KR102544085B1 - 카메라 모듈 제조 장치 - Google Patents
카메라 모듈 제조 장치 Download PDFInfo
- Publication number
- KR102544085B1 KR102544085B1 KR1020217036257A KR20217036257A KR102544085B1 KR 102544085 B1 KR102544085 B1 KR 102544085B1 KR 1020217036257 A KR1020217036257 A KR 1020217036257A KR 20217036257 A KR20217036257 A KR 20217036257A KR 102544085 B1 KR102544085 B1 KR 102544085B1
- Authority
- KR
- South Korea
- Prior art keywords
- lens
- peripheral
- central
- optical
- unit
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 230000003287 optical effect Effects 0.000 claims abstract description 231
- 238000003384 imaging method Methods 0.000 claims abstract description 216
- 230000002093 peripheral effect Effects 0.000 claims abstract description 199
- 238000005259 measurement Methods 0.000 claims abstract description 118
- 239000000758 substrate Substances 0.000 claims description 63
- 210000001747 pupil Anatomy 0.000 claims description 32
- 230000004044 response Effects 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B43/00—Testing correct operation of photographic apparatus or parts thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0207—Details of measuring devices
- G01M11/0214—Details of devices holding the object to be tested
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0221—Testing optical properties by determining the optical axis or position of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/62—Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Lens Barrels (AREA)
- Studio Devices (AREA)
Abstract
카메라 모듈 제조 장치(100)로서, 중앙, 주변 콜리메이터 렌즈(31, 33)와 중앙, 주변 콜리메이터 렌즈(31, 33)의 광축(31a, 33a)에 수직인 면에 대하여 경사지게 배치되고 중앙, 주변 측정 차트(32, 34)를 포함하며, 중앙, 주변 측정 차트(32, 34)의 상을 중앙, 주변 콜리메이터 렌즈(31, 33)와 촬영 렌즈(41)를 통과시켜 촬상 소자(52)에 결상시키는 중앙, 주변 광학 유닛(30, 35)을 포함하고, 주변 광학 유닛(35)은, 주변 콜리메이터 렌즈(33)의 광축(33a)이 중앙 광학 유닛(30)의 중앙 콜리메이터 렌즈(31)의 광축(31a)에 대하여 경사지도록 배치되고, 그 경사 각도가 변경 가능하게 되어 있다.
Description
본 발명은 렌즈 유닛과, 촬상 소자가 부착된 센서 기판을 접합하는 카메라 모듈 제조 장치에 관한 것이다.
촬영 렌즈가 편입된 렌즈 유닛과, CCD나 CMOS 등의 촬상 소자가 부착된 센서 기판을 일체화한 카메라 모듈이 알려져 있다. 이와 같은 카메라 모듈에서는, 촬상 소자의 촬상면이 렌즈 유닛의 결상면에 대략 일치하도록 렌즈 유닛에 대한 센서 기판의 위치 조정을 행하고, 위치 조정이 된 상태에서 센서 기판을 렌즈 유닛에 자외선 경화 수지에 의해 접착하고 있다(예를 들면 특허문헌 1, 2 참조).
특허문헌 1, 2에 기재된 종래 기술의 카메라 모듈 제조 장치에서는, 렌즈 유닛에 대한 센서 기판의 위치를 이동시키면서 측정 차트의 화상을 촬상하고, 센서 기판의 위치에 대한 화상의 합초 평가값의 변화를 검출하여, 합초 평가값의 변화에 따라 센서 기판의 위치를 조정하고 있다. 이 때문에, 센서 기판의 다수의 상이한 위치에서 측정 차트의 화상을 취득하는 것이 필요하게 되기 때문에, 위치 조정에 시간이 걸려버린다는 문제가 있었다. 또 특허문헌 1, 2에 기재된 종래 기술의 카메라 모듈 제조 장치에서는, 당초의 설계와 화각이 상이한 렌즈 유닛을 사용하여 카메라 모듈을 제조하고자 하는 경우에는, 주변의 측정 차트의 화상이 촬상 소자의 주변부에 결상하도록, 렌즈 유닛의 화각에 맞추어 측정 차트를 교환하거나, 렌즈 유닛에 광을 이끄는 광학 유닛을 교환하거나 하는 것이 필요하게 된다. 이 때문에, 특허문헌 1, 2에 기재된 종래 기술의 카메라 모듈 제조 장치에서는, 제조하는 카메라 모듈의 기종을 전환하는 것에 시간과 수고가 든다는 문제가 있었다.
그래서, 본 발명은 카메라 모듈 제조 장치에 있어서, 렌즈 유닛과 센서 기판과의 상대 위치의 조정을 단시간에 행하여, 생산성의 향상을 도모함과 아울러, 간편한 방법으로 제조하는 카메라 모듈의 기종의 변경에 대응 가능하게 하는 것을 목적으로 한다.
본 발명의 카메라 모듈 제조 장치는, 촬영 렌즈가 편입된 렌즈 유닛과, 촬영 렌즈가 결상한 상을 화상 신호로 변환하는 촬상 소자가 부착된 센서 기판과의 상대 위치를 조정하고, 상대 위치가 조정된 상태에서 렌즈 유닛과 센서 기판을 접합하는 카메라 모듈 제조 장치로서, 중앙 콜리메이터 렌즈와 중앙 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치된 중앙 측정 차트를 포함하고, 중앙 측정 차트의 상을 중앙 콜리메이터 렌즈와 촬영 렌즈를 통과시켜 촬상 소자의 중앙부에 결상시키는 중앙 광학 유닛과, 주변 콜리메이터 렌즈와 주변 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치된 주변 측정 차트를 포함하고, 주변 측정 차트의 상을 주변 콜리메이터 렌즈와 촬영 렌즈를 통과시켜 촬상 소자의 상이한 주변부에 각각 결상시키는 적어도 2개의 주변 광학 유닛을 포함하는 광학 모듈과, 중앙 광학 유닛에 의해 촬상 소자의 중앙부에 결상시킨 중앙 측정 차트의 상을 촬상 소자가 변환한 중앙 화상 신호와, 각 주변 광학 유닛에 의해 촬상 소자의 각 주변부에 결상시킨 각 주변 측정 차트의 상을 촬상 소자가 변환한 각 주변 화상 신호에 기초하여, 렌즈 유닛과 센서 기판과의 상대 위치를 조정하는 제어부를 갖추고, 각 주변 광학 유닛은, 각 주변 콜리메이터 렌즈의 각 광축이 중앙 광학 유닛의 중앙 콜리메이터 렌즈의 광축에 대하여 경사지도록 배치되고, 그 경사 각도가 변경 가능하게 되어 있는 것을 특징으로 한다.
이와 같이, 중앙 및 주변 측정 차트가 각각 중앙 및 주변 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치되어 있으므로, 촬영 렌즈의 각 측정 차트의 결상면의 높이가 촬영 렌즈의 광축으로부터의 광축에 직교 방향의 거리에 대하여 변화한다. 이 때문에, 촬영 렌즈의 결상면의 높이가 상이한 복수의 측정 차트의 상을 한번의 촬상으로 취득할 수 있고, 한번의 촬상으로, 촬영 렌즈의 결상면과 촬상 소자의 촬상면과의 높이 어긋남에 대한 공간 주파수 응답 등의 합초 평가값의 변화 특성을 취득하여, 렌즈 유닛과 센서 기판과의 상대 위치의 조정을 행할 수 있다. 이것에 의해, 렌즈 유닛과 센서 기판과의 상대 위치의 조정을 단시간에 행할 수 있어, 생산성을 향상시킬 수 있다. 또 각 주변 광학 유닛의 주변 콜리메이터 렌즈의 광축의 중앙 콜리메이터 렌즈의 광축에 대한 경사 각도가 변경 가능하게 되어 있으므로, 촬영 렌즈의 화각에 맞추어 경사 각도를 변경함으로써, 주변 측정 차트의 화상을 촬상 소자의 주변부에 결상시킬 수 있고, 간편한 방법으로 제조하는 카메라 모듈의 기종의 변경에 대응할 수 있다.
본 발명의 카메라 모듈 제조 장치에 있어서, 각 주변 광학 유닛은, 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 인접하는 주변 콜리메이터 렌즈의 광축이 교차하도록 배치되어 있는 것으로 해도 된다. 또 촬상 소자는 장방형이며, 각 주변 광학 유닛은, 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 인접하는 주변 콜리메이터 렌즈의 광축이 이루는 각도가 촬상 소자의 2개의 대각선이 이루는 각도가 되도록 배치되어도 된다. 또 촬상 소자가 부착된 센서 기판을 유지하는 센서 기판 유지부를 갖추고, 센서 기판 유지부는, 촬상 소자의 대각선의 방향이 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 각 주변 콜리메이터 렌즈의 광축의 방향이 되도록, 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 센서 기판을 유지해도 된다.
이것에 의해, 촬영 렌즈의 화각이 바뀐 경우에도, 주변 측정 차트의 화상을 촬상 소자의 코너부에 결상시킬 수 있어, 렌즈 유닛과 센서 기판과의 상대 위치의 조정을 고정밀도로 행할 수 있다.
본 발명의 카메라 모듈 제조 장치에 있어서, 렌즈 유닛을 유지하는 렌즈 유닛 유지부를 갖추고, 각 주변 광학 유닛은, 각 주변 콜리메이터 렌즈의 초점 위치가 중앙 광학 유닛의 중앙 콜리메이터 렌즈의 초점 위치와 동일 위치가 되도록 배치되어 있고, 렌즈 유닛 유지부는, 촬영 렌즈의 입사동의 위치에 중앙 콜리메이터 렌즈의 초점 위치와 각 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 렌즈 유닛을 유지하고, 중앙 광학 유닛의 중앙 콜리메이터 렌즈는 중앙 측정 차트의 상을 촬영 렌즈의 입사동을 통과시켜 촬상 소자의 중앙부에 결상시키고, 주변 광학 유닛의 각 주변 콜리메이터 렌즈는 각 주변 측정 차트의 상을 촬영 렌즈의 입사동을 통과시켜 촬상 소자의 상이한 주변부에 각각 결상시켜도 된다. 또 렌즈 유닛 유지부가, 촬영 렌즈의 광축과 중앙 콜리메이터 렌즈의 광축이 동일축이 되고, 또한 촬영 렌즈의 입사동의 중심 위치에 중앙 콜리메이터 렌즈의 초점 위치와 각 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 렌즈 유닛을 유지해도 된다.
이와 같이, 촬영 렌즈의 입사동의 위치에 중앙 콜리메이터 렌즈의 초점 위치와 각 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 렌즈 유닛을 유지함으로써, 중앙 콜리메이터 렌즈와 촬영 렌즈가 중앙 측정 차트측 광학계를 구성하고, 각 주변 콜리메이터 렌즈와 촬영 렌즈가 각각 주변 측정 차트측 광학계를 구성한다. 그리고, 중앙 콜리메이터 렌즈가 촬영 렌즈의 입사동을 통과시켜 촬상 소자의 촬상면에 중앙 측정 차트의 상을 결상시키고, 중앙 측정 차트를 중앙 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치함으로써, 촬상 소자의 촬상면에는 중앙 콜리메이터 렌즈의 광축으로부터의 광축에 직교 방향의 거리에 따라 결상 높이가 상이한 상이 결상된다. 마찬가지로, 주변 콜리메이터 렌즈가 촬영 렌즈의 입사동을 통과시켜 촬상 소자의 촬상면에 주변 측정 차트의 상을 결상시키고, 주변 측정 차트를 주변 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치함으로써, 촬상 소자의 촬상면에는 주변 콜리메이터 렌즈의 광축으로부터의 광축에 직교 방향의 거리에 따라 결상 높이가 상이한 상이 결상된다. 이 때문에, 1회의 촬상으로, 공간 주파수 응답 등의 합초 평가값의 산출을 정밀도 좋게 행할 수 있다. 이것에 의해, 렌즈 유닛과 센서 기판을 단시간에 조정을 행할 수 있어, 생산성을 보다 향상시킬 수 있다.
본 발명의 카메라 모듈 제조 장치는, 렌즈 유닛과 센서 기판과의 상대 위치의 조정을 단시간에 행하여, 생산성의 향상을 도모함과 아울러, 간편한 방법으로 제조하는 카메라 모듈의 기종의 변경에 대응할 수 있다.
도 1은 실시형태의 카메라 모듈 제조 장치의 측면도이다.
도 2는 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛의 구조를 나타내는 사시도이다.
도 3은 실시형태의 카메라 모듈 제조 장치의 주변 광학 유닛의 구조를 나타내는 사시도이다.
도 4는 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛과 복수의 주변 광학 유닛의 배치를 나타내는 사시도이다.
도 5는 실시형태의 카메라 모듈 제조 장치에 유지된 센서 기판에 부착된 촬상 소자와 주변 콜리메이터 렌즈의 광축의 방향과의 관계를 나타내는 평면도이다.
도 6은 실시형태의 카메라 모듈 제조 장치의 광학 모듈의 평면도이다.
도 7은 실시형태의 카메라 모듈 제조 장치의 광학 모듈을 도 6에 나타내는 B-B로부터 본 입면도이다.
도 8은 중앙 측정 차트의 패턴을 나타내는 평면도이다.
도 9는 주변 측정 차트의 패턴을 나타내는 평면도이다.
도 10은 실시형태의 카메라 모듈 제조 장치에 의해 조립되는 카메라 모듈을 나타내는 사시도이다.
도 11은 중앙 광학 유닛과 주변 광학 유닛으로부터의 광이 촬영 렌즈를 통과하여 촬상 소자의 촬상면에 이르는 광로를 나타내는 입면도로서, 광로를 도 6에 나타내는 B-B로부터 본 도면이다.
도 12는 촬상 소자의 촬상면에 결상한 중앙 측정 차트의 상과, 주변 측정 차트의 상을 나타내는 평면도이다.
도 13은 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛의 전체 광로도(a)와 촬상면 근방의 부분 상세 광로도(b)이다.
도 14는 도 12에 나타내는 중앙 측정 차트의 상의 확대 평면도이다.
도 15는 도 14에 나타내는 중앙 측정 차트의 계측점 위치에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 16은 실시형태의 카메라 모듈 제조 장치의 주변 광학 유닛의 전체 광로도(a)와 촬상면 근방의 부분 상세 광로도(b)이다.
도 17은 도 12에 나타내는 주변 측정 차트의 상의 확대 평면도이다.
도 18은 도 17에 나타내는 주변 측정 차트의 계측점 위치에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 19는 촬영 렌즈의 결상면과 촬상 소자의 촬상면 사이에 높이 어긋남과 경사가 있는 경우의 촬상 소자의 중앙부와 주변부에 있어서의 촬영 렌즈의 결상면과 촬상 소자의 촬상면과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 20은 촬영 렌즈의 결상면과 촬상 소자의 촬상면이 대략 동일면으로 조정된 경우의 촬상 소자의 중앙부와 주변부에 있어서의 촬영 렌즈의 결상면과 촬상 소자의 촬상면과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 21은 다른 실시형태의 중앙 측정 차트의 패턴을 나타내는 평면도이다.
도 2는 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛의 구조를 나타내는 사시도이다.
도 3은 실시형태의 카메라 모듈 제조 장치의 주변 광학 유닛의 구조를 나타내는 사시도이다.
도 4는 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛과 복수의 주변 광학 유닛의 배치를 나타내는 사시도이다.
도 5는 실시형태의 카메라 모듈 제조 장치에 유지된 센서 기판에 부착된 촬상 소자와 주변 콜리메이터 렌즈의 광축의 방향과의 관계를 나타내는 평면도이다.
도 6은 실시형태의 카메라 모듈 제조 장치의 광학 모듈의 평면도이다.
도 7은 실시형태의 카메라 모듈 제조 장치의 광학 모듈을 도 6에 나타내는 B-B로부터 본 입면도이다.
도 8은 중앙 측정 차트의 패턴을 나타내는 평면도이다.
도 9는 주변 측정 차트의 패턴을 나타내는 평면도이다.
도 10은 실시형태의 카메라 모듈 제조 장치에 의해 조립되는 카메라 모듈을 나타내는 사시도이다.
도 11은 중앙 광학 유닛과 주변 광학 유닛으로부터의 광이 촬영 렌즈를 통과하여 촬상 소자의 촬상면에 이르는 광로를 나타내는 입면도로서, 광로를 도 6에 나타내는 B-B로부터 본 도면이다.
도 12는 촬상 소자의 촬상면에 결상한 중앙 측정 차트의 상과, 주변 측정 차트의 상을 나타내는 평면도이다.
도 13은 실시형태의 카메라 모듈 제조 장치의 중앙 광학 유닛의 전체 광로도(a)와 촬상면 근방의 부분 상세 광로도(b)이다.
도 14는 도 12에 나타내는 중앙 측정 차트의 상의 확대 평면도이다.
도 15는 도 14에 나타내는 중앙 측정 차트의 계측점 위치에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 16은 실시형태의 카메라 모듈 제조 장치의 주변 광학 유닛의 전체 광로도(a)와 촬상면 근방의 부분 상세 광로도(b)이다.
도 17은 도 12에 나타내는 주변 측정 차트의 상의 확대 평면도이다.
도 18은 도 17에 나타내는 주변 측정 차트의 계측점 위치에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 19는 촬영 렌즈의 결상면과 촬상 소자의 촬상면 사이에 높이 어긋남과 경사가 있는 경우의 촬상 소자의 중앙부와 주변부에 있어서의 촬영 렌즈의 결상면과 촬상 소자의 촬상면과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 20은 촬영 렌즈의 결상면과 촬상 소자의 촬상면이 대략 동일면으로 조정된 경우의 촬상 소자의 중앙부와 주변부에 있어서의 촬영 렌즈의 결상면과 촬상 소자의 촬상면과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 그래프이다.
도 21은 다른 실시형태의 중앙 측정 차트의 패턴을 나타내는 평면도이다.
이하, 도면을 참조하면서 실시형태의 카메라 모듈 제조 장치(100)에 대해 설명한다. 가장 먼저 도 1~도 10을 참조하면서 카메라 모듈 제조 장치(100)의 구성 에 대해 설명한다.
도 1에 나타내는 바와 같이, 카메라 모듈 제조 장치(100)는, 촬영 렌즈(41)가 편입된 렌즈 유닛(40)과, 촬상 소자(52)가 부착된 센서 기판(51)을 접합하여 카메라 모듈(50)을 제조하는 것이다. 카메라 모듈 제조 장치(100)는, 광학 모듈(10)과, 렌즈 유닛(40)을 유지하는 로보트 아암(45)과, 상면에 센서 기판(51)을 유지하는 스테이지(55)와, 스테이지(55)의 위치를 6축 방향으로 이동시키는 6축 액추에이터(56)와, 6축 액추에이터(56)를 제어하는 제어부(57)를 포함하고 있다. 여기서, 로보트 아암(45)은 렌즈 유닛 유지부를 구성하고, 스테이지(55)는 센서 기판 유지부를 구성한다. 이하의 설명에서는, 도 2에 나타내는 바와 같이, 중앙 광학 유닛(30)에 편입되어 있는 중앙 측정 차트(32)의 경사 방향을 X방향, 수평면에서 X방향에 직교하는 방향을 Y방향, 수직 방향을 Z방향으로 하고, Z방향 +측을 상측, Z방향 -측을 하측으로서 설명한다.
도 1에 나타내는 바와 같이, 광학 모듈(10)은, 베이스(11)와, 베이스(11)의 하측의 면에 부착된 가이드판(12)과, 베이스(11)의 중앙의 하면에 부착된 중앙 광학 유닛(30)과, 가이드판(12)에 브래킷(15)을 개재시켜 부착된 4개의 주변 광학 유닛(35)으로 구성되어 있다.
도 2에 나타내는 바와 같이 중앙 광학 유닛(30)은 원통 형상의 케이싱 안에, 중앙 콜리메이터 렌즈(31)와, 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면에 대하여 경사지게 배치된 중앙 측정 차트(32)와, LED 등으로 구성된 광원(36)을 배치하여 일체로 한 것이다. 또 도 3에 나타내는 바와 같이, 주변 광학 유닛(35)도 원통 형상의 케이싱 안에, 주변 콜리메이터 렌즈(33)와, 주변 콜리메이터 렌즈(33)의 광축(33a)에 수직인 면에 대하여 경사지게 배치된 주변 측정 차트(34)와, LED 등으로 구성된 광원(36)을 배치하여 일체로 한 것이다. 중앙 측정 차트(32), 주변 측정 차트(34)에 대해서는 나중에 상세하게 설명한다. 또한 이하의 설명에서는, 주변 콜리메이터 렌즈(33)의 광축(33a)을 따라 주변 측정 차트(34)의 표면에서 광학 모듈(10)의 중심으로부터 외주를 향하여 뻗는 방향을 R1~R4, 주변 측정 차트(34)의 표면에서 R1~R4와 직교하는 방향을 S1~S4라고 한다.
도 4에 나타내는 바와 같이, 중앙 광학 유닛(30)은 광학 모듈(10)의 중심에서 중앙 콜리메이터 렌즈(31)의 광축(31a)이 뻗는 방향이 Z방향이 되도록 배치되어 있다. 각 주변 광학 유닛(35)은 각 주변 콜리메이터 렌즈의 각 광축(33a)이 중앙 광학 유닛(30)의 중앙 콜리메이터 렌즈(31)의 광축(31a)에 대하여 경사지도록 배치되어 있다. 또 중앙 광학 유닛(30)과 주변 광학 유닛(35)은, 중앙 광학 유닛(30)에 편입되어 있는 중앙 콜리메이터 렌즈(31)의 광축(31a)과 각 주변 광학 유닛(35)에 편입되어 있는 각 주변 콜리메이터 렌즈(33)의 각 광축(33a)이 일점(29)에서 교차하고, 또한 일점(29)에 중앙 콜리메이터 렌즈(31)와 주변 콜리메이터 렌즈(33)의 각 초점(31f, 33f)이 위치하도록 베이스(11)와 가이드판(12)에 각각 부착되어 있다. 여기서, 상세에 대해서는 나중에 설명하지만, 각 주변 광학 유닛(35)은 도 1에 화살표(101, 102)로 나타내는 바와 같이, 각 주변 콜리메이터 렌즈(33)의 광축(33a)이 중앙 콜리메이터 렌즈(31)의 광축에 대한 경사 각도가 변경 가능하게 가이드판(12)에 부착되어 있다.
도 4, 도 5에 나타내는 바와 같이, 각 주변 광학 유닛(35)은 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 인접하는 주변 콜리메이터 렌즈(33)의 광축(33a)이 이루는 각도가 장방형의 촬상 소자의 2개의 대각선(52a, 52b)이 이루는 각도(θ1, θ2)가 되도록 배치되어 있다. 여기서, 각도(θ1), 각도(θ2)는 2개의 대각선(52a, 52b)이 이루는 각도 중의 작은 쪽의 각도와 큰 쪽의 각도이다. 이 때문에, 4개의 주변 광학 유닛(35)의 각각의 주변 콜리메이터 렌즈(33)의 각 광축(33a)이 뻗는 방향을 T1~T4라고 하면, 촬상 소자(52)의 중심이 중앙 콜리메이터 렌즈(31)의 광축(31a)과 같이, 촬상 소자(52)의 긴 변과 짧은 변이 각각 X방향, Y방향이 되도록 촬상 소자(52)를 세트하면, 촬상 소자(52)의 2개의 대각선(52a, 52b)이 뻗는 방향은 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 각 방향(T1~T4)이 된다.
도 6에 나타내는 바와 같이 2개의 가이드판(12)은 네모난 베이스(11)의 하면에 서로가 이루는 각도가 θ1, θ2가 되도록 부착되어 있다. 여기서, 네모난 베이스(11)의 각 변은 X방향과 Y방향을 향하여 뻗도록 배치되어 있다. 따라서, 네모난 베이스(11)의 각 변의 방향과, 촬상 소자(52)의 긴 변과 짧은 변의 각 방향이 맞도록 촬상 소자(52)를 세트하면, 2개의 가이드판(12)이 뻗는 방향은 촬상 소자(52)의 2개의 대각선(52a, 52b)이 뻗는 방향이며, 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 각 방향(T1~T4)이 된다.
도 7에 나타내는 바와 같이, 각 가이드판(12)은 하면이 일점(29)을 중심으로 한 원호 형상으로 절결된 평판으로, 원호 형상의 절결을 따라 일점(29)을 중심으로 한 원호 상으로 뻗는 가이드 홈(13)이 설치되어 있다. 또 가이드 홈(13)의 외주측에는 주변 광학 유닛(35)이 부착된 브래킷(15)의 위치를 고정하는 핀 구멍(14)이 원호 형상으로 배열되어 설치되어 있다. 주변 광학 유닛(35)이 부착된 브래킷(15)은, 핀(16)이 가이드 홈(13)에 끼워져들어가 가이드 홈(13)으로 가이드되어, 원호 형상으로 이동한다. 또 고정 핀(17)을 브래킷(15)에 설치한 구멍과 가이드판(12)의 핀 구멍(14)에 통과시킴으로써 소정의 각도 위치에 고정된다.
가이드 홈(13)은 일점(29)을 중심으로 한 원호 형상으로 배치되어 있다. 또 가이드판(12)은 촬상 소자(52)의 2개의 대각선(52a, 52b)이 뻗는 방향으로 뻗어 있다. 이 때문에, 주변 광학 유닛(35)은 촬상 소자(52)의 2개의 대각선(52a, 52b)을 포함하는 수직면 내에서, 주변 콜리메이터 렌즈(33)의 광축(33a)이 일점(29)을 통과하는 상태에서 촬영 렌즈(41)의 상부를 화살표(101, 102)로 나타내는 바와 같이 원호 형상으로 이동한다.
이어서 중앙 측정 차트(32)와 주변 측정 차트(34)에 대해 설명한다. 도 8에 나타내는 바와 같이, 중앙 측정 차트(32)는 광이 투과하는 투명한 유리판의 표면에 광을 차광하는 차광부(32s)를 설치한 것이다. 중앙 측정 차트(32)는 Y방향의 +측 절반이 광이 투과하는 투광부(32t)로 되어 있고, Y방향의 -측의 절반이 광이 투과하지 않는 차광부(32s)로 되어 있다. 차광부(32s)는 예를 들면 흑색의 크롬 에칭으로 구성해도 되고, 흑색의 도료를 도포함으로써 구성해도 된다. 투광부(32t)와 차광부(32s) 사이에는 X방향으로 뻗는 중앙 에지(32e)가 구성된다.
도 2에 나타내는 바와 같이, 중앙 측정 차트(32)는, X방향의 중앙의 중심 위치(32i)를 중앙 콜리메이터 렌즈(31)의 광축(31a)이 통과하고, 원위단(32f)이 경사 방향 상측, 근위단(32n)이 경사 방향 하측이 되도록 중앙 광학 유닛(30)의 하우징의 내부에 경사져서 부착되어 있다. 따라서, 도 8에 나타내는 중앙 에지(32e)는 중앙 콜리메이터 렌즈(31)의 광축(31a)을 통과하여 경사 방향을 향하여 뻗는 에지가 된다.
도 9에 나타내는 바와 같이, 주변 측정 차트(34)는, 삼각형의 투광부(34t)와 삼각형의 차광부(34s)를 R1~R4 방향 및 직교하는 S1~S4 방향으로 교대로 인접하도록 배치한 것이다. 차광부(34s)는 예를 들면 흑색의 크롬 에칭으로 구성해도 되고, 흑색의 도료를 도포함으로써 구성해도 된다. R1~R4축의 양측에 인접하여 배치된 삼각형의 차광부(34s)와 투광부(34t) 사이에는 R1~R4 방향으로 뻗는 제1 에지(34e1)가 형성된다. 또 삼각형의 차광부(34s)와 R1~R4 방향으로 인접하는 삼각형의 투광부(34t) 사이에는 S1~S4 방향으로 뻗는 제2 에지(34e2)가 형성된다. 또 삼각형의 투광부(34t)의 R1~R4에 대하여 45도 경사진 방향에는 제3 에지(34e3)가 형성된다.
도 3에 나타내는 바와 같이, 각 주변 측정 차트(34)는, 각 주변 콜리메이터 렌즈(33)의 각 광축(33a)이 R1~R4 방향의 중앙의 각 중심 위치(34i)를 통과하고, 원위단(34f)이 경사 방향 상측, 근위단(34n)이 경사 방향 하측이 되도록 주변 광학 유닛(35)의 하우징의 내부에 경사져서 부착되어 있다. 따라서, 도 9에 나타내는 바와 같이, 제1 에지(34e1)는 주변 콜리메이터 렌즈(33)의 광축(33a)을 통과하여 경사 방향을 향하여 뻗는 에지가 되고, 제2 에지(34e2)와 제3 에지(34e3)는 제1 에지(34e1)와 교차하는 방향으로 뻗는 에지가 된다.
도 10에 나타내는 바와 같이, 카메라 모듈(50)은 촬영 렌즈(41)가 편입된 렌즈 유닛(40)과, 촬상 소자(52)가 부착된 센서 기판(51)을 자외선 경화형의 접착제로 접합한 것이다.
렌즈 유닛(40)에 편입된 촬영 렌즈(41)의 상면의 입사동(42)은 중앙 콜리메이터 렌즈(31)와 각 주변 콜리메이터 렌즈(33)로부터의 광이 입사하는 영역이다.
촬상 소자(52)는 촬영 렌즈(41)가 촬상면(53) 상에 결상한 상을 전기적인 화상 신호로 변환하는 것이다. 센서 기판(51)에는 촬상 소자(52)로부터의 화상 신호를 출력하는 출력 단자(54)가 부착되어 있다. 출력 단자(54)는 제어부(57)에 접속되어 있고, 촬상 소자(52)가 출력한 화상 신호는 제어부(57)에 입력된다.
도 1에 나타내는 바와 같이, 광학 모듈(10)의 하측에는, 기대(110) 상에 부착된 6축 액추에이터(56)와, 6축 액추에이터(56)의 상측에 부착되어 상면에 센서 기판(51)을 유지하는 스테이지(55)와, 스테이지(55)의 상측과 광학 모듈(10)의 하측 사이에 배치되어 렌즈 유닛(40)을 유지하는 로보트 아암(45)이 설치되어 있다. 또한 광학 모듈(10)은 도시하지 않는 프레임을 통하여 기대(110)에 부착되어 있다.
6축 액추에이터(56)는 내부에 6개의 스테핑 모터를 갖추고, 각 스테핑 모터를 구동하여 상측에 부착된 스테이지(55)를 X방향, Y방향, Z방향 및 X축 둘레, Y축 둘레, Z축 둘레의 6방향으로 이동시키는 것이다. 6축 액추에이터(56)는 제어부(57)에 접속되고, 각 스테핑 모터는 제어부(57)로부터의 지령에 따라 동작한다. 또한 스테핑 모터에 한정되지 않고, 서보 모터에 의해 스테이지(55)의 구동을 행하도록 해도 된다.
스테이지(55)는 상면에 센서 기판(51)을 유지하는 도시하지 않는 홀더를 갖추고 있고, 상면에 센서 기판(51)을 유지한다. 또한 스테이지(55)는 상면에 센서 기판(51)을 진공 흡착하도록 해도 된다. 스테이지(55)의 홀더는, 촬상 소자(52)의 중심이 중앙 콜리메이터 렌즈(31)의 광축(31a)을 통과하고, 촬상 소자(52)의 긴 변과 짧은 변이 각각 X방향, Y방향이 되도록 센서 기판(51)을 스테이지(55)의 상면에 유지한다. 이 때문에, 센서 기판(51)을 스테이지(55) 상에 세트하면, 촬상 소자(52)의 2개의 대각선(52a, 52b)이 뻗는 방향은 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 4개의 주변 광학 유닛(35)의 각각의 주변 콜리메이터 렌즈(33)의 각 광축(33a)이 뻗는 방향(T1~T4)이 된다.
로보트 아암(45)은 선단에 렌즈 유닛(40)을 끼워넣어 유지하는 척(46)을 갖추고 있다. 로보트 아암(45)은 척(46)과 함께 도시하지 않는 구동 장치에 의해 X, Y, Z방향으로 이동한다. 로보트 아암(45)은 렌즈 유닛(40)의 스토리지에 있어서 선단의 척(46)을 동작시켜 렌즈 유닛(40)을 끼워넣어 픽업하고, 스테이지(55) 상에 유지된 센서 기판(51) 상까지 이동시켜, 센서 기판(51)의 상측의 위치에 렌즈 유닛(40)을 유지하는 것이다.
제어부(57)는 내부에 정보 처리를 행하는 CPU(58)와 동작 프로그램이나 데이터 등을 격납하는 메모리(59)를 가지는 컴퓨터이다. 6축 액추에이터(56), 로보트 아암(45), 광원(36)은 제어부(57)에 접속되어 제어부(57)의 지령에 따라 동작한다. 또 촬상 소자(52)는 제어부(57)에 접속되어, 촬상 소자(52)가 출력하는 화상 신호는 제어부(57)에 입력된다.
제어부(57)는 로보트 아암(45)에 의해 렌즈 유닛(40)을 센서 기판(51)의 상측의 소정의 위치에 유지하고, 6축 액추에이터(56)에 의해 스테이지(55)의 상면의 X방향, Y방향, Z방향 및 X축 둘레, Y축 둘레, Z축 둘레의 위치를 조정하여, 렌즈 유닛(40)과 센서 기판(51)의 X방향, Y방향, Z방향 및 X축 둘레, Y축 둘레, Z축 둘레의 상대 위치를 조정한다.
이어서 도 11~20을 참조하면서, 이상과 같이 구성된 카메라 모듈 제조 장치(100)의 동작에 대해 설명한다.
도 1에 나타내는 바와 같이, 가장 먼저 스테이지(55)의 상면에 센서 기판(51)을 재치하고, 스테이지(55)의 상면에 센서 기판(51)을 유지시킨다. 센서 기판(51)의 렌즈 유닛(40)과의 접합부에 자외선 경화형의 접착제를 도포해둔다.
제어부(57)는 로보트 아암(45)에 의해 스토리지에서 렌즈 유닛(40)을 픽업하고, 스테이지(55)의 상면에 유지된 센서 기판(51) 상까지 이동시킨다. 제어부(57)는 촬영 렌즈(41)의 광축(41a)이 중앙 콜리메이터 렌즈(31)의 광축(31a)과 동일축이 되고, 촬영 렌즈(41)의 입사동(42)의 중심 위치에 중앙 콜리메이터 렌즈(31)의 초점(31f)과 각 주변 콜리메이터 렌즈(33)의 각 초점(33f)이 위치하는 일점(29)이 겹쳐지도록 로보트 아암(45)으로 렌즈 유닛(40)을 유지한다.
이어서 제어부(57)는 6축 액추에이터(56)를 동작시켜 촬상 소자(52)의 촬상면(53)의 위치가 소정의 초기 위치가 되도록 설정한다. 소정의 초기 위치는 예를 들면 설계 치수의 위치여도 된다.
앞서 설명한 바와 같이, 스테이지(55)의 홀더는, 촬상 소자(52)의 2개의 대각선(52a, 52b)이 뻗는 방향이 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 4개의 주변 광학 유닛(35)의 각각의 주변 콜리메이터 렌즈(33)의 각 광축(33a)이 뻗는 방향(T1~T4)이 되도록 센서 기판(51)을 유지한다. 이 때문에, 센서 기판(51)이 스테이지(55) 상에 세트되면, 각 주변 광학 유닛(35)의 각 주변 콜리메이터 렌즈(33)의 각 광축(33a)은 촬상 소자(52)의 2개의 대각선(52a, 52b)을 포함하는 수직면 내에 위치한다.
도 11은 도 6에 나타내는 B-B로부터 본 광학 모듈(10)의 측면도이며, 촬상 소자(52)의 대각선(52a)을 포함하는 수직면 내에 있어서의 광로를 나타내는 도면이다. 도 11에 나타내는 바와 같이, 중앙 광학 유닛(30)의 중앙 측정 차트(32)에 입사한 광은 중앙 콜리메이터 렌즈(31)를 통과하여 입사동(42)으로부터 촬영 렌즈(41)에 입사하여 촬상 소자(52)의 중앙 부분에 이르고, 도 12에 나타내는 바와 같이 촬상 소자(52)의 촬상면(53)의 중앙 부분에 중앙 측정 차트(32)의 상(81)을 결상시킨다. 상(81)은 중앙 측정 차트(32)의 투광부(32t)를 투과한 흰 반원의 상(82)과, 차광부(32s)로 광이 차광된 검은 상(83)과, 흰 반원의 상(82)과 검은 상(83)의 경계선의 상(84)을 포함하고 있다. 상(84)은 중앙 측정 차트의 중앙 에지(32e)의 화상이다.
화각이 α1인 촬영 렌즈(41)를 사용한 카메라 모듈(50)을 조립할 때는, 촬영 렌즈(41)의 초점 거리가 길기 때문에, 촬상 소자(52)는 촬영 렌즈(41)와의 Z방향의 거리가 긴 P1의 높이에 세트된다. 또 주변 광학 유닛(35)은 광축(33a)의 방향인 T1과 T3이 이루는 각도가 촬영 렌즈(41)의 화각과 동일한 α1이 되도록 세트된다. 이와 같이 촬상 소자(52)와 주변 광학 유닛(35)을 세트함으로써, 주변 광학 유닛(35)의 주변 측정 차트(34)의 화상은 촬상 소자(52)의 네 코너에 결상된다. 즉, 4개의 주변 광학 유닛(35)의 각 주변 콜리메이터 렌즈(33)에 입사한 광은, 도 12에 나타내는 바와 같이, 각 주변 콜리메이터 렌즈(33)를 통과하여 입사동(42)으로부터 촬영 렌즈(41)에 입사하여, 촬상 소자(52)의 네 코너의 주변 부분에 이르고, 도 12에 나타내는 바와 같이 촬상 소자(52)의 촬상면(53)의 4개의 주변 부분에 주변 측정 차트(34)의 상(91)을 결상시킨다. 상(91)은 주변 측정 차트(34)의 투광부(34t)를 투과한 흰 삼각형의 상(92)과, 차광부(34s)로 광이 차광된 검은 상(93)과, 흰 상(92)과 검은 상(93)의 경계선의 상(94~96)을 포함하고 있다. 상(94~96)은 주변 측정 차트(34)의 제1 에지(34e1)~제3 에지(34e3)의 화상이다.
또 화각이 α2인 촬영 렌즈(411)를 사용한 카메라 모듈(50)을 조립할 때는, 촬영 렌즈(411)의 초점 거리가 짧기 때문에, 촬상 소자(52)는 촬영 렌즈(41)와의 Z방향의 거리가 짧은 P2의 높이에 세트된다. 또 주변 광학 유닛(35)은 광축(33a)의 방향인 T1과 T3이 이루는 각도가 촬영 렌즈(41)의 화각과 동일한 α2가 되도록 세트된다. 이것에 의해, 촬영 렌즈(41)보다 화각이 넓은 촬영 렌즈(411)를 사용한 카메라 모듈(50)을 조립하는 경우에도, 화각 α1의 촬영 렌즈(41)를 사용한 경우와 마찬가지로, 주변 광학 유닛(35)의 주변 측정 차트(34)의 화상을 촬상 소자(52)의 네 코너의 주변부에 결상시킬 수 있다.
여기서, 중앙 광학 유닛(30)의 상세와 중앙 광학 유닛(30)에 의해 촬상면(53)의 중앙부에 결상하는 상(81)의 상세에 대해 설명한다.
도 13(a)에 나타내는 바와 같이, 중앙 콜리메이터 렌즈(31)는 촬영 렌즈(41)의 측에 초점(31f)이 있다. 렌즈 유닛(40)은 촬영 렌즈(41)의 입사동(42)의 중심 위치에 중앙 콜리메이터 렌즈(31)의 초점(31f)이 겹쳐지도록 유지되어 있다. 이것에 의해, 중앙 콜리메이터 렌즈(31)와 촬영 렌즈(41)는 중앙 측정 차트측 텔레센트릭 광학계를 구성하고 있다. 그리고, 중앙 측정 차트(32)를 투과한 주광선은 중앙 콜리메이터 렌즈(31)에서 초점(31f)을 향하여 수속하여 촬영 렌즈(41)의 입사동(42)으로부터 촬영 렌즈(41)에 입사하고, 중앙 측정 차트(32)의 패턴은 도 13(b)에 나타내는 바와 같이 결상면(65)에 결상한다.
중앙 콜리메이터 렌즈(31)의 광축(31a)이 통과하는 중앙 측정 차트(32)의 중심 위치(32i)를 투과한 광선은, 도 13(a), 도 13(b)에 실선으로 나타내는 광로(61)와 같이 진행하고, 중심 위치(32i)의 패턴은 기준 결상면(65i)의 광축(31a)의 근방의 중심부에 결상한다.
한편, 중앙 측정 차트(32)는 중앙 콜리메이터 렌즈(31)의 광축(31a)에 직교하는 면에 대하여 경사지게 배치되어 있으므로, 중앙 측정 차트(32)의 원위단(32f)을 투과한 광선은, 도 13(a), 도 13(b)에 파선으로 나타내는 광로(62)와 같이 진행하고, 원위단(32f)의 패턴은 기준 결상면(65i)보다 상측의 상단 결상면(65n)에서 광축(31a)으로부터 광축(31a)과 직교하는 X방향으로 -ΔX만큼 어긋난 위치에 결상한다.
또 중앙 측정 차트(32)의 근위단(32n)을 투과한 광선은, 도 13(a), 도 13(b)에 일점쇄선으로 나타내는 광로(63)와 같이 진행하고, 근위단(32n)의 패턴은 기준 결상면(65i)보다 하측의 하단 결상면(65f)에서 광축(31a)으로부터 광축(31a)과 직교하는 X방향으로 +ΔX만큼 어긋난 위치에 결상한다.
따라서, 촬상면(53)이 기준 결상면(65i)의 높이가 되도록 6축 액추에이터(56)에 의해 센서 기판(51)의 높이가 조정되어 있는 경우, 도 14의 중앙부와 같이, 중앙 측정 차트(32)의 중심 위치(32i)의 중앙 에지(32e)는 흐릿함이 없는 샤프한 상(84i)으로서 촬상면(53)에 결상하고, 원위단(32f)과 근위단(32n)의 중앙 에지(32e)는 흐릿한 상(84f, 84n)으로서 촬상면(53)에 결상한다.
도 14에 나타내는 바와 같이, 촬상면(53)에 결상한 중앙 측정 차트(32)의 상(81)은 촬상 소자(52)에 의해 중앙 화상 신호로 변환되어 제어부(57)에 입력된다. 제어부(57)는 도 14에 나타내는 바와 같이 X방향을 따라 소정의 간격으로 중앙 에지(32e)의 부분의 상에 계측점(85)을 설정한다. 그리고, 제어부(57)는 각 계측점(85)에 있어서 초점이 맞고 있는지 여부를 평가하는 합초 평가값을 산출한다. 본 실시형태에서는 합초 평가값으로서 공간 주파수 응답을 사용하는 것으로서 설명하는데, 이것에 한정되지 않고, 예를 들면 콘트라스트 등의 다른 합초 평가값을 사용하도록 해도 된다.
제어부(57)는 산출한 각 계측점(85)의 공간 주파수 응답을 사용하여, 도 15에 나타내는 바와 같이 촬상면(53)의 중앙부에 있어서의 계측점(85)의 X방향의 위치에 대한 공간 주파수 응답의 변화를 나타내는 선(a)을 포함하는 중앙부 스루 포커스 그래프를 생성한다.
이와 같이, 중앙 광학 유닛(30)에서는 중앙 측정 차트(32)가 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면에 대하여 경사지게 배치되어 있으므로, 촬영 렌즈(41)의 중앙 측정 차트(32)의 결상면(65)의 높이가 촬영 렌즈(41)의 광축(41a)으로부터의 광축(41a)에 직교 방향의 거리에 대하여 상단 결상면(65n), 기준 결상면(65i), 하단 결상면(65f)과 같이 변화한다. 이 때문에, 촬영 렌즈(41)의 결상면(65)의 높이가 상이한 복수의 중앙 측정 차트(32)의 상(81)을 한번의 촬상으로 취득할 수 있고, 한번의 촬상으로, 도 15에 나타나 있는 바와 같은 중앙부 스루 포커스 그래프를 생성할 수 있다.
이어서 주변 광학 유닛(35)의 상세와 주변 광학 유닛(35)에 의해 촬상면(53)의 주변부에 결상하는 상(91)의 상세에 대해 설명한다. 이하, 화각이 α1이며 초점 거리가 긴 촬영 렌즈(41)를 사용한 경우에 대해 설명하는데, 화각이 α2이며 초점 거리가 짧은 촬영 렌즈(411)를 사용한 경우도 마찬가지이다.
중앙 광학 유닛(30)과 마찬가지로, 주변 광학 유닛(35)의 주변 콜리메이터 렌즈(33)는 촬영 렌즈(41)의 측에 초점(33f)이 위치하고 있고, 촬영 렌즈(41)의 입사동(42)의 중심 위치에 주변 콜리메이터 렌즈(33)의 초점(33f)이 겹쳐지고, 주변 콜리메이터 렌즈(33)와 촬영 렌즈(41)가 주변 측정 차트측 텔레센트릭 광학계를 구성하고 있다. 도 16(a)에 나타내는 바와 같이, 주변 측정 차트(34)를 투과한 주광선은 주변 콜리메이터 렌즈(33)에서 초점(33f)을 향하여 수속하여 촬영 렌즈(41)의 입사동(42)으로부터 촬영 렌즈(41)에 입사하고, 주변 측정 차트(34)의 패턴은 도 16(b)에 나타내는 바와 같이 결상면(75)에 결상한다.
주변 콜리메이터 렌즈(33)의 광축(33a)이 통과하는 주변 측정 차트(34)의 중심 위치(34i)를 투과한 광선은, 도 16(a), 도 16(b)에 실선으로 나타내는 광로(71)와 같이 진행하고, 중심 위치(34i)의 패턴은 기준 결상면(75i)에 결상한다.
한편, 주변 측정 차트(34)는 주변 콜리메이터 렌즈(33)의 광축(33a)에 직교하는 면에 대하여 경사지게 배치되어 있으므로, 주변 측정 차트(34)의 원위단(34f)을 투과한 광선은, 도 16(a), 도 16(b)에 파선으로 나타내는 광로(72)와 같이 진행하고, 원위단(32f)의 패턴은 기준 결상면(75i)보다 상측의 상단 결상면(75n)에서, 중심 위치(34i)의 패턴이 결상하는 위치보다 주변부를 향하여 +ΔR만큼 어긋난 위치에 결상한다.
또 주변 측정 차트(34)의 근위단(34n)을 투과한 광선은, 도 16(a), 도 16(b)에 일점쇄선으로 나타내는 광로(73)와 같이 진행하고, 근위단(34n)의 패턴은 기준 결상면(75i)보다 하측의 하단 결상면(75f)에서, 중심 위치(34i)의 패턴이 결상하는 위치보다 중앙부측을 향하여 -ΔR만큼 어긋난 위치에 결상한다.
따라서, 촬상면(53)이 기준 결상면(75i)의 높이가 되도록 6축 액추에이터(56)에 의해 센서 기판(51)의 높이가 조정되어 있는 경우, 도 17에 나타내는 바와 같이, 중심 위치(34i)의 근방의 제1 에지(34e1)는 흐릿함이 없는 샤프한 상(94i)으로서 주변부의 촬상면(53)에 결상하고, 원위단(32f)과 근위단(32n)의 제1 에지(34e1)는 흐릿한 상(94f, 94n)으로서 촬상면(53)에 결상한다.
제어부(57)는 도 17에 나타내는 바와 같이 R1의 방향을 따라 소정의 간격으로 제1 에지(34e1)~제3 에지(34e3)의 부분의 상(94~96)에 각각 계측점(97)을 설정한다. 그리고, 제어부(57)는 각 계측점(97)에 있어서 공간 주파수 응답을 산출하고, 도 18에 나타내는 바와 같이 촬상면(53)의 주변부에 있어서의 계측점(97)의 R1 방향의 위치에 대한 공간 주파수 응답의 변화를 나타내는 선(b1)을 생성한다. 마찬가지로, 제어부(57)는 R2~R4의 각 방향으로 뻗는 각 주변부에 대해서도 마찬가지의 스루 포커스 그래프를 생성한다. 그리고, R1~R4의 각 방향에 대한 각 선(b1~b4)을 포개어, 도 18에 나타내는 바와 같은 주변부 스루 포커스 그래프를 생성한다.
중앙 광학 유닛(30)과 마찬가지로, 주변 광학 유닛(35)에서도 각 주변 측정 차트(34)가 각 주변 콜리메이터 렌즈(33)의 각 광축(33a)에 수직인 면에 대하여 경사지게 배치되어 있으므로, 촬영 렌즈(41)의 각 주변 측정 차트(34)의 결상면(75)의 높이가 촬영 렌즈(41)의 광축(41a)으로부터의 광축(41a)에 직교 방향의 거리에 대하여 상단 결상면(75n), 기준 결상면(75i), 하단 결상면(75f)과 같이 변화한다. 이 때문에, 촬영 렌즈(41)의 결상면(75)의 높이가 상이한 복수의 주변 측정 차트(34)의 상(91)을 한번의 촬상으로 취득할 수 있고, 한번의 촬상으로, 도 18에 나타내는 바와 같은 주변부 스루 포커스 그래프를 생성할 수 있다.
제어부(57)는 도 15에 나타내는 중앙부 스루 포커스 그래프와 도 13(b)에 나타내는 결상면(65)의 높이와 X방향의 거리의 관계를 사용하여, 도 11의 선(a)을 도 19(a)에 나타내는 선(c)으로 변환한다. 여기서 선(c)은 중앙부에 있어서의 촬영 렌즈(41)의 결상면(65)과 촬상 소자(52)의 촬상면(53)의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 선이다. 또 마찬가지로 도 18에 나타내는 선(b1~b4)을 도 19(a)에 나타내는 선(d1) 내지 선(d4)으로 변환한다. 여기서 선(d1)~선(d4)은 각 주변부에 있어서의 촬영 렌즈(41)의 결상면(75)과 촬상 소자(52)의 촬상면(53)의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 선이다.
도 19(a)를 참조하면, 선(c)은 높이 어긋남(ΔH1)에 있어서 공간 주파수 응답이 최대값으로 되어 있고, ΔH1이 마이너스인 점에서, 도 19(b)에 나타내는 바와 같이 촬상면(53)의 중앙부는 촬영 렌즈(41)의 결상면(65)에 대하여 ΔH1만큼 낮아져 있다고 판단할 수 있다. 또 선(d1, d3)도 높이 어긋남(ΔH1)에 있어서 공간 주파수 응답이 최대값으로 되어 있으므로, R1, R3 방향의 주변부에서는 촬상면(53)이 촬영 렌즈(41)의 결상면(75)에 대하여 ΔH1만큼 낮아져 있다고 판단할 수 있다. 마찬가지로 선(d2, d4)은 각각 높이 어긋남(ΔH3, ΔH2)에 있어서 공간 주파수 응답이 최대로 되어 있으므로, R2, R4 방향의 주변부에서는 촬상면(53)이 촬영 렌즈(41)의 결상면(75)에 대하여 각각 ΔH3, ΔH2만큼 낮아져 있다고 판단할 수 있다.
여기서, 촬영 렌즈(41)의 결상면(65, 75)은 동일면이며, 도 19(b)에 나타내는 바와 같이, ΔH3의 절대값>ΔH1의 절대값>ΔH2의 절대값이므로, 도 19(b)에 나타내는 바와 같이, 촬상면(53)은 촬영 렌즈(41)의 결상면(65, 75)에 대하여 중앙부에서 높이 ΔH1만큼 낮아져 있고, R2-R4 방향에서 R2측이 낮아지도록 경사져 있는 것을 알 수 있다.
제어부(57)는 도 19(a), 도 19(b)에 나타내는 데이터에 기초하여 촬상면(53)을 조금 상승시킴과 아울러 R2-R4 방향의 경사를 해소하도록 6축 액추에이터(56)를 동작시킨다.
이 동작에 의해, 도 20(b)에 나타내는 바와 같이, 촬상면(53)이 촬영 렌즈(41)의 결상면(65, 75)과 대략 동일면이 된 경우에는, 도 20(a)에 나타내는 바와 같이, 선(c, d1~d4)은 모두 높이 어긋남(ΔH)이 제로인 위치에 있어서 최대값이 된다.
이와 같이, 촬상 소자(52)의 촬상면(53)과 촬영 렌즈(41)의 결상면(65, 75)이 대략 동일면이 되면, 그 상태를 유지한 채, 제어부(57)는 도시하지 않는 자외선발광 장치에 의해 자외선을 접착제를 향하여 조사하고, 접착제를 경화시켜 렌즈 유닛(40)과 센서 기판(51)을 접합하여 카메라 모듈(50)의 조립을 완료한다.
이상 설명한 바와 같이, 본 실시형태의 카메라 모듈 제조 장치(100)에서는, 제어부(57)는 촬영 렌즈(41)의 결상면(65, 75)의 높이가 상이한 중앙 측정 차트(32)의 상(81)과 복수의 주변 측정 차트(34)의 상(91)을 한번의 촬상으로 각각 중앙 화상 신호, 주변 화상 신호로서 촬상 소자(52)로부터 받아들인다. 그리고, 도 15에 나타내는 중앙부 스루 포커스 그래프와 도 18에 나타내는 주변부 스루 포커스 그래프의 생성, 도 19에 나타내는 촬영 렌즈(41)의 결상면(65, 75)과 촬상 소자(52)의 촬상면(53)과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화를 나타내는 곡선의 생성을 행하고, 촬상면(53)의 높이와 경사의 조정을 행할 수 있다. 이와 같이, 본 실시형태의 카메라 모듈 제조 장치(100)는, 한번의 촬상으로, 촬상 소자(52)의 중앙부와 복수의 주변부에 있어서, 촬영 렌즈(41)의 결상면(65, 75)과 촬상 소자(52)의 촬상면(53)과의 높이 어긋남(ΔH)에 대한 공간 주파수 응답의 변화 특성을 취득하고, 렌즈 유닛(40)과 센서 기판(51)의 높이 방향 및 경사 방향의 조정을 동시에 행할 수 있다. 이것에 의해, 렌즈 유닛(40)과 센서 기판(51)의 상대 위치의 조정을 보다 단시간에 행할 수 있어, 생산성을 보다 향상시킬 수 있다.
또 본 실시형태의 카메라 모듈 제조 장치(100)는, 주변 광학 유닛(35)은 촬상 소자(52)의 2개의 대각선(52a, 52b)을 포함하는 수직면 내에서, 주변 콜리메이터 렌즈(33)의 광축(33a)이 일점(29)을 통과하는 상태에서 촬영 렌즈(41)의 상부를 화살표(101, 102)로 나타내는 바와 같이 원호 형상으로 이동 가능하게 구성되어 있다. 이와 같이, 각 주변 광학 유닛(35)의 주변 콜리메이터 렌즈(33)의 광축(33a)의 중앙 콜리메이터 렌즈(31)의 광축(31a)에 대한 경사 각도가 변경 가능하게 되어 있으므로, 촬영 렌즈(41)의 화각에 맞추어 경사 각도를 변경함으로써, 주변 측정 차트(34)의 화상을 촬상 소자(52)의 네 코너의 주변부에 결상시킬 수 있고, 간편한 방법으로 화각 또는 초점 거리가 상이한 촬영 렌즈(41)를 편입시킨 카메라 모듈(50)의 제조에 대응할 수 있다.
또 본 실시형태의 카메라 모듈 제조 장치(100)에서는, 촬영 렌즈(41)의 입사동(42)의 중심 위치에 중앙 콜리메이터 렌즈(31)의 초점(31f)의 위치와 주변 콜리메이터 렌즈(33)의 초점(33f)의 위치가 겹쳐지도록 렌즈 유닛(40)을 유지함으로써, 중앙 콜리메이터 렌즈(31)와 촬영 렌즈(41)가 중앙 측정 차트측 텔레센트릭 광학계를 구성하고, 주변 콜리메이터 렌즈(33)와 촬영 렌즈(41)가 주변 측정 차트측 텔레센트릭 광학계를 구성한다. 그리고, 중앙 콜리메이터 렌즈(31), 주변 콜리메이터 렌즈(33)가 촬영 렌즈(41)의 입사동(42)을 통과시켜 촬상 소자(52)의 중앙부, 주변부에 중앙 측정 차트(32), 주변 측정 차트(34)의 상을 결상시키는 구성으로 하고 있다. 이 때문에, 중앙 측정 차트(32), 주변 측정 차트(34)를 광축(31a, 33a)에 수직인 면에 대하여 각각 경사지게 배치해도, 촬상 소자(52)의 촬상면(53)에 결상하는 중앙 측정 차트(32)의 상(81), 주변 측정 차트(34)의 상(91)의 크기가 변화하지 않는다. 이 때문에, 오차 요인이 줄어 정밀도를 향상시킬 수 있고, 공간 주파수 응답의 산출을 정밀도 좋게 행할 수 있다.
또한 중앙 콜리메이터 렌즈(31)와 촬영 렌즈(41), 및 주변 콜리메이터 렌즈(33)와 촬영 렌즈(41)는 각각 텔레센트릭 광학계를 구성하지 않아도 된다. 이 경우에도 중앙 콜리메이터 렌즈(31), 주변 콜리메이터 렌즈(33)가 촬영 렌즈(41)의 입사동(42)을 통과시켜 촬상 소자(52)의 중앙부, 주변부에 중앙 측정 차트(32), 주변 측정 차트(34)의 상을 결상시키고, 중앙 측정 차트(32), 주변 측정 차트(34)를 각각 중앙 콜리메이터 렌즈(31)의 광축(31a), 주변 콜리메이터 렌즈(33)의 광축(33a)에 수직인 면에 대하여 경사지게 배치함으로써, 촬상 소자(52)의 촬상면에는 중앙 콜리메이터 렌즈(31)의 광축(31a)으로부터의 광축(31a)에 직교 방향의 거리에 따라 결상 높이가 상이한 상이 결상되고, 주변 콜리메이터 렌즈(33)의 광축(33a)으로부터의 광축(33a)에 직교 방향의 거리에 따라 결상 높이가 상이한 상이 결상된다. 이 때문에, 1회의 촬상으로, 공간 주파수 응답 등의 합초 평가값의 산출을 정밀도 좋게 행할 수 있다. 이것에 의해, 렌즈 유닛과 센서 기판을 단시간에 조정을 행할 수 있어, 생산성을 보다 향상시킬 수 있다.
또 이 경우, 도 21에 나타내는 바와 같이, 중앙 측정 차트(32)에 절대 위치를 알 수 있는 눈금(32m)을 부착하고, 주변 측정 차트(34)에도 마찬가지의 눈금을 부착하고, 이 눈금(32m)을 참조하여 공간 주파수 응답의 산출을 행함으로써 텔레센트릭 광학계로 한 것과 마찬가지의 정밀도로 할 수 있다.
또한 도 13(a)에 나타내는, 중앙 측정 차트(32)의 원위단(32f)과 근위단(32n) 사이의 중앙 콜리메이터 렌즈(31)의 광축(31a)을 따른 높이의 차(A1)와, 상단 결상면(65n)과 하단 결상면(65f) 사이의 높이의 차(A2)의 비율(A1/A2)과, 중앙 콜리메이터 렌즈(31)의 초점 거리(f1)와 촬영 렌즈(41)의 초점 거리(f2)의 비율은 하기의 식(1)과 같은 관계가 된다.
A1/A2=(f1/f2)2 --- (1)
마찬가지로 도 16(a)에 나타내는 주변 측정 차트(34)의 원위단(34f)과 근위단(334n) 사이의 주변 콜리메이터 렌즈(33)의 광축(33a)을 따른 거리의 차(B1)와, 상단 결상면(75n)과 하단 결상면(75f) 사이의 높이의 차(B)의 비율(B1/B2)과, 주변 콜리메이터 렌즈(33)의 초점 거리(g1)와 촬영 렌즈(41)의 국부적 초점 거리(f3)의 비율은 하기의 식(2)과 같은 관계가 된다.
B1/B2=(g1/f3)2 --- (2)
여기서, 국부적 초점 거리(f3)는 예를 들면 광축(41a)에 대한 화각을 θ로 하여, f3=f2/cos(θ)로 나타내는 바와 같은 국부적인 초점 거리이다.
여기서, 상단 결상면(65n, 75n)과 하단 결상면(65f, 75f) 사이의 높이의 차(A2, B2)는 센서 기판(51)의 높이 조정 범위이다. 따라서, 촬영 렌즈(41)의 초점 거리(f2), 국부적 초점 거리(f3)에 기초하여 중앙 측정 차트(32), 주변 측정 차트(34)의 광축(31a, 33a)에 수직인 면에 대한 각도와 길이를 변화시킴으로써 높이의 차(A2, B2)를 조정하여, 센서 기판(51)의 높이 조정 범위를 촬영 렌즈(41)에 맞추어 조정할 수 있다.
또 본 실시형태의 카메라 모듈 제조 장치(100)에서는, 제어부(57)가 촬영 렌즈(41)의 광축(41a)이 중앙 콜리메이터 렌즈(31)의 광축(31a)과 동일축이며, 촬영 렌즈(41)의 입사동(42)의 중심 위치에 중앙 콜리메이터 렌즈(31)의 초점(31f)의 위치와 각 주변 콜리메이터 렌즈(33)의 각 초점(33f)의 위치가 겹쳐지도록 렌즈 유닛(40)을 유지하는 것으로서 설명했지만, 이것에 한정되지 않는다. 입사동(42)의 중심 위치에 각 초점(31f, 33f)의 위치가 겹쳐 있으면, 촬영 렌즈(41)의 광축(41a)이 중앙 콜리메이터 렌즈(31)의 광축(31a)과 동일축으로부터 어긋나 있어도 된다. 또 촬영 렌즈(41)의 입사동(42)의 중심 위치에 한정되지 않고, 입사동(42)의 영역의 범위에 중앙 콜리메이터 렌즈(31)의 초점(31f)의 위치와 각 주변 콜리메이터 렌즈(33)의 각 초점(33f)의 위치가 겹쳐지도록 렌즈 유닛(40)을 유지하도록 해도 된다.
또 본 실시형태의 카메라 모듈 제조 장치(100)에서는, 각 주변 광학 유닛(35)은 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 인접하는 주변 콜리메이터 렌즈(33)의 광축(33a)이 이루는 각도가 장방형의 촬상 소자의 2개의 대각선(52a, 52b)이 이루는 각도(θ1, θ2)가 되도록 배치되어 있는 것으로서 설명했지만, 이것에 한정되지 않고, 대각선(52a, 52b)이 이루는 각도(θ1, θ2)에 대략 맞으면 반드시 각도(θ1, θ2)와 일치하고 있지 않아도 된다. 예를 들면 중앙 콜리메이터 렌즈(31)의 광축(31a)에 수직인 면 내에 있어서의 인접하는 주변 콜리메이터 렌즈(33)의 광축(33a)이 교차하도록 배치되어 있으면, 각 광축이 이루는 각도가 대각선(52a, 52b)이 이루는 각도(θ1, θ2)가 아니어도 된다.
또 본 실시형태의 카메라 모듈 제조 장치(100)에서는, 6축 액추에이터(56)에 의해 스테이지(55)의 X방향, Y방향, Z방향, X축 둘레, Y축 둘레, Z축 둘레의 6방향의 위치를 조정하여, 렌즈 유닛(40)에 대한 센서 기판(51)의 상대적인 위치를 조정하는 것으로서 설명했지만, 이것에 한정되지 않는다. 중앙 광학 유닛(30)에 의해 촬상 소자(52)의 중앙부에 결상된 중앙 측정 차트(32)의 상을 촬상 소자(52)가 변환한 중앙 화상 신호와, 복수의 주변 광학 유닛에 의해 촬상 소자(52)의 상이한 주변부에 각각 결상된 주변 측정 차트(34)의 상을 촬상 소자(52)가 변환한 각 주변 화상 신호에 기초하여, 렌즈 유닛(40)과 센서 기판(51)과의 상대 위치의 조정을 행할 수 있으면, 로보트 아암(45)을 6축 방향으로 이동시켜 센서 기판(51)에 대한 렌즈 유닛(40)의 상대적인 위치를 조정하는 것으로 해도 된다. 이 경우, 로보트 아암(45)은 촬영 렌즈(41)의 입사동(42)의 중심 위치에 한정되지 않고, 입사동(42)의 영역의 범위에 중앙 콜리메이터 렌즈(31)의 초점(31f)의 위치와 각 주변 콜리메이터 렌즈(33)의 각 초점(33f)의 위치가 겹쳐지도록 렌즈 유닛(40)을 유지하여 센서 기판(51)에 대한 렌즈 유닛(40)의 상대적인 위치를 조정한다. 또한 촬영 렌즈(41)의 입사동(42)의 중심 위치와 중앙 콜리메이터 렌즈(31)의 초점(31f)의 위치와 각 주변 콜리메이터 렌즈(33)의 각 초점(33f)의 위치와의 어긋남이 소정의 역치보다 커져버리는 경우에는, 상대 위치의 조정을 중지하도록 해도 된다.
이 경우에는 로보트 아암(45)의 구동 기구가 이동 기구를 구성한다. 또 로보트 아암(45)과 스테이지(55)를 협조시켜 6축 방향으로 이동시켜 렌즈 유닛(40)과 센서 기판(51)과의 상대 위치를 조정하도록 해도 된다. 이 경우에는 로보트 아암(45)의 구동 기구와 6축 액추에이터(56)가 이동 기구를 구성한다. 이와 같이, 이동 기구는 로보트 아암(45) 또는 스테이지(55)의 어느 한쪽 또는 양쪽을 타방에 대하여 상대적으로 이동시키는 기구이면 된다.
10…광학 모듈, 11…베이스, 12…가이드판, 13…가이드 홈, 14…핀 구멍, 15…브래킷, 16…핀, 17…고정 핀, 29…일점, 30…중앙 광학 유닛, 31…중앙 콜리메이터 렌즈, 31a, 33a, 41a…광축, 31f, 33f…초점, 32…중앙 측정 차트, 32e…중앙 에지, 32f, 34f…원위단, 32i, 34i…중심 위치, 32n, 34n…근위단, 32s, 34s…차광부, 32t, 34t…투광부, 32m…메모리, 34…주변 측정 차트, 34e1…제1 에지, 34e2…제2 에지, 34e3…제3 에지, 35…주변 광학 유닛, 36…광원, 40…렌즈 유닛, 41, 411…촬영 렌즈, 42…입사동, 45…로보트 아암, 46…척, 50…카메라 모듈, 51…센서 기판, 52…촬상 소자, 53…촬상면, 54…출력 단자, 55…스테이지, 56…6축 액추에이터, 57…제어부, 58…CPU, 59…메모리, 61~63, 71~73…광로, 65, 75…결상면, 65f, 75f…하단 결상면, 65i, 75i…기준 결상면, 65n, 75n…상단 결상면, 81~84, 91~96, 84f, 84i, 84n, 94f, 94i, 94n…상, 85, 97…계측점, 100…카메라 모듈 제조 장치, 110…기대.
Claims (8)
- 촬영 렌즈가 편입된 렌즈 유닛과, 상기 촬영 렌즈가 결상한 상을 화상 신호로 변환하는 촬상 소자가 부착된 센서 기판과의 상대 위치를 조정하고, 상대 위치가 조정된 상태에서 상기 렌즈 유닛과 상기 센서 기판을 접합하는 카메라 모듈 제조 장치로서,
중앙 콜리메이터 렌즈와 상기 중앙 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치된 중앙 측정 차트를 포함하고, 상기 중앙 측정 차트의 상을 상기 중앙 콜리메이터 렌즈와 상기 촬영 렌즈를 통과시켜 상기 촬상 소자의 중앙부에 결상시키는 중앙 광학 유닛과,
주변 콜리메이터 렌즈와 상기 주변 콜리메이터 렌즈의 광축에 수직인 면에 대하여 경사지게 배치된 주변 측정 차트를 포함하고, 상기 주변 측정 차트의 상을 상기 주변 콜리메이터 렌즈와 상기 촬영 렌즈를 통과시켜 상기 촬상 소자의 상이한 주변부에 각각 결상시키는 적어도 2개의 주변 광학 유닛
을 포함하는 광학 모듈과,
상기 중앙 광학 유닛에 의해 상기 촬상 소자의 중앙부에 결상시킨 상기 중앙 측정 차트의 상을 상기 촬상 소자가 변환한 중앙 화상 신호와, 각 상기 주변 광학 유닛에 의해 상기 촬상 소자의 각 주변부에 결상시킨 각 상기 주변 측정 차트의 상을 상기 촬상 소자가 변환한 각 주변 화상 신호에 기초하여, 상기 렌즈 유닛과 상기 센서 기판과의 상대 위치를 조정하는 제어부를 갖추고,
각 상기 주변 광학 유닛은, 각 상기 주변 콜리메이터 렌즈의 각 광축이 상기 중앙 광학 유닛의 상기 중앙 콜리메이터 렌즈의 광축에 대하여 경사지도록 배치되고, 그 경사 각도가 변경 가능하게 되어 있는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 1 항에 있어서,
각 상기 주변 광학 유닛은, 상기 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 인접하는 상기 주변 콜리메이터 렌즈의 광축이 교차하도록 배치되어 있는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 2 항에 있어서,
상기 촬상 소자는 장방형이며,
각 상기 주변 광학 유닛은, 상기 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 인접하는 상기 주변 콜리메이터 렌즈의 광축이 이루는 각도가 상기 촬상 소자의 2개의 대각선이 이루는 각도가 되도록 배치되어 있는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 2 항 또는 제 3 항에 있어서,
상기 촬상 소자가 부착된 상기 센서 기판을 유지하는 센서 기판 유지부를 갖추고,
센서 기판 유지부는, 상기 촬상 소자의 대각선의 방향이 상기 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 있어서의 각 상기 주변 콜리메이터 렌즈의 광축의 방향이 되도록, 상기 중앙 콜리메이터 렌즈의 광축에 수직인 면 내에 상기 센서 기판을 유지하는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 2 항 또는 제 3 항에 있어서,
상기 렌즈 유닛을 유지하는 렌즈 유닛 유지부를 갖추고,
각 상기 주변 광학 유닛은, 각 상기 주변 콜리메이터 렌즈의 초점 위치가 상기 중앙 광학 유닛의 상기 중앙 콜리메이터 렌즈의 초점 위치와 동일 위치가 되도록 배치되어 있고,
상기 렌즈 유닛 유지부는, 상기 촬영 렌즈의 입사동의 위치에 상기 중앙 콜리메이터 렌즈의 초점 위치와 각 상기 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 상기 렌즈 유닛을 유지하고,
상기 중앙 광학 유닛의 상기 중앙 콜리메이터 렌즈는 상기 중앙 측정 차트의 상을 상기 촬영 렌즈의 상기 입사동을 통과시켜 상기 촬상 소자의 중앙부에 결상시키고,
상기 주변 광학 유닛의 각 상기 주변 콜리메이터 렌즈는 각 상기 주변 측정 차트의 상을 상기 촬영 렌즈의 상기 입사동을 통과시켜 상기 촬상 소자의 상이한 주변부에 각각 결상시키는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 5 항에 있어서,
상기 렌즈 유닛 유지부가, 상기 촬영 렌즈의 광축과 상기 중앙 콜리메이터 렌즈의 광축이 동일축이 되고, 또한 상기 촬영 렌즈의 상기 입사동의 중심 위치에 상기 중앙 콜리메이터 렌즈의 초점 위치와 각 상기 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 상기 렌즈 유닛을 유지하는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 4 항에 있어서,
상기 렌즈 유닛을 유지하는 렌즈 유닛 유지부를 갖추고,
각 상기 주변 광학 유닛은, 각 상기 주변 콜리메이터 렌즈의 초점 위치가 상기 중앙 광학 유닛의 상기 중앙 콜리메이터 렌즈의 초점 위치와 동일 위치가 되도록 배치되어 있고,
상기 렌즈 유닛 유지부는, 상기 촬영 렌즈의 입사동의 위치에 상기 중앙 콜리메이터 렌즈의 초점 위치와 각 상기 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 상기 렌즈 유닛을 유지하고,
상기 중앙 광학 유닛의 상기 중앙 콜리메이터 렌즈는 상기 중앙 측정 차트의 상을 상기 촬영 렌즈의 상기 입사동을 통과시켜 상기 촬상 소자의 중앙부에 결상시키고,
상기 주변 광학 유닛의 각 상기 주변 콜리메이터 렌즈는 각 상기 주변 측정 차트의 상을 상기 촬영 렌즈의 상기 입사동을 통과시켜 상기 촬상 소자의 상이한 주변부에 각각 결상시키는 것
을 특징으로 하는 카메라 모듈 제조 장치. - 제 7 항에 있어서,
상기 렌즈 유닛 유지부가, 상기 촬영 렌즈의 광축과 상기 중앙 콜리메이터 렌즈의 광축이 동일축이 되고, 또한 상기 촬영 렌즈의 상기 입사동의 중심 위치에 상기 중앙 콜리메이터 렌즈의 초점 위치와 각 상기 주변 콜리메이터 렌즈의 각 초점 위치가 겹쳐지도록 상기 렌즈 유닛을 유지하는 것
을 특징으로 하는 카메라 모듈 제조 장치.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/007682 WO2021171412A1 (ja) | 2020-02-26 | 2020-02-26 | カメラモジュール製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210142748A KR20210142748A (ko) | 2021-11-25 |
KR102544085B1 true KR102544085B1 (ko) | 2023-06-15 |
Family
ID=77490787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217036257A KR102544085B1 (ko) | 2020-02-26 | 2020-02-26 | 카메라 모듈 제조 장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230069195A1 (ko) |
JP (1) | JP7012977B2 (ko) |
KR (1) | KR102544085B1 (ko) |
CN (1) | CN114731370B (ko) |
TW (1) | TWI756058B (ko) |
WO (1) | WO2021171412A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020125064A1 (de) | 2020-09-25 | 2022-03-31 | Trioptics Gmbh | MTF-Prüfgerät und dessen Verwendung |
CN117395483B (zh) * | 2023-12-07 | 2024-05-14 | 荣耀终端有限公司 | 一种摄像头模组的组装方法和组装设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170201744A1 (en) | 2016-01-08 | 2017-07-13 | Asm Technology Singapore Pte Ltd | Active lens alignment system |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005274925A (ja) * | 2004-03-24 | 2005-10-06 | Pioneer Electronic Corp | ピント調整方法、ピント調整装置 |
JP2008311691A (ja) * | 2007-06-12 | 2008-12-25 | Fujifilm Corp | 光軸調整装置および方法並びにプログラム |
JP5198295B2 (ja) * | 2008-01-15 | 2013-05-15 | 富士フイルム株式会社 | 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール |
JP4960308B2 (ja) | 2008-06-12 | 2012-06-27 | 富士フイルム株式会社 | 撮像素子の位置調整方法、カメラモジュール製造方法及び装置 |
JP4960307B2 (ja) * | 2008-06-12 | 2012-06-27 | 富士フイルム株式会社 | 撮像素子の位置調整方法、カメラモジュール製造方法及び装置 |
JP2011023850A (ja) * | 2009-07-14 | 2011-02-03 | Sony Corp | 撮像モジュールの製造方法、撮像モジュールの製造装置、固体撮像装置、撮像装置 |
JP5460406B2 (ja) | 2010-03-24 | 2014-04-02 | 富士フイルム株式会社 | 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール |
TWI479219B (zh) * | 2010-06-22 | 2015-04-01 | Hon Hai Prec Ind Co Ltd | 攝像模組及其組裝方法 |
JP2012058139A (ja) * | 2010-09-10 | 2012-03-22 | Fujifilm Corp | レンズ検査装置及び方法 |
JP2013198053A (ja) * | 2012-03-22 | 2013-09-30 | Sharp Corp | カメラモジュールの製造方法 |
JPWO2014061372A1 (ja) * | 2012-10-18 | 2016-09-05 | コニカミノルタ株式会社 | 画像処理装置、画像処理方法および画像処理プログラム |
JP2014179764A (ja) * | 2013-03-14 | 2014-09-25 | Sharp Corp | 撮像素子の位置調整装置 |
US10293441B2 (en) * | 2013-12-19 | 2019-05-21 | Isolution Co., Ltd. | Apparatus and method for aligning optical axes of lenses and assembling camera module |
US9329394B2 (en) * | 2014-01-03 | 2016-05-03 | Himax Technologies Limited | Lens module and assembling method thereof |
WO2015104960A1 (ja) * | 2014-01-09 | 2015-07-16 | 富士フイルム株式会社 | 撮像モジュール、撮像モジュールの製造方法、電子機器 |
KR20160027852A (ko) * | 2014-09-02 | 2016-03-10 | 삼성전기주식회사 | 렌즈의 틸트각 측정 및 보정 시스템 및 그 방법 |
JP6327123B2 (ja) * | 2014-11-11 | 2018-05-23 | 株式会社デンソー | カメラフォーカス調整装置 |
EP3076148B1 (de) * | 2015-03-31 | 2019-05-08 | Trioptics GmbH | Vorrichtung und verfahren zum messen von abbildungseigenschaften eines optischen abbildungssystems |
US10353167B2 (en) * | 2016-02-29 | 2019-07-16 | Ningbo Sunny Opotech Co., Ltd. | Camera lens module with one or more optical lens modules and manufacturing method thereof |
JP6561327B2 (ja) * | 2016-03-10 | 2019-08-21 | パナソニックIpマネジメント株式会社 | 光学検査装置、鏡筒の製造方法、および光学検査方法 |
US11070709B2 (en) * | 2019-04-12 | 2021-07-20 | Asm Technology Singapore Pte Ltd | Aligning an image sensor relative to a lens module |
-
2020
- 2020-02-26 KR KR1020217036257A patent/KR102544085B1/ko active IP Right Grant
- 2020-02-26 US US17/799,686 patent/US20230069195A1/en active Pending
- 2020-02-26 CN CN202080080141.2A patent/CN114731370B/zh active Active
- 2020-02-26 JP JP2020543235A patent/JP7012977B2/ja active Active
- 2020-02-26 WO PCT/JP2020/007682 patent/WO2021171412A1/ja active Application Filing
-
2021
- 2021-02-19 TW TW110105799A patent/TWI756058B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170201744A1 (en) | 2016-01-08 | 2017-07-13 | Asm Technology Singapore Pte Ltd | Active lens alignment system |
Also Published As
Publication number | Publication date |
---|---|
KR20210142748A (ko) | 2021-11-25 |
JPWO2021171412A1 (ko) | 2021-09-02 |
TWI756058B (zh) | 2022-02-21 |
TW202132852A (zh) | 2021-09-01 |
WO2021171412A1 (ja) | 2021-09-02 |
CN114731370B (zh) | 2023-08-29 |
CN114731370A (zh) | 2022-07-08 |
US20230069195A1 (en) | 2023-03-02 |
JP7012977B2 (ja) | 2022-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6733895B1 (ja) | カメラモジュール製造装置及びカメラモジュール製造方法 | |
CN110741278A (zh) | Lidar光学对准系统和方法 | |
JP6262536B2 (ja) | カメラモジュールの製造方法 | |
US9927594B2 (en) | Image pickup module manufacturing method and image pickup module manufacturing device | |
KR102544085B1 (ko) | 카메라 모듈 제조 장치 | |
EP3248369B1 (en) | Camera focus for adas | |
US9906695B2 (en) | Manufacturing method of imaging module and imaging module manufacturing apparatus | |
US20160323486A1 (en) | Imaging module, manufacturing method of imaging module, and electronic device | |
US9979868B2 (en) | Image pickup module manufacturing method, and image pickup module manufacturing device | |
JP5875676B2 (ja) | 撮像装置及び画像処理装置 | |
US9791659B2 (en) | Imaging module and electronic device | |
JP2005057261A (ja) | レンズ一体型撮像装置、その製造方法及び製造装置 | |
US10015401B2 (en) | Imaging module, manufacturing method of imaging module, and electronic device | |
US9609196B2 (en) | Imaging module and electronic device | |
US10020342B2 (en) | Image pickup module manufacturing method, and image pickup module manufacturing device | |
WO2014141497A1 (ja) | 撮像素子の位置調整装置 | |
WO2024013969A1 (ja) | レンズユニットを有するカメラ装置 | |
WO2021193494A1 (ja) | 露光装置及び露光方法 | |
TW201517621A (zh) | 攝影模組的製造方法以及攝影模組的製造裝置 | |
CN117310918A (zh) | 摄像镜头制造装置和相机模块制造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |