KR102503423B1 - 표시 장치 - Google Patents

표시 장치 Download PDF

Info

Publication number
KR102503423B1
KR102503423B1 KR1020180114323A KR20180114323A KR102503423B1 KR 102503423 B1 KR102503423 B1 KR 102503423B1 KR 1020180114323 A KR1020180114323 A KR 1020180114323A KR 20180114323 A KR20180114323 A KR 20180114323A KR 102503423 B1 KR102503423 B1 KR 102503423B1
Authority
KR
South Korea
Prior art keywords
power line
current
voltage
display device
spiral pattern
Prior art date
Application number
KR1020180114323A
Other languages
English (en)
Other versions
KR20200034483A (ko
Inventor
김규진
이동건
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020180114323A priority Critical patent/KR102503423B1/ko
Publication of KR20200034483A publication Critical patent/KR20200034483A/ko
Application granted granted Critical
Publication of KR102503423B1 publication Critical patent/KR102503423B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Abstract

본 발명에 따른 표시 장치는, 발광 소자를 포함하는 픽셀이 복수 개 구비된 표시 패널; 뚫린 공간을 복수 회 지나가도록 전원 라인이 나선형 패턴으로 형성되는 비접촉 전류 센서 및 전원 라인에 연결되는 둘 이상의 스위치를 포함하는 전류 센싱부; 및 전원 라인을 흐르는 전류의 경로를 변경하도록 둘 이상의 스위치를 제어하기 위한 제어 신호를 전류 센싱부에 인가하기 위한 제어부를 포함하여 구성될 수 있다. 제어부는 전원 라인을 흐르는 전류가 비접촉 전류 센서의 뚫린 공간을 지나가는 회수를 바꾸도록 제어 신호를 생성할 수 있다.

Description

표시 장치{DISPLAY DEVICE}
본 발명은 표시 장치에 관한 것으로, 더욱 상세하게는 전류 센서를 이용하여 전원 배선의 전류를 측정하는 표시 장치에 관한 것이다.
액티브 매트릭스 타입의 유기 발광 표시 장치는, 스스로 발광하는 유기 발광 다이오드(Organic Light Emitting Diode: OLED)를 포함하며, 응답 속도가 빠르고 발광 효율, 휘도 및 시야각이 큰 장점이 있다.
유기 발광 표시 장치는, OLED와 구동 TFT(Thin Film Transistor)를 포함하는 픽셀들을 매트릭스 형태로 배열하고, 비디오 데이터의 계조에 따라 픽셀에서 구현되는 영상의 휘도를 조절한다. 구동 TFT는 자신의 게이트 전극과 소스 전극 사이에 걸리는 전압에 따라 OLED에 흐르는 구동 전류를 제어한다.
OLED와 구동 TFT의 전기적 특성은 시간이 경과하면서 열화되어 픽셀마다 차이가 생길 수 있다. 이러한 픽셀들 사이 전기적 특성 편차는 화상 품질을 떨어뜨리는 주요 요인이 된다. 픽셀들 사이 전기적 특성 편차를 보상하기 위해 픽셀들의 구동 특성(구동 TFT의 문턱 전압, 구동 TFT의 이동도, OLED의 문턱 전압, 계조별 픽셀 전류 등)에 대응되는 센싱 정보를 측정하고, 이 센싱 정보를 기반으로 외부 회로에서 영상 데이터를 변조하는 외부 보상 기술이 알려져 있다.
외부 보상 기술은, 블랭크(Blank) 구간에 구동 TFT에 흐르는 전하를 센싱 라인의 커패시터에 저장하고 샘플링/홀딩 과정을 거쳐 ADC를 통해 디지털 데이터로 변환하고, 디지털 센싱 데이터를 기초로 픽셀의 구동 특징을 반영하여 입력 영상 데이터를 보정한다.
하지만, 이러한 외부 보상 기술은, 전하를 센싱 라인의 커패시터에 저장하기 때문에 낮은 계조로 발광시켜 미세한 전류가 흐르는 경우 픽셀의 구동 특성을 높은 정밀도로 검출하기 어려운 문제가 있고, 또한 픽셀을 발광시키는 디스플레이 구동과 함께 실시간으로 센싱 하기 어렵다.
한편, 유기 발광 다이오드에 흐르는 구동 전류의 양에 따라 OLED가 발광하는 빛의 양이 결정되며, OLED의 발광량에 따라 영상의 휘도가 결정된다. 또한, 유기 발광 표시 패널은 액정 표시 패널에 비해 대비 전류가 많이 흐르므로, 패널 내부에서 전원들 사이 또는 데이터 라인 사이에 단선이 발생하면 픽셀에 포함된 OLED에 과전류가 흐르고, 픽셀에 포함된 구성 요소가 연소될 수 있다. 또한, 작은 영역에서 연소가 발생하더라도 초기에는 인지되지 않을 수 있지만, 지속적으로 유기 발광 표시 패널을 구동하면 점점 주변의 픽셀까지 연소되어 연소 현상이 확산될 수 있다.
이러한 단선을 검출하기 위해서는, 유기 발광 표시 패널에 공급되는 전원 라인에 흐르는 전류를 측정할 필요가 있고, 전류를 측정하기 위한 전류 센서를 채용할 필요가 증가하고 있다.
하지만, 패널의 픽셀들을 낮은 계조로 구동할 때 흐르는 전류의 양, 패널의 픽셀들을 높은 계조로 구동할 때 흐르는 전류의 양, 패널 일부에 단선이 발생할 때 흐르는 전류의 양이 서로 상당히 달라, 즉 전류 검출의 범위가 매우 넓어서 용도에 따라 별개의 전류 센서를 사용할 수 밖에 없고, 이는 비용 증가로 이어진다.
본 발명은 이러한 상황을 감안한 것으로, 본 발명의 목적은 하나의 전류 센서를 채용하여 넓은 범위의 전류를 검출하는 표시 장치를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 넓은 검출 범위를 가능하도록 하는 전류 센서의 연결 구조를 제공하는 데 있다.
본 발명의 일 실시예에 따른 표시 장치는, 발광 소자를 포함하는 픽셀이 복수 개 구비된 표시 패널; 뚫린 공간을 복수 회 지나가도록 전원 라인이 나선형 패턴으로 형성되는 비접촉 전류 센서 및 전원 라인에 연결되는 둘 이상의 스위치를 포함하는 전류 센싱부; 및 전원 라인을 흐르는 전류의 경로를 변경하도록 둘 이상의 스위치를 제어하기 위한 제어 신호를 전류 센싱부에 인가하기 위한 제어부를 포함하여 구성되는 것을 특징으로 한다.
일 실시예에서, 제어부는 전원 라인을 흐르는 전류가 비접촉 전류 센서의 뚫린 공간을 지나가는 회수를 바꾸도록 제어 신호를 생성할 수 있다.
일 실시예에서, 전원 라인의 입력 단이 제1 스위치를 통해 나선형 패턴에 연결되고, 나선형 패턴을 따라 나선형 패턴의 중앙을 향해 진행하는 전원 라인의 말단에 제1 비아 홀이 형성되고, 제1 비아 홀과 제1 점퍼 패턴을 통해 나선형 패턴의 중앙에 형성된 전원 라인의 말단이 나선형 패턴의 바깥에서 전원 라인의 출력 단에 연결되고, 나선형 패턴의 중앙과 나선형 패턴의 외곽 경계 사이 전원 라인에 제2 비아 홀이 형성되고, 전원 라인의 입력 단이 제2 스위치와 제2 점프 패턴을 통해 제2 비아 홀에 연결될 수 있다.
일 실시예에서, 전원 라인의 입력 단은 제3 스위치를 통하여 전원 라인의 출력 단에 바로 연결될 수 있다.
일 실시예에서, 제1, 제2 및 제3 스위치는 각각 제1, 제2 및 제3 임피던스를 거쳐 전원 라인의 입력 단에 연결될 수 있다.
일 실시예에서, 제1 및 제2 스위치는 각각 제1 및 제2 임피던스를 거쳐 전원 라인의 입력 단에 연결될 수 있다.
일 실시예에서, 전류 센싱부는, 제어부를 포함하는 드라이브 IC가 장착되어 드라이브 IC를 표시 패널에 연결하는 연성 보드와 드라이브 IC에 영상 데이터를 공급하는 호스트를 연결하기 위한 연결 보드에 장착되거나, 또는 표시 패널에 데이터 전압을 공급하기 위한 데이터 구동 회로가 장착된 소스 보드와 분리되어 제어부가 장착된 제어 보드에 장착될 수 있다.
일 실시예에서, 전류 센싱부는 비접촉 전류 센서의 출력을 디지털 데이터로 변환하기 위한 ADC를 더 포함할 수 있다.
일 실시예에서, 전원 라인은 복수 개의 가지로 분기하기 전에 비접촉 전류 센서의 뚫린 공간을 통과할 수 있다.
일 실시예에서, 전원 라인은 고전위 전원 전압 또는 저전위 전원 전압을 공급할 수 있다.
일 실시예에서, 표시 장치는 전원 라인에 공급되는 전원 전압을 이용하여 표시 장치의 동작에 필요한 전압을 생성하고 이를 선택적으로 출력하기 위한 전원 공급부를 더 포함하고, 제어부는 전류 센싱부가 측정한 전류 값과 기준 값과의 비교를 근거로 전원 공급부의 출력을 제어할 수 있다.
일 실시예에서, 제어부는, 센싱 데이터를 픽셀에 인가하도록 데이터 구동 회로와 게이트 구동 회로를 제어하고, 이에 동기하여 전류 센싱부가 측정한 전류 값을 저장된 값과 비교하고, 이를 근거로 감마 전압을 설정하여 광학 보상 동작을 수행할 수 있다.
적은 양의 전류에서부터 많은 양의 전류까지 넓은 범위에서 전류를 하나의 전류 센서만으로 측정할 수 있게 되어, 많은 수의 전류 센서를 채용하는 것에 비해 비용을 절감할 수 있게 되고 장착할 공간을 줄일 수 있고 된다.
또한, 분기하기 전 전원 라인에서 하나의 전류 센서만으로 전류를 측정함으로써, 전원 라인에 흐르는 전류를 측정하기 위해 복수 개의 전류 센서를 사용하지 않게 되어 비용을 절감할 수 있게 된다.
또한, 낮은 계조 구동에 의해 전류가 미세하게 흐를 때나 높은 계조 구동에 의해 전류가 많이 흐를 때도, 전원 라인에 흐르는 전류의 경로를 변경하여 하나의 전류 센서만으로 넓은 범위의 전류를 측정할 수 있게 되고, 상대적으로 낮은 성능의 ADC로 여러 상황의 전류 값을 디지털 데이터로 변환할 수 있다.
또한, 전류 센서를 이용하여 광학 보상을 수행함으로써, 제품 출하와 같은 초기 공정뿐만 아니라 후 공정이나 출시 후에도 표시 장치를 오래 사용하여 뒤틀린 표시 특성을 바꿀 수 있게 된다.
도 1은 외부 보상 방법으로 구동 특징을 검출하기 위한 픽셀 회로를 도시한 것이고,
도 2는 비접촉 전류 센서를 도시한 것이고,
도 3은 본 발명의 일 실시예에 따라 전원 라인에 배치된 전류 센서를 도시한 것이고,
도 4는 비접촉 전류 센서를 이용한 전류 센싱을 위한 전원 라인의 패턴을 도시한 것이고,
도 5는 본 발명에 따른 유기 발광 표시 장치를 기능 블록으로 도시한 것이고,
도 6은 본 발명의 일 실시예에 따른 픽셀의 등가 회로를 도시한 것이고,
도 7은 본 발명의 다른 실시예에 따른 전류 센서의 배치를 도시한 것이다.
도 8은 본 발명의 일 실시예에 따른 전류 센싱부와 타이밍 컨트롤러의 연결을 도시한 것이고,
도 9는 본 발명의 일 실시예에 따라 전류 양에 따라 전원 라인 경로를 스위칭 하기 위한 전류 센싱부의 내부 구성을 도시한 것이고,
도 10은 본 발명의 일 실시예에 따른 전원 공급부의 내부 구성을 도시한 것이고,
도 11은 픽셀에 흐르는 전류와 휘도와의 관계를 그래프로 도시한 것이고,
도 12는 전류 센서를 통해 검출하는 전류 값을 이용하여 표시 패널을 광학 보상하는 동작 흐름도를 도시한 것이다.
이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 상세히 설명한다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 실질적으로 동일한 구성 요소들을 의미한다. 이하의 설명에서, 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
도 1은 외부 보상 방법으로 구동 특징을 검출하기 위한 픽셀 회로를 도시한 것이다.
표시 패널을 구성하는 복수의 픽셀 각각에는 데이터 전압(VDATA)을 인가하는 데이터 라인(Data Line)과 픽셀의 구동 특성을 반영하는 신호가 전달되는 센싱 라인(Sensing Line)이 연결된다.
유기 발광 소자(OLED)의 픽셀은 OLED를 구동하기 위한 전류를 제어하는 구동 TFT(DT), 구동 TFT의 동작을 제어하기 위한 제1 TFT(T1)와 제2 TFT(T2), 구동 TFT(DT)에 인가될 데이터 전압을 저장하기 위한 스토리지 커패시터(CST)를 포함하고, 스캔 신호(SCAN)와 센싱 신호(SENSE)가 제1 TFT(T1)와 제2 TFT(T2)의 동작을 제어한다.
센싱 신호(SENSE)에 의해 제2 TFT(T2)가 턴-온 되어 구동 TFT(DT)의 소스 전극과 센싱 라인이 연결되고, 턴-온 레벨의 초기화 제어 신호(SPRE)에 따라 센싱 라인이 기준 전압(VREF)으로 초기화되고, 제2 TFT(T2)를 거쳐 구동 TFT(DT)의 소스 전극에도 기준 전압(VREF)이 인가된다.
또한, 소스 드라이버 IC의 DAC를 통해 센싱용 데이터 전압이 데이터 라인에 공급되고, 스캔 신호(SCAN)에 의해 제1 TFT(T1)가 턴-온 되어 센싱용 데이터 전압이 구동 TFT(DT)의 게이트 전극에 인가된다. 센싱용 데이터 전압은 픽셀의 구동 특징을 반영하는 픽셀 전류가 흐르도록 하는 데이터 전압으로, 픽셀의 구동 특징은 구동 TFT의 문턱 전압, 구동 TFT의 이동도, OLED의 문턱 전압, 계조별 픽셀 전류 등이 될 수 있다.
이후, 턴-오프 레벨의 초기화 제어 신호(SPRE)에 따라 센싱 라인이 기준 전압 소스로부터 분리되고, 구동 TFT(DT)는 게이트 전극과 소스 전극의 전위차에 상응하는 픽셀 전류를 흘리고, 픽셀 전류는 제2 TFT(T2)를 거쳐 센싱 라인에 흘러 센싱 라인의 커패시터(CSEN)에 전하가 충전된다.
이어, 턴-온 레벨의 샘플링 제어 신호(SAM)에 의해 센싱 라인이 ADC 블록에 연결되고, ADC가 센싱 라인의 커패시터(CSEN)에 저장된 전압을 디지털 센싱 데이터로 변환하여 타이밍 컨트롤러에 출력한다.
타이밍 컨트롤러는 디지털 센싱 데이터를 이용하여 구동 TFT(DT)의 문턱 전압 편차, 이동도 편차, OLED의 문턱 전압 편차, 계조별 픽셀 전류 편차 등을 계산하고, 이를 근거로 입력 영상 데이터를 보정하여, 픽셀의 구동 특성의 변화를 보상한다.
이러한 외부 보상 동작은, 구동 TFT(DT)에 흐르는 픽셀 전류를 센싱 라인에 흐르게 하여 센싱 라인의 커패시터(CSEN)에 저장하기 때문에, 센싱 데이터 전압이 낮은 계조의 데이터에 해당하여 픽셀 전류가 매우 작을 때 센싱 라인에 흐르는 노이즈에 묻히게 되어 센싱 정확도가 낮아진다.
예를 들어 P 타입 OLED의 경우, 낮은 계조를 발광시킬 때는 수~수백 uA 정도의 전류가 흐르고 높은 계조를 발광시킬 때는 수십 mA 이상의 전류가 흘러, 대략 10,000배 정도의 전류 범위가 되어, 센싱 블록의 ADC를 하나로 구현하려면 ADC의 구성이 매우 복잡하고 14bits 이상으로 커지게 된다.
또한, 외부 보상 동작은, 데이터 전압을 인가하여 OLED를 발광시키는 디스플레이 구동 기간에 수행하기 어렵고 블랭크 구간에 수행되어야 해서, 실시간으로 픽셀의 구동 특징을 센싱 할 수 없다.
도 2는 비접촉 전류 센서를 도시한 것이다.
비접촉 전류 센서는, 센서 중앙의 뚫린 공간에 1차 전선을 통과시키고 1차 전선에 흐르는 전류의 양을 접촉하지 않고 측정하는데, 링 형상의 코어의 원주를 따라 2차 전선이 복수 회 감긴 형상이고, 2차 전선에 센싱 회로가 연결되고 센싱 회로에는 복수 개의 전원용 입력 단자와 측정한 전류를 출력하는 출력 단자가 마련된다.
비접촉 전류 센서는, 1차 전선에 흐르는 1차 전류에 의해서 발생하는 자계를 감지하고 반대 방향으로 2차 전선에 2차 전류를 흘려서 코어에 항상 자계가 제로 상태가 되도록 유지하는데, 1차 전류와 권선비(코어에 2차 전선이 감긴 횟수)에 비례하여 감쇠된 전류가 2차 전류로 출력된다. 따라서, 2차 전류가 나오는 출력 단자에 로드 저항을 달아서 2차 전류를 측정함으로써 1차 전류에 영향을 주지 않고 전기적으로 절연된 상태에서 1차 전류를 측정한다.
비접촉 전류 센서는, 전하를 저장하지 않고 실시간으로 흐르는 전류를 검출할 수 있고, 감긴 코일의 횟수와 자심을 통과하는 배선 개수에 따라 측정되는 전류의 양이 달라진다.
도 3은 본 발명의 일 실시예에 따라 전원 라인에 배치된 전류 센서를 도시한 것이다.
유기 발광 표시 패널을 채용하는 스마트 폰과 같은 휴대용 기기에서, 데이터 구동 회로에 해당하는 소스 드라이브 IC(D-IC)는 타이밍 컨트롤러와 통합되는 하나의 칩 형태로 구현되어, 호스트에 연결되는 연결 보드(Connecting Board)와 패널(Panel)을 연결하는 연성 기판(Flexible Board)에 장착될 수 있다.
도 3에서, 전원 라인, 예를 들어 고전위 전원 라인(ELVDD) 또는 저전위 전원 라인은, 패널에 균일한 전원 전압을 공급할 수 있도록, 연성 기판의 드라이브 IC(D-IC)를 거치지 않고, 연결 보드에서 복수 개의 가지로 분기되어 패널에 마련된 복수 개의 전원 라인에 연결된다.
본 발명에서는, 도 3과 같이, 커넥터를 통해 호스트에 연결되는 전원 라인이 복수 개의 가지로 분기하기 전에 비접촉 전류 센서를 연결 보드에 장착하여, 하나의 전류 센서로도 전원 라인에 흘러 패널에 공급되는 전류의 양을 측정할 수 있다.
도 4는 비접촉 전류 센서를 이용한 전류 센싱을 위한 전원 라인의 패턴을 도시한 것이다.
본 발명은, 도 4와 같이, 전류 측정 감도를 높이기 위해 전원 라인이 비접촉 전류 센서의 자심(또는 중앙 빈 공간)을 복수 회 통과하도록 전원 라인을 나선형으로 패터닝 하고, 점퍼(Jumper)와 나선형 패턴의 중앙에 형성된 비아 홀(Via Hole)을 통해 전원 라인을 나선형 패턴의 외곽으로 빼내 패널에 연결할 수 있다.
또한, 본 발명은, 낮은 계조로 패널을 발광시킬 때는 전원 라인이 전류 센서의 자심을 많은 회수 통과하도록 하고 높은 계조로 패널을 발광시킬 때는 전원 라인이 전류 센서의 자심을 적은 회수 통과하도록 할 수 있도록, 전원 라인을 흐르는 전류 양에 따라 복수 개의 스위치를 제어하여 전원 라인의 전류 경로를 스위칭 하여, 예를 들어 10bits 정도로 낮은 성능의 ADC 하나로도 넓은 전류 범위를 다룰 수 있도록 한다.
도 5는 본 발명에 따른 유기 발광 표시 장치를 기능 블록으로 도시한 것이고, 도 6은 본 발명의 일 실시예에 따른 픽셀의 등가 회로를 도시한 것이다.
본 발명에 따른 표시 장치는 표시 패널(10), 타이밍 컨트롤러(11), 데이터 구동 회로(12), 게이트 구동 회로(13), 전원 공급부(16) 및 전류 센싱부(17)를 구비할 수 있다.
표시 패널(10)에는 열(Column) 방향으로 진행하는 다수의 데이터 라인들(14)과 행(Row) 방향으로 진행하는 다수의 스캔 라인들(15)이 교차하고, 교차 영역마다 픽셀들(PXL)이 매트릭스 형태로 배치되어 픽셀 어레이를 형성한다.
표시 패널(10)의 픽셀들(PXL)들을 위아래에서 감싸서 외부의 수분이나 수분으로부터 보호하는 상하 기판에는 데이터 라인들(14) 또는 스캔 라인들(15)과 나란하게 복수 개의 고전위 전원 라인, 복수 개의 저전위 전원 라인, 복수 개의 공통 전압 라인 등이 형성될 수 있다.
픽셀들(PXL)은 레드 서브픽셀, 그린 서브픽셀 및 블루 서브픽셀을 포함할 수 있고, 경우에 따라 화이트 서브픽셀을 더 포함할 수도 있다. 또는, 픽셀들(PXL)은 화이트 서브픽셀만을 포함하고 화이트 서브픽셀이 발광한 빛이 RGB 컬러 필터를 통해 레드, 그린, 블루로 변환될 수 있다.
픽셀 어레이에서, 같은 수평 라인에 배치되는 픽셀(PXL) 또는 서브픽셀은 데이터 라인들(14) 중 어느 하나 및 스캔 라인들(15) 중 어느 하나에 접속되어 픽셀 라인을 형성한다. 픽셀은, 스캔 라인(15)을 통해 입력되는 스캔 신호에 응답하여 데이터 라인(14)과 전기적으로 연결되어 데이터 전압을 입력 받을 수 있다. 동일 픽셀 라인에 배치된 픽셀들은 같은 스캔 라인(15)으로부터 인가되는 스캔 신호에 따라 동시에 동작한다.
패널(10)에 배치되는 픽셀은 예를 들어 도 6과 같이 구성될 수 있다. 픽셀은, 전원 공급부(16)로부터 고전위 구동 전압(ELVDD), 저전위 구동 전압(ELVSS), 기준 전압(VREF), 초기화 전압(VINI) 등을 공급 받을 수 있다.
또한, 픽셀은, 발광 소자, 구동 트랜지스터(DT), 스토리지 커패시터(CST), 스위치 트랜지스터(T1) 및 보상 회로(CC)를 구비할 수 있다. 발광 소자는 무기 전계 발광 소자나 유기 발광 다이오드 소자(OLED)가 될 수 있다. 이하에서는 편의상 OLED를 예로 들어 설명한다.
OLED는 구동 트랜지스터(DT)로부터 공급되는 구동 전류에 의해 발광하고, 구동 트랜지스터(DT)는 자신의 소스-게이트 간 전압(VSG)에 따라 OLED에 인가되는 구동 전류를 제어한다.
스위치 트랜지스터(T1)는 스캔 라인(15)을 통해 공급되는 스캔 신호에 응답하여 데이터 라인(14)을 통해 공급되는 데이터 전압이 스토리지 커패시터(CST)에 저장되도록 한다. 구동 트랜지스터(DT)는, 스토리지 커패시터(CST)에 저장된 데이터 전압에 따라 고전위 전위 전압(ELVDD)과 저전위 전위 전압(ELVSS) 사이에 구동 전류가 흐르도록 동작한다.
보상 회로(CC)는 구동 트랜지스터(DT)의 문턱 전압, 이동성 등을 보상하는데, 하나 이상의 트랜지스터와 커패시터로 구성될 수 있는데, 본 발명에서 전류 센서를 통해 구동 트랜지스터(DT)의 구동 특성을 검출하는 경우 생략될 수도 있다.
하나의 픽셀은 스위칭 트랜지스터(T1), 구동 트랜지스터(DT), 커패시터(CST) 및 OLED를 포함하는 2T(Transistor)1C(Capacitor) 구조로 구성되지만, 보상 회로(CC)가 추가된 경우 3T1C, 4T2C, 5T2C 등으로 구성될 수 있다.
픽셀을 구성하는 트랜지스터(또는 TFT)들은 P 타입 또는 N 타입의 MOSFET(Metal Oxide Semiconductor Field Effect Transistor) 구조로 구현되거나, 또는 P 타입과 N 타입이 혼용된 하이브리드 타입으로 구현될 수 있다.
트랜지스터는 게이트(gate), 소스(source) 및 드레인(drain)을 포함한 3 전극 소자이다. 소스는 캐리어(carrier)를 트랜지스터에 공급하는 전극이다. 트랜지스터 내에서 캐리어는 소스로부터 흐르기 시작한다. 드레인은 트랜지스터에서 캐리어가 외부로 나가는 전극이다. 즉, MOSFET에서의 캐리어의 흐름은 소스로부터 드레인으로 흐른다.
P 타입 MOSFET(PMOS)의 경우, 캐리어가 정공(hole)이기 때문에 소스로부터 드레인으로 정공이 흐를 수 있도록 소스 전압이 드레인 전압보다 높다. P 타입 MOSFET에서 정공이 소스로부터 드레인 쪽으로 흐르기 때문에 전류가 소스로부터 드레인 쪽으로 흐른다. N 타입 MOSFET(NMOS)의 경우, 캐리어가 전자(electron)이기 때문에 소스에서 드레인으로 전자가 흐를 수 있도록 소스 전압이 드레인 전압보다 낮은 전압을 가진다. N 타입 MOSFET에서 전자가 소스로부터 드레인 쪽으로 흐르기 때문에 전류의 방향은 드레인으로부터 소스 쪽으로 흐른다.
MOSFET의 소스와 드레인은 고정된 것이 아니라는 것에 주의하여야 한다. 예를 들어, MOSFET의 소스와 드레인은 인가 전압에 따라 변경될 수 있다. 이하의 실시예에서 트랜지스터의 소스와 드레인으로 인하여 발명이 제한되어서는 안 되고, 소스와 드레인 전극을 구분 없이 제1 및 제2 전극으로 칭하기도 한다.
타이밍 컨트롤러(11)는, 외부 호스트 시스템(미도시)으로부터 전달되는 영상 데이터(RGB)를 데이터 구동 회로(12)에 공급한다. 또한, 타이밍 컨트롤러(11)는 호스트 시스템으로부터 수직 동기 신호(Vsync), 수평 동기 신호(Hsync), 데이터 인에이블 신호(Data Enable, DE), 클럭 신호(CLK) 등의 타이밍 신호를 입력 받아 데이터 구동 회로(12)와 게이트 구동 회로(13)의 동작 타이밍을 제어하기 위한 제어 신호들을 생성한다. 제어 신호들은 게이트 구동 회로(13)의 동작 타이밍을 제어하기 위한 게이트 타이밍 제어 신호(GCS)와 데이터 구동 회로(12)의 동작 타이밍을 제어하기 위한 데이터 타이밍 제어 신호(DCS)를 포함한다. 게이트 타이밍 제어 신호(GDC)에는 게이트 스타트 펄스, 게이트 시프트 클럭, 게이트 출력 인에이블 신호 등이 포함되고, 데이터 타이밍 제어 신호(DDC)에는 소스 스타트 펄스, 소스 샘플링 클럭, 소스 출력 인에이블 신호 등이 포함된다.
타이밍 컨트롤러(11)는, 표시 패널(10)을 구성하는 픽셀들에 하나의 화면을 구성하는 영상 데이터가 인가되는 한 프레임을 적어도 초기화 기간, 샘플링/데이터 기입 기간, 및 에미션 기간으로 나누어 구동할 수 있다.
데이터 구동 회로(12)는 타이밍 컨트롤러(11)의 제어에 따라 타이밍 컨트롤러(11)로부터 입력되는 디지털 비디오 데이터(RGB)를 샘플링 하고 래치 하여 병렬 데이터로 바꾸고, 감마 변환을 거쳐 데이터 전압으로 변환하여 출력 채널을 거쳐 데이터 라인들(14)로 출력한다. 이때, 데이터 전압은 유기 발광 소자가 나타낼 이미지 신호에 대응되는 값일 수 있다.
타이밍 컨트롤러(11)와 데이터 구동 회로(12)는, 표시 장치가 공간 제약이 많은 휴대용 기기에 채용될 때, 하나의 통합 드라이브 IC로 구현되어 패널(10)과 호스트(미도시)를 연결하는 연성 기판에 실장될 수 있는데, 연성 기판은 한쪽이 패널(10)의 패드부에 부착되고 다른 쪽이 호스트에 연결되는 연결 보드에 부착될 수 있다.
게이트 구동 회로(13)는, 게이트 타이밍 제어 신호(GDC)를 기반으로 게이트 구동 전압의 레벨을 시프트 시키면서 스캔 신호를 행 순차 방식으로 생성하여 픽셀 라인마다 연결된 스캔 라인(15)에 순차적으로 제공한다.
게이트 구동 회로(13)는, 쉬프트 레지스터, 쉬프트 레지스터의 출력 신호를 픽셀의 TFT 구동에 적합한 스윙 폭으로 변환하기 위한 레벨 쉬프터 및 출력 버퍼 등을 각각 포함하는 다수의 게이트 드라이브 집적 회로들로 구성될 수 있다. 또는, 게이트 구동 회로(13)는 GIP(Gate Drive IC in Panel) 방식에 따라 픽셀의 박막 트랜지스터 제조 공정 때 패널(10)의 양측 비표시 영역에 직접 형성될 수도 있다. GIP 방식의 경우, 레벨 쉬프터는 PCB(Printed Circuit Board) 위에 실장되고, 쉬프트 레지스터는 표시 패널(10)의 하부 기판에 형성될 수 있다.
전원 공급부(16)는, 입력 전원을 이용하여 패널(10)의 OLED를 발광시키기 위해 필요한 구동 전압을 생성하여 출력하는데, 전원 라인을 통해 전달되는 외부 전원을 이용하여, 데이터 구동 회로(12)와 게이트 구동 회로(13)의 동작에 필요한 전압, 즉 고전위 전원 전압(ELVDD), 저전위 전원 전압(ELVSS), 공통 전압(VCOM), 기준 전압(VREF), 초기화 전압(VINI), 게이트 하이 전압(VGH), 게이트 로우 전압(VGL) 등을 생성하여, 표시 패널(10), 타이밍 컨트롤러(11), 데이터 구동 회로(12), 게이트 구동 회로(13)에 인가할 수 있다.
또한, 전원 공급부(16)는, 타이밍 컨트롤러(11)가 출력하는 전원 제어 신호(PCS)에 따라 선택적으로 전압의 생성 또는 출력을 멈출 수 있다.
전원 공급부(16)는, 도 5와 같이, 전류 센싱부(17)보다 앞단에서 전원 라인의 외부 전원을 이용하여 필요한 전압을 생성할 수도 있는데, 이 경우 도 3에서 드라이브 IC보다 앞서서 연결 보드나 연성 보드에 장착될 수도 있다. 또는, 전원 공급부(16)는 연결 보드에 커넥터를 통해 연결되는 호스트에 장착되어 패널(10), 타이밍 컨트롤러(11), 데이터 구동 회로(12), 게이트 구동 회로(12)에 필요한 전압을 생성하여 공급할 수도 있다. 또는, 전원 공급부(16)는 전류 센싱부(17)를 거친 전원 라인의 외부 전원을 이용하여 필요한 전압을 생성하고 공급할 수도 있다.
전류 센싱부(17)는, 비접촉 전류 센서를 이용하여, 호스트로부터 공급되는 전원 라인 또는 전원 공급부(16)가 생성하여 출력하는 전원의 출력 라인, 예를 들어 고전위 전원 라인(ELVDD)을 통해 패널(10)에 흐르는 전류의 양을 검출하고 검출된 전류 값을 타이밍 컨트롤러(11)에 출력할 수 있다.
전류 센싱부(17)는, 타이밍 컨트롤러(11)의 제어에 따라 전원 라인의 경로를 바꾸어 비접촉 전류 센서의 자심을 지나는 전원 라인의 개수를 조절함으로써, 전원 라인에 흐르는 전류 값의 범위에 맞추어 하나의 비접촉 전류 센서만으로 매우 작은 양의 전류뿐만 아니라 매우 높은 양의 전류도 측정할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 전류 센서의 배치를 도시한 것으로, 도 7은 모니터나 TV에 채용되는 표시 장치에서 전류 센서가 배치되는 것을 도시한 것이다.
도 7에 도시한 것과 같이, 표시 패널(10)의 표시 영역(AA) 양쪽 바깥 쪽인 비표시 영역(NA)에는 게이트 구동 회로(13)를 구성하는 복수의 구동 IC가 형성될 수 있다. 데이터 구동 회로(12)는 복수의 소스 드라이브 IC 형태로 구성되고 복수의 제1 연성 기판(181)에 실장되어 FOG 방식으로 패널(10)의 패드부에 한쪽이 부착되고 복수의 소스 보드(182)에 다른 쪽이 부착된다.
타이밍 컨트롤러(11), 전원 공급부(16) 및 전류 센싱부(17)는 제어 보드(184)에 형성될 수 있다. 소스 보드(182)와 제어 보드(184)는 제2 연성 기판(183)에 의해 연결된다.
전원 공급부(16)는 호스트(미도시)로부터 인가되는 외부 전원을 이용하여 표시 장치의 동작에 필요한 전압을 생성하여 공급하는데, 예를 들어 전원 공급부(16)로부터 출력되는 고전위 전원 전압(ELVDD)은 제어 보드(184)부터 패널(100)까지 형성된 모든 전원 라인(ELVDD)을 통해 공급된다.
이 구조의 경우, 전원 라인(ELVDD)은 제어 보드(184)부터 패널(10)까지 모두 공통으로 묶여 있고 제어 보드(184)에서 분기되어 패널(10)에 연결되기 때문에, 제어 보드(184)에 전류 센싱부(17)를 배치하여 분기 전 전원 라인(ELVDD)에 연결하면 패널(10)에 인가되는 전원에 흐르는 전류를 측정할 수 있다.
또한, 타이밍 컨트롤러(11)는 전류 센싱부(17)가 측정하는 전류 값을 근거로, 전원 라인에 과전류가 흐르면, 파워 제어 신호(PCS)를 통해 전원 공급부(16)의 전압 생성 또는 출력을 중지시킬 수 있다.
도 8은 본 발명의 일 실시예에 따른 전류 센싱부와 타이밍 컨트롤러의 연결을 도시한 것이고, 도 9는 본 발명의 일 실시예에 따라 전류 양에 따라 전원 라인 경로를 스위칭 하기 위한 전류 센싱부의 내부 구성을 도시한 것이다.
전류 센싱부(17)는, 타이밍 컨트롤러(11)로부터 전원 라인의 전류 경로를 변경하는 스위치를 제어하기 위한 스위치 제어 신호(SW1, SW2, SW3)와 동작 전압(VDD)을 공급 받고, 전원 라인을 흐르는 전류의 양을 측정한 값을 타이밍 컨트롤러(11)에 출력한다. 동작 전압(VDD)은 전원 공급부(16)로부터 공급 받을 수도 있다.
전원 라인은 전류 센싱부(17)의 입력 단에 연결되어 비접촉 전류 센서의 자심(또는 뚫린 공간)을 한 차례 이상 가로지른 다음 전류 센싱부(17)의 출력 단을 거쳐 복수 개의 가지로 분기하여 패널(10)에 연결될 수 있다.
전류 센싱부(17)는, 비접촉 전류 센서, ADC, 둘 이상의 스위치를 포함하여 구성될 수 있다. 전류 경로가 바뀜에 따라 전원 라인의 입력 단과 출력 단 사이의 임피던스가 달라지기 때문에 각 경로마다 임피던스를 맞추기 위해, 각 스위치에 임피던스(Z1, Z2, Z3)를 추가하거나 하나 이상의 스위치에만 임피던스를 추가할 수도 있다. 도 9에서 제3 임피던스(Z3)를 추가하지 않고 제1 및 제2 임피던스(Z1, Z2)만 추가할 수도 있다.
ADC는 비접촉 전류 센서가 출력하는 전류 센싱 값을 디지털 센싱 데이터로 변환하여 타이밍 컨트롤러(11)에 전달한다.
전원 라인은, 전류 센싱부(17)가 배치되는 PCB 보드 또는 연성 기판에 동박이 외부와 절연된 상태로 형성되고, 나선형 패턴으로 외곽에서부터 중앙으로 또는 중앙에서 외곽으로 회전하면서 진행하여 비접촉 전류 센서의 자심을 복수 회 지나가도록 형성된다.
나선형 패턴의 중앙에 다다른 전원 라인의 말단에는 비아 홀이 형성되고 나선형 패턴과 절연되는 점퍼 패턴을 통해 나선형 패턴의 바깥에 있는 전원 라인의 출력 단으로 연결될 수 있다. 나선형 패턴의 중간, 즉 전원 라인의 말단이 위치하고 비아 홀이 형성되는 나선형 패턴의 중앙과 나선형 패턴의 외곽 경계 사이 임의의 위치의 전원 라인에도 하나 이상의 비아 홀이 형성되고 점퍼 패턴을 통해 나선형 패턴의 외곽으로 연결될 수 있다.
도 9에서, 전원 라인의 입력 단은 3개의 가지로 갈라지는데, 첫 번째 가지는 제1 스위치(SW1)를 통해 비접촉 전류 센서의 자심을 복수 회 감싸는 나선형 패턴에 연결되고, 두 번째 가지는 제2 스위치(SW2)와 점퍼를 거쳐 나선형 패턴의 중간에 형성된 비아 홀에 연결되고, 세 번째 가지는 제3 스위치(SW3)를 통해 나선형 패턴을 우회하여 전원 라인의 출력 단에 바로 연결된다.
도 9에서 전원 라인의 입력 단과 출력 단이 서로 바뀔 수도 있는데, 전원 라인의 입력 단이 점퍼를 거쳐 바로 나선형 패턴의 중앙에 연결되고, 출력 단이 스위치를 통해 3개의 가지에 연결될 수 있다.
전원 라인의 첫 번째 가지는 나선형 패턴을 모두 거친 후 전원 라인의 출력 단으로 연결되어 비접촉 전류 센서의 자심을 가장 많은 회수 지나가므로, 전원 라인에 전류가 적게 흐를 때 높은 감도로 전류를 측정할 수 있다.
전원 라인의 두 번째 가지는 나선형 패턴의 중간 부분에 있는 비아 홀에 연결되어, 전원 라인의 입력 단을 지나는 전류는 나선형 패턴의 일부만을 거친 후 전원 라인의 출력 단으로 진입하여, 비접촉 전류 센서의 자심을 첫 번째 가지보다 적은 회수 지나가므로, 전원 라인에 전류가 상대적으로 많이 흐를 때 전류를 측정할 수 있다.
전원 라인의 세 번째 가지는 나선형 패턴과 연결되지 않기 때문에, 전원 라인의 전류를 측정할 필요가 없을 때 연결될 수 있다.
타이밍 컨트롤러(11)는, 스위치 제어 신호를 통해 전원 라인의 전류 경로를 조절하는데, 패널(10)을 낮은 계조로 구동하는 경우 전류 센싱부(17)가 전류 양을 크게 증폭하여 측정하도록 제1 스위치(SW1)를 턴-온 시켜 전류가 첫 번째 가지로 흐르게 하고, 패널(10)을 높은 계조로 구동하는 경우 제2 스위치(SW2)를 턴-온 시켜 전류가 두 번째 가지로 흐르게 한다.
이와 같이, 전원 라인에 전류가 흐르는 경로를 스위칭 함으로써, 낮은 계조 구동부터 높은 계조 구동까지 넓은 값의 범위로 전원 라인에 흐르는 전류를 측정한 전류 값을 상대적으로 낮은 성능, 예를 들어 10bits의 ADC로도 디지털 데이터로 변환할 수 있게 된다.
타이밍 컨트롤러(11)는, 전원 라인에 흐르는 전류의 양을 측정할 필요가 없을 때는 제3 스위치(SW3)을 턴-온 시켜, 전원 전류가 전원 라인의 나선형 패턴을 지나지 않고 세 번째 가지로 흐르게 할 수 있다.
전원 라인의 나선형 패턴의 셋 이상의 지점에서 비아 홀을 형성하고 점퍼를 통해 외곽으로 연결하고 각각 스위치를 이용하여 전류 경로를 스위칭 하여, 비접촉 전류 센서가 전원 라인에 흐르는 전류의 양을 서로 다른 복수 개의 증폭 비로 측정하게 할 수도 있다.
한편, 제조 공정(또는 모듈 공정) 때 유기 발광 표시 패널에 입자가 유입되거나 균열(Crack)이 발생하거나, 패드부가 잘못 정렬되거나, 배선 레이아웃이 협소한 것 등과 같은 내부 구조적 요인뿐만 아니라 정전기와 같은 외부적 요인 등 여러 이유로, 전원 라인 사이, 데이터 라인 사이 또는 전원 라인과 데이터 라인 사이에 단선 현상이 발생할 수 있다. 패널(10) 내부에 단선이 발생하면 픽셀이 연소될 수 있고, 단선에 의해 전원 라인에 많은 양의 전류가 흐를 수 있다.
타이밍 컨트롤러(11)는, 주기적으로 전류 센싱부(17)의 출력을 기준 값과 비교하고, 기준 값 이상일 때 패널(10) 내부에 단선이 발생한 것으로 판단하고, 전원 공급부(16)의 동작을 제어하기 위한 전원 제어 신호(PCS)를 전원 공급부(16)에 인가할 수 있다.
도 10은 본 발명의 일 실시예에 따른 전원 공급부의 내부 구성을 도시한 것이다.
전원 공급부(16)는 전원 생성부(161)와 전원 스위칭 트랜지스터(SPW)를 포함하여 구성될 수 있다. 전원 생성부(161)는 입력 전압(VIN)을 이용하여 필요한 전압(VOUT)을 생성하여 출력한다. 전원 라인을 통해 호스트로부터 전달되는 입력 전원은 고전위 전원 전압(ELVDD) 및/또는 저전위 전원 전압(ELVSS)일 수 있고, 또는 고전위 전원 전압(ELVDD)이나 저전위 전원 전압(ELVSS)과는 다른 레벨의 전원 전압일 수 있고, 출력 전압은 표시 패널(10), 타이밍 컨트롤러(11), 데이터 구동 회로(12), 게이트 구동 회로(13)의 동작에 필요한 여러 레벨의 전압이 될 수 있다. 전원 생성부(161)는 승압형 또는 감압형 직류-직류 변환기로 이루어질 수 있다.
전원 스위칭 트랜지스터(SPW)는 타이밍 컨트롤러(11)가 출력하는 전원 제어 신호(PCS)에 응답하여 전원 생성부(161)가 생성하는 전압의 출력을 선택적으로 출력할 수 있다. 전원 스위칭 트랜지스터(SPW)는, 턴-온 레벨의 전원 제어 신호(PCS)에 의해 턴-온 되어 전원 생성부(161)의 출력을 허용하고, 턴-오프 레벨의 전원 제어 신호(PCS)에 의해 턴-오프 되어 전원 생성부(161)의 출력을 차단하여, 표시 장치의 구동을 정지시킬 수 있다.
도 10에서 전원 생성부(161)와 전원 스위칭 트랜지스터(SPW)는, 한 쌍만 도시하였지만, 패널과 구동 회로의 동작에 필요한 각종 전압을 생성하도록 전원 공급부(16)에는 여러 쌍이 마련될 수 있다.
한편, 종래 표시 장치의 제품 출하 때 광학 보상을 수행하기 위해 휘도계(Luminance Colorimeter)를 이용하는데, 휘도계를 사용하는 대신 광학 보상을 수행하는 데 전류 센싱부(17)의 전류 측정 값을 이용할 수도 있다.
OLED에 대한 광학 특성 측정 및 평가를 진행할 때 휘도의 크기를 측정하기 위해 휘도계를 사용하는데, 측정된 휘도는 표시 장치의 구동에 필요한 각종 전압을 설정하는 근거가 되며, 측정된 컬러 공간(Color Space)은 컬러마다 감마 전압을 설정하는 근거가 된다.
광학 보상은, 2.2 감마 스케일(Scale)을 설정하고 화이트에서의 색 좌표를 보정하는 보상 방법으로, 기준 감마 전압을 바꾸면서 휘도계를 통해 측정된 컬러 공간과 휘도가 목표로 하는 컬러 공간과 휘도와 일치하도록 조정한다.
이러한 광학 보상은, 표시 장치의 출하 과정에서, 표시 장치 내부에 설정된 프로그램 또는 표시 장치와 연결되는 별개의 외부 프로그램을 구동하여 표시 장치의 픽셀들을 소정 계조로 발광시키고, 휘도계를 이용하여 픽셀의 휘도와 컬러 공간을 측정하고, 휘도계의 출력을 이용하여 기준 감마 전압을 바꾸는 과정을 반복한다.
도 11에 도시한 것과 같이, OLED는 인가되는 전류와 발광하는 휘도는 비례하여, 휘도계를 이용하여 측정한 휘도 값(Nit)은 전원 라인에 흐르는 전류(i)와 일정한 기울기(a)를 갖는 일차식(Nit = a*i)을 만족한다. 따라서, 상수 a를 도출하여 이를 근거로 전원 라인에 흐르는 전류를 이용하여 광학 보상을 진행할 수 있다.
도 12는 전류 센서를 통해 검출하는 전류 값을 이용하여 표시 패널을 광학 보상하는 동작 흐름도를 도시한 것이다.
표준 샘플 패널에 대해서 외부 휘도계를 이용하여 종래 방법으로 광학 보상을 수행하고, 해당 표준 샘플 패널에 대해서 각 단색(R, G, B)의 복수 개의 기준 감마 값으로 픽셀을 구동하면서 전원 라인에 흐르는 전류의 양을 검출하여 룩업 테이블(LUT)로 저장하고, 광학 보상을 수행하고자 하는 다른 패널에 대해서 각 단색(R, G, B)의 픽셀을 각 계조로 구동하면서 전류 센싱부(17)의 출력을 모니터링 하여 룩업 테이블과 동일한 전류 값을 출력하도록 감마 전압을 설정하면, 2개의 패널 사이 색 좌표를 일치시키면서 광학 보상을 수행할 수 있다.
전원 라인에 직렬로 연결한 전류 센싱부(17)를 이용하여 휘도계와 같은 광학 측정기를 대신하여 광학 보상을 수행할 수 있기 때문에, 제품 출하와 같은 초기 공정뿐만 아니라 후 공정이나 출시 후에도 표시 장치를 오래 사용하여 뒤틀린 표시 특성을 바꿀 수 있다.
타이밍 컨트롤러(11)는, 광학 보상을 위해 센싱용 데이터를 픽셀에 인가하는 타이밍에 동기하여 전류 센싱부(17)가 전류를 측정하여 출력할 수 있도록, 센싱 제어 신호를 전류 센싱부(17)에 공급할 수도 있다.
즉, 타이밍 컨트롤러(11)는, 전원 라인의 전류를 검출할 필요가 없는 때에는 제3 스위치(SW3)를 턴-온 시키는 제어 신호를 전류 센싱부(17)에 인가하여, 전원 라인이 비접촉 전류 센서를 우회하여 패널(10)에 직접 연결되도록 하고, 전류 센서와 ADC의 동작을 중지시킬 수 있다.
또한, 타이밍 컨트롤러(11)는, 패널(10)의 픽셀을 낮은 계조의 센싱용 데이터로 발광시킬 때에는, 제1 스위치(SW1)를 턴-온 시키는 제어 신호를 전류 센싱부(17)에 인가하여, 전원 라인을 흐르는 전류가 비접촉 전류 센서의 자심을 나선형 패턴의 선회 수만큼 지나가도록 하여 전류 센서의 증폭비를 높일 수 있다.
또한, 타이밍 컨트롤러(11)는, 패널(10)의 픽셀을 높은 계조로 발광시킬 때에는, 제2 스위치(SW2)를 턴-온 시키는 제어 신호를 전류 센싱부(17)에 인가하여, 전원 라인을 흐르는 전류가 비접촉 전류 센서의 자심을 나선형 패턴의 선회 수의 일부만 지나가도록 하여 전류 센서의 증폭비를 상대적으로 낮출 수 있다.
또한, 타이밍 컨트롤러(11)는, 패널(10)을 몇 개의 영역으로 나누고 각 영역을 컬러마다 또한 계조마다 다르게 구동하면서 전류 센싱부(17)를 통해 전원 라인에 흐르는 전류를 측정하고 이를 근거로 해당 영역의 구동 특징을 얻고, 이를 근거로 입력 데이터를 보상하여, 패널(10) 위치마다 표시 편차를 보상할 수도 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.
10: 표시 패널 11: 타이밍 컨트롤러
12: 데이터 구동 회로 13: 게이트 구동 회로
14: 데이터 라인 15: 스캔 라인
16: 전원 공급부 17: 전류 센싱부

Claims (12)

  1. 발광 소자를 포함하는 픽셀이 복수 개 구비된 표시 패널;
    뚫린 공간을 복수 회 지나가도록 전원 라인이 나선형 패턴으로 형성되는 비접촉 전류 센서 및 상기 전원 라인에 연결되는 둘 이상의 스위치를 포함하는 전류 센싱부; 및
    상기 전원 라인을 흐르는 전류의 경로를 변경하도록 상기 둘 이상의 스위치를 제어하기 위한 제어 신호를 상기 전류 센싱부에 인가하기 위한 제어부를 포함하여 구성되는 표시 장치.
  2. 제1 항에 있어서,
    상기 제어부는 상기 전원 라인을 흐르는 전류가 상기 비접촉 전류 센서의 뚫린 공간을 지나가는 회수를 바꾸도록 상기 제어 신호를 생성하는 것을 특징으로 하는 표시 장치.
  3. 제1 항 또는 제2 항에 있어서,
    상기 전원 라인의 입력 단이 제1 스위치를 통해 상기 나선형 패턴에 연결되고, 상기 나선형 패턴을 따라 상기 나선형 패턴의 중앙을 향해 진행하는 전원 라인의 말단에 제1 비아 홀이 형성되고, 상기 제1 비아 홀과 제1 점퍼 패턴을 통해 상기 나선형 패턴의 중앙에 형성된 상기 전원 라인의 말단이 상기 나선형 패턴의 바깥에서 상기 전원 라인의 출력 단에 연결되고,
    상기 나선형 패턴의 중앙과 상기 나선형 패턴의 외곽 경계 사이 전원 라인에 제2 비아 홀이 형성되고, 상기 전원 라인의 입력 단이 제2 스위치와 제2 점프 패턴을 통해 상기 제2 비아 홀에 연결되는 것을 특징으로 하는 표시 장치.
  4. 제3 항에 있어서,
    상기 전원 라인의 입력 단은 제3 스위치를 통하여 상기 전원 라인의 출력 단에 바로 연결되는 것을 특징으로 하는 표시 장치.
  5. 제4 항에 있어서,
    상기 제1, 제2 및 제3 스위치는 각각 제1, 제2 및 제3 임피던스를 거쳐 상기 전원 라인의 입력 단에 연결되는 것을 특징으로 하는 표시 장치.
  6. 제4 항에 있어서,
    상기 제1 및 제2 스위치는 각각 제1 및 제2 임피던스를 거쳐 상기 전원 라인의 입력 단에 연결되는 것을 특징으로 하는 표시 장치.
  7. 제1 항에 있어서,
    상기 전류 센싱부는, 상기 제어부를 포함하는 드라이브 IC가 장착되어 상기 드라이브 IC를 상기 표시 패널에 연결하는 연성 보드와 상기 드라이브 IC에 영상 데이터를 공급하는 호스트를 연결하기 위한 연결 보드에 장착되거나, 또는 상기 표시 패널에 데이터 전압을 공급하기 위한 데이터 구동 회로가 장착된 소스 보드와 분리되어 상기 제어부가 장착된 제어 보드에 장착되는 것을 특징으로 하는 표시 장치.
  8. 제1 항에 있어서,
    상기 전류 센싱부는 상기 비접촉 전류 센서의 출력을 디지털 데이터로 변환하기 위한 ADC를 더 포함하는 것을 특징으로 하는 표시 장치.
  9. 제1 항에 있어서,
    상기 전원 라인은 복수 개의 가지로 분기하기 전에 상기 비접촉 전류 센서의 뚫린 공간을 통과하는 것을 특징으로 하는 표시 장치.
  10. 제1 항에 있어서,
    상기 전원 라인은 고전위 전원 전압 또는 저전위 전원 전압을 공급하는 것을 특징으로 하는 표시 장치.
  11. 제1 항에 있어서,
    상기 전원 라인에 공급되는 전원 전압을 이용하여 상기 표시 장치의 동작에 필요한 전압을 생성하고 이를 선택적으로 출력하기 위한 전원 공급부를 더 포함하고,
    상기 제어부는 상기 전류 센싱부가 측정한 전류 값과 기준 값과의 비교를 근거로 상기 전원 공급부의 출력을 제어하는 것을 특징으로 하는 표시 장치.
  12. 제1 항에 있어서,
    상기 제어부는, 센싱 데이터를 상기 픽셀에 인가하도록 데이터 구동 회로와 게이트 구동 회로를 제어하고, 이에 동기하여 상기 전류 센싱부가 측정한 전류 값을 저장된 값과 비교하고, 이를 근거로 감마 전압을 설정하여 광학 보상 동작을 수행하는 것을 특징으로 하는 표시 장치.
KR1020180114323A 2018-09-21 2018-09-21 표시 장치 KR102503423B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114323A KR102503423B1 (ko) 2018-09-21 2018-09-21 표시 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114323A KR102503423B1 (ko) 2018-09-21 2018-09-21 표시 장치

Publications (2)

Publication Number Publication Date
KR20200034483A KR20200034483A (ko) 2020-03-31
KR102503423B1 true KR102503423B1 (ko) 2023-02-24

Family

ID=70002257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114323A KR102503423B1 (ko) 2018-09-21 2018-09-21 표시 장치

Country Status (1)

Country Link
KR (1) KR102503423B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230020613A (ko) 2021-08-03 2023-02-13 삼성디스플레이 주식회사 표시 장치 및 그것의 구동 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217049A (ja) 2001-01-16 2002-08-02 Sht:Kk 電流検出機能を具えたコイル装置
JP2013053914A (ja) 2011-09-02 2013-03-21 Canon Electronics Inc 電流測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688599B1 (ko) * 2010-06-01 2016-12-23 삼성전자 주식회사 모드전환방법, 상기 모드전환방법이 적용되는 디스플레이구동ic 및 영상신호처리시스템
KR101908513B1 (ko) * 2011-08-30 2018-10-17 엘지디스플레이 주식회사 화소 전류 측정을 위한 유기 발광 다이오드 표시 장치 및 그의 화소 전류 측정 방법
KR102160291B1 (ko) * 2014-09-02 2020-09-28 엘지디스플레이 주식회사 표시장치 및 데이터 드라이버

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217049A (ja) 2001-01-16 2002-08-02 Sht:Kk 電流検出機能を具えたコイル装置
JP2013053914A (ja) 2011-09-02 2013-03-21 Canon Electronics Inc 電流測定装置

Also Published As

Publication number Publication date
KR20200034483A (ko) 2020-03-31

Similar Documents

Publication Publication Date Title
KR102609508B1 (ko) 외부 보상용 드라이버 집적회로와 그를 포함한 표시장치
KR101473844B1 (ko) 유기발광 표시장치
KR102322710B1 (ko) 표시 장치와 그의 본딩 저항 센싱 방법
KR102510121B1 (ko) 유기발광표시장치, 데이터구동회로, 컨트롤러 및 구동방법
KR20210069234A (ko) 유기발광 표시장치 및 그 표시장치의 구동 방법
US11842694B2 (en) Display device
KR20170064142A (ko) 유기발광표시패널, 유기발광표시장치, 그 영상 구동 방법 및 센싱 방법
KR20170021406A (ko) 유기발광 표시장치의 발광소자에 대한 열화 센싱 방법
KR20170064168A (ko) 유기발광표시패널, 유기발광표시장치 및 그 구동 방법
KR102319202B1 (ko) 유기전계 발광표시장치
KR20170081033A (ko) 컨트롤러, 유기발광표시장치 및 그 구동방법
KR102503423B1 (ko) 표시 장치
US11961458B2 (en) Display apparatus and control method therefor
US11810489B2 (en) Sensing circuit for detecting characteristics of display panel and display driver integrated circuit including the same
JP7264980B2 (ja) 電界発光表示装置
US11587481B2 (en) Display device and method of driving the same
KR102576695B1 (ko) 표시 장치
CN115719578A (zh) 显示装置、数据驱动电路及显示驱动方法
KR20230026673A (ko) 디스플레이 장치 및 디스플레이 구동 방법
KR102536619B1 (ko) 구동회로, 유기발광표시장치 및 구동방법
KR20220086012A (ko) 소스드라이버 집적회로
KR102430772B1 (ko) 필름 소자와 그 테스트 방법 및 필름 소자를 포함한 표시장치
US11663981B2 (en) Organic light emitting display device for outputting compensated image data based on operation characteristics of sub-pixels
CN114464139B (zh) 显示装置和驱动电路
US20220208126A1 (en) Light Emitting Display Device and Method of Driving the Same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant