAAGCACTCACATTGTCATCAATCTGACACTATAGAACGCGGCCG yfjB
33R CATGTGTTGTCAGTGCAGTGGGGTGCCGTGGGTGTCCCACAATGCCAATACACTTGAAATGATTATTCATAGCTGTTTCCTGGTTTAAACAATAAATTACGAGCCAGTGGCTCAATTATATCAACGTTGTTATCTCTTGTCAACACCGCCAGAGATAACCGCATAGGCCACTAGTGGA
34F ACGGCGCGCACGGCACCAGCCACTTCTATGTAACCCAGGAAGCGGCAAAAATGCTGAACAAACCGGTAGAAGAACTGAACATCATCACCTGCCACCTGGGCAACGGTGGTTCCGTTTCTGCTATCCGCAACGTCCGCTTATTATCACTTATTCAGGC pta-ackA
34R GATTACCCAGCAGTACGCAAGTTGCGATACCACGTTCAGCACAGATAGCGGCTGCTTTAACGGTACGCGGTTCGTCACCTTCCGGCAGTACGATACGTTTGCCCGCTTTGCAACGACGGATGCCGTGCTCTTTGTACAGGTTGTAAGGCAGCCTTACTTCGGTTCGATGGACTAATACCTGTGACGGAAGATCA
35F TGCCGCTCATATTCCCTCCAGCGAAATTGGCAGCGGCTATTTCCAGGAAACCCACCCACAAGAGCTATTCCGCGAATGTAGTCACTATTGCGAGCTGGTTTCCAGCCCGGAGCAGATCCCACAAGTACTGGCGATCCGCTTATTATCACTTATTCAGGC poxB
35R AAATCGTCCAGCCCTTTGCGGGCGTCGCGGTAATCTTCCAGCGCTTTATCCAGAAACTTGCGATCGGCTTTTTCTTCCACCAATGGAAGCAATGCACGCAGAGTCGAAATAGCTCTTGTGGGTGGGTTTCCTGGAAATAGCCGCTGCCCTTACTTCGGTTCGATGGACTAATACCTGTGACGGAAGATCA
36F TGCTTTTCAACGATAGCTTCCTGGCAGAGATTTTTTCTTATTATTCCTCCCCATCTGGTGTTACCCTCCTGCCCATTAACCCATTCAACAGAACTGTGACGCGCCATGGCAAATATCCGCTTATTATCACTTATTCAGGC coaA
36R CGGTCAAACTGTAGGTAAGGCGTCATTAACGTTTGCTCTTTTATACTCATATGTATATCTCCTTCTTAAAGTTCAAGCTAGCACTGTACCTAGGACTGAGCTAGCCGTCAACACCAGATGGGGAGGAATAATAAGAAAAAATCTCTGCCAGCCTTACTTCGGTTCGATGGACTAATACCTGTGACGGAAGATCA
37F GGTTACGGCCAGGACAGTCGTAACACCGTGCGTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTGCGGACGTAAAAAGGTGTTTTGCCATTTTCTGTTGGGCCATTGCA metK-proB
37R CGTTCGGCGTATCGCCAAAATCACCGCCGTAAGCCGACCACGGGTTGCCGTTTTCATCATATTTAATCAGCGACTGATCCACCCAGTCCCAGACGAAGCCGCCCTGTAAACGGGGGACCATGATTGCATGCGGTA
<110> Korea Advanced Institute of Science and Technology <120> Engineering of Escherichia coli for enhanced production of cinnamaldehyde <130> P20-B250 <160> 115 <170> KoPatentIn 3.0 <210> 1 <211> 3525 <212> DNA <213> Unknown <220> <223> Nocardia iowensis <400> 1 atggcagtgg attcaccgga tgagcggcta cagcgccgca ttgcacagtt gtttgcagaa 60 gatgagcagg tcaaggccgc acgtccgctc gaagcggtga gcgcggcggt gagcgcgccc 120 ggtatgcggc tggcgcagat cgccgccact gttatggcgg gttacgccga ccgcccggcc 180 gccgggcagc gtgcgttcga actgaacacc gacgacgcga cgggccgcac ctcgctgcgg 240 ttacttcccc gattcgagac catcacctat cgcgaactgt ggcagcgagt cggcgaggtt 300 gccgcggcct ggcatcatga tcccgagaac cccttgcgcg caggtgattt cgtcgccctg 360 ctcggcttca ccagcatcga ctacgccacc ctcgacctgg ccgatatcca cctcggcgcg 420 gttaccgtgc cgttgcaggc cagcgcggcg gtgtcccagc tgatcgctat cctcaccgag 480 acttcgccgc ggctgctcgc ctcgaccccg gagcacctcg atgcggcggt cgagtgccta 540 ctcgcgggca ccacaccgga acgactggtg gtcttcgact accaccccga ggacgacgac 600 cagcgtgcgg ccttcgaatc cgcccgccgc cgccttgccg acgcgggcag cttggtgatc 660 gtcgaaacgc tcgatgccgt gcgtgcccgg ggccgcgact taccggccgc gccactgttc 720 gttcccgaca ccgacgacga cccgctggcc ctgctgatct acacctccgg cagcaccgga 780 acgccgaagg gcgcgatgta caccaatcgg ttggccgcca cgatgtggca ggggaactcg 840 atgctgcagg ggaactcgca acgggtcggg atcaatctca actacatgcc gatgagccac 900 atcgccggtc gcatatcgct gttcggcgtg ctcgctcgcg gtggcaccgc atacttcgcg 960 gccaagagcg acatgtcgac actgttcgaa gacatcggct tggtacgtcc caccgagatc 1020 ttcttcgtcc cgcgcgtgtg cgacatggtc ttccagcgct atcagagcga gctggaccgg 1080 cgctcggtgg cgggcgccga cctggacacg ctcgatcggg aagtgaaagc cgacctccgg 1140 cagaactacc tcggtgggcg cttcctggtg gcggtcgtcg gcagcgcgcc gctggccgcg 1200 gagatgaaga cgttcatgga gtccgtcctc gatctgccac tgcacgacgg gtacgggtcg 1260 accgaggcgg gcgcaagcgt gctgctcgac aaccagatcc agcggccgcc ggtgctcgat 1320 tacaagctcg tcgacgtgcc cgaactgggt tacttccgca ccgaccggcc gcatccgcgc 1380 ggtgagctgt tgttgaaggc ggagaccacg attccgggct actacaagcg gcccgaggtc 1440 accgcggaga tcttcgacga ggacggcttc tacaagaccg gcgatatcgt ggccgagctc 1500 gagcacgatc ggctggtcta tgtcgaccgt cgcaacaatg tgctcaaact gtcgcagggc 1560 gagttcgtga ccgtcgccca tctcgaggcc gtgttcgcca gcagcccgct gatccggcag 1620 atcttcatct acggcagcag cgaacgttcc tatctgctcg cggtgatcgt ccccaccgac 1680 gacgcgctgc gcggccgcga caccgccacc ttgaaatcgg cactggccga atcgattcag 1740 cgcatcgcca aggacgcgaa cctgcagccc tacgagattc cgcgcgattt cctgatcgag 1800 accgagccgt tcaccatcgc caacggactg ctctccggca tcgcgaagct gctgcgcccc 1860 aatctgaagg aacgctacgg cgctcagctg gagcagatgt acaccgatct cgcgacaggc 1920 caggccgatg agctgctcgc cctgcgccgc gaagccgccg acctgccggt gctcgaaacc 1980 gtcagccggg cagcgaaagc gatgctcggc gtcgcctccg ccgatatgcg tcccgacgcg 2040 cacttcaccg acctgggcgg cgattccctt tccgcgctgt cgttctcgaa cctgctgcac 2100 gagatcttcg gggtcgaggt gccggtgggt gtcgtcgtca gcccggcgaa cgagctgcgc 2160 gatctggcga attacattga ggcggaacgc aactcgggcg cgaagcgtcc caccttcacc 2220 tcggtgcacg gcggcggttc cgagatccgc gccgccgatc tgaccctcga caagttcatc 2280 gatgcccgca ccctggccgc cgccgacagc attccgcacg cgccggtgcc agcgcagacg 2340 gtgctgctga ccggcgcgaa cggctacctc ggccggttcc tgtgcctgga atggctggag 2400 cggctggaca agacgggtgg cacgctgatc tgcgtcgtgc gcggtagtga cgcggccgcg 2460 gcccgtaaac ggctggactc ggcgttcgac agcggcgatc ccggcctgct cgagcactac 2520 cagcaactgg ccgcacggac cctggaagtc ctcgccggtg atatcggcga cccgaatctc 2580 ggtctggacg acgcgacttg gcagcggttg gccgaaaccg tcgacctgat cgtccatccc 2640 gccgcgttgg tcaaccacgt ccttccctac acccagctgt tcggccccaa tgtcgtcggc 2700 accgccgaaa tcgtccggtt ggcgatcacg gcgcggcgca agccggtcac ctacctgtcg 2760 accgtcggag tggccgacca ggtcgacccg gcggagtatc aggaggacag cgacgtccgc 2820 gagatgagcg cggtgcgcgt cgtgcgcgag agttacgcca acggctacgg caacagcaag 2880 tgggcggggg aggtcctgct gcgcgaagca cacgatctgt gtggcttgcc ggtcgcggtg 2940 ttccgttcgg acatgatcct ggcgcacagc cggtacgcgg gtcagctcaa cgtccaggac 3000 gtgttcaccc ggctgatcct cagcctggtc gccaccggca tcgcgccgta ctcgttctac 3060 cgaaccgacg cggacggcaa ccggcagcgg gcccactatg acggcttgcc ggcggacttc 3120 acggcggcgg cgatcaccgc gctcggcatc caagccaccg aaggcttccg gacctacgac 3180 gtgctcaatc cgtacgacga tggcatctcc ctcgatgaat tcgtcgactg gctcgtcgaa 3240 tccggccacc cgatccagcg catcaccgac tacagcgact ggttccaccg tttcgagacg 3300 gcgatccgcg cgctgccgga aaagcaacgc caggcctcgg tgctgccgtt gctggacgcc 3360 taccgcaacc cctgcccggc ggtccgcggc gcgatactcc cggccaagga gttccaagcg 3420 gcggtgcaaa cagccaaaat cggtccggaa caggacatcc cgcatttgtc cgcgccactg 3480 atcgataagt acgtcagcga tctggaactg cttcagctgc tctga 3525 <210> 2 <211> 3525 <212> DNA <213> Mycobacterium marinum <400> 2 atgtcgccaa tcacgcgtga agagcggctc gagcgccgca tccaggacct ctacgccaac 60 gacccgcagt tcgccgccgc caaacccgcc acggcgatca ccgcagcaat cgagcggccg 120 ggtctaccgc taccccagat catcgagacc gtcatgaccg gatacgccga tcggccggct 180 ctcgctcagc gctcggtcga attcgtgacc gacgccggca ccggccacac cacgctgcga 240 ctgctccccc acttcgaaac catcagctac ggcgagcttt gggaccgcat cagcgcactg 300 gccgacgtgc tcagcaccga acagacggtg aaaccgggcg accgggtctg cttgttgggc 360 ttcaacagcg tcgactacgc cacgatcgac atgactttgg cgcggctggg cgcggtggcc 420 gtaccactgc agaccagcgc ggcgataacc cagctgcagc cgatcgtcgc cgagacccag 480 cccaccatga tcgcggccag cgtcgacgca ctcgctgacg ccaccgaatt ggctctgtcc 540 ggtcagaccg ctacccgagt cctggtgttc gaccaccacc ggcaggttga cgcacaccgc 600 gcagcggtcg aatccgcccg ggagcgcctg gccggctcgg cggtcgtcga aaccctggcc 660 gaggccatcg cgcgcggcga cgtgccccgc ggtgcgtccg ccggctcggc gcccggcacc 720 gatgtgtccg acgactcgct cgcgctactg atctacacct cgggcagcac gggtgcgccc 780 aagggcgcga tgtacccccg acgcaacgtt gcgaccttct ggcgcaagcg cacctggttc 840 gaaggcggct acgagccgtc gatcacgctg aacttcatgc caatgagcca cgtcatgggc 900 cgccaaatcc tgtacggcac gctgtgcaat ggcggcaccg cctacttcgt ggcgaaaagc 960 gatctctcca ccttgttcga agacctggcg ctggtgcggc ccaccgagct gaccttcgtg 1020 ccgcgcgtgt gggacatggt gttcgacgag tttcagagtg aggtcgaccg ccgcctggtc 1080 gacggcgccg accgggtcgc gctcgaagcc caggtcaagg ccgagatacg caacgacgtg 1140 ctcggtggac ggtataccag cgcactgacc ggctccgccc ctatctccga cgagatgaag 1200 gcgtgggtcg aggagctgct cgacatgcat ctggtcgagg gctacggctc caccgaggcc 1260 gggatgatcc tgatcgacgg agccattcgg cgcccggcgg tactcgacta caagctggtc 1320 gatgttcccg acctgggtta cttcctgacc gaccggccac atccgcgggg cgagttgctg 1380 gtcaagaccg atagtttgtt cccgggctac taccagcgag ccgaagtcac cgccgacgtg 1440 ttcgatgctg acggcttcta ccggaccggc gacatcatgg ccgaggtcgg ccccgaacag 1500 ttcgtgtacc tcgaccgccg caacaacgtg ttgaagctgt cgcagggcga gttcgtcacc 1560 gtctccaaac tcgaagcggt gtttggcgac agcccactgg tacggcagat ctacatctac 1620 ggcaacagcg cccgtgccta cctgttggcg gtgatcgtcc ccacccagga ggcgctggac 1680 gccgtgcctg tcgaggagct caaggcgcgg ctgggcgact cgctgcaaga ggtcgcaaag 1740 gccgccggcc tgcagtccta cgagatcccg cgcgacttca tcatcgaaac aacaccatgg 1800 acgctggaga acggcctgct caccggcatc cgcaagttgg ccaggccgca gctgaaaaag 1860 cattacggcg agcttctcga gcagatctac acggacctgg cacacggcca ggccgacgaa 1920 ctgcgctcgc tgcgccaaag cggtgccgat gcgccggtgc tggtgacggt gtgccgtgcg 1980 gcggccgcgc tgttgggcgg cagcgcctct gacgtccagc ccgatgcgca cttcaccgat 2040 ttgggcggcg actcgctgtc ggcgctgtcg ttcaccaacc tgctgcacga gatcttcgac 2100 atcgaagtgc cggtgggcgt catcgtcagc cccgccaacg acttgcaggc cctggccgac 2160 tacgtcgagg cggctcgcaa acccggctcg tcacggccga ccttcgcctc ggtccacggc 2220 gcctcgaatg ggcaggtcac cgaggtgcat gccggtgacc tgtccctgga caaattcatc 2280 gatgccgcaa ccctggccga agctccccgg ctgcccgccg caaacaccca agtgcgcacc 2340 gtgctgctga ccggcgccac cggcttcctc gggcgctacc tggccctgga atggctggag 2400 cggatggacc tggtcgacgg caaactgatc tgcctggtcc gggccaagtc cgacaccgaa 2460 gcacgggcgc ggctggacaa gacgttcgac agcggcgacc ccgaactgct ggcccactac 2520 cgcgcactgg ccggcgacca cctcgaggtg ctcgccggtg acaagggcga agccgacctc 2580 ggactggacc ggcagacctg gcaacgcctg gccgacacgg tcgacctgat cgtcgacccc 2640 gcggccctgg tcaaccacgt actgccatac agccagctgt tcgggcccaa cgcgctgggc 2700 accgccgagc tgctgcggct ggcgctcacc tccaagatca agccctacag ctacacctcg 2760 acaatcggtg tcgccgacca gatcccgccg tcggcgttca ccgaggacgc cgacatccgg 2820 gtcatcagcg ccacccgcgc ggtcgacgac agctacgcca atggctactc gaacagcaag 2880 tgggccggcg aggtgctgtt gcgcgaggcg catgacctgt gtggcctgcc ggttgcggtg 2940 ttccgctgcg acatgatcct ggccgacacc acatgggcgg gacagctcaa tgtgccggac 3000 atgttcaccc ggatgatcct gagcctggcg gccaccggta tcgcgccggg ttcgttctat 3060 gagcttgcgg ccgacggcgc ccggcaacgc gcccactatg acggtctgcc cgtcgagttc 3120 atcgccgagg cgatttcgac tttgggtgcg cagagccagg atggtttcca cacgtatcac 3180 gtgatgaacc cctacgacga cggcatcgga ctcgacgagt tcgtcgactg gctcaacgag 3240 tccggttgcc ccatccagcg catcgctgac tatggcgact ggctgcagcg cttcgaaacc 3300 gcactgcgcg cactgcccga tcggcagcgg cacagctcac tgctgccgct gttgcacaac 3360 tatcggcagc cggagcggcc cgtccgcggg tcgatcgccc ctaccgatcg cttccgggca 3420 gcggtgcaag aggccaagat cggccccgac aaagacattc cgcacgtcgg cgcgccgatc 3480 atcgtgaagt acgtcagcga cctgcgccta ctcggcctgc tctga 3525 <210> 3 <211> 675 <212> DNA <213> Bacillus subtilis <400> 3 atgaagattt acggaattta tatggaccgc ccgctttcac aggaagaaaa tgaacggttc 60 atgtctttca tatcacctga aaaacgggag aaatgccgga gattttatca taaagaagat 120 gctcaccgca ccctgctggg agatgtgctc gttcgctcag tcataagcag gcagtatcag 180 ttggacaaat ccgatatccg ctttagcacg caggaatacg ggaagccgtg catccctgat 240 cttcccgacg ctcatttcaa catttctcac tccggacgct gggtcatttg cgcgtttgat 300 tcacagccga tcggcataga tatcgaaaaa acgaaaccga tcagccttga gatcgccaag 360 cgcttctttt caaaaacaga gtacagcgac cttttagcaa aagacaagga cgagcagaca 420 gactattttt atcatctatg gtcaatgaaa gaaagcttta tcaaacagga aggcaaaggc 480 ttatcgcttc cgcttgattc cttttcagtg cgcctgcacc aggacggaca agtatccatt 540 gagcttccgg acagccattc cccatgctat atcaaaacgt atgaggtcga tcccggctac 600 aaaatggctg tatgcgccgt acaccctgat ttccccgagg atatcacaat ggtctcgtac 660 gaagagcttt tataa 675 <210> 4 <211> 669 <212> DNA <213> Unknown <220> <223> Nocardia iowensis <400> 4 atgatcgaga caattttgcc tgctggtgtc gagtcggctg agctgctgga gtatccggag 60 gacctgaagg cgcatccggc ggaggagcat ctcatcgcga agtcggtgga gaagcggcgc 120 cgggacttca tcggggccag gcattgtgcc cggctggcgc tggctgagct cggcgagccg 180 ccggtggcga tcggcaaagg ggagcggggt gcgccgatct ggccgcgcgg cgtcgtcggc 240 agcctcaccc attgcgacgg atatcgggcc gcggcggtgg cgcacaagat gcgcttccgt 300 tcgatcggca tcgatgccga gccgcacgcg acgctgcccg aaggcgtgct ggattcggtc 360 agcctgccgc cggagcggga gtggttgaag accaccgatt ccgcactgca cctggaccgt 420 ttactgttct gcgccaagga agccacctac aaggcgtggt ggccgctgac cgcgcgctgg 480 ctcggcttcg aggaagcgca catcaccttc gagatcgaag acggctccgc cgattccggc 540 aacggcacct ttcacagcga gctgctggtg ccgggacaga cgaatgacgg tgggacgccg 600 ctgctttcgt tcgacggccg gtggctgatc gccgacgggt tcatcctcac cgcgatcgcg 660 tacgcctga 669 <210> 5 <211> 510 <212> DNA <213> Escherichia coli <400> 5 atgggtttgt tcgataaact gaaatctctg gtttccgacg acaagaagga taccggaact 60 attgagatca ttgctccgct ctctggcgag atcgtcaata tcgaagacgt gccggatgtc 120 gtttttgcgg aaaaaatcgt tggtgatggt attgctatca aaccaacggg taacaaaatg 180 gtcgcgccag tagacggcac cattggtaaa atctttgaaa ccaaccacgc attctctatc 240 gaatctgata gcggcgttga actgttcgtc cacttcggta tcgacaccgt tgaactgaaa 300 ggcgaaggct tcaagcgtat tgctgaagaa ggtcagcgcg tgaaagttgg cgatactgtc 360 attgaatttg atctgccgct gctggaagag aaagccaagt ctaccctgac tccggttgtt 420 atctccaaca tggacgaaat caaagaactg atcaaactgt ccggtagcgt aaccgtgggt 480 gaaaccccgg ttatccgcat caagaagtaa 510 <210> 6 <211> 1542 <212> DNA <213> Escherichia coli <400> 6 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg atcccattgg gcgaatctac 120 ctcaattttg ctgaactgga gtttgagagt ttcagcagtc tgatggccga aatacgccgt 180 attgcgggtg ttaccgatgt gcgtactgtc ccgtggatgc cttccgaacg tgagcatctg 240 gcgttgagcg cgttactgga ggcgttgcct gaacctgtgc tctctgtcga tatgaaaagc 300 aaagtggata tggcgaaccc ggcgagctgt cagctttttg ggcaaaaatt ggatcgcctg 360 cgcaaccata ccgccgcaca attgattaac ggctttaatt ttttacgttg gctggaaagc 420 gaaccgcaag attcgcataa cgagcatgtc gttattaatg ggcagaattt cctgatggag 480 attacgcctg tttatcttca ggatgaaaat gatcaacacg tcctgaccgg tgcggtggtg 540 atgttgcgat caacgattcg tatgggccgc cagttgcaaa atgtcgccgc ccaggacgtc 600 agcgccttca gtcaaattgt cgccgtcagc ccgaaaatga agcatgttgt cgaacaggcg 660 cagaaactgg cgatgctaag cgcgccgctg ctgattacgg gtgacacagg tacaggtaaa 720 gatctctttg cctacgcctg ccatcaggca agccccagag cgggcaaacc ttacctggcg 780 ctgaactgtg cgtctatacc ggaagatgcg gtcgagagtg aactgtttgg tcatgctccg 840 gaagggaaga aaggattctt tgagcaggcg aacggtggtt cggtgctgtt ggatgaaata 900 ggggaaatgt caccacggat gcaggcgaaa ttactgcgtt tccttaatga tggcactttc 960 cgtcgggttg gcgaagacca tgaggtgcat gtcgatgtgc gggtgatttg cgctacgcag 1020 aagaatctgg tcgaactggt gcaaaaaggc atgttccgtg aagatctcta ttatcgtctg 1080 aacgtgttga cgctcaatct gccgccgcta cgtgactgtc cgcaggacat catgccgtta 1140 actgagctgt tcgtcgcccg ctttgccgac gagcagggcg tgccgcgtcc gaaactggcc 1200 gctgacctga atactgtact tacgcgttat gcgtggccgg gaaatgtgcg gcagttaaag 1260 aacgctatct atcgcgcact gacacaactg gacggttatg agctgcgtcc acaggatatt 1320 ttgttgccgg attatgacgc cgcaacggta gccgtgggcg aagatgcgat ggaaggttcg 1380 ctggacgaaa tcaccagccg ttttgaacgc tcggtattaa cccagcttta tcgcaattat 1440 cccagcacgc gcaaactggc aaaacgtctc ggcgtttcac ataccgcgat tgccaataag 1500 ttgcgggaat atggtctgag tcagaagaag aacgaagagt aa 1542 <210> 7 <211> 1443 <212> DNA <213> Escherichia coli <400> 7 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120 cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180 ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240 tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300 ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360 gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420 gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480 ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540 gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600 ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660 gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720 ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780 gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840 atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900 gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960 actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020 gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080 gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140 gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200 ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260 cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320 gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380 cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440 taa 1443 <210> 8 <211> 1053 <212> DNA <213> Escherichia coli <400> 8 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 9 <211> 1050 <212> DNA <213> Artificial Sequence <220> <223> aroG8/15 <400> 9 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcaatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aataccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg 1050 <210> 10 <211> 1161 <212> DNA <213> Escherichia coli <400> 10 atgacatcgg aaaacccgtt actggcgctg cgagagaaaa tcagcgcgct ggatgaaaaa 60 ttattagcgt tactggcaga acggcgcgaa ctggccgtcg aggtgggaaa agccaaactg 120 ctctcgcatc gcccggtacg tgatattgat cgtgaacgcg atttgctgga aagattaatt 180 acgctcggta aagcgcacca tctggacgcc cattacatta ctcgcctgtt ccagctcatc 240 attgaagatt ccgtattaac tcagcaggct ttgctccaac aacatctcaa taaaattaat 300 ccgcactcag cacgcatcgc ttttctcggc cccaaaggtt cttattccca tcttgcggcg 360 cgccagtatg ctgcccgtca ctttgagcaa ttcattgaaa gtggctgcgc caaatttgcc 420 gatattttta atcaggtgga aaccggccag gccgactatg ccgtcgtacc gattgaaaat 480 accagctccg gtgccataaa cgacgtttac gatctgctgc aacataccag cttgtcgatt 540 gttggcgaga tgacgttaac tatcgaccat tgtttgttgg tctccggcac tactgattta 600 tccaccatca atacggtcta cagccatccg cagccattcc agcaatgcag caaattcctt 660 aatcgttatc cgcactggaa gattgaatat accgaaagta cgtctgcggc aatggaaaag 720 gttgcacagg caaaatcacc gcatgttgct gcgttgggaa gcgaagctgg cggcactttg 780 tacggtttgc aggtactgga gcgtattgaa gcaaatcagc gacaaaactt cacccgattt 840 gtggtgttgg cgcgtaaagc cattaacgtg tctgatcagg ttccggcgaa aaccacgttg 900 ttaatggcga ccgggcaaca agccggtgcg ctggttgaag cgttgctggt actgcgcaac 960 cacaatctga ttatgacccg tctggaatca cgcccgattc acggtaatcc atgggaagag 1020 atgttctatc tggatattca ggccaatctt gaatcagcgg aaatgcaaaa agcattgaaa 1080 gagttagggg aaatcacccg ttcaatgaag gtattgggct gttacccaag tgagaacgta 1140 gtgcctgttg atccaacctg a 1161 <210> 11 <211> 900 <212> DNA <213> Artificial Sequence <220> <223> pheAfbr/dm <400> 11 atgacatcgg aaaacccgtt actggcgctg cgagagaaaa tcagcgcgct ggatgaaaaa 60 ttattagcgt tactggcaga acggcgcgaa ctggccgtcg aggtgggaaa agccaaactg 120 ctctcgcatc gcccggtacg tgatattgat cgtgaacgcg atttgctgga aagattaatt 180 acgctcggta aagcgcacca tctggacgcc cattacatta ctcgcctgtt ccagctcatc 240 attgaagatt ccgtattaac tcagcaggct ttgctccaac aacatctcaa taaaattaat 300 ccgcactcag cacgcatcgc ttttctcggc cccaaaggtt cttattccca tcttgcggcg 360 cgccagtatg ctgcccgtca ctttgagcaa ttcattgaaa gtggctgcgc caaatttgcc 420 gatattttta atcaggtgga aaccggccag gccgactatg ccgtcgtacc gattgcaaat 480 accagctccg gtgccataaa cgacgtttac gatctgctgc aacataccag cttgtcgatt 540 gttggcgaga tgacgttaac tatcgaccat tgtttgttgg tctccggcac tactgattta 600 tccaccatca atacggtcta cagccatccg cagccattcc agcaatgcag caaattcctt 660 aatcgttatc cgcactggaa gattgaatat accgcaagta cgtctgcggc aatggaaaag 720 gttgcacagg caaaatcacc gcatgttgct gcgttgggaa gcgaagctgg cggcactttg 780 tacggtttgc aggtactgga gcgtattgaa gcaaatcagc gacaaaactt cacccgattt 840 gtggtgttgg cgcgtaaagc cattaacgtg tctgatcagg ttccggcgaa aaccacgttg 900 900 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BBa_J23100 <400> 12 ttgacggcta gctcagtcct aggtacagtg ctagc 35 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BBa_J23106 <400> 13 tttacggcta gctcagtcct aggtatagtg ctagc 35 <210> 14 <211> 1395 <212> DNA <213> Escherichia coli <400> 14 atgcctgacg ctaaaaaaca ggggcggtca aacaaggcaa tgacgttttt cgtctgcttc 60 cttgccgctc tggcgggatt actctttggc ctggatatcg gtgtaattgc tggcgcactg 120 ccgtttattg cagatgaatt ccagattact tcgcacacgc aagaatgggt cgtaagctcc 180 atgatgttcg gtgcggcagt cggtgcggtg ggcagcggct ggctctcctt taaactcggg 240 cgcaaaaaga gcctgatgat cggcgcaatt ttgtttgttg ccggttcgct gttctctgcg 300 gctgcgccaa acgttgaagt actgattctt tcccgcgttc tactggggct ggcggtgggt 360 gtggcctctt ataccgcacc gctgtacctc tctgaaattg cgccggaaaa aattcgtggc 420 agtatgatct cgatgtatca gttgatgatc actatcggga tcctcggtgc ttatctttct 480 gataccgcct tcagctacac cggtgcatgg cgctggatgc tgggtgtgat tatcatcccg 540 gcaattttgc tgctgattgg tgtcttcttc ctgccagaca gcccacgttg gtttgccgcc 600 aaacgccgtt ttgttgatgc cgaacgcgtg ctgctacgcc tgcgtgacac cagcgcggaa 660 gcgaaacgcg aactggatga aatccgtgaa agtttgcagg ttaaacagag tggctgggcg 720 ctgtttaaag agaacagcaa cttccgccgc gcggtgttcc ttggcgtact gttgcaggta 780 atgcagcaat tcaccgggat gaacgtcatc atgtattacg cgccgaaaat cttcgaactg 840 gcgggttata ccaacactac cgagcaaatg tgggggaccg tgattgtcgg cctgaccaac 900 gtacttgcca cctttatcgc aatcggcctt gttgaccgct ggggacgtaa accaacgcta 960 acgctgggct tcctggtgat ggctgctggc atgggcgtac tcggtacaat gatgcatatc 1020 ggtattcact ctccgtcggc gcagtatttc gccatcgcca tgctgctgat gtttattgtc 1080 ggttttgcca tgagtgccgg tccgctgatt tgggtactgt gctccgaaat tcagccgctg 1140 aaaggccgcg attttggcat cacctgctcc actgccacca actggattgc caacatgatc 1200 gttggcgcaa cgttcctgac catgctcaac acgctgggta acgccaacac cttctgggtg 1260 tatgcggctc tgaacgtact gtttatcctg ctgacattgt ggctggtacc ggaaaccaaa 1320 cacgtttcgc tggaacatat tgaacgtaat ctgatgaaag gtcgtaaact gcgcgaaata 1380 ggcgctcacg attaa 1395 <210> 15 <211> 966 <212> DNA <213> Escherichia coli <400> 15 atgacaaagt atgcattagt cggtgatgtg ggcggcacca acgcacgtct tgctctgtgt 60 gatattgcca gtggtgaaat ctcgcaggct aagacctatt cagggcttga ttaccccagc 120 ctcgaagcgg tcattcgcgt ttatcttgaa gaacataagg tcgaggtgaa agacggctgt 180 attgccatcg cttgcccaat taccggtgac tgggtggcga tgaccaacca tacctgggcg 240 ttctcaattg ccgaaatgaa aaagaatctc ggttttagcc atctggaaat tattaacgat 300 tttaccgctg tatcgatggc gatcccgatg ctgaaaaaag agcatctgat tcagtttggt 360 ggcgcagaac cggtcgaagg taagcctatt gcggtttacg gtgccggaac ggggcttggg 420 gttgcgcatc tggtccatgt cgataagcgt tgggtaagct tgccaggcga aggcggtcac 480 gttgattttg cgccgaatag tgaagaagag gccattatcc tcgaaatatt gcgtgcggaa 540 attggtcatg tttcggcgga gcgcgtgctt tctggccctg ggctggtgaa tttgtatcgc 600 gcaattgtga aagctgacaa ccgcctgcca gaaaatctca agccaaaaga tattaccgaa 660 cgcgcgctgg ctgacagctg caccgattgc cgccgcgcat tgtcgctgtt ttgcgtcatt 720 atgggccgtt ttggcggcaa tctggcgctc aatctcggga catttggcgg cgtgtttatt 780 gcgggcggta tcgtgccgcg cttccttgag ttcttcaaag cctccggttt ccgtgccgca 840 tttgaagata aagggcgctt taaagaatat gtccatgata ttccggtgta tctcatcgtc 900 catgacaatc cgggccttct cggttccggt gcacatttac gccagacctt aggtcacatt 960 ctgtaa 966 <210> 16 <211> 804 <212> DNA <213> Escherichia coli <400> 16 atggctatcc ctgcatttgg tttaggtact ttccgtctga aagacgacgt tgttatttca 60 tctgtgataa cggcgcttga acttggttat cgcgcaattg ataccgcaca aatctatgat 120 aacgaagccg cagtaggtca ggcgattgca gaaagtggcg tgccacgtca tgaactctac 180 atcaccacta aaatctggat tgaaaatctc agcaaagaca aattgatccc aagtctgaaa 240 gagagcctgc aaaaattgcg taccgattat gttgatctga cgctaatcca ctggccgtca 300 ccaaacgatg aagtctctgt tgaagagttt atgcaggcgc tgctggaagc caaaaaacaa 360 gggctgacgc gtgagatcgg tatttccaac ttcacgatcc cgttgatgga aaaagcgatt 420 gctgctgttg gtgctgaaaa catcgctact aaccagattg aactctctcc ttatctgcaa 480 aaccgtaaag tggttgcctg ggctaaacag cacggcatcc atattacttc ctatatgacg 540 ctggcgtatg gtaaggccct gaaagatgag gttattgctc gtatcgcagc taaacacaat 600 gcgactccgg cacaagtgat tctggcgtgg gctatggggg aaggttactc agtaattcct 660 tcttctacta aacgtaaaaa cctggaaagt aatcttaagg cacaaaattt acagcttgat 720 gccgaagata aaaaagcgat cgccgcactg gattgcaacg accgcctggt tagcccggaa 780 ggtctggctc ctgaatggga ttaa 804 <210> 17 <211> 1050 <212> DNA <213> Escherichia coli <400> 17 atgaagatca aagctgttgg tgcatattcc gctaaacaac cacttgaacc gatggatatc 60 acccggcgtg aaccgggacc gaatgatgtc aaaatcgaaa tcgcttactg tggcgtttgc 120 cattccgatc tccaccaggt ccgttccgag tgggcgggga cggtttaccc ctgcgtgccg 180 ggtcatgaaa ttgtggggcg tgtggtagcc gttggtgatc aggtagaaaa atatgcgccg 240 ggcgatctgg tcggtgtcgg ctgcattgtc gacagttgta aacattgcga agagtgtgaa 300 gacgggttgg aaaactactg tgatcacatg accggcacct ataactcgcc gacgccggac 360 gaaccgggcc atactctggg cggctactca caacagatcg tcgttcatga gcgatatgtt 420 ctgcgtattc gtcacccgca agagcagctg gcggcggtgg ctcctttgtt gtgtgcaggg 480 atcaccacgt attcgccgct acgtcactgg caggccgggc cgggtaaaaa agtgggcgtg 540 gtcggcatcg gcggtctggg acatatgggg attaagctgg cccacgcgat gggggcacat 600 gtggtggcat ttaccacttc tgaggcaaaa cgcgaagcgg caaaagccct gggggccgat 660 gaagttgtta actcacgcaa tgccgatgag atggcggctc atctgaagag tttcgatttc 720 attttgaata cagtagctgc gccacataat ctcgacgatt ttaccacctt gctgaagcgt 780 gatggcacca tgacgctggt tggtgcgcct gcgacaccgc ataaatcgcc ggaagttttc 840 aacctgatca tgaaacgccg tgcgatagcc ggttctatga ttggcggcat tccagaaact 900 caggagatgc tcgatttttg cgccgaacat ggcatcgtgg ctgatataga gatgattcgg 960 gccgatcaaa ttaatgaagc ctatgagcga atgctgcgcg gtgatgtgaa atatcgtttt 1020 gttatcgata atcgcacact aacagactga 1050 <210> 18 <211> 855 <212> DNA <213> Escherichia coli <400> 18 atgcaacaaa aaatgattca atttagtggc gatgtctcac tgccagccgt agggcaggga 60 acatggtata tgggcgaaga tgccagtcag cgcaaaacag aagttgctgc actacgcgcg 120 ggcattgaac tcggtttaac cctcattgat accgccgaaa tgtatgccga tggcggtgcc 180 gaaaaggtgg ttggggaagc attaaccggt ctgcgagaga aggtctttct cgtctctaaa 240 gtctatccgt ggaatgctgg cgggcaaaaa gcgataaatg catgcgaagc cagtttacgc 300 cgtctcaata ctgattatct cgatctttac ttattacact ggtctggcag tttcgctttt 360 gaagagactg tcgcagcgat ggaaaaattg atcgcccagg gaaaaatccg ccgctggggc 420 gtttctaacc ttgattatgc tgatatgcag gaactctggc agctgccggg gggaaatcag 480 tgtgccacta atcaggtgct ttaccatctc ggttcacgag gaattgagta cgatctactc 540 ccctggtgcc agcaacagca gatgccggtg atggcttaca gtccgttagc ccaggccggg 600 cggttgcgca atggactgtt aaaaaacgcg gtagtcaacg aaattgcaca tgctcacaat 660 atcagcgcgg cacaagtatt gttggcgtgg gtgatcagtc atcagggtgt gatggcgatt 720 ccaaaagcgg ccacgattgc ccatgtccaa caaaatgcgg ctgtgcttga ggtcgaactt 780 tcttcagcgg aattagctat gctggataag gcatatccgg caccaaaagg aaaaactgcg 840 ctggatatgg tgtga 855 <210> 19 <211> 1020 <212> DNA <213> Escherichia coli <400> 19 atgtcgatga taaaaagcta tgccgcaaaa gaagcgggcg gcgaactgga agtttatgag 60 tacgatcccg gtgagctgag gccacaagat gttgaagtgc aggtggatta ctgcgggatc 120 tgccattccg atctgtcgat gatcgataac gaatggggat tttcacaata tccgctggtt 180 gccgggcatg aggtgattgg gcgcgtggtg gcactcggga gcgccgcgca ggataaaggt 240 ttgcaggtcg gtcagcgtgt cgggattggc tggacggcgc gtagctgtgg tcactgcgac 300 gcctgtatta gcggtaatca gatcaactgc gagcaaggtg cggtgccgac gattatgaat 360 cgcggtggct ttgccgagaa gttgcgtgcg gactggcaat gggtgattcc actgccagaa 420 aatattgata tcgagtccgc cgggccgctg ttgtgcggcg gtatcacggt ctttaaacca 480 ctgttgatgc accatatcac tgctaccagc cgcgttgggg taattggtat tggcgggctg 540 gggcatatcg ctataaaact tctgcacgca atgggatgcg aggtgacagc ctttagttct 600 aatccggcga aagagcagga agtgctggcg atgggtgccg ataaagtggt gaatagccgc 660 gatccgcagg cactgaaagc actggcgggg cagtttgatc tcattatcaa caccgtcaac 720 gtcagcctcg actggcagcc ctattttgag gcgctgacct atggcggtaa tttccatacg 780 gtcggtgcgg ttctcacgcc gctgtctgtt ccggccttta cgttaattgc gggcgatcgc 840 agcgtctctg gttctgctac cggcacgcct tatgagctgc gtaagctgat gcgttttgcc 900 gcccgcagca aggttgcgcc gaccaccgaa ctgttcccga tgtcgaaaat taacgacgcc 960 atccagcatg tgcgcgacgg taaggcgcgt taccgcgtgg tgttgaaagc cgatttttga 1020 1020 <210> 20 <211> 957 <212> DNA <213> Escherichia coli <400> 20 atgctacaaa attgcgcaca atcaaattgc cgcattattc ctaagaaatt acgcgatatg 60 aaacgtgaag agatttgccg cttgctggcg gataaagtta ataaactgaa aaataaagaa 120 aatagtttgt caggactgtt gcccgatgtg cgtttgttgt atggcgagac gcctttcgca 180 cgtacaccgg tgatgtacga gcctggcatc ataattctct tttccgggca taaaatcggt 240 tatatcaatg aacgcgtgtt tcgttatgat gccaatgaat acctgctgct gacggtgccg 300 ttgccgtttg agtgcgaaac ctatgccacg tcagaggtgc cgctggcagg gttgcgtctc 360 aatgtcgata ttttgcagtt acaggaactg ttgatggaca ttggcgaaga tgagcatttc 420 cagccgtcga tggcagccag cgggattaac tccgccacgt tatcagaaga gattttatgc 480 gcggcggagc ggttactcga cgtgatggag cgaccactgg atgcgcgtat tctcggcaaa 540 cagatcatcc gcgaaattct gtactacgtg ctgaccggac cttgcggcgg cgcgttactg 600 gcgctggtca gtcgccagac tcacttcagt ctgattagcc gcgtgctgaa acggattgag 660 aataaataca ccgaaaacct gagcgtcgag caactggcgg cagaagccaa catgagcgta 720 tcggcgttcc accataattt taagtctgtc accagtacct cgccgttgca gtatttgaag 780 aattaccgtc tgcataaggc gcggatgatg atcatccatg acggcatgaa ggccagcgca 840 gcagcgatgc gcgtcggcta tgaaagcgca tcgcaattta gccgtgagtt taaacgttac 900 ttcggtgtga cgccggggga agatgcggca agaatgcggg cgatgcaggg gaattaa 957 <210> 21 <211> 1164 <212> DNA <213> Escherichia coli <400> 21 atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60 ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120 gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180 gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240 gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300 accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360 caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420 gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480 caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540 tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600 gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660 ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720 cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780 ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840 cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900 cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960 gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020 acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080 gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140 cgtatatacg aagccgcccg ctaa 1164 <210> 22 <211> 828 <212> DNA <213> Escherichia coli <400> 22 atggctaatc caaccgttat taagctacag gatggcaatg tcatgcccca gctgggactg 60 ggcgtctggc aagcaagtaa tgaggaagta atcaccgcca ttcaaaaagc gttagaagtg 120 ggttatcgct cgattgatac cgccgcggcc tacaagaacg aagaaggtgt cggcaaagcc 180 ctgaaaaatg cctcagtcaa cagagaagaa ctgttcatca ccactaagct gtggaacgac 240 gaccacaagc gcccccgcga agccctgctc gacagcctga aaaaactcca gcttgattat 300 atcgacctct acttaatgca ctggcccgtt cccgctatcg accattatgt cgaagcatgg 360 aaaggcatga tcgaattgca aaaagaggga ttaatcaaaa gcatcggcgt gtgcaacttc 420 cagatccatc acctgcaacg cctgattgat gaaactggcg tgacgcctgt gataaaccag 480 atcgaacttc atccgctgat gcaacaacgc cagctacacg cctggaacgc gacacacaaa 540 atccagaccg aatcctggag cccattagcg caaggaggga aaggcgtttt cgatcagaaa 600 gtcattcgcg atctggcaga taaatacggc aaaaccccgg cgcagattgt tatccgctgg 660 catctggata gcggcctggt ggtgatcccg aaatcggtca caccttcacg tattgccgaa 720 aactttgatg tctgggattt ccgtctcgac aaagacgaac tcggcgaaat tgcaaaactc 780 gatcagggca agcgtctcgg tcccgatcct gaccagttcg gcggctaa 828 <210> 23 <211> 1104 <212> DNA <213> Escherichia coli <400> 23 atggaccgca ttattcaatc accgggtaaa tacatccagg gcgctgatgt gattaatcgt 60 ctgggcgaat acctgaagcc gctggcagaa cgctggttag tggtgggtga caaatttgtt 120 ttaggttttg ctcaatccac tgtcgagaaa agctttaaag atgctggact ggtagtagaa 180 attgcgccgt ttggcggtga atgttcgcaa aatgagatcg accgtctgcg tggcatcgcg 240 gagactgcgc agtgtggcgc aattctcggt atcggtggcg gaaaaaccct cgatactgcc 300 aaagcactgg cacatttcat gggtgttccg gtagcgatcg caccgactat cgcctctacc 360 gatgcaccgt gcagcgcatt gtctgttatc tacaccgatg agggtgagtt tgaccgctat 420 ctgctgttgc caaataaccc gaatatggtc attgtcgaca ccaaaatcgt cgctggcgca 480 cctgcacgtc tgttagcggc gggtatcggc gatgcgctgg caacctggtt tgaagcgcgt 540 gcctgctctc gtagcggcgc gaccaccatg gcgggcggca agtgcaccca ggctgcgctg 600 gcactggctg aactgtgcta caacaccctg ctggaagaag gcgaaaaagc gatgcttgct 660 gccgaacagc atgtagtgac tccggcgctg gagcgcgtga ttgaagcgaa cacctatttg 720 agcggtgttg gttttgaaag tggtggtctg gctgcggcgc acgcagtgca taacggcctg 780 accgctatcc cggacgcgca tcactattat cacggtgaaa aagtggcatt cggtacgctg 840 acgcagctgg ttctggaaaa tgcgccggtg gaggaaatcg aaaccgtagc tgcccttagc 900 catgcggtag gtttgccaat aactctcgct caactggata ttaaagaaga tgtcccggcg 960 aaaatgcgaa ttgtggcaga agcggcatgt gcagaaggtg aaaccattca caacatgcct 1020 ggcggcgcga cgccagatca ggtttacgcc gctctgctgg tagccgacca gtacggtcag 1080 cgtttcctgc aagagtggga ataa 1104 <210> 24 <211> 810 <212> DNA <213> Escherichia coli <400> 24 atgactcata aagcaacgga gatcctgaca ggtaaagtta tgcaaaaatc ggtcttaatt 60 accggatgtt ccagtggaat tggcctggaa agcgcgctcg aattaaaacg ccagggtttt 120 catgtgctgg caggttgccg gaaaccggat gatgttgagc gcatgaacag catgggattt 180 accggcgtgt tgatcgatct ggattcacca gaaagtgttg atcgcgcagc cgacgaggtg 240 atcgccctga ccgataattg tctgtatggg atctttaaca atgccggatt cggcatgtat 300 ggcccccttt ccaccatcag ccgtgcgcag atggaacagc agttttccgc caactttttc 360 ggcgcacacc agctcaccat gcgcctgtta cccgcgatgt taccgcacgg tgaagggcgt 420 attgtgatga catcatcggt gatgggatta atctccacgc cgggtcgtgg cgcttacgcg 480 gccagtaaat atgcgctgga ggcgtggtca gatgcactgc gcatggagct gcgccacagc 540 ggaattaaag tcagcctgat cgaacccggt cccattcgta ctcgcttcac cgacaacgtc 600 aaccagacgc aaagtgataa accagtcgaa aatcccggca tcgccgcccg ctttacgttg 660 ggaccggaag cggtggtgga caaagtacgc catgctttta ttagcgagaa gccgaagatg 720 cgctatccgg tgacgctggt gacctgggcg gtaatggtgc ttaagcgcct gctgccgggg 780 cgcgtgatgg acaaaatatt gcaggggtga 810 <210> 25 <211> 495 <212> DNA <213> Escherichia coli <400> 25 atggaacgtt ttcttgaaaa tgcaatgtat gcttctcgct ggctgcttgc ccccgtgtac 60 tttggccttt cgctggcgtt agttgccctg gcgctgaagt tcttccagga gattattcac 120 gtactgccga atatcttctc gatggcggaa tcagatttga tcctcgtgtt gctgtcgctg 180 gtggatatga cgctggttgg cggtttgctg gtgatggtga tgttttccgg ttatgagaat 240 ttcgtctcac agctggatat ctccgagaac aaagagaagc tgaactggct ggggaaaatg 300 gacgcaacgt cgctgaaaaa caaagtagca gcgtcgattg tggcaatttc ttccattcac 360 ttactgcgcg tctttatgga tgcgaaaaat gtcccggata acaaactgat gtggtacgtc 420 attatccatc tgacgtttgt gctttctgca tttgtgatgg gctatcttga ccgactgact 480 cgtcataatc actga 495 <210> 26 <211> 1569 <212> DNA <213> Unknown <220> <223> Streptomyces maritimus <400> 26 atgaccttcg ttattgaact ggatatgaat gttaccctgg accaactgga agatgcggcc 60 cgtcagcgta ccccggtgga actgtctgcc ccggtgcgtt cccgcgtgcg tgcctcacgt 120 gatgttctgg tcaaatttgt tcaggacgaa cgcgtgatct atggcgttaa cacctcgatg 180 ggcggtttcg tggatcatct ggtgccggtt tcacaagcgc gtcagctgca agaaaacctg 240 attaatgcgg cggcaacgaa tgtgggtgcc tacctggatg acaccacggc acgcaccatt 300 atgctgtcgc gtatcgttag cctggcgcgc ggcaacagcg ctatcacgcc ggcgaatctg 360 gataaactgg tcgccgtgct gaacgcaggt attgtgccgt gcatcccgga aaaaggctct 420 ctgggcacca gcggcgacct gggtccgctg gctgcgatcg ctctggtttg tgcgggccag 480 tggaaagccc gttataacgg ccagattatg ccgggtcgcc aagccctgtc cgaagcaggc 540 gtggaaccga tggaactgtc atacaaagat ggtctggcgc tgattaatgg cacgagcggt 600 atggtgggtc tgggcacgat ggtgctgcaa gcagcacgtc gcctggttga tcgctatctg 660 caagtcagcg ctctgtctgt ggaaggcctg gcgggtatga ccaaaccgtt tgacccgcgt 720 gttcatggcg tcaaaccgca ccgcggtcag cgtcaagttg cctctcgcct gtgggaaggc 780 ctggctgata gtcacctggc ggtcaacgaa ctggacacgg aacagaccct ggcaggcgaa 840 atgggcaccg tggctaaagc gggttcgctg gctattgaag atgcgtatag catccgttgc 900 acgccgcaga ttctgggtcc ggtggttgat gttctggacc gcatcggtgc aaccctgcaa 960 gatgaactga atagctctaa cgacaatccg attgtcctgc cggaagaagc ggaagtgttt 1020 cataacggcc atttccacgg tcaatacgtg gcgatggcga tggatcacct gaatatggct 1080 ctggcgaccg ttacgaacct ggctaatcgt cgcgtcgatc gttttctgga caaatcaaac 1140 tcgaatggtc tgccggcctt cctgtgtcgt gaagatccgg gtctgcgtct gggtctgatg 1200 ggcggtcaat ttatgacggc ctctatcacc gcagaaaccc gtacgctgac cattccgatg 1260 agtgtgcagt ccctgacgtc aaccgcggat ttccaagaca tcgttagttt tggtttcgtc 1320 gctgcacgtc gcgcccgcga agtcctgacc aatgccgcat acgtcgtggc atttgaactg 1380 ctgtgcgcct gtcaggcagt tgatattcgt ggtgcggaca aactgagttc cttcacgcgc 1440 ccgctgtatg aacgcacccg taaaatcgtc ccgtttttcg atcgcgacga aacgattacc 1500 gattacgtgg aaaaactggc agccgacctg attgcgggtg aaccggtgga tgcagccgtg 1560 gcagcacac 1569 <210> 27 <211> 624 <212> DNA <213> Escherichia coli <400> 27 gtgctcaaca aactctcctt actgctgaaa gacgcaggta tttcgcttac cgatcaccag 60 aaaaaccagc ttattgccta cgtgaatatg ctgcataaat ggaacaaagc gtacaacctg 120 acttcggtcc gcgatcctaa tgagatgctg gtacgccata ttctcgatag cattgtggtg 180 gcaccgtatc tgcaaggtga acggtttatc gatgtcggca ccggaccagg actgccaggc 240 attccactct ctatcgtgcg tcctgaagcc catttcactc tgttggatag ccttggtaaa 300 cgcgtgcgtt tccttcgtca ggtgcaacat gagcttaaac tggagaatat tgaaccagta 360 cagagcaggg tagaagagtt tccttcagag ccgccatttg atggcgtaat tagccgcgct 420 tttgcctctc tgaacgatat ggtgagctgg tgccaccatc ttcctggtga gcaaggccgt 480 ttctacgcgc tgaaagggca aatgccggaa gatgaaatcg ctttgttgcc cgaagaatat 540 caggtcgaat cagtggttaa acttcaggtt ccagccctgg atggcgaacg tcatctggtg 600 gtgattaaag caaataaaat ttaa 624 <210> 28 <211> 381 <212> DNA <213> Escherichia coli <400> 28 atgtctgtgt cgctcgtgag tcgaaacgtt gctcggaagc ttctgctcgt tcagttactg 60 gtggtgatag caagtggatt gctgttcagc ctcaaagacc ccttctgggg cgtctctgca 120 ataagcgggg gcctggcagt ctttctgcct aacgttttgt ttatgatatt tgcctggcgt 180 caccaggcgc atacaccagc gaaaggccgg gtggcctgga cattcgcatt tggcgaagct 240 ttcaaagttc tggcgatgtt ggtgttactg gtggtggcgt tggcggtttt aaaggcggta 300 ttcttgccgc tgatcgttac gtgggttttg gtgctggtgg ttcagatact ggcaccggct 360 gtaattaaca acaaagggta a 381 <210> 29 <211> 268 <212> DNA <213> Escherichia coli <400> 29 ccatttccct tctctacgga tgatttgcag tttggcaaat catccgctct aagatgattc 60 ctggttgata attaagacta tttacctgtt attaacactc tcaagatata aaattattat 120 cagcgatata acaggaagtc attatcacct gcgtgatata accctgcgcg cgagcagatt 180 tcacggaata atttcaccag acttattctt agctattata gttatagaga gcttacttcc 240 gtgaatcata aattcaggag agagtatt 268 <210> 30 <211> 1656 <212> DNA <213> Escherichia coli <400> 30 atggaatttt cgttttcacc caaacgtctt gttgttgctg tcgccgccgc tcttcctctc 60 atggccagcg cagcagatac cccgtcaact gccaccgcac gcaaaggctt tgccggatac 120 gatcacccaa accagtatct ggttaaaccg gcgaccacta ttgccgacaa tatgatgcca 180 gtaatgcagc atccggcgca ggataaagaa acccagcaga agctggcaga acttgagaaa 240 aaaaccggta agaaaccgaa tgtggttgtt ttcttgctgg acgatgtggg ctggatggac 300 gtcggtttta acggtggcgg cgtggcggtg ggtaacccta caccagatat cgacgccgtt 360 gccagccagg ggctgatttt aacttcggcg tattctcaac caagctcttc cccaacccgc 420 gccaccattc tcaccggaca atactccatc caccacggca ttctgatgcc gccaatgtac 480 gggcaaccgg gcgggctgca agggttaacc acgctgccgc agttgctgca cgatcagggc 540 tacgtcactc aggccatcgg aaaatggcat atgggggaaa acaaagagtc gcagccgcag 600 aacgttggct ttgatgattt ccgtggcttt aactcggtgt ctgatatgta caccgaatgg 660 cgcgacgttc acgtcaatcc ggaagtggcc ctgagtccgg accgttctga atacatcaag 720 caattaccgt tcagcaaaga tgacgttcat gcggtgcgcg gcggcgaaca acaggccatt 780 gccgacatta cgccgaaata tatggaagat ctggatcaac gctggatgga ctatggcgtt 840 aagttcctcg acaagatggc gaagagcgat aaaccattct tcctctacta cggcactcgt 900 ggctgccact tcgataacta cccaaatgcg aaatatgcgg gtagctctcc ggcacgcacc 960 tcgtatggcg actgcatggt ggagatgaac gatgtgttcg ctaatctgta taaaacactg 1020 gagaaaaacg gtcagcttga taacacgctg atcgtcttta cctccgataa cggaccggaa 1080 gccgaagtac cgccgcacgg acgcaccccg ttccgtggtg cgaaaggttc gacctgggaa 1140 ggcggcgttc gcgtaccgac tttcgtttac tggaaaggga tgatccaacc gcgtaaatct 1200 gacggtattg tcgatctggc agatctcttc cctaccgcgc tggatctggc agggcatcct 1260 ggagcgaaag tggcgaattt agtgccgaaa accaccttta tcgatggtgt ggaccagaca 1320 tccttcttcc tgggaacaaa tggtcagtct aaccgtaagg ccgagcacta cttcctcaac 1380 ggtaaactcg ctgctgtgcg tatggatgag ttcaagtatc acgtcctgat tcagcaacct 1440 tacgcttata cccagagcgg atatcagggt ggattcaccg gcacagtaat gcaaacggcg 1500 ggatcgtcgg tgtttaacct ctacaccgat ccgcaggaaa gcgactccat cggcgtgcgc 1560 catattccga tgggtgtacc gctacagacc gaaatgcacg cgtatatgga gatcctgaaa 1620 aaatatccac cacgcgcgca gattaaatct gactaa 1656 <210> 31 <211> 1236 <212> DNA <213> Escherichia coli <400> 31 atgctgcaac aggttccaac gcgtgctttt catgtgatgg cgaaaccgag cggttccgat 60 tgtaatctga actgtgacta ctgtttttat ctcgaaaaac aatcccttta ccgcgaaaag 120 ccagtcacgc atatggacga tgacacgctg gaagcgtatg tccgtcacta tatcgctgcc 180 agcgaaccgc aaaacgaagt ggcttttacc tggcagggcg gcgaaccaac gctactcggg 240 ctggcgtttt accgccgtgc cgtagcgcta caggcgaaat atggtgctgg caggaagata 300 agtaacagct tccagactaa cggcgtgctg ctggatgacg aatggtgcgc gtttctcgcg 360 gagcatcatt ttcttgttgg tttatcgctg gatggcccgc ctgagatcca caatcaatat 420 cgcgtgacta aaggtggcag acccacgcat aagctggtga tgcgtgccct gacgctcctg 480 caaaaacatc atgtcgacta taacgtgctg gtctgcgtta atcgcaccag cgcgcagcaa 540 ccgttgcagg tatatgattt tttgtgcgat gcgggagtcg aattcatcca gtttattccg 600 gtggtcgagc gcctggctga tgaaacaact gcccgcgatg gacttaagtt acatgcgcct 660 ggtgatattc agggtgagct aacggaatgg tcggtgcgcc ccgaggagtt cggtgagttt 720 ctggtggcga tattcgacca ctggatcaaa cgcgacgtcg gcaagatttt cgtgatgaat 780 atcgaatggg cgtttgccaa ttttgtcggt gcgccgggtg cggtttgcca tcatcagcca 840 acctgtgggc gctcggtgat tgttgagcac aacggcgacg tttacgcctg tgatcactat 900 gtttatccgc aatatcggct ggggaatatg caccagcaaa caattgcaga aatgatcgat 960 tccccgcaac agcaggcgtt tggtgaagat aaatttaagc agttaccggc gcagtgtcgc 1020 agttgtaacg tgttaaaagc gtgctgggga ggctgcccga aacaccgctt catgctcgat 1080 gccagcggca aaccgggact gaattatttg tgtgccgggt atcagcgtta tttccgccat 1140 ctaccgccat atcttaaagc aatggctgat ttgctggcgc acggtcgccc ggccagcgac 1200 attatgcatg cgcatttgct ggtggtgagt aagtag 1236 <210> 32 <211> 2932 <212> DNA <213> Escherichia coli <400> 32 atgcgaattg gcataccaag agaacggtta accaatgaaa cccgtgttgc agcaacgcca 60 aaaacagtgg aacagctgct gaaactgggt tttaccgtcg cggtagagag cggcgcgggt 120 caactggcaa gttttgacga taaagcgttt gtgcaagcgg gcgctgaaat tgtagaaggg 180 aatagcgtct ggcagtcaga gatcattctg aaggtcaatg cgccgttaga tgatgaaatt 240 gcgttactga atcctgggac aacgctggtg agttttatct ggcctgcgca gaatccggaa 300 ttaatgcaaa aacttgcgga acgtaacgtg accgtgatgg cgatggactc tgtgccgcgt 360 atctcacgcg cacaatcgct ggacgcacta agctcgatgg cgaacatcgc cggttatcgc 420 gccattgttg aagcggcaca tgaatttggg cgcttcttta ccgggcaaat tactgcggcc 480 gggaaagtgc caccggcaaa agtgatggtg attggtgcgg gtgttgcagg tctggccgcc 540 attggcgcag caaacagtct cggcgcgatt gtgcgtgcat tcgacacccg cccggaagtg 600 aaagaacaag ttcaaagtat gggcgcggaa ttcctcgagc tggattttaa agaggaagct 660 ggcagcggcg atggctatgc caaagtgatg tcggacgcgt tcatcaaagc ggaaatggaa 720 ctctttgccg cccaggcaaa agaggtcgat atcattgtca ccaccgcgct tattccaggc 780 aaaccagcgc cgaagctaat tacccgtgaa atggttgact ccatgaaggc gggcagtgtg 840 attgtcgacc tggcagccca aaacggcggc aactgtgaat acaccgtgcc gggtgaaatc 900 ttcactacgg aaaatggtgt caaagtgatt ggttataccg atcttccggg ccgtctgccg 960 acgcaatcct cacagcttta cggcacaaac ctcgttaatc tgctgaaact gttgtgcaaa 1020 gagaaagacg gcaatatcac tgttgatttt gatgatgtgg tgattcgcgg cgtgaccgtg 1080 atccgtgcgg gcgaaattac ctggccggca ccgccgattc aggtatcagc tcagccgcag 1140 gcggcacaaa aagcggcacc ggaagtgaaa actgaggaaa aatgtacctg ctcaccgtgg 1200 cgtaaatacg cgttgatggc gctggcaatc attctttttg gctggatggc aagcgttgcg 1260 ccgaaagaat tccttgggca cttcaccgtt ttcgcgctgg cctgcgttgt cggttattac 1320 gtggtgtgga atgtatcgca cgcgctgcat acaccgttga tgtcggtcac caacgcgatt 1380 tcagggatta ttgttgtcgg agcactgttg cagattggcc agggcggctg ggttagcttc 1440 cttagtttta tcgcggtgct tatagccagc attaatattt tcggtggctt caccgtgact 1500 cagcgcatgc tgaaaatgtt ccgcaaaaat taaggggtaa catatgtctg gaggattagt 1560 tacagctgca tacattgttg ccgcgatcct gtttatcttc agtctggccg gtctttcgaa 1620 acatgaaacg tctcgccagg gtaacaactt cggtatcgcc gggatggcga ttgcgttaat 1680 cgcaaccatt tttggaccgg atacgggtaa tgttggctgg atcttgctgg cgatggtcat 1740 tggtggggca attggtatcc gtctggcgaa gaaagttgaa atgaccgaaa tgccagaact 1800 ggtggcgatc ctgcatagct tcgtgggtct ggcggcagtg ctggttggct ttaacagcta 1860 tctgcatcat gacgcgggaa tggcaccgat tctggtcaat attcacctga cggaagtgtt 1920 cctcggtatc ttcatcgggg cggtaacgtt cacgggttcg gtggtggcgt tcggcaaact 1980 gtgtggcaag atttcgtcta aaccattgat gctgccaaac cgtcacaaaa tgaacctggc 2040 ggctctggtc gtttccttcc tgctgctgat tgtatttgtt cgcacggaca gcgtcggcct 2100 gcaagtgctg gcattgctga taatgaccgc aattgcgctg gtattcggct ggcatttagt 2160 cgcctccatc ggtggtgcag atatgccagt ggtggtgtcg atgctgaact cgtactccgg 2220 ctgggcggct gcggctgcgg gctttatgct cagcaacgac ctgctgattg tgaccggtgc 2280 gctggtcggt tcttcggggg ctatcctttc ttacattatg tgtaaggcga tgaaccgttc 2340 ctttatcagc gttattgcgg gtggtttcgg caccgacggc tcttctactg gcgatgatca 2400 ggaagtgggt gagcaccgcg aaatcaccgc agaagagaca gcggaactgc tgaaaaactc 2460 ccattcagtg atcattactc cggggtacgg catggcagtc gcgcaggcgc aatatcctgt 2520 cgctgaaatt actgagaaat tgcgcgctcg tggtattaat gtgcgtttcg gtatccaccc 2580 ggtcgcgggg cgtttgcctg gacatatgaa cgtattgctg gctgaagcaa aagtaccgta 2640 tgacatcgtg ctggaaatgg acgagatcaa tgatgacttt gctgataccg ataccgtact 2700 ggtgattggt gctaacgata cggttaaccc ggcggcgcag gatgatccga agagtccgat 2760 tgctggtatg cctgtgctgg aagtgtggaa agcgcagaac gtgattgtct ttaaacgttc 2820 gatgaacact ggctatgctg gtgtgcaaaa cccgctgttc ttcaaggaaa acacccacat 2880 gctgtttggt gacgccaaag ccagcgtgga tgcaatcctg aaagctctgt aa 2932 <210> 33 <211> 879 <212> DNA <213> Escherichia coli <400> 33 atgaataatc atttcaagtg tattggcatt gtgggacacc cacggcaccc cactgcactg 60 acaacacatg aaatgctcta ccgctggctg tgcacaaaag gttacgaggt catcgttgag 120 caacaaatcg ctcacgaact gcaactgaag aatgtgaaaa ctggcacgct cgcggagatt 180 gggcaactag ctgatctcgc ggtagtcgtt ggtggcgacg gtaatatgct gggcgcggca 240 cgcacactcg cccgttacga tattaaagtt attggaatca accgtggcaa cctgggtttc 300 ctgactgacc ttgaccccga taacgcccag caacagttag ccgatgtgct ggaaggccac 360 tacatcagcg agaaacgttt tttgctggaa gcgcaagtct gtcagcaaga ttgccagaaa 420 cgcatcagca ccgcgataaa tgaagtggtg cttcatccag gcaaagtggc gcatatgatt 480 gagttcgaag tgtatatcga cgagatcttt gcgttttctc agcgatctga tggactaatt 540 atttcgacgc caacaggctc caccgcctat tccctctctg caggcggtcc tattctgacc 600 ccctctctgg atgcgattac cctggtgccc atgttcccgc atacgttgtc agcacgacca 660 ctggtcataa acagcagcag cacgatccgt ctgcgttttt cgcatcgccg taacgacctg 720 gaaatcagtt gcgacagcca gatagcactg ccgattcagg aaggtgaaga tgtcctgatt 780 cgtcgctgtg attaccatct gaatctgatt catccgaaag attacagtta tttcaacaca 840 ttaagcacca agctcggctg gtcaaaaaaa ttattctaa 879 <210> 34 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> PM1-46 <400> 34 ttatctctgg cggtgttgac aagagataac aacgttgata taattgagcc tctcgcccca 60 ccaattcggt ttaaaccagg aaacagct 88 <210> 35 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> PM1-37 <400> 35 ttatctctgg cggtgttgac aagagataac aacgttgata taattgagcc actggctcgt 60 aatttattgt ttaaaccagg aaacagct 88 <210> 36 <211> 3422 <212> DNA <213> Escherichia coli <400> 36 atgtcgagta agttagtact ggttctgaac tgcggtagtt cttcactgaa atttgccatc 60 atcgatgcag taaatggtga agagtacctt tctggtttag ccgaatgttt ccacctgccc 120 gaagcacgta tcaaatggaa aatggacggc aataaacagg aagcggcttt aggtgcaggc 180 gccgctcaca gcgaagcgct caactttatc gttaatacta ttctggcaca aaaaccagaa 240 ctgtctgcgc agctgactgc tatcggtcac cgtatcgtac acggcggcga aaagtatacc 300 agctccgtag tgatcgatga gtctgttatt cagggtatca aagatgcagc ttcttttgca 360 ccgctgcaca acccggctca cctgatcggt atcgaagaag ctctgaaatc tttcccacag 420 ctgaaagaca aaaacgttgc tgtatttgac accgcgttcc accagactat gccggaagag 480 tcttacctct acgccctgcc ttacaacctg tacaaagagc acggcatccg tcgttacggc 540 gcgcacggca ccagccactt ctatgtaacc caggaagcgg caaaaatgct gaacaaaccg 600 gtagaagaac tgaacatcat cacctgccac ctgggcaacg gtggttccgt ttctgctatc 660 cgcaacggta aatgcgttga cacctctatg ggcctgaccc cgctggaagg tctggtcatg 720 ggtacccgtt ctggtgatat cgatccggcg atcatcttcc acctgcacga caccctgggc 780 atgagcgttg acgcaatcaa caaactgctg accaaagagt ctggcctgct gggtctgacc 840 gaagtgacca gcgactgccg ctatgttgaa gacaactacg cgacgaaaga agacgcgaag 900 cgcgcaatgg acgtttactg ccaccgcctg gcgaaataca tcggtgccta cactgcgctg 960 atggatggtc gtctggacgc tgttgtattc actggtggta tcggtgaaaa tgccgcaatg 1020 gttcgtgaac tgtctctggg caaactgggc gtgctgggct ttgaagttga tcatgaacgc 1080 aacctggctg cacgtttcgg caaatctggt ttcatcaaca aagaaggtac ccgtcctgcg 1140 gtggttatcc caaccaacga agaactggtt atcgcgcaag acgcgagccg cctgactgcc 1200 tgatttcaca ccgccagctc agctggcggt gctgttttgt aacccgccaa atcggcggta 1260 acgaaagagg ataaaccgtg tcccgtatta ttatgctgat ccctaccgga accagcgtcg 1320 gtctgaccag cgtcagcctt ggcgtgatcc gtgcaatgga acgcaaaggc gttcgtctga 1380 gcgttttcaa acctatcgct cagccgcgta ccggtggcga tgcgcccgat cagactacga 1440 ctatcgtgcg tgcgaactct tccaccacga cggccgctga accgctgaaa atgagctacg 1500 ttgaaggtct gctttccagc aatcagaaag atgtgctgat ggaagagatc gtcgcaaact 1560 accacgctaa caccaaagac gctgaagtcg ttctggttga aggtctggtc ccgacacgta 1620 agcaccagtt tgcccagtct ctgaactacg aaatcgctaa aacgctgaat gcggaaatcg 1680 tcttcgttat gtctcagggc actgacaccc cggaacagct gaaagagcgt atcgaactga 1740 cccgcaacag cttcggcggt gccaaaaaca ccaacatcac cggcgttatc gttaacaaac 1800 tgaacgcacc ggttgatgaa cagggtcgta ctcgcccgga tctgtccgag attttcgacg 1860 actcttccaa agctaaagta aacaatgttg atccggcgaa gctgcaagaa tccagcccgc 1920 tgccggttct cggcgctgtg ccgtggagct ttgacctgat cgcgactcgt gcgatcgata 1980 tggctcgcca cctgaatgcg accatcatca acgaaggcga catcaatact cgccgcgtta 2040 aatccgtcac tttctgcgca cgcagcattc cgcacatgct ggagcacttc cgtgccggtt 2100 ctctgctggt gacttccgca gaccgtcctg acgtgctggt ggccgcttgc ctggcagcca 2160 tgaacggcgt agaaatcggt gccctgctgc tgactggcgg ttacgaaatg gacgcgcgca 2220 tttctaaact gtgcgaacgt gctttcgcta ccggcctgcc ggtatttatg gtgaacacca 2280 acacctggca gacctctctg agcctgcaga gcttcaacct ggaagttccg gttgacgatc 2340 acgaacgtat cgagaaagtt caggaatacg ttgctaacta catcaacgct gactggatcg 2400 aatctctgac tgccacttct gagcgcagcc gtcgtctgtc tccgcctgcg ttccgttatc 2460 agctgactga acttgcgcgc aaagcgggca aacgtatcgt actgccggaa ggtgacgaac 2520 cgcgtaccgt taaagcagcc gctatctgtg ctgaacgtgg tatcgcaact tgcgtactgc 2580 tgggtaatcc ggcagagatc aaccgtgttg cagcgtctca gggtgtagaa ctgggtgcag 2640 ggattgaaat cgttgatcca gaagtggttc gcgaaagcta tgttggtcgt ctggtcgaac 2700 tgcgtaagaa caaaggcatg accgaaaccg ttgcccgcga acagctggaa gacaacgtgg 2760 tgctcggtac gctgatgctg gaacaggatg aagttgatgg tctggtttcc ggtgctgttc 2820 acactaccgc aaacaccatc cgtccgccgc tgcagctgat caaaactgca ccgggcagct 2880 ccctggtatc ttccgtgttc ttcatgctgc tgccggaaca ggtttacgtt tacggtgact 2940 gtgcgatcaa cccggatccg accgctgaac agctggcaga aatcgcgatt cagtccgctg 3000 attccgctgc ggccttcggt atcgaaccgc gcgttgctat gctctcctac tccaccggta 3060 cttctggtgc aggtagcgac gtagaaaaag ttcgcgaagc aactcgtctg gcgcaggaaa 3120 aacgtcctga cctgatgatc gacggtccgc tgcagtacga cgctgcggta atggctgacg 3180 ttgcgaaatc caaagcgccg aactctccgg ttgcaggtcg cgctaccgtg ttcatcttcc 3240 cggatctgaa caccggtaac accacctaca aagcggtaca gcgttctgcc gacctgatct 3300 ccatcgggcc gatgctgcag ggtatgcgca agccggttaa cgacctgtcc cgtggcgcac 3360 tggttgacga tatcgtctac accatcgcgc tgactgcgat tcagtctgca cagcagcagt 3420 aa 3422 <210> 37 <211> 1719 <212> DNA <213> Escherichia coli <400> 37 atgaaacaaa cggttgcagc ttatatcgcc aaaacactcg aatcggcagg ggtgaaacgc 60 atctggggag tcacaggcga ctctctgaac ggtcttagtg acagtcttaa tcgcatgggc 120 accatcgagt ggatgtccac ccgccacgaa gaagtggcgg cctttgccgc tggcgctgaa 180 gcacaactta gcggagaact ggcggtctgc gccggatcgt gcggccccgg caacctgcac 240 ttaatcaacg gcctgttcga ttgccaccgc aatcacgttc cggtactggc gattgccgct 300 catattccct ccagcgaaat tggcagcggc tatttccagg aaacccaccc acaagagcta 360 ttccgcgaat gtagtcacta ttgcgagctg gtttccagcc cggagcagat cccacaagta 420 ctggcgattg ccatgcgcaa agcggtgctt aaccgtggcg tttcggttgt cgtgttacca 480 ggcgacgtgg cgttaaaacc tgcgccagaa ggggcaacca tgcactggta tcatgcgcca 540 caaccagtcg tgacgccgga agaagaagag ttacgcaaac tggcgcaact gctgcgttat 600 tccagcaata tcgccctgat gtgtggcagc ggctgcgcgg gggcgcataa agagttagtt 660 gagtttgccg ggaaaattaa agcgcctatt gttcatgccc tgcgcggtaa agaacatgtc 720 gaatacgata atccgtatga tgttggaatg accgggttaa tcggcttctc gtcaggtttc 780 cataccatga tgaacgccga cacgttagtg ctactcggca cgcaatttcc ctaccgcgcc 840 ttctacccga ccgatgccaa aatcattcag attgatatca acccagccag catcggcgct 900 cacagcaagg tggatatggc actggtcggc gatatcaagt cgactctgcg tgcattgctt 960 ccattggtgg aagaaaaagc cgatcgcaag tttctggata aagcgctgga agattaccgc 1020 gacgcccgca aagggctgga cgatttagct aaaccgagcg agaaagccat tcacccgcaa 1080 tatctggcgc agcaaattag tcattttgcc gccgatgacg ctattttcac ctgtgacgtt 1140 ggtacgccaa cggtgtgggc ggcacgttat ctaaaaatga acggcaagcg tcgcctgtta 1200 ggttcgttta accacggttc gatggctaac gccatgccgc aggcgctggg tgcgcaggcg 1260 acagagccag aacgtcaggt ggtcgccatg tgcggcgatg gcggttttag catgttgatg 1320 ggcgatttcc tctcagtagt gcagatgaaa ctgccagtga aaattgtcgt ctttaacaac 1380 agcgtgctgg gctttgtggc gatggagatg aaagctggtg gctatttgac tgacggcacc 1440 gaactacacg acacaaactt tgcccgcatt gccgaagcgt gcggcattac gggtatccgt 1500 gtagaaaaag cgtctgaagt tgatgaagcc ctgcaacgcg ccttctccat cgacggtccg 1560 gtgttggtgg atgtggtggt cgccaaagaa gagttagcca ttccaccgca gatcaaactc 1620 gaacaggcca aaggtttcag cctgtatatg ctgcgcgcaa tcatcagcgg acgcggtgat 1680 gaagtgatcg aactggcgaa aacaaactgg ctaaggtaa 1719 <210> 38 <211> 948 <212> DNA <213> Escherichia coli <400> 38 atgagtataa aagagcaaac gttaatgacg ccttacctac agtttgaccg caaccagtgg 60 gcagctctgc gtgattccgt acctatgacg ttatcggaag atgagatcgc ccgtctcaaa 120 ggtattaatg aagatctctc gttagaagaa gttgccgaga tctatttacc tttgtcacgt 180 ttgctgaact tctatataag ctcgaatctg cgccgtcagg cagttctgga acagtttctt 240 ggtaccaacg ggcaacgcat tccttacatt atcagtattg ctggcagtgt cgcggtgggg 300 aaaagtacaa ccgcccgtgt attgcaggcg ctattaagcc gttggccgga acatcgtcgt 360 gttgaactga tcactacaga tggcttcctt caccctaatc aggttctgaa agaacgtggt 420 ctgatgaaga agaaaggctt cccggaatcg tatgatatgc atcgcctggt gaagtttgtt 480 tccgatctca aatccggcgt gccaaacgtt acagcacctg tttactcaca tcttatttat 540 gatgtgatcc cggatggaga taaaacggtt gttcagcctg atattttaat tcttgaaggg 600 ttaaatgtct tacagagcgg gatggattat ccacacgatc cacatcatgt atttgtttct 660 gattttgtcg atttttcgat atatgttgat gcaccggaag acttacttca gacatggtat 720 atcaaccgtt ttctgaaatt ccgcgaaggg gcttttaccg acccggattc ctattttcat 780 aactacgcga aattaactaa agaagaagcg attaagactg ccatgacatt gtggaaagag 840 atcaactggc tgaacttaaa gcaaaatatt ctacctactc gtgagcgcgc cagtttaatc 900 ctgacgaaaa gtgctaatca tgcggtagaa gaggtcagac tacgcaaa 948 <210> 39 <211> 214 <212> RNA <213> Artificial Sequence <220> <223> metK sRNA <400> 39 taacaccgtg cgtgttgact attttacctc tggcggtgat aatggttgcg gacgtaaaaa 60 ggtgttttgc cattttctgt tgggccattg cattgccact gattttccaa catataaaaa 120 gacaagcccg aacagtcgtc cgggcttttt tacctgtgaa gtgaaaaatg gcgcacattg 180 tgcgacattt tttttgtctg ccgtttaccg ctac 214 <210> 40 <211> 214 <212> RNA <213> Artificial Sequence <220> <223> proB sRNA <400> 40 taacaccgtg cgtgttgact attttacctc tggcggtgat aatggttgcc accagcgtct 60 ggctgtcact cattttctgt tgggccattg cattgccact gattttccaa catataaaaa 120 gacaagcccg aacagtcgtc cgggcttttt tacctgtgaa gtgaaaaatg gcgcacattg 180 tgcgacattt tttttgtctg ccgtttaccg ctac 214 <210> 41 <211> 3075 <212> DNA <213> Escherichia coli <400> 41 atgaccatga ttacggattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 60 ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 120 gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 180 tttgcctggt ttccggcacc agaagcggtg ccggaaagct ggctggagtg cgatcttcct 240 gaggccgata ctgtcgtcgt cccctcaaac tggcagatgc acggttacga tgcgcccatc 300 tacaccaacg tgacctatcc cattacggtc aatccgccgt ttgttcccac ggagaatccg 360 acgggttgtt actcgctcac atttaatgtt gatgaaagct ggctacagga aggccagacg 420 cgaattattt ttgatggcgt taactcggcg tttcatctgt ggtgcaacgg gcgctgggtc 480 ggttacggcc aggacagtcg tttgccgtct gaatttgacc tgagcgcatt tttacgcgcc 540 ggagaaaacc gcctcgcggt gatggtgctg cgctggagtg acggcagtta tctggaagat 600 caggatatgt ggcggatgag cggcattttc cgtgacgtct cgttgctgca taaaccgact 660 acacaaatca gcgatttcca tgttgccact cgctttaatg atgatttcag ccgcgctgta 720 ctggaggctg aagttcagat gtgcggcgag ttgcgtgact acctacgggt aacagtttct 780 ttatggcagg gtgaaacgca ggtcgccagc ggcaccgcgc ctttcggcgg tgaaattatc 840 gatgagcgtg gtggttatgc cgatcgcgtc acactacgtc tgaacgtcga aaacccgaaa 900 ctgtggagcg ccgaaatccc gaatctctat cgtgcggtgg ttgaactgca caccgccgac 960 ggcacgctga ttgaagcaga agcctgcgat gtcggtttcc gcgaggtgcg gattgaaaat 1020 ggtctgctgc tgctgaacgg caagccgttg ctgattcgag gcgttaaccg tcacgagcat 1080 catcctctgc atggtcaggt catggatgag cagacgatgg tgcaggatat cctgctgatg 1140 aagcagaaca actttaacgc cgtgcgctgt tcgcattatc cgaaccatcc gctgtggtac 1200 acgctgtgcg accgctacgg cctgtatgtg gtggatgaag ccaatattga aacccacggc 1260 atggtgccaa tgaatcgtct gaccgatgat ccgcgctggc taccggcgat gagcgaacgc 1320 gtaacgcgaa tggtgcagcg cgatcgtaat cacccgagtg tgatcatctg gtcgctgggg 1380 aatgaatcag gccacggcgc taatcacgac gcgctgtatc gctggatcaa atctgtcgat 1440 ccttcccgcc cggtgcagta tgaaggcggc ggagccgaca ccacggccac cgatattatt 1500 tgcccgatgt acgcgcgcgt ggatgaagac cagcccttcc cggctgtgcc gaaatggtcc 1560 atcaaaaaat ggctttcgct acctggagag acgcgcccgc tgatcctttg cgaatacgcc 1620 cacgcgatgg gtaacagtct tggcggtttc gctaaatact ggcaggcgtt tcgtcagtat 1680 ccccgtttac agggcggctt cgtctgggac tgggtggatc agtcgctgat taaatatgat 1740 gaaaacggca acccgtggtc ggcttacggc ggtgattttg gcgatacgcc gaacgatcgc 1800 cagttctgta tgaacggtct ggtctttgcc gaccgcacgc cgcatccagc gctgacggaa 1860 gcaaaacacc agcagcagtt tttccagttc cgtttatccg ggcaaaccat cgaagtgacc 1920 agcgaatacc tgttccgtca tagcgataac gagctcctgc actggatggt ggcgctggat 1980 ggtaagccgc tggcaagcgg tgaagtgcct ctggatgtcg ctccacaagg taaacagttg 2040 attgaactgc ctgaactacc gcagccggag agcgccgggc aactctggct cacagtacgc 2100 gtagtgcaac cgaacgcgac cgcatggtca gaagccgggc acatcagcgc ctggcagcag 2160 tggcgtctgg cggaaaacct cagtgtgacg ctccccgccg cgtcccacgc catcccgcat 2220 ctgaccacca gcgaaatgga tttttgcatc gagctgggta ataagcgttg gcaatttaac 2280 cgccagtcag gctttctttc acagatgtgg attggcgata aaaaacaact gctgacgccg 2340 ctgcgcgatc agttcacccg tgcaccgctg gataacgaca ttggcgtaag tgaagcgacc 2400 cgcattgacc ctaacgcctg ggtcgaacgc tggaaggcgg cgggccatta ccaggccgaa 2460 gcagcgttgt tgcagtgcac ggcagataca cttgctgatg cggtgctgat tacgaccgct 2520 cacgcgtggc agcatcaggg gaaaacctta tttatcagcc ggaaaaccta ccggattgat 2580 ggtagtggtc aaatggcgat taccgttgat gttgaagtgg cgagcgatac accgcatccg 2640 gcgcggattg gcctgaactg ccagctggcg caggtagcag agcgggtaaa ctggctcgga 2700 ttagggccgc aagaaaacta tcccgaccgc cttactgccg cctgttttga ccgctgggat 2760 ctgccattgt cagacatgta taccccgtac gtcttcccga gcgaaaacgg tctgcgctgc 2820 gggacgcgcg aattgaatta tggcccacac cagtggcgcg gcgacttcca gttcaacatc 2880 agccgctaca gtcaacagca actgatggaa accagccatc gccatctgct gcacgcggaa 2940 gaaggcacat ggctgaatat cgacggtttc catatgggga ttggtggcga cgactcctgg 3000 agcccgtcag tatcggcgga attccagctg agcgccggtc gctaccatta ccagttggtc 3060 tggtgtcaaa aataa 3075 <210> 42 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 42 atgggtttgt tcgataaact gaaatctctg gtttccgacg acaagaagga taccggaact 60 attgagatca ttgctccgct ctctggcgag atcgtcaata gacactatag aacgcggccg 120 120 <210> 43 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 43 ttacttcttg atgcggataa ccggggtttc acccacggtt acgctaccgg acagtttgat 60 cagttctttg atttcgtcca tgttggagat aacaaccgga ccgcataggc cactagtgga 120 120 <210> 44 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 44 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg gacactatag aacgcggccg 120 120 <210> 45 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 45 ttactcttcg ttcttcttct gactcagacc atattcccgc aacttattgg caatcgcggt 60 atgtgaaacg ccgagacgtt ttgccagttt gcgcgtgctg ccgcataggc cactagtgga 120 120 <210> 46 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 46 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc gacactatag aacgcggccg 90 <210> 47 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 47 ttactctacc gttaaaatac gcgtggtatt agtagaaccc acggtactca tcacgtcgcc 60 ctgggtgaca ccgcataggc cactagtgga 90 <210> 48 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 48 caggtgaata taaggcattg gtttaagatt tcagccaggt tatgaaacgc agcagagaat 60 cttgaaataa gacactatag aacgcggccg 90 <210> 49 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 49 ttacccgcga cgcgctttta ctgcattcgc cagttgacgt aacagagcat cggtatcttc 60 ccagccgatg ccgcataggc cactagtgga 90 <210> 50 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 50 caacttcgtc gaagaagttg aagaagagta gtcctttata ttgagtgtat cgccaacgcg 60 ccttcgggcg gacactatag aacgcggccg 90 <210> 51 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 51 tcaggttgga tcaacaggca ctacgttctc acttgggtaa cagcccaata ccttcattga 60 acgggtgatt ccgcataggc cactagtgga 90 <210> 52 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 52 tcctgcagtt gacggctagc tcagtcctag gtacagtgct agccgacaaa aagaaaggag 60 catctaaca 69 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 53 gcaggatcct cacaacgtgg ttttcgccgg aa 32 <210> 54 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 54 ctgctgcgcg atgctgccgg tctgaagtaa tctttcttca cctgcgttca aaggccagcc 60 tcgcgctggc gacactatag aacgcggccg 90 <210> 55 <211> 145 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 55 caaggaagca gacgaaaaac gtcattgcct tgtttgaccg cccctgtttt ttagcgtcag 60 gcatatgtat atctccttct taaagttcaa gctagcacta tacctaggac tgagctagcc 120 gtaaaccgca taggccacta gtgga 145 <210> 56 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 56 ctttccggcg ttgttgttat gcccccaggt atttacagtg tgagaaagaa ttattttgac 60 tttagcggag gacactatag aacgcggccg 90 <210> 57 <211> 145 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 57 tatcacacag agcaagacgt gcgttggtgc cgcccacatc accgactaat gcatactttg 60 tcatatgtat atctccttct taaagttcaa gctagcacta tacctaggac tgagctagcc 120 gtaaaccgca taggccacta gtgga 145 <210> 58 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 58 tgaaaatgat gtgcggtttg gcgagcgtaa attttgcacc cggttaaaca caattaagca 60 tagaggttaa gacactatag aacgcggccg 90 <210> 59 <211> 145 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 59 ataaactgtg gcggatagga taggccatca acccaatcaa ttcgtatttt gcggtaacat 60 ccatatgtat atctccttct taaagttcaa gctagcacta tacctaggac tgagctagcc 120 gtaaaccgca taggccacta gtgga 145 <210> 60 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 60 atcacgccac gactggtttc cagtgagtaa acagccgtaa aagcggtaat gtttttacgc 60 tgaacgtgtt gacactatag aacgcggccg 90 <210> 61 <211> 145 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 61 gcccaatagt gctttttccg gcacccatag gcccaaccag aaagatattg cgtttctctg 60 ccatatgtat atctccttct taaagttcaa gctagcacta tacctaggac tgagctagcc 120 gtaaaccgca taggccacta gtgga 145 <210> 62 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 62 gcattctaga ttgaacttta agaaggagat atacatatgc accaccacca tcaccattcg 60 ccaatcacgc gtgaag 76 <210> 63 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 63 atgcaagctt ttatcagagc aggccgagta ggcg 34 <210> 64 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 64 gcattctaga ttgaacttta agaaggagat atacatatgc accaccacca tcaccatgca 60 gtggattcac cggat 75 <210> 65 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 65 atgcaagctt ttatcagagc agctgaagca gttccag 37 <210> 66 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 66 ataaaagctt ttgaacttta agaaggagat atacatatga agatttacgg aatttatatg 60 gaccg 65 <210> 67 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 67 gccaagctta tcaatggtga tggtggtggt gtaaaagctc ttcgtacgag acc 53 <210> 68 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 68 ataaaagctt ttgaacttta agaaggagat atacatatga tcgagacaat tttgcctg 58 <210> 69 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 69 gccaagctta tcaatggtga tggtggtggt gggcgtacgc gatcgcggt 49 <210> 70 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 70 atggctatcc ctgcatttgg tttaggtact ttccgtctga aagacgacgt tgttatttca 60 tctgtgataa gacactatag aacgcggccg 90 <210> 71 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 71 ttaatcccat tcaggagcca gaccttccgg gctaaccagg cggtcgttgc aatccagtgc 60 ggcgatcgct ccgcataggc cactagtgga 90 <210> 72 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 72 atgaagatca aagctgttgg tgcatattcc gctaaacaac cacttgaacc gatggatatc 60 acccggcgtg gacactatag aacgcggccg 90 <210> 73 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 73 tcagtctgtt agtgtgcgat tatcgataac aaaacgatat ttcacatcac cgcgcagcat 60 tcgctcatag ccgcataggc cactagtgga 90 <210> 74 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 74 atgcaacaaa aaatgattca atttagtggc gatgtctcac tgccagccgt agggcaggga 60 acatggtata gacactatag aacgcggccg 90 <210> 75 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 75 tcacaccata tccagcgcag tttttccttt tggtgccgga tatgccttat ccagcatagc 60 taattccgct ccgcataggc cactagtgga 90 <210> 76 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 76 atgtcgatga taaaaagcta tgccgcaaaa gaagcgggcg gcgaactgga agtttatgag 60 tacgatcccg gacactatag aacgcggccg 90 <210> 77 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 77 tcaaaaatcg gctttcaaca ccacgcggta acgcgcctta ccgtcgcgca catgctggat 60 ggcgtcgtta ccgcataggc cactagtgga 90 <210> 78 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 78 ccgattttat gcccggaaaa gagaattatg atgccaggct cgtacatcac cggtgtacgt 60 gcgaaaggcg gacactatag aacgcggccg 90 <210> 79 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 79 ttccacagct tagtggtgat gaacagttct tctctgttga ctgaggcatt tttcagggct 60 ttgccgacac ccgcataggc cactagtgga 90 <210> 80 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 80 atggaccgca ttattcaatc accgggtaaa tacatccagg gcgctgatgt gattaatcgt 60 ctgggcgaat gacactatag aacgcggccg 90 <210> 81 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 81 tccactagtg gcctatgcgg gccagatcag gtttacgccg ctctgctggt agccgaccag 60 tacggtcagc gtttcctgca agagtgggaa 90 <210> 82 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 82 atgactcata aagcaacgga gatcctgaca ggtaaagtta tgcaaaaatc ggtcttaatt 60 accggatgtt gacactatag aacgcggccg 90 <210> 83 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 tccactagtg gcctatgcgg ggtgacctgg gcggtaatgg tgcttaagcg cctgctgccg 60 gggcgcgtga tggacaaaat attgcagggg 90 <210> 84 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 84 atggaacgtt ttcttgaaaa tgcaatgtat gcttctcgct ggctgcttgc ccccgtgtac 60 tttggccttt gacactatag aacgcggccg 90 <210> 85 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 85 tccactagtg gcctatgcgg tatccatctg acgtttgtgc tttctgcatt tgtgatgggc 60 tatcttgacc gactgactcg tcataatcac 90 <210> 86 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 86 gcatgagctc ttgaacttta agaaggagat atacatatgg ggaccttcgt tattgaact 59 <210> 87 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 87 actggtacct tatcacttgt catcgtcatc cttgtagtc 39 <210> 88 <211> 100 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 88 gctagaattc ttgacggcta gctcagtcct aggtacagtg ctagcttgaa ctttaagaag 60 gagatataca tatggggacc ttcgttattg aactggatat 100 <210> 89 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 89 atgcatgctc tcatgagcgg atacatattt gaatgtat 38 <210> 90 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 90 gctagtcgac gcaaggccgt ttctacgcgc 30 <210> 91 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 91 atcgaattca caacaaaaac cacccattga ca 32 <210> 92 <211> 142 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 92 gctagtactg cgatgagtgg cagggcgggg cgtaaggcgc gccatttaaa tgaagttcct 60 attccgaagt tcctattctc tagaaagtat aggaacttcg aagcagctcc agcctacgat 120 tataaatatg ctgtgcgcga ac 142 <210> 93 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 93 atgagtactc tcacgagcga cacagacat 29 <210> 94 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 94 gcatgaattc ccatttccct tctctacgga tgatt 35 <210> 95 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 95 atgcggatcc aatactctct cctgaattta tgattcacg 39 <210> 96 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 96 gcatccatgg aaagggatga tccaaccg 28 <210> 97 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 97 atgcgaattc agcgatagcg ccggcttagt 30 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 98 gcatctgcag gagatctgcc tttgccggat 30 <210> 99 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 99 catgggccac agtggccggg aggctgcccg aaacacc 37 <210> 100 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 100 gcatactagt aggatctgat gggtaccgtt c 31 <210> 101 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 101 atgctgcagt aggtgacact atagaacgcg gccgccagct gaagctttac cgttcgtata 60 gcatacatta tac 73 <210> 102 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 102 gcatggccac agtggccggt cagaccaagt t 31 <210> 103 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 103 atgccatggc atggctaatt cccatgtcag ccgttaagtg ttcc 44 <210> 104 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 104 cacggctgaa tcgttaatat tttgcgagtt cacgccgaaa tactgatttt tggcgctaga 60 tcacaggcat gacactatag aacgcggccg 90 <210> 105 <211> 178 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 105 ccactgtttt tggcgttgct gcaacacggg tttcattggt taaccgttct cttggtatgc 60 caattcgcat agctgtttcc tggtttaaac cgaattggtg gggcgagagg ctcaattata 120 tcaacgttgt tatctcttgt caacaccgcc agagataacc gcataggcca ctagtgga 178 <210> 106 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 106 tcgctaactt cgcttattat ggggatcagt ttcagggttt caagggaagc actcacattg 60 tcatcaatct gacactatag aacgcggccg 90 <210> 107 <211> 178 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 107 catgtgttgt cagtgcagtg gggtgccgtg ggtgtcccac aatgccaata cacttgaaat 60 gattattcat agctgtttcc tggtttaaac aataaattac gagccagtgg ctcaattata 120 tcaacgttgt tatctcttgt caacaccgcc agagataacc gcataggcca ctagtgga 178 <210> 108 <211> 157 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 108 acggcgcgca cggcaccagc cacttctatg taacccagga agcggcaaaa atgctgaaca 60 aaccggtaga agaactgaac atcatcacct gccacctggg caacggtggt tccgtttctg 120 ctatccgcaa cgtccgctta ttatcactta ttcaggc 157 <210> 109 <211> 194 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 109 gattacccag cagtacgcaa gttgcgatac cacgttcagc acagatagcg gctgctttaa 60 cggtacgcgg ttcgtcacct tccggcagta cgatacgttt gcccgctttg caacgacgga 120 tgccgtgctc tttgtacagg ttgtaaggca gccttacttc ggttcgatgg actaatacct 180 gtgacggaag atca 194 <210> 110 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 110 tgccgctcat attccctcca gcgaaattgg cagcggctat ttccaggaaa cccacccaca 60 agagctattc cgcgaatgta gtcactattg cgagctggtt tccagcccgg agcagatccc 120 acaagtactg gcgatccgct tattatcact tattcaggc 159 <210> 111 <211> 190 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 111 aaatcgtcca gccctttgcg ggcgtcgcgg taatcttcca gcgctttatc cagaaacttg 60 cgatcggctt tttcttccac caatggaagc aatgcacgca gagtcgaaat agctcttgtg 120 ggtgggtttc ctggaaatag ccgctgccct tacttcggtt cgatggacta atacctgtga 180 cggaagatca 190 <210> 112 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 112 tgcttttcaa cgatagcttc ctggcagaga ttttttctta ttattcctcc ccatctggtg 60 ttaccctcct gcccattaac ccattcaaca gaactgtgac gcgccatggc aaatatccgc 120 ttattatcac ttattcaggc 140 <210> 113 <211> 194 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 113 cggtcaaact gtaggtaagg cgtcattaac gtttgctctt ttatactcat atgtatatct 60 ccttcttaaa gttcaagcta gcactgtacc taggactgag ctagccgtca acaccagatg 120 gggaggaata ataagaaaaa atctctgcca gccttacttc ggttcgatgg actaatacct 180 gtgacggaag atca 194 <210> 114 <211> 112 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 114 ggttacggcc aggacagtcg taacaccgtg cgtgttgact attttacctc tggcggtgat 60 aatggttgcg gacgtaaaaa ggtgttttgc cattttctgt tgggccattg ca 112 <210> 115 <211> 135 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 115 cgttcggcgt atcgccaaaa tcaccgccgt aagccgacca cgggttgccg ttttcatcat 60 atttaatcag cgactgatcc acccagtccc agacgaagcc gccctgtaaa cgggggacca 120 tgattgcatg cggta 135

Claims (22)

  1. PTS (phosphoenolpyruvate:sugar phosphotransferase system) 및 GalP (D-galactose transporter) 생합성능을 가지는 대장균에,
    (i) 카르복시산 환원효소 (carboxylic acid reductase)를 인코딩하는 유전자; 및 (ii) 포스포판테테이닐 전이효소 (phosphopantetheinyl transferase)를 인코딩하는 유전자가 도입되어 있고,
    야생형 대장균에 내재적으로 존재하는 dkgB(2,5-diketo-D-gluconate reductase B), yahK(oxidoreductase), yeaE(oxidoreductase), yjgB(alcohol dehydrogenase), yqhC(DNA-binding transcriptional regulator), yqhD(alcohol dehydrogenase), dkgA(2,5-diketo-D-gluconate reductase A), gldA(glycerol dehydrogenase), ybbO(oxidoreductase) 및 yqhA(inner membrane protein) 유전자가 추가로 결실되어 있는 신남알데히드 생산성이 향상된 재조합 대장균.
  2. 제1항에 있어서, 상기 카르복시산 환원효소를 인코딩하는 유전자는 마이코박테리움 마리눔(Mycobacterium marinum) 또는 노카디아 이오웬시스(Nocardia iowensis) 유래의 car 유전자인 것을 특징으로 하는 신남알데히드 생산성이 향상된 재조합 대장균.
  3. 제1항에 있어서, 상기 포스포판테테이닐 전이효소를 인코딩하는 유전자는 바실러스 서틸리스(Bacillus subtilis) 유래의 sfp 유전자 또는 노카디아 이오웬시스(Nocardia iowensis) 유래의 npt 유전자인 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  4. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은
    (i) crr (glucose-specific enzyme IIA components of PTS), tyrR (DNA-binding transcriptional dual regulator) 및 pykA (pyruvate kinase) 유전자가 결실; 및
    (ii) aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) 및 pheA (fused chorismate mutase P and prephenate dehydratase)의 피드백 저항성이 향상되도록 변이되어 있는, 신남알데히드 생산성이 향상된 재조합 대장균.
  5. 제4항에 있어서, 상기 aroG (3-deoxy-D-arabino-heptulosonate-7-phosphate synthase)는 aroG8/15로 교체 및 pheA (fused chorismate mutase P and prephenate dehydratase)는 pheAfbr/dm 로 교체되어 있고,
    상기 교체된 aroG8/15 pheAfbr/dm 의 프로모터는 상시 발현 프로모터인 것을 특징으로 하는 신남알데히드 생산성이 향상된 재조합 대장균.
  6. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은 야생형 대장균에 내재적으로 존재하는 galP (D-galactose transporter) glk (glucokinase) 유전자의 프로모터가 상시 발현 프로모터로 교체되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  7. 삭제
  8. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 페닐알라닌 암모니아 분해효소 (phenylalanine ammonia lyase)를 인코딩하는 유전자가 추가로 도입되어 있는 신남알데히드 생산성이 향상된 재조합 대장균.
  9. 제8항에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 상시 발현 프로모터 하에 도입되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  10. 제8항에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 스트렙토미세스 마리티무스(Streptomyces maritimus) 유래의 pal 유전자인 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  11. 제8항에 있어서, 상기 페닐알라닌 암모니아 분해효소를 인코딩하는 유전자는 대장균에 내재적으로 존재하는 gidB (methyltransferase)와 atpI (ATP synthase) 유전자 사이에 삽입되는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  12. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은 마이코박테리움 마리눔 유래의 카르복시산 환원효소를 인코딩하는 유전자 및 노카디아 이오웬시스 유래의 포스포판테테이닐 전이효소를 인코딩하는 유전자가 도입되어 있고, 상기 카르복시산 환원효소를 인코딩하는 유전자 및 포스포판테테이닐 전이효소를 인코딩하는 유전자는 야생형 대장균에 내재적으로 존재하는 aslA (putative anaerobic sulfatase maturation enzyme AslB)와 aslB (putative anaerobic sulfatase maturation enzyme AslB) 유전자 사이에 삽입되는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  13. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 피리딘 뉴클레오티드 트랜스하이드로게나제 α & β(pyridine nucleotide transhydrogenase α & β) 코딩 유전자 pntAB 및 NAD 키나아제 (NAD kinase) 코딩 유전자 yfjB 의 프로모터가 상시 발현 프로모터로 교체되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  14. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 pta-ackA (phosphate acetyltransferase & acetate kinase A) 및 poxB (pyruvate dehydrogenase) 유전자가 결실되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  15. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 coaA (pantothenate kinase) 유전자의 프로모터가 상시 발현 프로모터로 교체되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  16. 제1항에 있어서, 상기 신남알데히드 생산성이 향상된 재조합 대장균은, 야생형 대장균에 내재적으로 존재하는 metK (methionine adenosyltransferase) 및 proB (γkinase) 유전자가 추가로 억제되어 있는 것을 특징으로 하는, 신남알데히드 생산성이 향상된 재조합 대장균.
  17. 제5항, 제6항, 제9항, 제13항 및 15항 중 어느 한 항에 있어서, 상기 상시 발현 프로모터는 BBa_J23100, BBa_J23106, M1-46, M1-37 및 bacteriophage λPR로 구성된 군에서 선택되는, 재조합 대장균
  18. 다음 단계를 포함하는 신남알데히드의 생산방법:
    (a) 제1항 내지 제6항, 제8항 내지 제16항 중 어느 한 항의 재조합 대장균을 배양하여 신남알데히드를 생성시키는 단계; 및
    (b) 상기 생성된 신남알데히드를 회수하는 단계.
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
KR1020200176147A 2020-12-16 2020-12-16 신남알데히드 대량 생산을 위한 재조합 대장균 KR102582416B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200176147A KR102582416B1 (ko) 2020-12-16 2020-12-16 신남알데히드 대량 생산을 위한 재조합 대장균

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200176147A KR102582416B1 (ko) 2020-12-16 2020-12-16 신남알데히드 대량 생산을 위한 재조합 대장균

Publications (2)

Publication Number Publication Date
KR20220086044A KR20220086044A (ko) 2022-06-23
KR102582416B1 true KR102582416B1 (ko) 2023-09-26

Family

ID=82221728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200176147A KR102582416B1 (ko) 2020-12-16 2020-12-16 신남알데히드 대량 생산을 위한 재조합 대장균

Country Status (1)

Country Link
KR (1) KR102582416B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109793B (zh) * 2022-06-24 2024-03-26 浙江工业大学 一种从头合成络缌的重组大肠杆菌及其构建方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498540A (zh) 2014-12-03 2015-04-08 北京林业大学 一种重组菌株及其全细胞催化生产4-羟基肉桂醛的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515781B1 (ko) 2013-05-08 2015-05-04 경상북도(농업기술원) 계피로부터 계피 추출물을 추출하는 방법
KR101797713B1 (ko) * 2015-05-14 2017-11-16 한국과학기술원 신남알데하이드의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498540A (zh) 2014-12-03 2015-04-08 北京林业大学 一种重组菌株及其全细胞催化生产4-羟基肉桂醛的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biochemical Engineering Journal, 2020.09.12. online pub. 164:107796.*
Microbial Cell Factories, 2016, Vol. 15, No. 16, pp. 1-12.*

Also Published As

Publication number Publication date
KR20220086044A (ko) 2022-06-23

Similar Documents

Publication Publication Date Title
KR101640325B1 (ko) 재조합 미생물에 의한 일산화탄소로부터 부탄올의 제조
KR101511639B1 (ko) 재조합 미생물 및 이의 사용 방법
US5981281A (en) Method for knockout mutagenesis in Streptococcus pneumoniae
JPH0665305B2 (ja) 組換えdna含有宿主細胞の安定化法
CN113227364A (zh) 用于产生熊去氧胆酸及其前体的细胞和方法
KR102582416B1 (ko) 신남알데히드 대량 생산을 위한 재조합 대장균
CN113583900A (zh) 一组基因组合理简约化的伯克氏菌突变株与底盘菌株及其构建方法和应用
CA2377482A1 (en) Dihydroorotate dehydrogenase sequence of corynebacterium glutamicum and the use thereof in microbial production of pyrimidine and/or compounds used with pyrimidine
JP3593125B2 (ja) 染色体に組込まれた異種遺伝子を高度に発現する組換え細胞
JPH08502165A (ja) グルコースからのキナ酸の合成
CN113355345B (zh) 一种基因组整合外源序列的方法
JPS6359677B2 (ko)
JP5566577B2 (ja) 二次代謝産物の異種発現方法
US4784952A (en) Conferred susceptibility to lambda phage in non-coliform procaryotic hosts
US20030027286A1 (en) Bacterial promoters and methods of use
CN111826372A (zh) 利用木糖生产丁醇的工程菌株及其构建方法和应用
CN114806982B (zh) 改造的1,3-丙二醇生产菌株及其应用
JPH0731478A (ja) コリネ型細菌内でプロモーター機能を有するdna断片
US20230295674A1 (en) Method for screening target gene using crispri system and uses thereof
JP2996975B2 (ja) 組換dna法を用いる糖ヌクレオチドの合成方法
US6162633A (en) Process and kit for fragment cloning
US6399340B1 (en) Vector derivatives of gluconobacter plasmid pF4
JP2002199887A (ja) 分裂酵母ゲノム上lys1座位へ外来DNAを効率よく導入する方法とそれに用いるベクター
CN115094015A (zh) 一种产(-)-α-红没药醇的重组基因工程菌及其制备方法和用途
JPS62278985A (ja) ベンゼンオキシゲナーゼ遺伝子および該遺伝子で形質転換された原核生物細胞

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant