KR102502353B1 - 터보기기를 위한 유동 제어 구조 및 그 설계 방법 - Google Patents

터보기기를 위한 유동 제어 구조 및 그 설계 방법 Download PDF

Info

Publication number
KR102502353B1
KR102502353B1 KR1020177001985A KR20177001985A KR102502353B1 KR 102502353 B1 KR102502353 B1 KR 102502353B1 KR 1020177001985 A KR1020177001985 A KR 1020177001985A KR 20177001985 A KR20177001985 A KR 20177001985A KR 102502353 B1 KR102502353 B1 KR 102502353B1
Authority
KR
South Korea
Prior art keywords
impeller
flow
channel
channels
shroud
Prior art date
Application number
KR1020177001985A
Other languages
English (en)
Other versions
KR20170028367A (ko
Inventor
데이비드 야픽스
Original Assignee
컨셉츠 엔알이씨, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 컨셉츠 엔알이씨, 엘엘씨 filed Critical 컨셉츠 엔알이씨, 엘엘씨
Priority to KR1020237005500A priority Critical patent/KR20230028811A/ko
Publication of KR20170028367A publication Critical patent/KR20170028367A/ko
Application granted granted Critical
Publication of KR102502353B1 publication Critical patent/KR102502353B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/045Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/048Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Abstract

터보기기의 성능을 향상시키기 위해 설계 및 구성되는 유동 제어 장치들 및 구조들. 예시적인 유동 제어 장치들은 다양한 유동 가이드 채널들, 리브들, 디퓨저 통로-폭 감소들 및 다른 처리들을 포함할 수 있고, 기기의 슈라우드 및 허브 중 하나 또는 둘 모두에 위치되어 터보기기의 유동장의 부분들의 방향 전환, 가이드 또는 다른 영향을 주어 기기의 성능을 향상시킨다.

Description

터보기기를 위한 유동 제어 구조 및 그 설계 방법{FLOW CONTROL STRUCTURES FOR TURBOMACHINES AND METHODS OF DESIGNING THE SAME}
본 출원은 다음의 우선권의 이익을 주장한다:
2014년 6월 24일자로 출원되고, 발명의 명칭이 "터보기기의 인접한 블래이드된 요소들의 유동장의 커플링을 강제하는 구조와 방법 및 이를 포함하는 터보기기"인 미국 가 특허 출원 제 62/016,431호;
2014년 10월 28일자로 출원되고, 발명의 명칭이 "스트롱 사이드 핀치 및 곡률을 구비하는 터보기기"인 미국 가 특허 출원 제 62/069,462호;
2015년 1월 14일자로 출원되고, 발명의 명칭이 "임펠러 커버 슬롯들, 리브들을 구비한 향상된 베인리스 디퓨저와 임펠러 및 디퓨저 스테이지 성능을 향상시키는 방법"인 미국 가 특허 출원 제 62/103,231호; 및
2015년 1월 14일자로 출원되고, 발명의 명칭이 "터보-PD의 특징 및 터보-PD의 특징을 터보기기에 통합하는 방법"인 미국 가 특허 출원 제 62/103,233호;
이들 각각은 그 전체가 본 출원에 참고로써 포함된다.
본 발명은 일반적으로 터보기기류의 분야에 관련된다. 특히, 본 발명은 터보기기를 위한 유동 제어 구조 및 그 설계 방법에 관련된다.
터보기기류(turbomachinery)의 스테이지들의 손실들은 케이스들 별로 힘 및 특징들에 있어서 다양하다. 그러나 모든 터보기기류 스테이지들은 이하에 제시되는 단일 위상, 단일 요소 및 유동의 메커니즘들의 대부분을 포함한다: 표면 마찰, 2차 유동 생성, 출구 혼합, 갭 유동들의 간격, 누출 및 고압축성의 유동들을 위한 충격 형성. 이런 메커니즘들은 많은 설계 파라미터들, 예를 들어, 유동 속도, 입구 압력 및 온도, 출구 압력, 발생 정도, 그리고 유동 터닝 플러스 표면 곡률, 두께, 그리고 회전 상태들, 다른 것들에 의해 차례대로 영향을 받는다. 손실들은 터보기기 성능에 부정적으로 영향을 끼치고 일반적으로 유동 상태의 질을 떨어뜨리고, 전체 압력의 감쇠를 초래하고, 유동 프로세스의 엔트로피를 증가시키는 것으로 받아들여진다. 손실들은 다운스트림 요소들의 성능에 빈번하게 부정적인 영향을 끼치는 일정하지 않은 유동장들과 마찬가지로 유동 분리, 스털(stall) 및 임펠러 슬립(impeller slip)을 초래한다. 향상된 장치들과, 손실들을 감소하고 손실들의 효과들을 완화시키는 방법들에 대한 필요성이 남아있다.
일 실시 예에서, 본 개시는 터보기기에 관한 것이다. 터보기기는 입구, 슈라우드(shroud) 사이드 및 허브(hub) 사이드를 구비하는 다운스트림 요소; 허브 및 복수 개의 블레이드들을 포함하고, 입구, 출구 및 회전축을 구비하는 임펠러(impeller), 상기 복수 개의 블레이드들 각각은 리딩 엣지(leading edge) 및 트레일링 엣지(trailing edge)를 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽(spanwise) 방향으로 연장함; 상기 복수 개의 블레이드들의 상기 슈라우드 사이드들과 마주하는 면을 구비하는 슈라우드, 상기 슈라우드 및 상기 허브는 임펠러 통로를 규정함; 을 포함하고, 상기 임펠러는, 작동 유체가 상기 다운스트림 요소로 배출되도록(discharge) 설계 및 구성되고, 상기 임펠러는, 상기 작동 유체 내에 유동장(flow field)을 생성하고, 상기 출구에서의 상기 유동장은 상기 허브 및 상기 슈라우드 중 하나에 근접한 위크(weak) 사이드와, 상기 허브 및 상기 슈라우드 중 다른 하나에 근접한 스트롱(strong) 사이드를 포함하고, 절대 속도의 자오선(meridional) 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고, 상기 다운스트림 요소의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나의 부분을 따라 유동 쪽 방향으로 연장하는 적어도 하나의 채널을 포함하고, 상기 적어도 하나의 채널은 각도 α로 연장하는 접선(tangent line)을 구비하는 중심선(centerline)을 구비하고, 상기 각도 α는 상기 회전축을 통해 연장하는 자오선 기준 평면(reference frame)으로부터 절대 기준 프레임(absolute frame of reference)에서 측정된 것이고, 상기 적어도 하나의 채널은 상기 유동 장의 상기 위크 사이드에 인접하여 선택적으로 위치되고, α와 실질적으로 같은 방향으로 상기 유동장의 상기 위크 사이드의 부분을 가이드 하도록 설계 및 구성된다.
다른 실시 예에서, 본 개시는 터보기기에 관한 것이다. 터보기기는 입구, 슈라우드 사이드 및 허브 사이드를 구비하는 다운스트림 요소; 복수 개의 블레이드들을 포함하고, 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장함; 을 포함하고, 상기 임펠러는, 작동 유체가 상기 다운스트림 요소로 배출되도록 설계 및 구성되고, 상기 임펠러는, 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에서의 상기 유동장은 상기 슈라우드에 근접한 위크 사이드와, 상기 허브에 근접한 스트롱 사이드를 포함하고, 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고; 슈라우드는 상기 복수 개의 블레이드들의 상기 슈라우드 사이드들과 마주하는 면을 구비하고; 적어도 하나의 채널은 상기 다운스트림 요소의 슈라우드 사이드의 부분 및 상기 슈라우드의 부분을 따라 유동 쪽 방향으로 연장하고, 적어도 하나의 채널은 상기 위크 사이드 절대 속도의 자오선 성분을 증가시키도록 설계 및 구성된다.
또 다른 실시 예에서, 본 개시는 방사상의(radial) 터보기기에 관한 것이다. 상기 방사상의 터보기기는 입구, 슈라우드 사이드, 허브 사이드를 구비한 디퓨저; 허브 및 복수 개의 블레이드들을 포함하고 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드 각각은 상기 임펠러 입구에 근접한 리딩 엣지 및 상기 출구에 근접한 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드들의 상기 슈라우드 사이드까지 날개 쪽 방향으로 연장함; 을 포함하고, 상기 임펠러는 작동 유체를 상기 디퓨저로 배출하고; 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에 있는 유동장은 상기 블레이드들의 상기 슈라우드 사이드에 근접한 위크 사이드 및 상기 허브에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 위크 사이드보다 스트롱 사이드에서 더 크고; 슈라우드는 상기 복수 개의 블레이드들의 상기 슈라우드 사이드에 마주하는 면을 구비하고; 적어도 하나의 채널은 상기 슈라우드를 따라 유동 쪽 방향으로 연장하고, 상기 채널의 부분은 상기 출구에 위치되고, 상기 적어도 하나의 채널은 상기 유동장의 상기 위크 사이드의 부분을 상기 디퓨저로 가이드 하도록 설계 및 구성됨으로써 적어도 하나의 유동 각도 또는 상기 유동장의 상기 부분의 속도를 향상시킨다.
또 다른 실시 예에서, 본 개시는 터보기기를 위한 유동 제어 구조를 설계하기 위한 방법에 관한 것이고, 상기 터보기기는 입구 및 출구를 구비하는 임펠러, 슈라우드, 허브 및 다운스트림 요소를 구비하고, 상기 허브 및 슈라우드는 임펠러 통로(impeller passageway)를 규정한다. 상기 방법은, 컴퓨터를 사용하여 터보기기의 전산 유체 모델(computational fluids model)을 개발(develop)하는 단계; 전산 유체 모델을 이용하여 임펠러 통로 유동장 분포를 계산하는 단계; 상기 유동장 분포에서, 2차 유동의 농도(concentration)를 구비하는 위크 영역을 식별하는 단계; 및 상기 2차 유동을 실질적으로 유동 쪽 방향으로 다운스트림 요소로 가이드 하기 위해 상기 위크 영역에 인접한 상기 허브 및 상기 슈라우드 중 적어도 하나에서 유동 쪽 방향으로 연장하기 위한 적어도 하나의 채널을 설계하는 단계를 포함한다.
또 다른 실시 예에서, 본 개시는 2상 유동을 위한 터보기기를 위한 유동 제어 구조를 설계하는 방법에 관한 것이고, 상기 터보기기는 복수 개의 블레이드들을 구비하는 임펠러를 포함하고, 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 복수 개의 블레이드들 각각은 상기 블레이드의 허브로부터 슈라우드까지 날개 쪽 방향으로 연장하고, 상기 임펠러는 상기 블레이드들의 상기 허브로부터 상기 슈라우드까지 날개 쪽 방향으로 연장하는 메인 임펠러 통로를 규정한다. 상기 방법은, 컴퓨터를 사용하여 터보기기의 전산 모델을 개발하는 단계; 상기 모델을 이용하여 상기 임펠러에 의해서 운반(convey)되는 액체 및 기체의 양을 계산하는 단계; 적어도 하나의 채널을 설계하는 단계; 액체 및 기체 중 하나를 포획(capture) 및 운반하여 메인 임펠러 통로로부터 액체 또는 기체를 제거하기 위한 유동 쪽 방향의 적어도 하나의 유동 쪽 채널을 설계하는 단계를 포함한다.
또 다른 실시 예에서, 본 개시는 방사상의 터보기기에 관한 것이다. 방사상의 터보기기는 허브 및 복수 개의 블레이드들을 포함하고 입구, 출구 및 회전축을 구비하는 임펠러를 포함하고, 상기 복수 개의 블레이드들 각각은 임펠러 입구에 근접한 리딩 엣지 및 출구에 근접한 트레일링 엣지룰 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장한다. 상기 임펠러는, 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에서의 상기 유동장은 상기 블레이드들의 상기 슈라우드 사이드 및 상기 허브 중 하나에 근접한 위크 사이드와, 상기 블레이드들의 상기 슈라우드 사이드 및 상기 허브 중 다른 하나에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고; 슈라우드는 상기 복수 개의 블레이드들에 마주하는 면을 구비하고, 상기 슈라우드 및 상기 허브는 임펠러 통로를 규정하고; 디퓨저는 입구, 슈라우드 사이드 및 허브 사이드를 구비하고, 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드는 폭을 구비하는 디퓨저 통로를 포함하고, 상기 디퓨저는 적어도 하나의 스트롱 사이드 핀치 영역을 포함하고, 상기 스트롱 사이드 핀치 영역은 상기 유동장의 상기 스트롱 사이드에 인접한 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드 중 하나의 볼록한(convex) 표면 을 포함하는 상기 디퓨저 통로 폭의 감소를 제공하고, 상기 볼록한 표면은 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드 중 다른 하나의 통로 폭의 감소(reduction)보다 더 많은 감소를 가진 통로를 제공한다.
본 발명을 설명하기 위한 목적으로, 도면들은 본 발명의 하나 이상의 실시 예들의 양태들을 도시한다. 그러나, 본 발명은 도면들에 도시된 정확한 배열들 및 수단들에 한정되지 않음을 밝혀둔다.
도 1은 임펠러 출구에서의 임펠러 유동장의 유동 분포에 대한 속도 삼각형(velocity triangle)들의 다이어그램이며, 1차(primary) 및 2차(secondary) 유동으로 분해(resolve)되고 절대 및 상대 기준 프레임으로 도시된다.
도 2는 임펠러 출구에서의 자오선 속도(meridional velocity) Cm의 날개 쪽(spanwise) 분포의 개념도이다.
도 3은 높은 유동 조건에서 예시적인 원심 압축기에 대한 다양한 날개 쪽 위치들에 대한 자오선 위치 대 절대 유동 각도의 그래프이다.
도 4는 예시적인 축 방향 터빈에 대한 다양한 날개 쪽 위치에 대한 자오선 위치 대 절대 유동 각도의 그래프이다.
도 5는 유동 가이드 채널들을 구비하는 예시적인 원심 압축기의 부분의 단면도이다.
도 6은 도 5에 도시된 원심 압축기의 슈라우드 및 디퓨저의 등가(isometric) 단면도이다.
도 7은 본 개시에 따라 제조된 유동 가이드 채널들을 구비한 원심 압축기 및 구비하지 않은 원심 압축기에 대한 시험 데이터를 나타내는 압축기 성능 맵(performance map)이다.
도 8은 유동 가이드 채널들을 구비하는 슈라우드 및 디퓨저의 다른 예시적인 실시 예의 단면 사시도이다.
도 9는 유동 가이드 채널들을 갖는 터보기기의 다른 실시 예의 평면도이다.
도 10은 유동 가이드 채널들을 갖는 터보기기의 또 다른 실시 예의 평면도이다.
도 11은 도 10의 터보기기의 부분의 확대도이고, 채널 폭의 변화를 도시한다.
도 12는 유동 가이드 채널들을 갖는 터보기기의 또 다른 실시 예의 평면도이다.
도 13은 도 12의 A-A를 따라 절단한 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 14는 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 15는 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 16은 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 17은 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 18은 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 19는 도 12의 A-A를 따라 절단한 다른 단면도이고, 유동 가이드 채널들의 예시적인 단면 형상을 도시한다.
도 20은 예시적인 채널 구조들의 평면도들이다.
도 21은 2상 및/또는 다상(multi-constituent) 유동으로 작동하도록 설계된 터보기기를 위한 유동 가이드 채널들을 구비한 슈라우드 및 디퓨저 의 다른 예시적인 실시 예의 단면도이다.
도 22는 도 21의 슈라우드 및 디퓨저의 다른 단면 사시도이다.
도 23은 2개의 다른 이상적인 프로파일들에 대한 임펠러 출구에서의 날개 쪽 자오선 속도 분포의 다이어그램이다.
도 24는 2개의 일반적인 프로파일 및 이상적인 프로파일에 대한 임펠러 출구에서의 날개 쪽 자오선 속도 분포의 다이어그램이다.
도 25는 유동 가이드 채널들에 의해 증가된 속도 프로파일에 대한 임펠러 출구에서의 날개 쪽 자오선 속도 분포의 다이어그램이다.
도 26은 일반적인 프로파일 및 증가된 프로파일에 대한 임펠러 출구에서의 날개 쪽 유동 각도 분포의 다이어그램이다.
도 27은 유동 가이드 채널들을 구비하는 터보기기의 다른 실시 예의 평면도이다.
도 28은 도 27의 채널들 중 하나의 단면도이다.
도 29a는 도 29 및 도 28의 터보기기의 일부의 평면도이다.
도 29b는 도 27 내지 도 29a의 터보기기의 측 단면도이다.
도 30은 유동 가이드 채널들을 갖는 슈라우드의 다른 실시 예의 사시도이다.
도 31은 도 30의 슈라우드와 결합하도록 구성된 베인 디퓨저의 사시도이다. 30.
도 32는 도 30의 슈라우드 및 도 31의 디퓨저가 조립된 사시도이고, 디퓨저 베인들에 대해 상대적으로 클락 포지션(clocked position)에 유동 가이드 채널들을 도시한다.
도 33a는 유동 가이드 채널들을 갖는 예시적인 축 방향 기기의 측면도이다.
도 33b는 도 33a의 터보기기의 일부의 평면도이다.
도 34는 유동 가이드 채널들을 갖는 다른 예시적인 축 방향 기기의 측면도이다.
도 35는 도 34의 기기의 부분을 확대하여 도시한 확대 평면도이다.
도 36은 강한 사이드 곡률을 구비하는 예시적인 디퓨저의 측 단면도이다.
도 37은 강한 사이드 곡률을 구비하는 다른 예시적인 디퓨저의 측 단면도이다.
도 38은 강한 사이드 곡률 및 위크 사이드 처리를 구비하는 예시적인 디퓨저의 측 단면도이다.
도 39는 강한 사이드 곡률 및 약한 사이드 처리를 구비하는 다른 예시적인 디퓨저의 측 단면도이다.
도 40은 강한 사이드 곡률을 구비하는 다른 예시적인 디퓨저의 측 단면도이다.
도 41은 강한 사이드 곡률을 구비하는 다른 예시적인 디퓨저의 측 단면도이다.
도 42는 강한 사이드 곡률을 구비하는 다른 예시적인 디퓨저의 측 단면도이다.
도 43은 이중의 강한 사이드 곡률을 구비하는 예시적인 디퓨저의 측 단면도이다.
도 44는 도 43의 일부의 확대도이다.
도 45는 예시적인 트랩된 코너 스털 셀(stall cell)의 측면도이다.
도 46은 다른 예시적인 트랩된 코너 스털 셀의 측면도이다.
도 47은 강한 사이드 곡률을 구비하는 다른 예시적인 디퓨저의 측 단면도이고, 가능한 슈라우드-사이드 윤곽(contour)들 및 유동 가이드 채널들 중 하나를 도시한다.
도 48은 도 47의 디퓨저의 측 단면도이고, 가능한 슈라우드-사이드 윤곽들 및 유동 가이드 채널들 중 하나를 도시한다.
도 49는 도 47의 디퓨저의 측 단면도이고, 가능한 슈라우드-사이드 윤곽들 및 유동 가이드 채널들 중 다른 하나를 도시한다.
도 50은 도 47의 디퓨저의 측 단면도이고, 가능한 슈라우드-사이드 윤곽들 및 유동 가이드 채널들 중 다른 하나를 도시한다.
도 51은 터보기기를 위한 유동 제어 구조를 설계하기 위한 예시적인 프로세스를 나타내는 흐름도이다.
도 52는 본 개시의 예시적인 실시 예들에 따른 특수한 목적의 컴퓨팅 시스템을 나타내는 블록도이다.
본 개시의 양태들은, 터보기기의 성능에 대한 부정적인 손실들의 영향을 감소시키고, 터보기기의 성능을 향상시키고, 업스트림(upstream) 요소에서 생성된 다운스트림(downstream) 요소의 부정적인 손실들의 영향을 감소시키고, 업스트림 및 다운스트림 요소의 커플링(coupling) 및 성능을 향상시키는 것들 중 하나 이상을 수행하기 위하여 설계 및 구성되는 구조들 및 유동 제어 장치들을 포함한다. 아래에서 보다 상세히 설명되는 바와 같이, 본 개시에 따라 제조된 예시적인 유동 제어 장치들은 다양한 유동 가이드 채널들, 리브(rib)들, 디퓨저 통로-폭 감소(diffuser passage-width reduction)들 및 다른 처리(treatment)들을 포함할 수 있고, 이는 기기의 슈라우드 및 허브 사이드 중 하나 또는 둘 모두에 위치될 수 있고, 터보기기 유동장의 일부들을 방향 전환(redirect), 가이드 또는 다른 영향을 미치고 기기의 성능을 향상시킨다.
방사상(radial), 축 방향(axial) 또는 혼합 유동(mixed flow) 및 압축기들, 펌프들 또는 터빈들의 터보기기는 일반적으로 복수 개의 블레이드들을 포함하고 회전축을 중심으로 회전하고 유체 통로 내에 배치된 임펠러(impeller)를 포함한다. 본원에서 사용되는 용어 "임펠러"는 압축기들, 터빈들, 펌프들 및 팬(fan)들을 포함하고 모든 유형의 터보기기의 블레이드 형 임펠러 또는 로터(rotor)를 지칭한다. 터보기기 임펠러들은 입구(inlet) 및 출구(exit)를 가지며 일반적으로 디퓨저 또는 캐스케이드(cascade) 또는 노즐 또는 스테이터(stator)와 같은 다운스트림 요소와 유체 소통한다. 표면 마찰, 틈새 간격 유동(clearance gap flow)들, 누설 및 회전 기기의 기본적인 특성으로 인한 와류(vorticity)들로 인한 손실들과 같은 실제 효과들로 인해 임펠러 유동장에 불균일(non-uniformities)들이 발생한다. 이러한 불균일들은 임펠러 통로 내의 유체 속도의 크기 및 각도의 불균일들의 관점에서 설명될 수 있고, 유동장의 저손실 영역들은 일반적으로 임펠러 통로를 따르는 것과 같이 제 1 방향으로 실질적으로 정렬되고, 유동장의 다른 영역들은 다양한 다른 각도들 및 속도들 운반(convey)되고, 다른 각도들 및 속도들은 메인 임펠러 통로 방향에 대해 수직한 방향 및 반대 방향을 포함한다. 이러한 오프-각도 유동장 불균일들은 시스템의 손실들을 나타내고, 유동 불안정들, 다운스트림 요소의 스털(stall), 임펠러의 역류(back flow) 또는 대형 임펠러 출구 공기역학적 막힘(blockage)과 같은 추가 손실들을 유발할 수 있다. 본원 및 첨부된 청구범위들에서 사용되는 용어 "1차 유동" 및 유사한 용어들은 통로 방향과 실질적으로 정렬되는 임펠러 유동장의 저손실 또는 제로손실 부분을 지칭하고, "2차 유동" 및 이와 유사한 용어들은 작동 유체 유동장의 다른 부분들을 지칭하고 와류 및 상당한 손실들을 포함 할 수 있다.
도 1은 임펠러 출구(102)에서의 작동 유체 속도 분포(100)에 대한 개략적인 다이어그램이며, 1차 유동(p) 및 2차 유동(s)으로 분해되고 절대 및 상대 기준 프레임(frame of reference)로 도시된다. 특히, 속도들(C)은 절대 또는 고정된 기준 프레임(예를 들어, 지구)에 있고 속도들(W)은 상대 운동 프레임(임펠러로 회전하는 관찰자)에 있다. U는 임펠러 주변부(peripheral) 또는 팁 휠 속도이다. 도 1은 2개의 세트들의 속도들을 도시한다: 첨자 "p"를 갖는 더 큰 삼각형은 1차 유동장에 대한 벡터 속도들을 나타낸다. 첨자 "s"가있는 더 평평한 삼각형은 2차 유동의 벡터 속도들을 나타낸다. Cm, p 및 Cm, s는 절대 프레임에서 1차 및 2차 속도의 자오선 성분들이고 순수한 방사상의 스테이지들의 방사상의 속도이다. αp 및 αs는 임펠러 중심선 회전축을 통과하는 자오선 기준 평면을 기준으로 한 절대 기준 프레임에서 측정된 절대 유동 각도들이다. 도 1은 유동장의 1차 및 2차 성분들의 간략화된 표현이고, 2차 유동 속도 삼각형들은 단일 크기 및 각도(절대 또는 상대 프레임 중 어느 하나)로 다양한 각도들 및 속도들을 갖는 매우 복잡한 유동 분포의 평균값을 나타낸다.
한편, 도 1은 임펠러 출구에서의 전형적인 유동 변화들의 간략화된 표현이고, 상대적 큰 속도 WP 및 자오선 속도 Cm, p를 구비하는 유동장의 1차 성분이 상대적 프레임 내에서 잘 통전(energize)되고, 한편, 현저하게 낮은 상대적 속도 Ws 및 자오선 속도 Cm, s를 구비하는 2차 유동은 회전 시스템에서 잘 통전되지 않는다. 또한, 임펠러 출구 유동장은 일반적으로 상이한 유동 각도들의 어레이를 구비하고, 도 1에서 αp 및 αs로 단순화되고, 2차 유동은 1차 유동에 비해 일반적으로 큰 평균 절대 각도 αs를 구비한다는 것을 나타낸다. 유동 각도들에서의 이러한 분포는 높은-각도 및 저 자오선 운동의 2차 유동 스트림튜브들이 임펠러의 출구 부분에서 1차 유동 튜브와 결합하여 혼합되기 때문에 유동이 임펠러 출구(102)를 통과함에 따라 혼합 손실들을 야기한다.
또한, 이와 같이 큰 Cm, s를 갖는 큰 각도의 2차 유동은 자오선 방향에서 낮은 운동으로 인한 유동 불안정, 스털 및 유동 역전(reversal)을 야기한다. 큰 2차 유동 각도들은 후속하는 베인 요소, 예를 들어 베인 디퓨저, 스테이터 또는 다른 캐스케이드 또는 후속하는 베인리스(vaneless) 요소, 예를 들어, 베인리스 디퓨저에서의 높은 손실들과 관련된 길고 얕은 나선형 유동 경로에서의 리딩 엣지(leading edge)에서의 스털로 이어질 수 있다. 이러한 2차 유동은 임펠러 및 다운스트림 요소 사이의 열악한 커플링 및 열악한 상호작용을 야기할 수 있고, 이는 임펠러 및 다운스트림 요소 모두에 대한 성능 저하를 초래할 수 있다.
도 2 내지 도 4는 공간적으로 2차 유동들이 어떻게 시작될 수 있는 가를 보여주고, 기기의 특정 위치들에 집중될 수 있다. 도 2는 임펠러 출구에서의 이상적인(202) 및 일반적인(204) 날개 쪽의 속도 분포를 나타내고, Cm 또는 임펠러 유동 절대 속도의 자오선 성분을 수직축에 나타내고, % b2 또는 날개 쪽 위치를 수평축에 나타낸다. 나타난 예에서 0은 슈라우드 표면을 나타내고 1.0은 허브 표면을 나타낸다. 도시된 바와 같이, 이상적인 임펠러 출구 유동 속도 분포(202)는 얇은 경계층(boundary layer)들을 갖는 클린(clean)하고 대칭인 프로파일을 포함할 수 있지만, 실제 일반적인 분포(204)는 임펠러 통로의 슈라우드 사이드를 따라, 특히 후반 또는 적어도 임펠러 통로의 출구 부분(자오선 방향)에 낮은 Cm이 집중되는 2차 유동을 포함할 수 있다. 기기의 슈라우드 표면을 따라 저-통전(low-energized) 유동이 발생하는 것이 일반적이지만 일부 기기들 및 작동 조건들의 경우 상황이 바뀌고 허브 표면을 따라 더 낮은 Cm 2차 유동이 집중될 수 있다.
도 3은 임펠러가 대략 4°의 입사각을 갖는 정상 상태 고 유동 조건에서 예시적인 원심 압축기의 날개 쪽 절대 유동 각도 변화의 전산 유체 역학(CFD, computational fluid dynamics) 계산들의 결과들을 나타내는 예시적인 그래프이다. 도 3에서, 절대 유동 각도 α는 수직 축 상에 도시되고, % M, 즉, 자오선 방향의 임펠러 유동 경로의 백분율은 수평축을 따라 도시되고, 여기서 0은 임펠러 리딩 엣지이고, 1.0은 임펠러 트레일링 엣지이다. 다양한 라인들은 블레이드로부터 블레이드까지의 원주 방향(circumferential direction)으로 평균된 날개 쪽 방향(0%는 허브 표면이고, 100%는 슈라우드 표면임)이 변화하는 지점에서의 스트림튜브(streamtube)들을 시뮬레이션한다. 도 3에 도시된 바와 같이, 날개 쪽 방향(내부 스팬 쪽 부분, 300)의 임펠러 유동장의 처음 60-70%는 실질적으로 유사한 절대 유동 각도들을 가지고 실질적으로 유사한 궤적을 따르는 상당히 긴밀한(tight) 그룹을 갖는다. 스트림튜브들의 내측 날개 쪽 부분(300)의 궤도는 임펠러의 출구 영역에서 평평해지기 쉽고 대략 60도의 공칭 출구 각도에 근사하는 경향이 있다. 내부 날개 쪽 방향 부분(300)은 1차 유동에 대략 근사하고, 60도의 공칭 출구 각도는 대체로 1차 유동 평균 절대 각도, αp다(도 1 및 대응한 설명 참조). 대조적으로, 날개 쪽 방향(외부 날개 쪽 부분, 302)의 외측 약 15-30%는 발산 영역(304)에서 높은-각도 2차 유동에 의해 지배되기 시작하는 것으로 나타나고, 도시된 실시 예에서는 대략 70% 통로의 자오선 위치를 나타내고, 2차 유동장들의 일반적인 높은-각도 유동으로 발산하고, 본원에서 논의된 다양한 손실들을 야기하는 것으로 이해된다. 유사한 CFD 계산들은 발산 영역(304)의 대략 자오선 위치가 작동 조건들의 변화들에 따라 변할 수 있지만, 유동장이 더 낮은 유동 조건들에서 유사한 특성들을 갖는다는 것을 보여준다. 예를 들어, 발산 영역의 자오선 위치는 최대 업스트림 위치 및 최대 다운스트림 위치 사이에서 기기의 작동 범위에 걸쳐(across) 다를 수 있다. 통상의 기술자라면 알 수 있는 바와 같이, 도 3은 단지 예시일 뿐이고, 특정한 백분율들 및 위치들은 예를 들어 임펠러 설계 및 기기 유형에 따라 변할 수 있고, 경우에 따라 높은-각도 2차 유동 영역이 허브 표면 상에 존재할 수 있다. 도 4는 예시적인 축 방향 터빈에서 복수 개의 시물레이션된 날개 쪽 스트림튜브들에 대한 자오선 위치 대 절대 유동 각도를 유사하게 나타낸다. 도시된 바와 같이, 외부 90-95% 날개 쪽 유동(외부 날개 쪽 부분, 400)은 임펠러의 출구 부분에서 발산 영역(402)의 구역에서 2차 유동에 의해 영향을 받기 시작하고, 예를 들어, 발산 영역은 도시된 예에서 대략 50-70%M이고, 1차 유동장으로부터 발산하는 유동 각도에 의해 특징 지어진다. 따라서, 도 2 내지 도 4에 도시된 바와 같이, 오프-각도(off-angle) 2차 유동은 발산 영역에서 발생하기 시작할 수 있고, 허브 또는 슈라우드 표면을 따라 그리고 임펠러 유동장의 출구 부분을 향해 집중될 수 있다. 전술한 바와 같이, 이러한 2차 유동은 터보 기기의 손실들을 나타낸다.
이하에서 더 상세히 설명하는 바와 같이, 본 개시는 다양한 유동 제어 구조들을 포함하고, 유동 제어 구조들은 2차 유동들이 터보기기의 성능에 미치는 영향을 최소화하도록 설계 및 구성됨으로써 터보기기의 성능을 향상시키고, 작동 범위, 스테이지 압력 상승(압축기들 및 펌프들에 대한) 및/또는 스테이지 효율들을 향상시키고, 경우에 따라 임펠러 유동장과 다운스트림 요소 유동장의 커플링을 향상시킬 수 있다. 또한 이하에서 더 설명되는 바와 같이, 이러한 유동 제어 구조들은 임펠러 통로 및 다운스트림 요소 통로 모두에 위치될 수 있고, 임펠러 출구를 가로질러 연장되고 임펠러 출구와 오버랩(overlap) 되거나 단지 임펠러 또는 다운스트림 요소 통로에 위치될 수 있다. 유동 제어 구조들은 일반적으로 유동 쪽 방향으로 연장하고 바람직한 각도로 임펠러 유동장의 부분들을 방향 전환하도록 치수화된(dimension) 유동 가이드 채널들을 포함할 수 있다. 이러한 채널들은 다양한 단면 크기들, 형상들 및 다양한 상이한 깊이 윤곽들을 가질 수 있다. 일부 실시 예들에서, 이러한 채널들은 2차 유동의 농도(concentration)를 갖는 표면을 따라 임펠러 통로의 출구 부분에 위치될 수 있고, 채널들은 2차 유동의 부분들을 다운스트림 요소로 가이드 하도록 설계 및 구성되고, 출구 혼합 손실들을 감소시키고, 유동 안정성을 향상시키며, 임펠러 및 다운스트림 측 요소의 커플 링을 향상시킨다. 예시적인 유동 제어 구조들은 또한 더 약한 저 운동의 유동이 존재하는 디퓨저 통로의 반대편 사이드의 유동장에 영향을 주도록 설계 및 구성된 고 운동의 유동을 구비하는 디퓨저 통로의 사이드 상에 위치된 디퓨저 사이드 벽 곡률들을 포함할 수 있고, 디퓨저 성능을 향상시킬 수 있다.
도 5 및 도 6은 임펠러 슈라우드(504) 내에 회전 가능하게 배치되고 베인리스 디퓨저(506)의 업스트림에 위치되는 임펠러(502)를 구비하는 예시적인 원심 압축기(500)를 도시한다. 임펠러(502)는 입구(512) 및 출구(514)뿐만 아니라 복수 개의 블레이드(508, 일부는 라벨링 됨)들을 포함한다. 임펠러 블레이드(508)들은 리딩 엣지(도시되지 않음) 및 트레일링 엣지(516) 사이에서 자오선 방향으로 연장하고 임펠러 블레이드(508)의 허브(518) 및 슈라우드 사이드(520) 사이에서 날개 쪽 방향으로 연장한다. 슈라우드(504, 때로는 케이싱(casing)으로도 지칭 됨)는 임펠러 입구(512)로부터 출구(514)까지 연장하고, 임펠러 블레이드(508)들의 슈라우드 사이드(520)들을 마주하는 면(522)을 포함한다. 임펠러 허브(518) 및 슈라우드(504)는 작동 유체가 압축되어 출구(514)에서 디퓨저(506)로 배출될 수 있는 임펠러 통로(523)를 규정한다. 디퓨저(506)는 앞면(526, front surface)을 규정하는 앞판(524, front plate) 및 뒷면(530, back surface)을 규정하는 후 뒷판(528, back plate)를 포함한다. 디퓨저 입구(532) 및 임펠러 출구(514)는 유사한 크기로 실질적으로 정렬될 수 있고, 슈라우드(504) 및 디퓨저 앞면(526)은 실질적으로 임펠러 출구(514)에 정렬될 수 있고, 디퓨저 입구(532), 허브(518) 및 디퓨저 뒷면(530)은 유사하게 실질적으로 임펠러 출구/디퓨저 입구에 정렬될 수 있다. 도시된 예에서, 블레이드(508)의 슈라우드 사이드(520)들 사이에 작은 간극이 있고, 임펠러가 고정 슈라우드(504)에 대해 회전하도록 구성되는 임펠러(502)가 개구(open)되어 있다. 마찬가지로, 허브 디스크 외측 반경(534) 및 디퓨저 뒷판(528) 사이에는 작은 간극이 있고, 슈라우드(504) 및 디퓨저 앞판(524)은 이러한 갭(gap)을 포함하지 않을 수도 있고, 임펠러(502) 및 디퓨저(506) 사이에 하나의 연속적인 표면을 형성할 수도 있다.
도 5 및 도 6에 도시된 바와 같이, 슈라우드(504)는 슈라우드 둘레에 원주 방향으로 배치되고, 임펠러 통로(523), 임펠러 출구(514)의 업스트림 내의 시작 위치(604)에서 유동 쪽 방향으로 일반적으로 연장하는 복수 개의 유동 가이드 채널(602, 혼란을 피하기 위해 일부만 라벨링 함)들을 포함할 수 있고, 도시된 실시 예에서, 앞판(526)의 앞면(524)을 따라 디퓨저(506)로 연장할 수 있다. 예시적인 채널(602)들은 임펠러(502)의 출구 영역에서 슈라우드(504)를 따라 발생하는 2차 유동의 부분을 가이드 하도록 설계 및 구성된다. 예를 들어, 도 3에서 도시되는 것과 같은 날개 쪽 절대 유동 각도 계산들은, 채널(602)들의 시작 위치(604)들을 결정하는데 사용될 수 있다. 일 실시 예에서, 시작 위치(604)들은 계산된 발산 영역, 예를 들어, 발산 영역(304, 도 3 참조)에 근접할 수 있고, 여기에서 높은 절대 각도 2차 유동이 발생되기 시작한다. 비-한정적인 예로, 시작 위치(604)들은 도 3에서 도시된 실시 예에 대해 약 70%의 자오선 위치에 위치될 수 있고, 채널(602)들은 적어도 임펠러 출구(514)까지 연장할 수 있고, 도시된 실시 예에서 디퓨저(506) 내로 다운스트림으로 연장하여 임펠러(502)로부터 디퓨저(506)로 유동의 자오선 성분을 증가시키는 바람직한 방향으로 2차 유동을 유도할 수 있고, 출구 혼합 손실들을 감소시키고, 디퓨저(506)의 입구 영역에서의 유동 안정성을 향상시킨다.
일 실시 예에서, 채널(602)들의 곡률 또는 각도는 1차 유동 절대 유동 각도 αp(도 1 참조)와 실질적으로 동일할 수 있고, 채널들의 각도는 채널들의 전체 길이를 따라 실질적으로 일정할 수 있다. 이러한 1차 유동 각도는 실제 기기의 레이저 속도계 측정들 및/또는 CFD 계산들을 포함하는 다양한 방법으로 결정될 수 있다. 비 제한적 예로, 도 3에 도시된 방사상의 압축기를 위해 설계 및 구성된 채널(602)들은, 임펠러(502)의 출구 영역에서 1차 유동이 근사하는 평균 각도와 실질적으로 동일한 각도인, 대략 60 °의 일정한 절대 각도 α를 가질 수 있다. 이하 서술하는 바와 같이, 다른 실시 예들에서, 채널(602)들은 변하는 각도를 가질 수 있다. 일 실시 예에서, 채널(602)들의 각도는 1차 유동의 궤적을 근사할 수 있고, 따라서, 예컨대 발산 영역(304)의 업스트림인 임펠러(502)의 제 1 부분에 대한 제 1 각도 또는 제 1 시리즈 각도들을 가질 수 있고, 채널(602)들의 각도는 발산 영역의 다운스트림 위치들에 대한 제 2 각도 또는 제 2 각도들을 가질 수 있고, 일부 예들에서, 채널들의 각도는 임펠러 출구(514)의 다운스트림 위치들 및 디퓨저(506)로 연장하는 채널들에서 계속해서 변할 수 있다. 아래에서보다 상세히 설명하는 바와 같이, 또 다른 예들에서, 채널(602)들은 1차 유동 각도와 실질적으로 동일하지 않은 각도를 가질 수 있다. 예를 들어, 방사상의 기기에서는 2차 유동을 유도하기 위해 각도가 1차 유동 각도보다 작을 수 있고, 경우에 따라 1차 유동 각도를 의도적으로 초과하는 각도로 일부 1차 유동을 유도 할 수 있다.
따라서, 도시된 채널(602)들은 임펠러(502)의 출구 영역에 위치되고 슈라우드(504)를 따라 배치됨으로써, 2차 유동을 방향 전환시키고 전술한 2차 유동의 부정적 효과들의 실질적인 부분을 치유하는데(cure) 효과적일 수 있다. 예를 들어, 채널(602)들은 상당한 와류를 포함하고, 1차 유동의 방향으로 낮은 자오선 운동을 구비하는 높은-각도 2차 유동을 가이드하고, 유동의 운동의 자오선 성분을 증가시킬 수 있다. 채널(602)들의 방향 전환된 유동은 임펠러 출구의 다운스트림 위치들에서 임펠러 출구(514) 유동장의 나머지와 재결합(re-combine)하여 유동 각도들의 보다 동질의 분포로 인한 출구 혼합 손실들을 감소시키고, 예를 들어, 디퓨저(506)로 들어가는 유동이 안정적일 수 있다.
이하에서 더 상세하게 설명되는 바와 같이, 채널(602)들과 같은 유동 가이드 채널들의 시작 및 종료 위치들 및 각도를 변화시키는 것에 추가하여, 채널들의 다른 모든 파라미터들은 설계 의도 및 용도에 따라 조정 및 맞춰(tailor)질 수 있다. 예를 들어, 도 5 및 도 6에 도시된 바와 같이, 채널(602)들의 폭(WC)은 채널들 사이에서 연장하는 랜드(606, 단지 일부만이 라벨링되어 있음)들의 폭(WL)보다 작다. 예시된 실시 예에서, WC는 WL의 대략 30%이다. 다른 실시 예들에서, 채널들 및 인접한 랜드들의 상대 폭, 슈라우드 또는 허브에 위치된 채널들의 수 및 채널들의 원주방향 간격은 다양할 수 있다. 또한, 도시된 예에서, 채널(602)들은 2차 유동에 의해 지배되는 임펠러 유동장의 날개 쪽 부분을 수용하도록 설계 및 구성된 최대 깊이를 구비한다. 예를 들어, 도시된 채널(602)들은 도 3에 도시된 유동장 성능을 갖는 예시적인 압축기를 위해 설계되고, 임펠러 출구(514)에서 허브 표면(540) 및 슈라우드 면(522) 사이에 날개 쪽 거리의 대략 5%-30% 범위의 최대 깊이를 구비할 수 있다. 다른 실시 예들에서, 채널(602)들의 최대 깊이는, 터보기기 유동 상의 채널들의 원하는 충격 및 채널들의 원하는 기능을 포함하는 다양한 고려 사항(consideration)에 따라 변화될 수 있다. 일부 실시 예들에서, 최대 채널 깊이는 날개 쪽 거리의 5% 이하일 수 있고, 다른 실시 예에서는 날개 쪽 거리의 50%-100% 또는 100% 초과일 수 있다. 자오선 방향의 깊이 윤곽도 변화할 수 있다. 예를 들어, 도시된 채널(602)들은 시작 위치(604)들 및 임펠러 출구(514) 사이에서 연장하는 초기 입구 영역에 걸쳐 점차적으로 증가하는 깊이를 구비한다. 이러한 점차적으로 증가하는 깊이는 슈라우드(504)를 따라 발생하는 2차 유동의 증가 양을 설명할 수 있다. 채널 깊이는 임펠러 플레이트 트레일링 엣지(516)들의 업스트림, 인접 또는 다운스트림을 포함하는 다양한 위치들에서 최대 위치에 도달할 수 있다. 도시된 예에서, 채널(602)들은 트레일링 엣지(516)들에 실질적으로 인접한 위치에서 최대 깊이에 도달한 후, 깊이가 점차적으로 감소할 수 있는 종료 유치(도시되지 않음)에 도달할 때까지 디퓨저(506)에서 실질적으로 일정한 깊이를 구비하고, 메인 디퓨저 통로로 부드럽게 되돌아간다.
유동 가이드 채널(602)들은 또한 2차 유동에 의해 지배되는 슈라우드 표면을 따라 임펠러 유동장의 원하는 체적 부를 수용하는 크기의 단면적을 갖도록 구성되고 치수화될 수 있다. 도시된 예에서, 채널(602)들은 테이퍼된(taper) 측벽들을 갖는 실질적으로 정사각형인 단면을 구비한다. 아래에서 논의되는 바와 같이, 다양한 다른 횡단면들이 사용될 수 있다.
도 7은 채널(602)들과 같은 유동 가이드 채널들로 얻어질 수 있는 몇 가지 이점들을 보여주는 예시적인 시험 데이터를 도시한다. 도 7은 수직축을 따라 압력비(PRts) 및 수평축을 따라 기존된 질량 유동(Mref)을 갖는 압축기 성능 맵(700)을 도시한다. 사각형 심볼 라인들은 유동-가이드 채널들이 없는 베인리스 디퓨저로부터의 라인들이고, 삼각형 심볼 라인들은 채널(602)들과 같은 유동 가이드 채널들을 갖는 동일한 기기로부터의 라인들이다. 각각의 채널 및 채널이 없는 경우들에 대한 서지 라인(706, 708)들은, 채널(602)들이 압축기 서지 라인에 상당한 영향을 미침으로써 기기의 작동 범위를 상당히 증가시키는 것을 나타낸다. 또한, 본 발명자에 의한 시험은 채널(602)들과 같은 유동 가이드 채널들의 사용이 압축기 스테이지로부터 더 높은 압력 상승 및 더 큰 일 입력뿐만 아니라 디퓨저 성능을 향상시킬 수 있음을 나타낸다. 특정 이론에 국한되지 않고, 채널들(602)에 기인한 향상된 성능은 메인 임펠러 통로(523)로부터 2차 유동의 일부를 제거하고, 개선된 각도로 높은-와류 유동을 방향 전환함으로써, 임펠러 출구(514)의 다운스트림에서의 혼합 손실들을 감소시키고, 디퓨저 앞면(526)을 따라 유동의 안정성을 향상시킨다.
도 8은 베인 디퓨저(802, vaned diffuser)의 업스트림에 위치된 다른 예시적인 임펠러 슈라우드(800)의 일부를 도시한다. 도시된 바와 같이, 슈라우드(800)는 임펠러 유동장의 일부를 가이드 하기 위한 유동 가이드 채널(804, 일부만 라벨링되어 있음)들을 포함할 수 있다. 채널(602)들과 유사하게, 채널(804)들은 임펠러 출구(808)의 업스트림에 있는 시작 위치(806)를 구비할 수 있고, 도시된 실시 예에서, 채널들은 디퓨저 베인(812)의 리딩 엣지(810)의 업스트림, 디퓨저(802)로 연장할 수 있다. 일 실시 예에서, 채널(804)들은 1차 유동 성분의 절대 각도 αp와 대략 동일한 일정한 각도 α를 구비할 수 있다. 일부 실시 예들에서, 채널(804)들의 각도는 채널이 디퓨저(802)의 적절한 각도에서 유동을 효과적으로 가이드 하도록 디퓨저 베인(812)들의 각도와 거의 동일할 수 있다. 일 실시 예에서, 채널(804)들 및 베인(812)들의 각도는 커플링된 시스템으로서 설계 및 구성될 수 있고, 각도들은 특정 임펠러의 유동 특성들에 기초하여 선택될 수 있다. 예를 들어, 일 실시 예에서, 베인 디퓨저(802)를 갖는 터보기기를 위한 유동 가이드 채널(804)들을 설계하는 방법은 1차 유동 성분의 절대 유동 각도 αp를 결정하는 단계 및 αp에 기초하여 채널(804)들 및 베인(812)들을 위한 각도를 선택하는 단계를 포함할 수 있다. 일 실시 예에서, 채널(804)들 및 베인(812)들의 각도는 αp와 실질적으로 동일할 수 있다. 이러한 접근법은 1차 유동 각도뿐만 아니라 2차 유동과 관련된 큰 각도들을 포함하는 평균 각도의 선택을 요구할 수도 있는 디퓨저 베인 각도를 선택하는 종래의 방법과 대조적일 수 있다. 2차 유동의 부분을 방향 전환하는 채널(804)들의 사용은 유동 각도들의 균일한 분포를 초래할 수 있고, 결과적으로 디퓨저 성능을 향상시키고, 임펠러-디퓨저 커플링을 향상시키는 디퓨저 베인 각도를 선택할 수 있다.
도시된 예에서, 채널(804)들의 폭(WC)은 채널들 사이에서 연장하는 랜드(814)의 폭(WL)보다 크고, 폭(WX)은 베인(812)들 사이의 원주 간격과 거의 동일하다. 도시된 예에서, 랜드(814)들은 베인(812)들의 리딩 엣지(810)로부터 업스트림으로 연장하고 임펠러 출구(808)에 오버랩되고 임펠러 통로 내로 연장하는 유동 가이드 리브들로써 작용할 수 있다. 따라서, 예시적인 슈라우드(800) 및 디퓨저(802)는 임펠러 출구(808)에 걸쳐 임펠러 출구 부분으로부터 디퓨저(802)로 연장하는 일련의 채널(804)들 및 랜드(814)들을 포함하고, 임펠러 출구(808)에서의 출구 유동장의 속도 분포를 개선하도록 구성될 수 있고, 임펠러 및 디퓨저 유동장들의 커플링을 향상시킬 수 있다.
도 9 내지 도 11은 대응하는 각각의 임펠러 슈라우드(902, 1002)들에 배치된 유동 가이드 채널(900, 1000)의 추가적인 실시 예들을 도시한다. 도 9에 도시된 바와 같이, 케이싱(902)은 임펠러 부분(904), 디퓨저 부분(906) 및 임펠러 출구(908)를 포함할 수 있고, 슈라우드 둘레에 원주 방향으로 배치되고 임펠러 부분으로부터 디퓨저 부분까지 연장할 수 있는 복수 개의 채널(900)들을 포함할 수 있다. 도시된 실시 예에서, 예시적인 채널(900)들은 유동 쪽 방향으로 배치되고, 실질적으로 일정한 폭(WC)을 갖는다. 채널(900)들은 채널 폭(WC)과 대략 동일한 초기 폭(WLi)을 구비하고 폭이 더 큰 출구 폭(WLO)까지 점차적으로 증가하는 랜드(910, 단지 하나만 라벨링됨)들에 의해 분리된다. 도 10 및 도 11은 채널(1000)들 및 랜드(1004)들을 갖는 다른 케이싱(1002)을 도시하고, 랜드들은 임펠러 부분(1006)의 포인트(1008)들에서 제로 폭 및 제로 깊이이고, 점차적으로 자오선 방향의 폭이 증가하는 임펠러 부분에서 시작한다. 도 11은 일부 채널(1000)들의 확대도이고, 설명의 편의를 위해 임펠러 부분(1006)으로부터 디퓨저 부분(1010)까지 연장될 때의 채널 폭(WC)의 변화를 그래픽으로 도시하는 원(1100)들을 포함한다. 도시된 예에서, 채널 폭(WC)은 임펠러 부분(1006)에서 일정하고, 임펠러 출구(1012)를 통과하여 디퓨저 부분(1010)에 진입한 후에 증가한다. 다른 실시 예에서, 다운스트림 요소 내로 연장하는 유동 가이드 채널들은 폭 또는 단면적의 감소를 가질 수 있다. 다른 실시 예들에서, 채널(900 또는 1000)들과 유사한 채널은 케이싱(902, 1002)의 다양한 부분들에 위치될 수 있다. 예를 들어, 본 발명에 따라 제조된 채널들은 디퓨저의 전체 길이를 따라 연장하거나, 예를 들어, 임펠러 출구(908, 1012)에서 보다 멀리 업스트림으로 끝날 수 있고, 채널들은 유사하게 더 업스트림 또는 다운스트림에서 시작할 수 있다. 예를 들어, 채널들은 임펠러 출구의 업스트림에서 시작할 수 있다.
도 12 내지 도 19는 설계 의도 및 적용에 따라 채용될 수 있는 예시적인 채널 기하 구조(geometry)들을 도시한다. 도 12는 표면(1204)에 배치된 예시적인 채널(1202)들을 도시하고, 슈라우드 또는 허브 표면일 수 있고, 그 사이에서 연장하는 랜드(1205)들을 가질 수 있다. 채널(1202)들은 임펠러 영역(1206)에서 시작하고 점선들로 표시된 바와 같이 채널들은 임펠러 출구(1208)에서 종결되거나 디퓨저, 스테이터, 노즐 또는 캐스케이드를 포함하는 다양한 터보기기 구성요소들 중 하나일 수 있는 다운스트림 요소(1210)로 연장할 수 있다. 후술하는 바와 같이, 일 실시 예에서, 채널(1202)들과 같은 유동 가이드 채널들은, 스모크 선반(smoke shelf)의 존재로 인해 발생할 수 있는 것과 같이, 임펠러 출구(1208)에서 유동 통로의 급격한 확장이 발생하는 경우, 임펠러 출구에서 종결될 수 있다. 다른 실시 예들에서, 채널(1202)들은 통로 폭의 급격한 증가가 없을 때 임펠러 출구(1208) 근처에서 끝날 수 있다.
도 13 내지 도 19는 도 12의 A-A를 따라 절단한 단면도이고, 다양한 예시적인 채널 기하 구조들을 도시한다. 도 13 및 도 14는 대체 폭(alternative width)들을 구비하는 사각형 채널(1300 도 13 및 1400 도 14)들을 도시하고, 채널(1300)들은 넓어지고 이에 대응하여 좁아지는 랜드(1302)들을 구비하거나 또는 채널(1400)들은 좁아지고 이에 대응하여 넓어지는 랜드(1402)들을 구비한다. 알 수 있는 바와 같이, 채널 폭 대 랜드 폭의 임의의 비율은 채용될 수 있고, 최적의 채널 크기는 적용 및 설계 고려 사항들에 의존한다. 도 15는 채널들 및 랜드들 중 어느 하나 또는 둘 모두의 폭이 기기에 걸쳐 변할 수 있는 대체 채널(1500)들 및 랜드(1502, 1504)들을 도시하고, 여기서 랜드(1504)는 랜드(1502)보다 넓다. 일부 실시 예들에서, 하나 이상의 더 좁은 랜드(1502)들은 하나 이상의 채널(1500)들에 걸쳐 배치된 유동 가이드 리브들로서 설계 및 구성될 수 있다. 채널(1500)들은 균일한 폭을 가지거나 기기의 원주 둘레에 대응하여 변하는 폭들을 가질 수 있다.
도 16 및 도 17은 예시적인 각진 채널(1600 도 16 및 1700 도 17)를 도시한다 예시적인 채널(1600)들은 수직 벽(1602) 및 각진 벽(1604)을 구비할 수 있고, 예시적인 채널(1700)들은 2개의 각진 벽(1702)들을 구비할 수 있다. 각진 측벽들을 갖는 채널들은 임펠러 블레이드들 및 채널들 사이를 통과하는 불필요한 압력 웨이브 상호 작용의 제어 및/또는 임펠러 회전 방향으로 기울어져 2차 유동의 수집(collection)을 향상하기 위한 다양한 설계 옵션들을 제공할 수 있다. 도 18은 만곡된(curved) 단면을 갖는 예시적인 채널(1800)들을 도시한다. 또한 도시된 채널(1800)들은 만곡된 부분(1804)로부터 연장하는 각진 측벽(1802)들을 구비한다. 인식할 수 있는 바와 같이, 본원에 개시된 임의의 채널 기하 구조들은 채널의 베이스에 만곡된 부분(1804)과 같은 만곡된 부분을 포함할 수 있고, 만곡된 부분은 채널 내에 수집되는 파편(debris)들의 양을 감소시키고, 하나 이상의 압축된 공기 및 필요한 경우 세정 목적으로 서비스 통로를 통해 이들 채널들(서비스 통로는 도시되지 않음) 중 하나로 주입될 수 있는 세정 용액과 같이 채널들로부터 파편들을 세정하는 능력을 향상시킬 수 있다. 또한 이해되는 바와 같이, 예를 들어, 채널의 폭 및 원하는 단면 형상에 따라 다양한 단면 채널 깊이 곡률들이 사용될 수 있다.
도 19는 개구부(1906)를 통해 임펠러 유동장과 유체 소통(communication)하는 잠긴(submerge) 유체 통로(1904)를 갖는 채널(1900)의 예시적인 실시 예를 도시한다. 도시된 바와 같이, 잠긴 통로(1904)의 단면 형상은 실질적으로 사각(1908) 또는 실질적으로 원(1910)의 단면 형상을 표함 할 수 있다. 예시적인 채널(1900)은 잠긴 통로(1904) 내에 유동장의 일부를 보유(retain)함으로써 2차 유동들 및 1차 유동장 사이에 보다 명확한 분리를 야기할 수 있다. 이러한 분리는 2차 유동에 대한 채널(1900)의 유효성을 증가시키고 2차 및 1차 유동들 사이의 혼합 손실들을 감소시키는 데 바람직할 수 있다. 이하에서 더 설명되는 바와 같이, 예시적인 채널(1900)은 또한, 다상(multi-phase), 및/또는 다중 구성 유동(multi-constituent flow)으로 기능하도록 설계된 기기들에 이용될 수 있다.
도 20은 임펠러 통로의 중심에서 본 경우, 슈라우드 또는 허브 표면에 배치된 채널을 외측에서 본 경우, 위에서 본 경우의 예시적인 채널 기하 구조들을 도시한다. 도 20은 그 사이에서 연장되는 랜드(2002)의 폭(WL)과 비교하여 상대적으로 넓은 폭(WC)들을 갖는 채널(2000)들을 예시적으로 도시한다. 채널(2000)들의 깊이는 입구(2004)들 및 출구(2006)들에서 실질적으로 0일 수 있고, 입구 및 출구 사이의 포인트에서 최대 깊이까지 증가할 수 있고, 엣지(2008)들은 입구(2004)들 및 출구(2006)들을 만나 실질적으로 직사각형 입구 및 출구를 형성할 수 있다. 채널(2016)들은 비교적 좁은 폭(WC)들을 가질 수 있고, 테이퍼된 입구(2018)들 및 출구(2020)들을 가질 수 있다. 채널(2022 및 2024)들은 잠긴 통로(2026 및 2028)들을 구비할 수 있고, 잠긴 통로(2026 및 2028)들은 기기의 대응하는 구성요소의 표면 및 페이지(page)의 표면 아래에 있음을 나타내기 위해 파선으로 도시된 잠긴 통로들을 가지고, 채널들은 잠긴 통로들로 유동을 소통하기 위한 개구부(2030)들을 포함한다. 도시된 바와 같이, 예시적인 개구부(2030)는 잠긴 통로(2026)와 유사한 크기 및 형상이고, 개구부(2042)는 잠긴 통로(2028)보다 실질적으로 작다.
일 실시 예에서, 채널(1900, 2022 및 2024)들과 같은 잠긴 통로들을 갖는 채널들이 임펠러 유동장의 일부분을 다른 위치로 덕트(duct)하는데 사용될 수 있다. 일 실시 예에서, 2004년 3월 2일자로 허여되고 "유동 안정화 장치"라는 제목의 미국 특허 제6,699,008호에 개시된 덕트들 중 어느 하나는 본원에 참조로 포함된 덕트들과 관련되고, 잠긴 통로들을 갖는 채널들과 함께 사용될 수 있고, 채널은 덕트(138) 내에서 종결될 수 있다. 다른 실시 예들에서, 채널로부터의 유동은 주요(principle) 유동 경로(path)로부터 제거될 수 있고, 높은 부하의 터보기기 시스템에서의 추력(thrust) 관리와 같은 다른 목적들을 위해 보내지고(route), 어느 다른 프로세스(process)들에서 냉각에 사용되는 모던(modern) 가스 터빈들과 같은 냉각 유동으로 사용되고, 화학 반응 프로세스를 지원하거나, 시스템에서 불필요한 성분들을 제거하기 위해 사용된다.
전술한 바와 같이, 유동 가이드 채널들의 크기, 형상 및 위치는 적용 및 설계 의도에 따라 변할 수 있다. 도 21 및 도 22는 2상(two-phase) 및/또는 다중 성분(multi-component) 유동들을 위해 설계 및 구성될 수 있는 채널(2102, 2개만 라벨링됨)들을 구비하는 임펠러 슈라우드(2100)의 예시적인 실시 예를 도시한다. 당 업계에 공지된 바와 같이, 동일한 분자 구성성분(constituency)의 액체 및 증기의 2상 펌핑은 많은 적용들에서 발생하고, 현재의 펌프들은 헤드 특성이 붕괴되고 심각한 손상이 펌프에 발생하기 전에 견딜 수 있는 증기의 양에 대한 한계를 갖는다. 종종 펌프에 증기가 존재하지 않거나 적어도 상당량의 증기가 존재하지 않도록 시스템에 작동 한계들이 부과된다. 또한, 예를 들어, 1) 작은 방울(droplet)들, 버블(bubble)들 또는 입자들(고체들)이 부유(suspend)하는 현저한(predominate) 단일 가스 또는 단일 가스와 함께 운반된 가스들의 혼합물, 2) 버블들(동일한 분자 구조의 증기가 아닌) 또는 입자들(고체들)이 부유하는 현저한 액체, 또는 3) 혼합성(miscible) 또는 비혼합성 액체들, 다양한 가스들 및 고체들(예를 들어, 오일 우물(oil well)들로부터의 유출물은 다른 단계들 및 성분들의 복잡한 혼합물일 뿐이다.)을 포함하는 다중 성분 유동들과 같은, 다중 성분 유동들을 위한 튼튼한(robust) 펌핑 능력을 위한 필요가 있다.
일정 양의 2상 유동을 다룰 수 있는 펌프를 설계하기 위한 설계 고려사항들은, 유동이 임펠러 통로의 끝에 도달하기 전에 충분한 헤드 상승을 만들기(create) 위해서 더 높은 압력을 통해 증기를 액체 상태로 되돌아가게 하는 임펠러를 설계를 포함한다. 다른 고려사항은 액체 및 증기의 유동을 허용하는 충분한 단면적을 제공하는 것이고, 후자는 훨씬 더 많은 구역을 필요로 할 수 있다. 예시적인 슈라우드(2100) 및 채널(2102)은 2상 펌핑을 가능하게 하도록 설계 및 구성된다. 예시적인 채널(2102)들은 채널(602 도 5 및 도 6, 804 도 8)들보다 더 긴 슈라우드(2100)의 부분을 넘어(over) 연장하고, 도시된 예에서, 채널들은 슈라우드(2100)의 전체 길이에 걸쳐 임펠러 입구(2104)로부터 임펠러 출구(2106)으로 연장한다. 적용에 따라, 채널(2102)들은 액체 및 증기의 의도된 체적 유동을 다루기 위해 단일상 장공을 위해 설계된 채널들보다 비교적 큰 단면적 및 체적을 갖는 크기일 수 있다. 도시된 채널(2102)들 및 인접한 리브(2108)들은 임펠러 유동장에 존재하는 증기의 대부분(높은 국부적인 속도들 및 다른 효과들로 인해 슈라우드(2100) 근처에서 집중하는 경향이 있는 증기)을 수집하여 메인 임펠러 통로로부터 증기를 제거하도록 설계될 수 있다. 임펠러들로부터 증기를 제거함으로써, 임펠러들에 의해 발생된 헤드의 상승은 증기가 임펠러 통로에 남아있을 때와 같이 증기에 의해 상당한 영향을 받지 않을 것이다. 일 실시 예에 따르면, 시스템은 임펠러를 떠날 때 또는 그 전에 증기의 상당 부분 또는 실질적으로 전부가 액체로 전이(transition)되도록 강제하는 채널(2102)들 내의 증기 상에 부여(impart)될 수 있는 충분한 헤드 상승을 발생시키도록 구성될 수 있다.
일 실시 예에서, 채널(2102)들은 본 개시에 따라 만들어진 유동 가이드 채널들에서 발생할 수 있는 양-변이(positive displacement) 펌핑 효과를 강조하도록 구성 및 치수화 될 수 있다. 특정 이론에 제한되는 것은 아니지만, 일부 실시 예들에서, 본원에 개시된 유동 가이드 채널들을 포함하는 터보기기는 채널들에서의 유동에 대해 행해지는 일이(여기서 채널(2102)들과 같은 채널들의 유동은 블레이드 힘들에 의해 한정된 거리만큼 채널들을 따라 밀릴 수 있음), 임펠러의 블레이드들의 연속적인 회전에 의해 부여되는 일의 경우와 같이 각 운동의 변화에 직접 반영되는 작업보다 오히려 양 변이(이하 PD) 유형의 일이라는 점에서 하이브리드된(hybridized) 기기로 간주될 수 있고, 터보-PD 기기 또는 하이브리드 터보-양 변이를 생성한다. 유동 가이드 채널들은 이 효과를 강조하도록 설계 및 구성될 수 있다. 반대로, PD-유형의 일은 본원에 개시된 유동 가이드 채널들의 일부 실시 예들에서 최소일 수 있다. 일 실시 예에서, 채널(2102)들은, 유동 쪽으로 향하는 슈라우드 채널(2102)들을 따라 유동을 스윕(sweep)하는 것을 돕기 위해 일련의 충격력들을 제공할 수 있는 임펠러의 블레이드들을 통과하는 작용에 의해, 직접적인 임펠러 통로(임펠러 블레이드(도 21 및 도 22에 도시되지 않음)들의 슈라우드 사이드들 및 임펠러 허브 표면 사이에서 날개 쪽 방향으로 연장하는 통로)의 외부에서 증기의 펌핑을 용이하게 하는 PD 힘들을 강조하기 위해 구성 및 치수화될 수 있다. 특정 경우를 위한 채널(2102)들의 구역 스케줄링(scheduling)은 밀도의 국부적인 값들에 대응하는 증기 또는 기체 체적을 허용하는 충분한 단면적을 확보하는 것과 같은 고려 사항들을 포함할 수 있다. 보다 큰 단면적들을 가진 채널(2102)들은 다른 2차 성분들의 많은 양의 증기가 요구될 수 있다.
본원에 개시된 채널들은, 유동이 임펠러를 떠나 디퓨저의 성능을 향상시킬 수 있는 디퓨저와 같은 다운스트림 요소로 들어가기 때문에 바람직한 속도 프로파일을 생성하는데 사용될 수 있다. 도 23 내지 도 26은 본원에 개시된 유동 가이드 채널들 또는 리브들의 설계에 영향을 줄 수 있는 임펠러 속도 및 각도 분포들을 개념적으로 도시한다. 도 23은 자오선 속도 Cm을 수직축에 나타내고, 날개 쪽 위치 b2를 수평축에 나타낸 날개 쪽 자오선 속도 분포의 개념도이고, 도시된 예에서, 0은 슈라우드이고, 1.0은 허브이다. 도 23은 이상적인 대칭이고 클린한 프로파일들을 도시하고, 프로파일(2302)은 얇은 입구 경계층들을 나타내고, 프로파일(2304)은 보다 큰 경계층들 및 공기역학 또는 유체역학 방해를 갖는 프로파일을 나타낸다. 도 24는 이상적인 프로파일(2302) 및 높은 특정 속도 스테이지들의 많은 매체(medium)들의 특징인 일반적인 임펠러 출구 프로파일(2402)을 비교한다. 도 24는 속도의 자오선 성분인 Cm이 슈라우드 및 허브 근처에서의 이상(ideal)보다 훨씬 낮을 수 있고, 많은 경우들에서, 예를 들어 2차 유동과 관련하여 전술한 이유들로 슈라우드(b2, 0근처)를 따라 더 많이 발생할 수 있음을 도시한다.
도 25 및 도 26은 증가된 속도 프로파일(2502, 도 25) 및 증가된 각도 프로파일(2602, 도 26)을 도시하고, 본원에 개시된 유동 가이드 채널들은 개구되거나 커버된 임펠러의 슈라우드 및 허브 표면들 중 하나 또는 둘 모두를 따라 위치되고, 유동을 유동의 자오선 속도 성분(도 25)이 증가되는 방향으로 방향 전환하고, 유동의 각도(도 26)를 향상시킨다. 허브 사이드 채널들의 예시적인 실시 예들은 커버된 임펠러, 즉 개구되지 않거나 부분적으로 개구된 임펠러들의 슈라우드 사이드 채널들뿐만 아니라 이하 설명될 수 있다. 일 실시 예에서, 채널들의 크기는 속도 프로파일이 증가되는 정도를 맞추기 위해 조정될 수 있다. 예를 들어, 채널들의 크기 및 구성은, 슈라우드 및 허브를 따라 더 활동적인(energetic) 속도 프로파일들을 만들기 위해 슈라우드 및 허브 표면들 중 하나 또는 둘 모두를 따라 흐르는 1차 유동의 일정량 및 2차 유동을 포착하고 가이드 하기 위해 선택될 수 있다. 이러한 영역들에서의 유동을 활성화시키기 위한 유동의 증가는 다운스트림 디퓨저 성능을 향상시킬 수 있다. 따라서, 유동 가이드 채널들의 크기 및 기하 구조는 유체역학적 막힘(blockage)을 제거하고 다운스트림 디퓨저 성능을 향상시키도록 구성 및 치수화될 수 있다. 도 26은 수직축에 절대 유동 각도 α를 나타내고, 수평축에 날개 쪽 위치 b2를 나타내고, 증가된 각도 프로파일(2602) 및 일반적인 프로파일(2604)을 비교한다. 전술한 바와 같이, 유동 분포들이 다양한 성능 문제들을 야기할 수 있는 슈라우드 표면을 따라 큰 각도들을 구비하는 것이 일반적이지만, 본원에 개시된 채널들은 허브 또는 슈라우드 표면을 따른 각도를 감소시키는데 사용될 수 있다. 도 25 및 도 26에 도시된 바와 같이, 유동 가이드 채널들은 허브 또는 슈라우드를 따르는 방향 전환된 유동이 구비하는 각도 또는 자오선 속도 성분이 1차 유동의 각도 또는 자오선 속도보다 크거나 오버슈트(overshoot)하도록 유동장을 증가시키도록 설계 및 구성될 수 있다. 예를 들어, 임펠러의 입구에서의 1차 유동 각도 및 임펠러의 출구에서의 1차 유동 각도 사이의 각도를 가진 채널들은 임펠러 유동장의 증가된 부분(2606)을 조정하는데 사용될 수 있다. 도 26에 도시된 바와 같이, 슈라우드를 따른 각도 분포는 특정 설계 적용들에 대한 필요에 의해 증가되거나 감소될 수 있다. 유사한 효과들이 일반적인 프로파일(2504)에 비해 증가된 부분(2506)의 크기를 증가시키거나 감소시키기 위해 자오선 속도 분포(도 25)에서 달성될 수 있다.
도 27 내지 도 29b는 일반적으로 유동 쪽 방향으로 연장하지만 변화하는 각도를 구비하는 유동 가이드 채널(2700)들의 다른 실시 예를 도시한다. 예시적인 채널(2700)들은 슈라우드(2708) 및 디퓨저 앞면(2704)에 위치되고 임펠러 출구(2708)에 걸쳐 연장할 수 있다. 도 27의 A-A를 따라 절단한 단면도인 도 28에서 도시된 바와 같이, 채널(2700)들은 임펠러(2900, 도 29b)의 회전 방향으로 기울어진 측벽(2800)들을 구비할 수 있다. 도 29a 및 도 29b는 채널(2700)들을 더 도시하고, 도 29a는 슈라우드(2708)의 부분의 평면도를 도시하고, 도 29b는 임펠러(2900)와 조립된 슈라우드(2708)의 측 단면도를 도시한다. 도 29a에 도시된 바와 같이, 채널(2700)들의 각도 α는 채널들의 길이를 따라 변하고, α는 회전축 R(도 29a의 페이지의 안 및 밖으로 연장하는 회전축)을 통해 연장하는 자오선 기준 평면으로부터 절대 기준 프레임에서 측정된다. 도시된 예에서, 채널(2700)들의 각도 α는 자오선 방향으로 변할 수 있고, 채널들은 각각 다른 각도로 연장하는 4개의 다른 부분들을 구비한다. 채널(2700)들은, 30%M으로부터 50%M까지 연장하고 30도의 각도 α를 갖는 제 1 부분(2902)을 포함한다(여기서 M은 임펠러 블레이드(2904, 도 29b)들의 자오선 거리이고, 0%M은 임펠러 블레이드 리딩 엣지(2906)고, 100%M은 임펠러 블레이드 트레일링 엣지(2908)임). 채널(2700)들은 또한 50%M으로부터 70%M까지 연장하고 50도의 각도를 갖는 제 2 부분(2910)을 포함하고, 70%M으로부터 100%M을 넘어서 까지 연장하고 65도의 각도를 갖는 제 3 부분(2912)을 포함한다. 채널(2700)들의 변화하는 각도는 임펠러 유동장의 1차 유동 성분의 궤적에 대응하도록 설계 및 구성될 수 있다. 예를 들어, 제 1 부분(2902), 제 2 부분(2910) 및 제 3 부분(2912)은 특정 기기와 관련된 1차 유동의 평균 절대 각도에 대응할 수 있다. 슈라우드(2709)를 따른 채널(2700)들을 위치시킴으로써, 채널들은 슈라우드에 인접한 작동 유체의 부분을 방향 전환하기에 효과적이고, 예를 들어 작동 유체의 부분은 낮은 자오선 속도 및 높은 유동 각도를 가지는 작동 유체의 위크 부분일 수 있다. 채널(2700)들은 디퓨저 내로 2차 유동을 가이드 하기 위한 디퓨저 전면(2704, 도 27)을 따라 일정한 각도를 구비하거나 변하는 각도를 구비할 수 있다. 당업자에 의해 이해되는 바와 같이, 부분들의 수, 특정 각도들 및 자오선 위치들은 적용 및 설계 의도에 따라 변할 수 있다. 예를 들어, 본 개시에 따라 만들어진 채널들은 3개 미만 또는 이상의 일정 각도 부분들을 가질 수 있거나, 연속적으로 변하는 각도를 갖는 하나 이상의 부분들을 가질 수 있다.
도 30 내지 도 32는 베인 디퓨저(3100)와 결합된 슈라우드(3002) 내의 유동 가이드 채널(3000)들의 다른 예를 도시한다. 도시된 채널(3000)들은 임펠러 입구(3004)의 다운스트림 및 임펠러 출구(3006)의 업스트림에서 시작하고, 유동 쪽 방향으로 연장하고 임펠러 출구에서 종결되는 리브(3008)들에 의해 분리된다. 디퓨저(3100)는 상판(3102), 하판(3104) 및 이들 사이에서 연장하는 베인(3106)들을 포함한다. 예시적인 베인(3106)들은 디퓨저 입구(3114)까지 연장하는 하부 레그(3110)들 및 상부 레그(3112)들을 갖는 만곡된 리딩 엣지를 구비할 수 있다. 도 32에 도시된 바와 같이, 슈라우드(3002)는 디퓨저(3100)의 앞판(3102)과 결합하도록 설계 및 구성된다. 도 32에 도시된 바와 같이, 채널(3000)들 및 리브(3008)들의 위치는 베인(3106)들의 위치에 대해 "클락(clock)"될 수 있다. 도시된 예에서, 리브(3008)들의 트레일링 엣지는 인접한 리브(3106)들 사이의 대략 중간 지점에 위치될 수 있다. 다른 실시 예에서, 디퓨저(3100)에 대한 슈라우드(3002)의 다른 상대적인 위치들이 사용될 수 있다. 도시된 예에서, 슈라우드(3002)는 베인(3106)들의 수와 동일한 수의 리브(3007)들 및 채널(3000)들을 구비한다. 다른 실시 예들에서, 수는 동일하지 않을 수 있다. 알 수 있는 바와 같이, 임의의 수는 클록된 배향(orientation)들 및 베인(3106)에 대한 채널(3000)의 수의 비율들이 사용될 수 있다. 일 실시 예에서, 채널들의 수는 베인들의 수보다 클 수 있으며, 디퓨저 베인들의 리딩 엣지들의 부분은 업스트림으로 연장하고, 일부 채널들 사이에서 리브들을 형성(도 8의 디퓨저(802) 및 베인(812)들과 유사)하고, 다른 채널들은 도 32에서 도시된 실시 예에서와 같이 인접한 디퓨저 베인들 사이에서 연장하는 랜드들 또는 리브들에 의해 규정될 수 있다.
도 33a 및 33b는 터빈, 압축기 또는 팬을 포함하는 임의의 유형의 축 방향 기기일 수 있는 축 방향 기기(3304)에 적용된 유동 가이드 채널(3300, 3302)들을 도시한다. 축 방향 기기(3304)는 블레이드들의 허브(3310) 및 슈라우드 사이드(3312) 사이에서 연장하는 블레이드(3308, 하나만 도시됨)들을 구비하는 임펠러(3306)를 포함할 수 있다. 블레이드(3308)들 및 허브(3310)는 디스크(3311)에 고정되고, 화살표(R) 방향으로 회전축(A)을 중심으로 회전하도록 구성된다. 임펠러(3306)는 블레이드(3308)들의 슈라우드 사이드(3312)들을 마주하는 슈라우드 면(3316)을 가지는 슈라우드(3314)에 대하여 상대적으로 회전하도록 구성된다. 임펠러(3306)는 블레이드(3319), 예를 들어 스테이터 베인, 앞면(3320) 및 뒷면(3322)을 포함할 수 있는 다운스트림 요소(3318)의 업스트림에 위치된다.
도시된 실시 예에서, 축 방향 기기(3304)는 슈라우드(3314)를 따라 유동 가이드 채널(3300)들과, 허브(3310)의 다운스트림에 위치된 뒷면(3322)의 유동 가이드 채널(3302)들을 포함한다. 도 33a에는 도시되지 않았지만, 채널(3300 및 3302)들은 각각 기기의 원주방향으로 이격된 복수 개의 채널들 중 하나일 수 있다. 채널(3300 및 3302)들은 본원에 개시된 다양한 단면 기하 형상들 및 깊이 프로파일들 중 임의의 것을 구비할 수 있다. 도시된 바와 같이, 슈라우드 사이드 채널(3300)들은 블레이드(3308)들의 슈라우드 사이드(3312)들의 전체 길이를 따라 연장할 수 있고, 실선들 및 점선들로 표시된 바와 같이, 블레이드(3319)의 리딩 엣지(3330)의 업스트림 또는 스테이트 베인의 리딩 엣지의 다운스트림을 포함하는 다양한 위치들에서 종결될 수 있다. 채널(3300)들의 시작 위치(3334)는 리딩 엣지(3332)의 업스트림일 수 있다. 다른 실시 예들에서, 시작 위치(3334)는, 예를 들어, 임펠러 유동장의 발산 영역 근처와 같은, 임펠러 블레이드(3308)들의 리딩 엣지(3332)의 업스트림인 더 업스트림에 위치될 수 있다(도 4 및 첨부된 설명 참조). 도시된 채널(3300)들은 시작 위치(3334)에서 실질적으로 제로이고 점차적으로 최대 깊이까지 증가할 수 있는 깊이 D를 구비할 수 있다. 도 33a에서 도시된 바와 같이, 채널(3300)들의 깊이 D는 최대 깊이에 도달한 후에 감소하기 시작할 수 있거나, 채널들은 감소하기 시작하기 전에 일정 거리 동안 실질적으로 일정한 깊이를 가질 수 있다. 최대 깊이의 위치는 변할 수 있다. 일 실시 예에서, 최대 채널 깊이의 위치는 블레이드(3308)의 트레일링 엣지(3336) 또는 다운스트림에 있을 수 있고, 일부 실시 예들에서는 블레이드(3319)의 리딩 엣지(3300)의 다운스트림일 수 있다. 따라서, 채널(3300)들은 슈라우드(3314)를 따라 발생하는 2차 유동의 일부를 바람직한 방향으로 가이드 하여 임펠러(3306) 및 스테이터(3318)의 성능을 향상시킬 수 있다.
도 33a 및 도 33b에 도시된 바와 같이, 축 방향 기기(3304)는 또한 허브 사이드 채널(3302)들을 포함할 수 있다. 채널(3302)들은 스테이터 플랫폼(3323)의 뒷면(3322)에 위치되고, 허브(3310)는 트레일링 엣지(3336)가 허브(3310)의 컷백 부분(3340, 도 33b)의 다운스트림일 수 있도록 컷백(cutback)됨으로써, 허브(3310) 근처의 유동 및 채널(3302)들 사이의 유동 소통을 제공할 수 있다. 단지 4개의 채널(3302)들이 도시되어 있지만, 추가적인 채널들이 포함될 수 있고, 기기 주위로 원주 방향으로 이격될 수 있다. 도시된 예에서, 허브(3310)는 채널들에 유체 소통을 제공하기 위한 스캘럽(scallop, 3342)을 가지도록 컷백된다. 단지 하나의 스캘럽(3342)이 도시되어 있지만, 복수 개의 스캘럽들이 허브(3310) 주위에 위치될 수 있다. 다른 실시 예들에서, 선반(shelf)을 포함하는 다른 컷백들의 형상들이 사용될 수 있다. 당업자라면 이해할 수 있는 바와 같이, 허브(3310)가 컷백되는 양은, 구조적 고려 사항들, 재료 선택 및 작동 조건들과 같은 파라미터들에 따라 변하는 허용 가능한 컷백의 범위에 의해 제한될 수 있다. 채널(3302)들은 블레이드(3308)들의 트레일링 엣지(3336) 또는 블레이드(3319)의 리딩 엣지(3330)의 다운스트림과 같은 다운스트림 위치들을 포함하는 다양한 위치에서 종결될 수 있다. 다른 실시 예들에서, 축 방향 기기들은 채널(3300 및 3302)들만을 구비할 수 있고, 선택은 보다 큰 농도의 2차 유동을 갖는 표면을 따라 채널들을 위치시키는 것에 기초할 수 있다.
도 34 및 도 35는 축 방향 기기(3402)에 적용된 허브 사이드 채널(3400)들의 다른 실시 예를 도시한다. 축 방향 기기(3304)에서와 같이, 기기(3402)는 허브(3406) 및 디스크(3408)에 고정되고 다운스트림 요소(3410), 예를 들어 스테이터의 업스트림에 위치된 임펠러 블레이드(3404)를 포함할 수 있다. 허브(3310)와는 달리, 허브(3406)는 컷백되지 않는다. 그 대신에, 도 35에서 도시된 바와 같이, 허브(3406)는 다운스트림 요소(3410)의 뒷면(3414)에 위치된 채널(3400)들에 유체 소통을 제공하기 위한 개구부(3412)들을 포함할 수 있다. 도 35는 임펠러 유동장 및 채널(3400)들 사이의 유체 소통을 제공하는 허브 내의 개구부(3412)들을 나타내는 허브(3406) 및 뒷면(3414)의 상부 분해도이다. 도 34에 도시된 바와 같이, 허브(3406)는 뒷면(3414)을 오버랩할 수 있고, 개구부(3412)들의 리딩 엣지(3416)는 블레이드(3403)들의 트레일링 엣지(3418)의 업스트림일 수 있고, 유동이 임펠러 통로 내에서 임펠러 블레이드 트레일링 엣지(3418)의 업스트림 및 허브(3406)를 따라 진입하고, 채널(3400)들에 의해 가이드 되도록 한다. 따라서, 도 35는 설명 목적들을 위해 분해되고, 개구부(3412)들은 채널(3400)들을 오버랩한다. 단지 4개의 채널(3400)들 및 3개의 개구부(3412)들이 도시되어 있지만, 각각 더 많이 포함될 수 있고 기기의 원주 둘레로 이격될 수 있다. 도 35에서 도시된 예시에서, 개구부(3412)들은 긴(elongate) 형상을 구비하고, 기준(회전하는 허브(3406) 상)의 기준 프레임에 위치되기 때문에, 개구부들은 예를 들어 1차 유동 WP의 기준 속도에 정렬될 수 있다. 반대로, 상술한 바와 같이, 채널(3400)들은 고정된 뒷면(3414)에 위치되고, 따라서 절대 속도, 예를 들어, CP로 정렬될 수 있다. 도 34 및 도 35에서 도시된 배열은, 임펠러 출구 이전의 임펠러 통로에 가이드 허브 사이드를 위해 도 33에서 도시된 실시 예의 대안을 제공한다. 알 수 있는 바와 같이, 이하에서 논의되는 바와 같이, 유사한 구성들이 방사상의 기기들과 함께 사용될 수 있고, 슈라우드된 또는 커버된 축 방향 또는 방사상의 기기들의 슈라우드 사이드 상에 사용될 수 있다.
전술한 바와 같이, 터보기기들은 전형적으로 허브 또는 슈라우드 표면을 따라 자오선 속도 및 운동 결손(deficit)들을 겪는다. 예를 들어, 방사상의 기기들은 종종 슈라우드 표면을 따라 방사상의 운동 결손을 겪는다. 압축기들의 경우, 임펠러에서 생성된 자오선 운동 결손은, 임펠러의 디퓨저 다운스트림의 성능에 부정적인 영향을 미칠 수 있고, 디퓨저 효율의 감소 및 유동 불안정성 생성을 포함한다. 기존의 디퓨저 설계들 중 일부는 디퓨저 통로의 약한 운동 부족 사이드, 예를 들어 디퓨저의 슈라우드 사이드의 디퓨저 입구에 디퓨저 통로 너비 감소, 또는 "핀치(pinch)" 포함시킴으로써 부정적인 영향을 줄이려고 하고, 자오선 속도를 증가시키고, 유동을 안정화(stabilize)시킨다. 몇몇 경우에 따라, 이전 설계들은 자오선 속도 및 안정성을 높이기 위해 디퓨저의 슈라우드 및 허브 사이드 모두에서 통로 폭 감소(때때로 균형 잡힌 핀치라고 함)를 포함한다. 그러나, 본 발명자는 위크 사이드 핀치 또는 균형 잡힌 핀치, 디퓨저 성능(베인 또는 베인리스 디퓨저들 모두에 대한) 및 전반적인 시스템 성능을 지배(dominate)하는 대신에 디퓨저 입구 영역에 스트롱 사이드 핀치를 가장 많이 개선할 수 있다는 것을 발견했다. 다시 말해서, 자오선 운동이 더 크고 안정성이 더 좋고 자오선 속도 결손이 있는 사이드의 반대인 디퓨저 통로의 사이드 상에 지배적인 통로 폭 감소이다. 특정 이론에 제한되지는 않지만, 이러한 스트롱 사이드 곡률은 임펠러 출구 유동의 스트롱 성분을 이용하여 터보기기 통로의 반대편 위크 사이드 상에 보다 양호한 압력 분포를 부여함으로써 디퓨저 성능을 향상시킬 수 있다. 또한, 볼록 곡률은 유동 불안정성을 야기하고, 경계층 성장을 악화시키는(exacerbate) 경향이 있다는 것이 잘 알려져 있다. 따라서 자오선-운동-부족 사이드에서 통로 폭 감소의 형태로 볼록한 표면을 포함시키는 일반적인 접근법은 이미 불안정한 유동장에서 불안정성을 만들 수 있다.
도 36은 영역(3602)에서 스트롱 사이드 핀치를 갖는 베인리스 디퓨저(3600)를 도시한다. 임펠러(3604)는 디퓨저(3600)의 업스트림에 위치될 수 있고, 허브(3606)에 고정될 수 있고, 화살표(R)로 표시된 바와 같이 회전축(A)을 중심으로 회전하도록 구성될 수 있다. 작동 중에, 임펠러(3604)는 디퓨저 성능을 저하시킬 수 있는 슈라우드 표면(3610)을 따른 높은 각도, 낮은 운동의 2차 유동의 농도를 갖는 임펠러 출구(3608)에서 유동장을 생성할 수 있다. 도시된 바와 같이, 디퓨저(3600)는 디퓨저 뒷판(3616)의 디퓨저 뒷면(3614)의 스트롱 사이드 곡률(3612)을 포함할 수 있다. 따라서, 만곡부(3612)는 슈라우드 표면(2610)을 따른 임펠러 출구 유동의 안정성을 향상시키기 위해, 허브(3606)와 같은 디퓨저 통로의 동일한 사이드에 위치되고, 자오선 부족 유동과 함께 반대편 사이드에 위치된다. 예시적인 곡률(3612)은 허브 디스크(3606)의 외부 반경의 바로 다운스트림에서 시작하고, 통로 폭 감소를 초래하는 점진적인 만곡(curve)을 포함한다. 도 37은 뒷면(3706)의 안쪽으로 향하는 곡률이 허브 디스크(3606)의 다운스트림에서 보다 점진적으로 발생하는 대안적인 스트롱 사이드 곡률(3704)을 구비하는 영역(3702)에서 스트롱 사이드 피치를 갖는 예시적인 베인리스 디퓨저(3700)를 도시한다. 예시된 곡률(3612 및 3704)들은 모두 실질적으로 임펠러 출구(3608)에서 시작하고 디퓨저의 첫 번째 대략 10%M에서 끝난다(100%M은 임펠러(3604)의 자오선 길이임). 다른 실시 예들에서, 스트롱 사이드 곡률들은 더 길거나 짧을 수 있고, 디퓨저 아래로 더 먼 시작 위치들을 가질 수 있다. 비 제한적인 예로서, 스트롱 사이드 곡률들은 디퓨저의 입구 영역 내의 임의의 위치에서 시작할 수 있거나, 0%-10%, 10%-20%, 20%-30%, 30%-40%, 50%-100% 또는 100%-500%M에서 시작할 수 있다(임펠러의 자오선 길이의 0%M은 디퓨저 입구이고, 임펠러의 자오선 길이의 100%M은 디퓨저 입구의 다운스트림 위치임). 또한, 스트롱 사이드 곡률의 길이는 변할 수 있고, 1%-10%, 10%-20%, 20%-30%, 30%-40%, 40%-50%, 50%-100%, 또는 100%-500%M을 포함할 수 있다. 이해되는 바와 같이, 곡률의 위치 및 정도, 통로-폭 감소의 양, 감소의 유형(예를 들어, 선형 또는 만곡)은 적용에 따라 변할 수 있다. 또한 이해되는 바와 같이, 본원에 개시된 임의의 디퓨저 곡률은 베인 또는 베인리스 디퓨저들에 적용될 수 있다.
도 38 및 도 39는 디퓨저(3804 및 3904)들의 추가의 예시적인 스트롱 사이드 곡률(3800 및 3900)들을 도시한다. 도 38 및 도 39는 성능을 향상시키기 위해 본원에 개시된 스트롱 사이드 곡률들 중 임의의 것과 결합될 수 있는 위크 사이드 처리(3806 및 3906)들을 도시한다. 예시적인 처리(3806)는 안정성을 향상시키고 역류(backflow)를 감소시키기 위해 슈라우드(3808)의 위크 사이드에 적용될 수 있는 오목한 또는 역방향 곡률의 예이다. 이해되는 바와 같이, 임의의 오목 곡률들이 사용될 수 있다. 예시적인 처리(3906, 도 39)는 통과 폭의 급격한 증가의 일 예, 예를 들어 안정성을 향상시키고 역류를 감소시킬 수 있는 "스모크 선반"이다. 따라서, 위크 사이드 처리(3806 및 3906)들은 모두 임펠러 통로의 방사상의 운동 부족 사이드 상에 국부적인 통로 구역의 증가들을 포함한다.
도 40 및 도 41은 임펠러 출구(4004 및 4104)의 업스트림, 임펠러(4002 및 4102)에서 시작되는 스트롱 사이드 곡률(4000 및 4100)들의 실시 예들을 도시한다. 도시된 바와 같이, 허브 디스크(4006 및 4106)는 허브 외측 방사상의 범위(4008 및 4108)들이 임펠러 출구(4004 및 4104)의 업스트림에 위치될 수 있도록 최대 외경의 감소를 가질 수 있고, 스트롱 사이드 곡률(4000 및 4100)은 디퓨저(4009 및 4109)의 입구 이전에서 시작할 수 있다. 따라서, 뒷면(4010 및 4110)들의 부분은 임펠러 트레일링 엣지(4012 및 4112)들의 임펠러 통로 업스트림의 부분을 규정하고, 볼록한 곡률을 갖는 허브(4006 및 4106)으로부터 날개 쪽 방향으로 내부로 연장할 수 있고, 그에 따라 트레일링 엣지들의 업스트림 측에 스트롱 사이드 곡률(4000 및 4100)들이 시작된다. 도 40 및 도 41은 2개의 예시적인 곡률들을 도시하고, 스트롱 사이드 곡률(4100)은 곡률(4000)보다 크고, 더 큰 통로 폭 감소를 초래한다. 이해되는 바와 같이, 다양한 곡률 및 폭 감소들 중 임의의 것이, 예를 들어, 적용 및 설계 의도에 따라 선택될 수 있다.
도 42는 허브(4202) 및 디퓨저 뒷면(4204) 모두에 걸쳐 연장하는 스트롱 사이드 곡률(4200)의 다른 예를 도시한다. 도시된 바와 같이, 허브(4202)의 다운스트림 부분(4206)은 내부로 향하는 곡률을 포함할 수 있고, 그에 따라 임펠러 트레일링 엣지(4208)의 다운스트림 측에 스트롱 사이드 곡률(4200)이 시작한다. 따라서, 도 40 내지 도 42에 도시된 바와 같이, 허브 곡률들은 허브 디스크를 컷백하거나 허브 표면에 안쪽으로 향하는 곡률을 추가하여 하나 또는 둘 모두를 통해 임펠러 트레일링 엣지의 업스트림에 위치될 수 있다.
스트롱 사이드 곡률(4000 및 4100)들이 아닌 일부 실시 예들에서, 또는 이들에 부가하여, 유동 가이드 채널들은 스트롱 사이드 곡률(4000 및 4100)과 실질적으로 동일한 위치에 위치될 수 있다. 예를 들어, 허브 사이드 채널들은, 허브 디스크(4006 및 4106)들을 컷백하고 임펠러 출구(4004 및 4104)의 업스트림측 위치들에 디퓨저(4009 및 4109)들의 허브 사이드로의 채널들을 부가함으로써 축 방향 기기(3304)의 허브 사이드 채널(3302, 도 33b)들로 유사한 방식으로 부가될 수 있다. 또 다른 예들에서, 허브 사이드 채널들 또는 슈라우드된 임펠러들의 슈라우드 사이드 채널들은, 축 방향 기기(3402, 도 34)의 채널(3400)들 및 개구부(3412)들과 유사한 배열로 방사상의 기기에 추가될 수 있고, 여기서 개구부들은 임펠러 통로 및 그 아래 채널들 사이에 유체 소통을 제공하는 허브 또는 슈라우드 사이드에 부가될 수 있다.
도 43 및 도 44는 음(negative)인 오목한 곡률(4302) 및 양(positive)인 볼록한 곡률(4304)의 업스트림을 포함할 수 있는 스트롱 사이드 이중(dual) 곡률(4300)의 예를 도시한다. 이러한 이중 곡률은 디퓨저 설계를 위한 유연성 증가를 제공할 수 있다. 예를 들어, 음의 오목한 곡률(4302)은 스트롱 사이드 볼록한 곡률(4304)로의 전이를 용이하게 하고, 만곡의 표면들을 따라 유동의 안정성을 향상시킬 수 있다. 이해되는 바와 같이, 곡률(4302 및 4304)들의 상대적인 길이들뿐만 아니라 위치 및 길이가 변할 수 있다. 일부 실시 예들에서, 도 43 및 도 44에서 검선으로 표시된 바와 같이, 디퓨저 뒷면(4306)의 위치는 가변적인 핀치 능력을 가능하게 하도록 음 및 양의 상대적인 양 및 곡률의 정도를 조정할 수 있다. 도시된 예에서, 디퓨저(4308)는 슈라우드(4312)를 따라 약간의 통로 폭 감소(4310)를 포함할 수도 있지만, 슈라우드 사이드 핀치는 스트롱 사이드 곡률(4300)로부터의 폭 감소보다 작아서, 전체적인 도시된 디퓨저(4308)는 스트롱 사이드 지배적인 핀치를 구비한다. 전술된 바와 같이, 다른 실시 예들에서, 슈라우드의 다운스트림으로 연장하는 디퓨저의 전면은 예를 들어, 실질적으로 평평하거나, 도 38 및 도 39에 도시된 것과 같은 어느 정도의 역 곡률을 가질 수 있다.
도 45 및 도 46은 디퓨저 안정성 및 효율을 추가로 향상시키기 위해, 본 개시의 실시 예들에서 이용될 수 있는 예시적인 트랩된 코너 스털 셀(4500 및 4600)들을 도시한다. 도시된 바와 같이, 스털 셀(4500)은 정사각형 또는 직사각형 리세스(recess)를 포함하고, 스털 셀(4600)은 실질적으로 원형인 단면 리세스를 포함할 수 있다. 이러한 트랩된 코너 스털 셀(4500 및 4600)들은 예를 들어, 본원에 개시된 스트롱 사이드 곡률들 중 임의의 하나의 위치와 실질적으로 반대인 위크 사이드 표면 상에 디퓨저 입구에 위치됨으로써 유입 유동 제어를 향상시키는데 이용될 수 있다. 예를 들어, 예시적인 트랩된 코너 스털 셀(4500 및 4600)들 중 하나는 예시적인 위크 사이드 처리(3806 및 3906, 도 38 및 39 참조)들에 위치될 수 있다.
도 47 내지 도 50은 터보 기기의 성능을 향상시키기 위해 스트롱 사이드 곡률들과 유동 가이드 채널들과 리브들의 조합을 포함하여 본원에 개시된 유동 제어 구조들의 조합들의 예시적인 실시 예들을 도시한다. 도 47은 채널(4708)들, 디퓨저 슈라우드 사이드 표면(4711)의 가능한 변화들을 도시하고, 도 48 내지 도 50은 도 47에 도시된 조합들 각각을 개별적으로 도시한다. 도 47은 예시적인 임펠러(4700) 및 디퓨저(4702)를 도시하고, 여기서 디퓨저는 전술한 바와 같이 디퓨저 성능을 향상시킬 수 있는 스트롱 사이드 곡률(4706)으로부터의 통로 폭 감소를 포함한다. 슈라우드(4704)는 슈라우드 둘레에 원주 방향으로 이격된 본원에 개시된 유동 가이드 채널들 중 하나와 같은 하나 이상의 유동 쪽 채널(4708)들을 포함할 수 있다. 임펠러 출구(4710)으로부터 실질적으로 수직으로 연장하는 3개의 점선(4711)들은 임펠러 출구에서의 실선이 대안적인 예시적인 스모크 선반(4712)을 나타내는 예시적인 디퓨저 슈라우드 측면을 나타낸다. 기울어진 점선(4714)은 다양한 디퓨저 슈라우드 사이드 표면(4711)들에 대한 채널(4708)의 가능한 위치를 도시하고, 점선은 채널(4708)이 스모크 선반(4712)의 경우 임펠러 출구(4710)에서 갑자기 종결될 수 있음을 나타내거나, 스모크 선반이 사용되지 않으면 채널(4708)은 디퓨저(4702) 내로 연장하고, 채널의 깊이는 점차 감소된다.
도 48은 스트롱 사이드 곡률(4706)과 결합된 통로 폭 감소를 구비하는 예시적인 디퓨저 슈라우드 사이드 표면(4711)들 중 하나를 나타내고, 스트롱 사이드 곡률(4706)으로부터의 현저한 통로 폭 감소에 의해 지배되는 이중 사이드 핀치를 초래한다. 채널(4708)은 채널에 대해 2개의 가능한 깊이 윤곽들을 나타내는 실선(4714) 및 점선(4716)으로 디퓨저(4702)로 연장하고, 두 개의 윤곽들 모두 임펠러 출구(4710)에 인접한 최대 채널 깊이를 가지고, 프로 파일(4716)은 4714보다 약간 점차적으로 감소하는 깊이를 구비한다. 또한 도 49 및 도 50은 부분적인 스모크 선반(4902, 도 49) 및 완전한 스모크 선반(4712, 도 50)의 형태의 2개의 가능한 위크 사이드 처리들을 도시한다. 도 49에 도시된 바와 같이, 예시적인 디퓨저 슈라우드 사이드 표면(4711)들 중 하나는 부분적인 스모크 선반(4902)으로부터 실질적으로 수직으로 연장하고, 채널(4708)은 디퓨저(4702) 내로 연장하여 디퓨저(4702)에서 종결된다. 도 50에서 도시된 바와 같이, 완전한 스모크 선반(4712)은 임펠러 출구(4710)의 다운스트림에 위치되고, 스트롱 사이드 곡률(4706) 및 채널(4708)의 시작은 완전한 스모크 선반에서 종결된다.
도 51은 본 개시에 따라 만들어진 유동 제어 구조들을 설계하기 위한 예시적인 프로세스(5100)를 도시한다. 도시된 바와 같이 예시적인 프로세스(5100)는 단계(5102)에서 시작할 수 있고, 터보기기의 전산 유체 모델(computational fluids model)을 개발하는 단계를 포함할 수 있고, 단계(5104)에서, 예를 들어, 임펠러 통로 내의 유동장 분포가 계산될 수 있다. 일부 경우들에서, 유동장 분포가 또한 다운스트림 요소에 대해 결정될 수 있고, 이러한 유동장 분포들은 다양한 다른 작동 조건들에 대해 계산될 수 있다. 당해 기술 분야에 공지된 바와 같이, 이러한 계산들은, 일반적으로 전산 유체 역학(computational fluid dynamics, CFD)으로 지칭되는 기술을 포함하는 다양한 소프트웨어 중 임의의 것을 사용하는 1차원, 2차원 및 3차원 전산 모델링 기술들을 포함하는 다양한 방법들로 수행될 수 있고, 정상 상태 및 일시적인 계산들을 모두 포함할 수 있다.
단계(5106)에서 계산된 유동장은 유동장의 위크 영역들을 식별할 수 있다. 본원에 기술된 바와 같이, 유동장의 약한 영역은 2차 유동에 의해 지배되는 영역일 수 있거나, 위크 상대적인 속도 또는 자오선 속도 성분을 가질 수 있거나, 높은 정도의 와류를 가질 수 있거나, 역 유동(reverse flow)을 포함하여 1차 유동 각도와 현저히 다은 각도 분포들을 가질 수 있다. 단계(5106)는 또한 2차 유동이 개발(develop)되기 시작하는 발산 영역을 식별하는 단계를 포함할 수 있다. 단계(5108)에서, 유동장은 유동장의 스트롱 영역들의 특성들을 결정하기 위해 분석될 수 있다. 예를 들어, 단계(5108)는 임펠러 통로 내의 다양한 위치들에서 유동장 분포의 주요 구성요소에 대한 유동 각도들을 식별하는 것을 포함할 수 있다. 단계(5110)에서, 계산된 유동장 분포를 분석한 후에, 본원에서 개시된 유동 제어 구조를 위치시키기 위한 터보기기의 구역들이 식별될 수 있다. 예를 들어, 임펠러 통로의 출구 영역에서 슈라우드 표면을 따라 위크 유동이 식별되고, 위크 유동 영역이 개발되기 시작하는 발산 영역이 식별되면, 슈라우드의 부분, 예를 들어, 발산영역의 다운스트림 및 인접한 부분은 본 개시에 따라 만들어진 유동 가이드 채널들의 하나 이상을 위치시키기 위해 선택될 수 있다. 위크 유동 영역으로부터 임펠러 통로의 반대편 사이드의 위치는 또한 본 개시에 따라 만들어진 스트롱 사이드 곡률을 부가하도록 선택될 수 있다. 단계(5112)에서, 유동 제어 구조들을 부가하기 위한 하나 이상의 표면들 또는 위치들을 선택한 후에, 유동 가이드 채널들, 리브들 및 스트롱 사이드 지배된 곡률들과 같은 것들이 터보기기에서 설계 및 구현(implement)될 수 있다.
본원에 개시된 임의의 하나 이상의 양태들 및 실시 예들은 하나 이상의 기기(예를 들어, 전자 문서를 위한 사용자 컴퓨팅 장치로서 사용되는 하나 이상의 컴퓨팅 장치, 문서 서버 등)를 사용하여 구현될 수 있고, 컴퓨터 기술 분야에서 통상의 지식을 가진 자에게 명백한 바와 같이, 본 명세서의 교시에 따라 프로그래밍 될 수 있다. 적절한 소프트웨어 코딩은 소프트웨어 분야에서 통상의 지식을 가진 자에게 명백한 바와 같이 본 개시의 교시에 기초하여 숙련된 프로그래머에 의해 용이하게 준비될 수 있다. 소프트웨어 및/또는 소프트웨어 모듈을 사용한 전술한 양태들 및 구현들은 소프트웨어 및/또는 소프트웨어 모듈의 기기 실행가능 인스트럭션(instruction)들의 구현을 보조하기 위해 적절한 하드웨어를 포함할 수 있다.
이러한 소프트웨어는 기기 판독가능(readable) 저장 매체(medium)를 사용하는 컴퓨터 프로그램 제품일 수 있다. 기기 판독가능 저장 매체는, 기기(예를 들어, 컴퓨터 장치)에 의한 실행을 위한 인스트럭션들의 시퀀스(sequence)를 저장 및/또는 인코딩(encode)할 수 있고 기기로 하여금 본원에 기재된 방법론(methodology)들 및/또는 실시 예들 중 임의의 하나를 수행하게 하는 임의의 매체일 수 있다. 기기 판독가능 저장 매체의 예들은 자기(magnetic) 디스크, 광학(optical) 디스크(예를 들어, CD, CD-R, DVD 및 DVD-R 등), 광 자기(magneto-optical) 디스크, 판독전용 메모리 "ROM"장치, 랜덤 액세스 메모리 "RAM" 장치, 자기 카드, 광학 카드, 고체 상태 메모리 장치, EPROM 및 EEPROM 및 이들의 임의의 조합들을 포함할 수 있다. 본원에서 사용된 기기 판독가능 매체는 단일 매체뿐만 아니라 예를 들어, 컴팩트 디스크들의 조합 또는 컴퓨터 메모리와 조합된 하나 이상의 하드 디스크 드라이브들과 같은 물리적 분리된 미디어의 집합을 포함하는 것으로 의도된다. 여기에 사용된 바와 같이, 기기 판독가능 저장 매체는 신호 전송의 일시적인 형태들을 포함하지 않는다.
이러한 소프트웨어는 또한 캐리어 웨이브와 같은 데이터 캐리어 상에 데이터 신호로서 운반된 정보(예를 들어, 데이터)를 포함할 수 있다. 예를 들어, 기기 실행가능(executable) 정보는, 신호가 기기(예를 들어, 컴퓨터 장치)에 의한 실행을 위한 인스트럭션 시퀀스 또는 그 일부를 인코딩하는 데이터 캐리어에 구현된 데이터 운반 신호 및 기기가 본원에 개시된 방법론들 및/또는 실시 예들 중 임의의 하나를 수행하게 하는 임의의 관련 정보(예를 들어, 데이터 구조 및 데이터)로써 포함될 수 있다.
컴퓨팅 장치의 예들은, 전자 책 판독 장치, 컴퓨터 워크스테이션(workstation), 터미널 컴퓨터, 서버 컴퓨터, 손바닥 크기의 장치(예를 들어, 태블릿 컴퓨터, 스마트 폰 등), 웹 어플라이언스(appliance), 네트워크 브리지, 그 기기에 의해 취해질 작용을 지정하는 인스트럭션들의 시퀀스를 실행할 수 있는 임의의 기기, 및 이들의 임의의 조합들을 포함할 수 있고, 컴퓨팅 장치의 예는 이에 제한되지 않는다. 일 예에서, 컴퓨팅 장치는 키오스크(kiosk)를 포함할 수 있고, 및/또는 키오스크에 포함될 수 있다.
도 52는, 제어 시스템이 본 개시의 양태들 및/또는 방법론들 중 임의의 하나 이상을 수행하게 하는 인스트럭션들의 세트가 내부에 존재할 수 있는 컴퓨터 시스템(5200)의 예시적인 형태의 컴퓨팅 장치의 일 실시예의 계략도를 나타낸다. 다수의 전산 장치들이 하나 이상의 장치들로 하여금 본 개시의 양태들 및/또는 방법론들 중 하나 이상을 수행하게 하는 특별하게 구성된 인스트럭션들 세트를 구현하는데 이용될 수 있다는 것도 또한 고려된다. 컴퓨터 시스템(5200)은 버스(5212)를 통해 서로 및 다른 성분들과 소통하는 프로세서(5204) 및 메모리(5208)를 포함한다. 버스(5212)는 메모리 버스, 메모리 제어부, 주변의 버스, 국부적인 버스 및 다양한 버스 아키텍쳐(architecture)들 중 임의의 것을 사용하는 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다.
메모리(5208)는, 랜덤 액세스 메모리 성분, 판독전용 성분 및 그들의 조합을 포함하는 다양한 성분들(예를 들어, 기기 판독가능 매체)을 포함하고, 이들에 제한되지 않는다. 일 예에서, 컴퓨터 시스템(5200) 내의 요소들 사이에 정보들을 전송하는 것을 도와주는 베이직 루틴들을 포함하는 베이직 인풋/아웃풋 시스템(5216, BIOS)은, 스타트-업(start-up) 동안 같을 때, 메모리(5208)에 저장될 수 있다. 메모리(5208)는 또한 본 개시의 양태들 또는 방법론들 중 임의의 하나 이상을 구현하는 인스트럭션들(5220, 예를 들어, 소프트웨어)을 포함한다(예를 들어, 하나 이상의 기기 판독가능 매체에 저장됨)을 포함한다. 다른 예에서, 메모리(5208)는 작동 시스템, 하나 이상의 적용 프로그램들, 다른 프로그램 모듈들, 프로그램 데이터 및 그것들의 다른 조합들을 포함하고, 이에 제한되지 않는 프로그램 모듈들의 임의의 수를 더 포함한다.
컴퓨터 시스템(5200)은 저장 장치(5224)를 포함할 수 있다. 저장 장치의 예들(예를 들어, 저장 장치(5224))은 하드 디스크 드라이브, 자기 디스크 드라이브, 광학 매체와 조합된 광학 디스크 드라이브, 고체 상태 메모리 장치 및 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다. 저장 장치(5224)는 도시되지 않은 적절한 인터페이스에 의해 버스(bus, 5212)에 연결될 수 있다. 예시적인 인터페이스들은 SCSI, 고급 기술 결합(advanced technology attachment), 직렬 ATA, 유니버션 직렬 버스(universal serial bus, USB), IEEE(1394, 파이어와이어) 및 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다. 일 예에서, 저장 장치(5224, 또는 그것의 하나 이상의 성분들)는 컴퓨터 시스템(5200, 예를 들어 외부 포트 커넥터를 통해(도시되지 않음))에 제거 가능하도록 인터페이스 될 수 있다. 특히, 저장장치(5224) 및 관련된 기기 판독가능 매체(5228)는, 비휘발성(nonvolatile) 및/또는 휘발성 기기 판독가능 인스트럭션들의 장치, 데이터 구조들, 프로그램 모듈들 및/또는 컴퓨터 시스템(5200)의 다른 데이터를 제공할 수 있다. 일 예에서, 스프트웨어(5220)는 완전하게 또는 부분적으로 프로세서(5204) 내에 있을 수 있다.
컴퓨터 시스템(5200)은 인풋 장치(5232)를 또한 포함할 수 있다. 일 예에서, 컴퓨터 시스템(5200)의 사용자는 인풋 장치(5232)를 통해 컴퓨터 시스템(5200) 내로 지시들 및/또는 다른 정보를 입력할 수 있다. 인풋 장치(5232)의 예들은, 글자와 숫자를 쓴(alphanumeric) 인풋 장치(예를 들어, 키보드), 포인팅 장치, 조이스틱, 게임패드, 오디오 인풋 장치(예를 들어, 마이크, 음성 응답 시스템 등), 커서 제어 장치(예를 들어, 마우스), 터치패드, 광학 스캐너, 비디오 포착 장치(예를 들어, 스틸 카메라(still camera), 비디오 카메라), 터치스크린 및 그것의 임의의 조합들을 포함하고, 이에 제한되지 않을 수 있다. 인풋 장치(5232)는, 직렬 인터페이스, 병렬 인터페이스, 게임 포트, USB 인터페이스, 파이어와이어 인터페이스, 버스(5212)로의 직접적인 인터페이스 및 그것의 임의의 조합들을 포함하고, 이에 제한되지 않은 다양한 인터페이스들(도시되지 않음) 중 임의의 것을 통해 버스(5212)에 인터페이스될 수 있다. 인풋 장치(5232)는, 이하에서 설명되는 것과 같이, 디스플레이(5236)으로부터 또는 디스플레이(5236)의 부분일 수 있는 터치 스크린 인터페이스를 포함할 수 있다. 인풋 장치(5232)는 전술한 바와 같이 그래픽 인터페이스에서 하나 이상의 그래픽 표현들을 선택하기 위한 사용자 선택 장치로서 이용 될 수 있다.
사용자는 저장 장치(5224, 예를 들어, 판독가능 디스크 드라이브, 플래시 드라이브 등) 및/또는 네트워크 인터페이스 장치(5240)를 통해 컴퓨터 시스템(5200)에 지시들 및/또는 다른 정보를 인풋할 수 있다. 네트워크 인터페이스 장치(5240)와 같은 네트워크 인터페이스 장치는, 컴퓨터 시스템(5200)을 네트워크(5244)와 같은 다양한 네트워크들 중 하나 이상에 연결하고, 원격 장치(5248)들을 서로 연결하는 데 사용될 수 있다. 네트워크 인터페이스 장치의 예들은, 네트워크 인터페이스 카드(예를 들어, 모바일 네트워크 인터페이스 카드, LAN 카드), 모뎀 및 그것들의 조합을 포함하고, 이들에 제한되지 않는다. 네트워크의 예들은, 넓은 구역 네트워크(예를 들어, 인터넷, 기업 네트워크), 국부적인 구역 네트워크(예를 들어, 사무실, 빌딩, 캠퍼스 또는 다른 상대적으로 지리학적으로 작은 공간에 관련되는 네트워크), 텔레폰(telephone) 네트워크, 텔레폰/음성 제공기와 관련되는 데이터 네트워크(예를 들어, 모바일 소통 제공기 데이터 및/또는 음성 네트워크), 2개의 컴퓨팅 사의의 직접적인 연결 및 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다. 네트워크(5244)와 같은 네트워크는 유선 및/또는 무선 소통 모드를 채용할 수 있다. 일반적으로, 임의의 네트워크 토폴로지(topology)가 사용될 수 있다. 정보(예를 들어, 데이터 소프트웨어(5220) 등)는 네트워크 인터페이스 장치(5240)를 통해 컴퓨터 시스템(5200)으로부터 및/또는 컴퓨터 시스템(5200)으로 소통될 수 있다.
컴퓨터 시스템(5200)은, 디스플레이 장치(5236)와 같은 디스플레이 장치로 디스플레이 가능한 이미지를 소통하기 위해 비디오 디스플레이 어댑터(5252)를 더 포함할 수 있다. 디스플레이 장치의 예들은, 액체 크리스탈 디스플레이(LCD), 음극 레이 튜브(CRT), 플라즈마 디스플레이, 빛 방출 다이오드(LED) 디스플레이 및 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다. 디스플레이 어댑터(5252) 및 디스플레이 장치(5236)는 본 개시의 양태들의 그래픽 표현들을 제공하기 위한 프로세서(5204)와 조합되어 사용될 수 있다. 디스플레이 장치들에 부가하여, 컴퓨터 시스템(5200)은, 오디오 스피커, 프린터 및 이들의 조합들을 포함하고, 이에 제한되지 않는 하나 이상의 다른 주변의 아웃풋 장치들을 포함할 수 있다. 이러한 주변의 아웃풋 장치들은 주변의 인터페이스(5256)를 통해 버스(5212)에 연결될 수 있다. 주변의 인터페이스의 예들은, 직렬 포트, USB 연결, 파이어와이어 연결, 병렬 연결 및 그것들의 임의의 조합들을 포함하고, 이에 제한되지 않는다.
전술한 설명은 본 발명의 실시 예들에 대한 상세한 설명이다. 본 발명의 사상 및 범위를 벗어나지 않고 다양한 변경들 및 추가들이 이루어질 수 있다. 전술한 다양한 실시 예들의 각각의 특징들은 관련된 새로운 실시 예들에서 다수의 특징 조합들을 제공하기 위해 적절하게 다른 설명된 실시 예들의 특징과 결합될 수 있다. 또한, 전술한 내용은 많은 개별적인 실시 예들을 설명하고 있지만, 여기에 설명된 것은 단지 본 발명의 원리들의 응용 예를 나타낸 것이다. 또한, 본 명세서의 특정 방법들이 특정 순서로 수행되는 것으로 설명 및/또는 나타날 수 있지만, 본 개시에 따른 방법들, 시스템들 및 소프트웨어를 달성하기 위해 통상적 인 기술 내에서 그 순서는 매우 가변적이다. 따라서, 이 설명은 단지 예로서 취해지며, 본 발명의 범위를 다른 방식으로 제한하려는 것은 아니다.
본 발명의 또 다른 예시적인 실시 예가 아래의 단락들에서 설명된다.
일 실시 예에서, 터보기기는 입구, 슈라우드 사이드 및 허브 사이드를 구비하는 다운스트림 요소; 허브 및 복수 개의 블레이드들을 포함하고, 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장함; 상기 복수 개의 블레이드들의 상기 슈라우드 사이드들과 마주하는 면을 구비하는 슈라우드, 상기 슈라우드 및 상기 허브는 임펠러 통로를 규정함; 을 포함하고, 상기 임펠러는, 작동 유체가 상기 다운스트림 요소로 배출되도록 설계 및 구성되고, 상기 임펠러는, 상기 작동 유체 내에 유동장(flow field)을 생성하고, 상기 출구에서의 상기 유동장은 상기 허브 및 상기 슈라우드 중 하나에 근접한 위크 사이드와, 상기 허브 및 상기 슈라우드 중 다른 하나에 근접한 스트롱 사이드를 포함하고, 유동장의 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고, 상기 다운스트림 요소의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나의 부분을 따라 유동 쪽 방향으로 연장하는 적어도 하나의 채널을 포함하고, 상기 적어도 하나의 채널은 각도 α로 연장하는 접선을 구비하는 중심선을 구비하고, 상기 각도 α는 상기 회전축을 통해 연장하는 자오선 기준 평면으로부터 절대 기준 프레임에서 측정된 것이고, 상기 적어도 하나의 채널은 상기 유동 장의 상기 위크 사이드에 인접하여 선택적으로 위치되고, α와 실질적으로 같은 방향으로 상기 유동장의 상기 위크 사이드의 부분을 가이드 하도록 설계 및 구성된다. 이러한 예시적인 터보기기는 하나 이상의 이하 특징들을 포함할 수 있다.
적어도 하나의 채널은 임펠러 플레이드들의 트레일링 엣지들의 업스트림에 위치되는 시작 위치를 구비한다.
적어도 하나의 채널의 시작 위치는 임펠러의 입구에 실질적으로 위치된다.
적어도 하나의 채널은 2상 유동을 위해 설계, 구성 및 치수화된다.
유동장의 위크 사이드는, 상기 유동장에서의 스트림튜브들의 제 1 부분의 유동 각도가 상기 유동장에서의 다른 스트림튜브들의 유동 각도로부터 발산하기 시작하는 발산 영역을 포함하고, 상기 적어도 하나의 채널에서의 시작은 자오선 위치에 위치되고, 상기 자오선 위치는 상기 발산 영역에 인접하거나 상기 발산 영역의 업스트림이다.
터보기기는 작동 범위를 구비하고, 발산 영역은 최대 업스트림 위치 및 최대 다운스트림 위치 사이에 작동 범위에 걸쳐 변화하는 자오선 위치를 구비하고, 상기 적어도 하나의 채널은, 상기 최대 업스트림 위치에 인접하거나 상기 최대 업스트림 위치의 업스트림인 자오선 위치에 위치된다.
상기 임펠러는 자오선 길이 및 상기 자오선 길이의 적어도 10%의 거리에 다운스트림 요소의 입구의 다운스트림에 위치되는 종료 위치를 구비하는 적어도 하나의 채널을 구비할 수 있다.
상기 임펠러는 자오선 길이 및 상기 자오선 길이의 적어도 3%의 거리에 다운스트림 요소의 입구의 다운스트림에 위치되는 종료 위치를 구비하는 적어도 하나의 채널을 구비할 수 있다.
적어도 하나의 채널은, 최대 폭을 구비하고 상기 다운스트림의 입구 주변에 원주방향으로 이격된 복수 개의 채널들을 포함하고, 상기 터보기기는 각각이 복수 개의 채널들 사이에서 연장하고 최대 폭을 구비하는 복수 개의 랜드들을 더 포함한다.
상기 복수 개의 채널들의 최대 폭은 상기 복수 개의 랜드들의 최대 폭보다 크다.
상기 복수 개의 채널들의 최대 폭은 상기 복수 개의 랜드들의 최대 폭보다 적어도 2배 이상 크고, 복수 개의 랜드들은 유동 가이드 리브들로서 구성된다.
상기 복수 개의 랜드들의 최대 폭은 상기 채널들의 최대 폭보다 크다.
적어도 하나의 채널은 상기 트레일링 엣지들의 업스트림에 위치된 제 1 부분을 포함하고, 상기 제 1 부분은 실질적으로 일정한 폭을 구비한다.
적어도 하나의 채널은 다운스트림 요소의 입구의 다운스트림에 위치된 제 2 부분을 포함하고, 상기 제 2 부분은 변하는 폭을 구비한다.
적어도 하나의 채널을 시작 위치 및 폭을 구비하고, 적어도 하나의 채널의 폭은 변하고, 상기 채널은 상기 시작 위치에서의 포인트로 수렴한다.
적어도 하나의 채널은 상기 채널의 길이를 따라 변하는 깊이를 구비하고, 상기 채널은 상기 트레일링 엣지들에 인접하거나 상기 트레일링 엣지들의 다운스트림에서 최대 깊이를 구비한다.
상기 최대 깊이는 상기 다운스트림 요소에 위치된다.
α는 상기 채널의 전체적인 길이에 걸쳐 실질적으로 일정하다.
α는 상기 채널의 길이에 걸쳐 변화한다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 통로의 제 1 부분을 넘어 변화하고 상기 임펠러 통로의 출구 부분의 출구 각도에 근사하고, 상기 적어도 하나의 채널의 업스트림 부분은 상기 제 1 부분에 위치되고, 상기 적어도 하나의 채널의 다운스트림 부분은 상기 출구 부분에 위치되고, 상기 업스트림 부분의 α는 제 1 값과 같고, 상기 다운스트림 부분의 α는 상기 제 1 값과 다른 제 2 값과 같다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 통로의 출구 부분의 공칭의 출구 각도에 근사하고, 상기 임펠러 출구에 인접한 상기 적어도 하나의 채널의 부분의 α는 상기 공칭의 출구 각도와 실질적으로 동일하다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 통로의 출구 부분의 공칭의 출구 각도에 근사하고, 상기 적어도 하나의 채널은 상기 2차 유동 부분의 부분이 αP와 실질적으로 동일한 각도를 향해 가이드 하도록 설계 및 구성된다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 입구에서 입구 각도와 같고, 상기 임펠러 통로의 출구 부분에서의 공칭의 출구 각도에 근사하고, 상기 임펠러 출구에 인접한 적어도 하나의 채널의 부분의 α는 상기 입구 각도 및 상기 공칭의 출구 각도 사이의 값을 가진다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 입구에서 입구 각도와 같고, 상기 임펠러 통로의 출구 부분에서의 공칭의 출구 각도에 근사하고, 상기 적어도 하나의 채널은 상기 2차 유동의 부분을 상기 입구 각도 및 상기 공칭의 출구 각도 사이의 각도로 가이드 하도록 설계 및 구성된다.
상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, α는 실질적으로 aP와 동일하다.
적어도 하나의 채널은, 잠긴 유체 통로와, 상기 임펠러 통로 및 상기 잠긴 유체 통로 사이에 유체 소통을 제공하는 적어도 하나의 개구부를 포함한다.
적어도 하나의 개구부는 상기 임펠러를 따라 위치되는 복수 개의 유체 개구부들을 포함한다.
적어도 하나의 채널은 복수 개의 채널들이고, 상기 복수 개의 채널들 중 적어도 하나는 상기 다운스트림 요소의 슈라우드 사이드에 위치되고, 상기 복수 개의 채널들 중 적어도 하나는 상기 다운스트림 요소의 상기 허브 사이드에 위치된다.
적어도 하나의 채널은 상기 다운스트림 요소의 상기 슈라우드 사이드에 위치된다.
적어도 하나의 채널은 상기 다운스트림 요소의 상기 허브 사이드에 위치된다.
상기 트레일링 엣지들은 상기 허브의 다운스트림 최대 범위의 다운스트림에 위치되고, 상기 적어도 하나의 채널의 시작 위치는 상기 다운스트림 최대 범위 및 상기 트레일링 엣지들의 업스트림에 인접한다.
상기 허브는 상기 다운스트림 요소의 상기 허브 사이드의 부분에 오버랩하고, 상기 허브는 적어도 하나의 액세스 개구부를 구비하고, 상기 액세스 개구부는 상기 허브의 폭을 통해 연장하고 상기 임펠러 통로 및 상기 적어도 하나의 채널 사이의 유체 소통을 제공한다.
상기 다운스트림 요소는 베인리스 디퓨저이다.
상기 다운스트림 요소는 복수 개의 베인들을 구비하는 블레이드된 요소이고, 복수 개의 베인들은 그것들 사이에 베인 통로들을 규정한다.
적어도 하나의 채널은 복수 개의 채널들을 포함하고, 그것들 각각은 실질적으로 베인 통로의 하나에 실질적으로 정렬된다.
적어도 하나의 채널은 복수 개의 채널들을 포함하고, 상기 복수 개의 채널들은 상기 복수 개의 베인 통로들로부터 클락되고, 채널들의 중심선들은 상기 베인 통로의 중심선들로부터 둘레의 오프셋이다.
다운스트림 요소는 디퓨저이고, 상기 다운스트림 요소의 상기 슈라우드 사이드 및 상기 허브 사이드는 폭을 구비하는 디퓨저 통로를 규정하고, 상기 디퓨저는 적어도 하나의 스트롱 사이드 핀치 영역을 포함하고, 상기 스트롱 사이드 핀치 영역은 상기 유동장의 상기 스트롱 사이드에 인접한 상기 슈라우드 사이드 및 상기 허브 사이드 중 하나의 볼록한 표면을 포함하는 상기 디퓨저 통로 폭의 감소를 제공하고, 상기 볼록한 표면은 상기 슈라우드 사이드 및 상기 허브 사이드 중 다른 하나의 통로 폭의 감소보다 더 많은 감소를 가진 통로를 제공한다.
적어도 하나의 채널은 상기 위크 사이드 절대 속도의 자오선 성분을 증가시키기 위해 설계 및 구성된다.
본 발명의 또 다른 예시적인 실시 예들이 아래의 단락에서 설명된다.
일 실시 예에서, 터보기기는 입구, 슈라우드 사이드 및 허브 사이드를 구비하는 다운스트림 요소; 복수 개의 블레이드들을 포함하고, 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장함; 을 포함하고, 상기 임펠러는, 작동 유체가 상기 다운스트림 요소로 배출되도록 설계 및 구성되고, 상기 임펠러는, 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에서의 상기 유동장은 상기 블레이드들의 상기 슈라우드에 근접한 위크 사이드와, 상기 허브에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고; 슈라우드는 상기 복수 개의 블레이드들의 상기 슈라우드 사이드들과 마주하는 면을 구비하고; 적어도 하나의 채널은 상기 다운스트림 요소의 상기 슈라우드의 부분 및 상기 다운스트림 요소의 상기 슈라우드 사이드의 부분을 따라 유동 쪽 방향으로 연장하고, 적어도 하나의 채널은 상기 위크 사이드 절대 속도의 자오선 성분을 증가시키도록 설계 및 구성된다. 이러한 예시적인 터보기기는 다음 특징들 중 하나 이상을 포함할 수 있다.
적어도 하나의 채널은 상기 유동장의 상기 위크 사이드의 부분을 상기 다운스트림 요소로 유동 쪽 방향으로 가이드 하도록 설계 및 구성된다.
본 개시의 또 다른 예시적인 실시 예들은 이하의 단락들에서 설명된다:
일 예에서, 방사상의 터보기기는 입구, 슈라우드 사이드, 허브 사이드를 구비한 디퓨저; 허브 및 복수 개의 블레이드들을 포함하고 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드 각각은 상기 임펠러 입구에 근접한 리딩 엣지 및 상기 출구에 근접한 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드들의 상기 슈라우드 사이드까지 날개 쪽 방향으로 연장함; 을 포함하고, 상기 임펠러는 작동 유체를 상기 디퓨저로 배출하고; 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에 있는 유동장은 상기 블레이드들의 상기 슈라우드 사이드에 근접한 위크 사이드 및 상기 허브에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 위크 사이드보다 스트롱 사이드에서 더 크고; 슈라우드는 상기 복수 개의 블레이드들의 상기 슈라우드 사이드에 마주하는 면을 구비하고; 적어도 하나의 채널은 상기 슈라우드를 따라 유동 쪽 방향으로 연장하고, 상기 채널의 부분은 상기 출구에 위치되고, 상기 적어도 하나의 채널은 상기 유동장의 상기 위크 사이드의 부분을 상기 디퓨저로 가이드 하도록 설계 및 구성됨으로써 적어도 하나의 유동 각도 또는 상기 유동장의 상기 부분의 속도를 향상시킨다. 이러한 예시적인 방사상의 터보기기는 다음 특징들 중 하나 이상을 포함할 수 있다.
상기 복수 개의 블레이드들의 적어도 하나의 트레일링 엣지들은 회전축으로부터 반경 r2에 위치되고, 적어도 하나의 채널은 회전축으로부터 반경 rc의 시작 위치를 구비하고, rc/r2는 1보다 작다.
본 개시의 또 다른 예시적인 실시 예들이 아래의 단락들에서 설명된다.
일 예에서, 터보기기를 위한 유동 제어 구조를 설계하기 위한 방법에서, 터보기기는, 입구 및 출구를 구비하는 임펠러, 슈라우드, 허브 및 다운스트림 요소를 구비하고, 상기 허브 및 슈라우드는 임펠러 통로를 규정한다. 상기 방법은, 컴퓨터를 사용하여 터보기기의 전산 유체 모델을 개발하는 단계; 전산 유체 모델을 이용하여 임펠러 통로 유동장 분포를 계산하는 단계; 상기 유동장 분포에서, 2차 유동의 농도를 구비하는 위크 영역을 식별하는 단계; 및 상기 2차 유동을 실질적으로 유동 쪽 방향으로 다운스트림 요소로 가이드 하기 위해 상기 위크 영역에 인접한 상기 허브 및 상기 슈라우드 중 적어도 하나에서 유동 쪽 방향으로 연장하기 위한 적어도 하나의 채널을 설계하는 단계를 포함한다. 이러한 예시적인 방법은 다음 특징들 중 하나 이상을 포함할 수 있다.
식별하는 단계는, 상기 유동 분포의 제 1 부분의 유동 각도가 상기 유동장의 제 2 부분의 유동 각도로부터 발산하는 상기 유동장 분포 내의 발산 영역을 식별하는 단계를 더 포함하고, 상기 설계하는 단계는 상기 발산 영역에 인접하거나 상기 발산 영역의 업스트림에 있는 적어도 하나의 채널의 시작 위치를 위치시키는 단계를 포함한다.
상기 식별하는 단계는 상기 임펠러 출구에서 1차 유동 성분의 각도를 식별하는 단계를 더 포함하고, 상기 설계하는 단계는 상기 1차 유동 각도에 기초한 적어도 하나의 채널의 각도를 선택하는 단계를 포함한다.
상기 설계하는 단계는 상기 1차 유동 각도와 실질적으로 동일한 적어도 하나의 채널의 각도를 세팅하는 단계를 포함한다.
상기 설계하는 단계는 2차 유동 및 1차 유동 모두를 포착하여 임펠러 출구에서 상기 슈라우드 및 상기 허브 중 적어도 하나를 따라 유동 분포를 통전(energize)하기 위해 상기 채널의 단면적을 설계하는 것을 포함한다.
상기 설계하는 단계는 상기 허브 및 상기 슈라우드 모두를 따라 상기 유동 분포를 통전하기 위해 상기 허브 및 상기 슈라우드 모두를 따라 복수 개의 적어도 하나의 채널을 위치시키는 단계를 포함한다.
본 개시의 또 다른 예시적인 실시 예들이 아래의 단락들에서 설명된다.
일 예에서, 2상 유동을 위한 터보기기를 위한 유동 제어 구조를 설계하는 방법에서, 상기 터보기기는 복수 개의 블레이드들을 구비하는 임펠러를 포함하고, 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 복수 개의 블레이드들 각각은 상기 블레이드의 허브로부터 슈라우드까지 날개 쪽 방향으로 연장하고, 상기 임펠러는 상기 블레이드들의 상기 허브로부터 상기 슈라우드까지 날개 쪽 방향으로 연장하는 메인 임펠러 통로를 규정한다. 상기 방법은, 컴퓨터를 사용하여 터보기기의 전산 모델을 개발하는 단계; 상기 모델을 이용하여 상기 임펠러에 의해서 운반되는 액체 및 기체의 양을 계산하는 단계; 적어도 하나의 채널을 설계하는 단계; 액체 및 기체 중 하나를 포획 및 운반하여 메인 임펠러 통로로부터 액체 또는 기체를 제거하기 위한 유동 쪽 방향의 적어도 하나의 유동 쪽 채널을 설계하는 단계를 포함한다.
본 개시의 또 다른 예시적인 실시 예들이 아래의 단락들에서 설명된다.
일 예에서, 방사상의 터보기기는 허브 및 복수 개의 블레이드들을 포함하고 입구, 출구 및 회전축을 구비하는 임펠러를 포함하고, 상기 복수 개의 블레이드들 각각은 임펠러 입구에 근접한 리딩 엣지 및 출구에 근접한 트레일링 엣지룰 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장한다. 상기 임펠러는, 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에서의 상기 유동장은 상기 블레이드들의 상기 슈라우드 사이드 및 상기 허브 중 하나에 근접한 위크 사이드와, 상기 블레이드들의 상기 슈라우드 사이드 및 상기 허브 중 다른 하나에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성되고; 슈라우드는 상기 복수 개의 블레이드들에 마주하는 면을 구비하고, 상기 슈라우드 및 상기 허브는 임펠러 통로를 규정하고; 디퓨저는 입구, 슈라우드 사이드 및 허브 사이드를 구비하고, 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드는 폭을 구비하는 디퓨저 통로를 포함하고, 상기 디퓨저는 적어도 하나의 스트롱 사이드 핀치 영역을 포함하고, 상기 스트롱 사이드 핀치 영역은 상기 유동장의 상기 스트롱 사이드에 인접한 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드 중 하나의 볼록한 표면 을 포함하는 상기 디퓨저 통로 폭의 감소를 제공하고, 상기 볼록한 표면은 상기 디퓨저의 상기 슈라우드 사이드 및 상기 허브 사이드 중 다른 하나의 통로 폭의 감소보다 더 많은 감소를 가진 통로를 제공한다. 이러한 예시적인 방사상의 터보기기는 또한 다음 특징들 중 하나 이상을 포함할 수 있다.
상기 허브는 허브 표면 및 출구 부분을 포함하고, 상기 허브 표면은 출구 부분에서 날개 쪽 방향으로 안쪽으로 향하는 곡률을 포함한다.
상기 볼록한 표면은 상기 임펠러 출구에 인접하기 시작한다.
상기 볼록한 표면은 상기 임펠러 출구의 업스트림에서 시작한다.
상기 허브는 컷백 부분을 포함하고, 적어도 하나의 상기 임펠러 블레이드는 상기 컷백 부분의 다운스트림의 자오선 방향으로 연장하고, 상기 볼록한 표면의 시작 위치는 상기 컷백 부분에 인접한다.
상기 스트롱 사이드 핀치 영역은 상기 디퓨저의 입구 부분에 위치된다.
상기 임펠러는 자오선 길이를 구비하고, 상기 스트롱 사이드 핀치 영역은 상기 스트롱 사이드 핀치 영역의 업스트림 사이드 상에서 시작 위치를 구비하고, 상기 스트롱 사이드 핀치 영역의 시작 위치는 상기 디퓨저 입구의 상기 디퓨저 통로 업스트림의 중심선을 따라 거리 D에서 위치되고, D는 실질적으로 자오선 길이의 200%와 같거나 그 미만이다.
D는 상기 자오선 길이의 100%와 같거나 그 미만이다.
D는 상기 자오선 길이의 50%와 같거나 그 미만이다.
D는 상기 자오선 길이의 30%와 같거나 그 미만이다.
상기 유동장의 상기 위크 사이드에 인접한 상기 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 하나는 상기 스트롱 사이드 핀치 영역에서 실질적으로 평평하다.
상기 유동장의 상기 위크 사이드에 인접한 상기 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 하나는 상기 스트롱 사이드 핀치 영역에서 오목한 표면을 포함한다.
상기 오목면은 완전한 스모크 선반, 부분적인 스모크 선반 및 만곡된 표면으로 이루어진 그룹으로부터 선택된다.
상기 유동장의 상기 위크 사이드에 인접한 상기 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 하나는 트랩된 코너 스털 셀을 포함한다.
상기 스트롱 사이드 핀치 영역은, 상기 유동장의 상기 스트롱 사이드에 인접한 상기 슈라우드 사이드 및 상기 허브 사이드 중 하나 상에 오목한 표면의 업스트림에 오목한 표면을 더 포함할 수 있다.
상기 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나는, 상기 스트롱 사이드 핀치 영역의 통로 폭 감소의 정도를 조정하기 위해 움직일 수 있다.
상기 유동장의 상기 위크 사이드에 인접한 상기 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 하나는 유동 쪽 방향으로 연장하는 적어도 하나의 채널을 포함하고, 유동 쪽 방향은 상기 위크 사이드의 상기 절대 속도의 상기 자오선 성분을 증가시키기 위해 설계 및 구성된다.
예시적인 실시 예들이 위에 개시되고 첨부된 도면들에 나타난다. 당업자는 본 발명의 사상 및 범위를 벗어나지 않으면서 본 명세서에 구체적으로 개시된 것에 대해 다양한 변경들, 생략들 및 추가들이 이루어질 수 있음을 이해할 것이다.

Claims (58)

  1. 입구, 슈라우드 사이드 및 허브 사이드를 구비하는 다운스트림 요소;
    허브 및 복수 개의 블레이드들을 포함하고, 입구, 출구 및 회전축을 구비하는 임펠러, 상기 복수 개의 블레이드들 각각은 리딩 엣지 및 트레일링 엣지를 구비하고, 상기 허브로부터 상기 블레이드의 슈라우드 사이드까지 날개 쪽 방향으로 연장함;
    상기 복수 개의 블레이드들의 상기 슈라우드 사이드들과 마주하는 면을 구비하는 슈라우드, 상기 슈라우드 및 상기 허브는 임펠러 통로를 규정함;
    상기 임펠러는, 작동 유체를 상기 다운스트림 요소로 배출하도록 설계 및 구성됨; 및 상기 작동 유체 내에 유동장을 생성하고, 상기 출구에서의 상기 유동장은 상기 허브 및 상기 슈라우드 중 하나에 근접한 위크 사이드와, 상기 허브 및 상기 슈라우드 중 다른 하나에 근접한 스트롱 사이드를 포함하고, 상기 유동장의 절대 속도의 자오선 성분은 상기 위크 사이드보다 상기 스트롱 사이드에서 더 크도록 설계 및 구성됨; 및
    상기 다운스트림 요소의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나의 부분을 따라 유동 쪽 방향으로 연장하는 적어도 하나의 채널을 포함하고,
    상기 적어도 하나의 채널은 상기 다운스트림 요소를 가로지르도록 연장하고, 상기 적어도 하나의 채널은, 상기 회전축을 통해 연장하는 자오선 기준 평면으로부터 절대 기준 프레임에서 측정된 각도 α로 연장하는 접선을 구비하는 중심선을 구비하고, 상기 적어도 하나의 채널은 상기 유동장의 상기 위크 사이드에 인접하여 선택적으로 위치되고, α와 실질적으로 같은 방향으로 상기 유동장의 상기 위크 사이드의 부분을 가이드 하도록 설계 및 구성되고,
    상기 적어도 하나의 채널은 상기 임펠러 블레이드들의 상기 트레일링 엣지들의 업스트림에 위치되는 시작 위치를 구비하는 터보기기.
  2. 제 1 항에 있어서,
    상기 적어도 하나의 채널의 상기 시작 위치는 상기 임펠러의 상기 입구에 실질적으로 위치되는 터보기기.
  3. 제 2 항에 있어서,
    상기 적어도 하나의 채널은 2상(2-phase) 유동을 위해 설계되고, 구성되고, 치수화되는 터보기기.
  4. 제 1 항에 있어서,
    상기 유동장의 상기 위크 사이드는, 상기 유동장에서의 스트림튜브들의 제 1 부분의 유동 각도가 상기 유동장에서의 다른 스트림튜브들의 유동 각도로부터 발산하기 시작하는 발산 영역을 포함하고,
    상기 적어도 하나의 채널에서의 시작은 자오선 위치에 위치되고, 상기 자오선 위치는 상기 발산 영역에 인접하거나 상기 발산 영역의 업스트림인 터보기기.
  5. 제 4 항에 있어서,
    상기 터보기기는 작동 범위를 갖고, 상기 발산 영역은 최대 업스트림 위치 및 최대 다운스트림 위치 사이의 상기 작동 범위에 걸쳐서 다양한 자오선 위치를 갖고, 상기 적어도 하나의 채널의 상기 시작은 상기 최대 업스트림 위치의 업스트림 또는 그에 인접한 자오선 위치에 위치되는 터보기기.
  6. 제 1 항에 있어서,
    상기 임펠러는 자오선 길이를 갖고, 상기 적어도 하나의 채널은 상기 자오선 길이의 적어도 10%의 거리에 상기 다운스트림 요소의 상기 입구의 다운스트림에 위치되는 엔딩 위치를 갖는 터보기기.
  7. 제 1 항에 있어서,
    상기 임펠러는 자오선 길이를 갖고, 상기 적어도 하나의 채널은 상기 자오선 길이의 적어도 3%의 거리에서 상기 다운스트림 요소의 상기 입구의 다운스트림에 위치되는 엔징 위치를 갖는 터보기기.
  8. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 각각 최대 폭을 갖고 상기 다운스트림 요소의 상기 입구 주위에서 둘레 방향으로 이격된 복수 개의 채널들이고, 상기 터보기기는 각각 최대 폭을 갖고 상기 복수 개의 채널들 사이에서 연장하는 복수 개의 랜드들을 더 포함하는 터보기기.
  9. 제 8 항에 있어서,
    상기 복수 개의 채널들의 상기 최대 폭은 상기 복수 개의 랜드들의 상기 최대 폭 보다 큰 터보기기.
  10. 제 9 항에 있어서,
    상기 복수 개의 채널들 각각의 상기 최대 폭은, 상기 복수 개의 랜드들의 상기 최대 폭 보다 적어도 2배 크고, 상기 복수 개의 랜드들은 유동 가이드 리브들인 터보기기.
  11. 제 8 항에 있어서,
    상기 복수 개의 랜드들의 상기 최대 폭은 상기 채널들의 상기 최대 폭 보다 큰 터보기기.
  12. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 상기 트레일링 엣지들의 업스트림에 위치된 제 1 부분을 포함하고, 상기 제 1 부분은 실질적으로 일정한 폭을 갖는 터보기기.
  13. 제 12 항에 있어서,
    상기 적어도 하나의 채널은 상기 다운스트림 요소의 상기 입구의 다운스트림에 위치된 제 2 부분을 갖고, 상기 제 2 부분은 가변 폭을 갖는 터보기기.
  14. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 시작 위치 및 폭을 갖고, 상기 적어도 하나의 채널의 상기 폭은 가변하고, 상기 채널은 상기 시작 위치의 포인트에 수렴하는 터보기기.
  15. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 상기 채널의 길이를 따라 가변하는 깊이를 갖고, 상기 채널은 상기 트레일링 엣지들의 다운스트림 또는 그에 인접한 위치에서 최대 깊이를 갖는 터보기기.
  16. 제 15 항에 있어서,
    상기 최대 깊이는 상기 다운스트림 요소에 위치되는 터보기기.
  17. 제 1 항에 있어서,
    α는 상기 채널의 전체 길이에 걸쳐서 실질적으로 일정한 터보기기.
  18. 제 1 항에 있어서,
    α는 상기 채널의 길이에 걸쳐서 가변하는 터보기기.
  19. 제 18 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, αP는 상기 임펠러 통로의 제 1 부분에 걸쳐서 가변하고 상기 임펠러 통로의 출구 부분에 있는 출구 각도에 접근하고, 상기 적어도 하나의 채널의 업스트림 부분은 상기 제 1 부분에 위치되고, 상기 적어도 하나의 다운스트림 부분은 상기 출구 부분에 위치되고, 상기 업스트림 부분의 상기 α는 제 1 값과 동일하고, 상기 다운스트림 부분의 α는 상기 제 1 값과 다른 제 2 값과 동일한 터보기기.
  20. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, 상기 임펠러 통로의 출구에 인접한 상기 적어도 하나의 채널의 부분의 상기 α는 상기 공칭 출구 각도와 실질적으로 동일한 터보기기.
  21. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, 평균 절대 각도 αP는 상기 임펠러 통로의 출구 부분에서 공칭 출구 각도에 근접하고, 상기 적어도 하나의 채널은 상기 2차 유동 부분의 일부를 αP와 실질적으로 동일한 각도를 향해 가이드하도록 설계되는 터보기기.
  22. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, 평균 절대 각도 αP는 상기 임펠러 통로의 출구 부분에서 공칭 출구 각도에 근접하고, 상기 임펠러 출구에 인접한 상기 적어도 하나의 채널의 부분의 상기 α는 상기 입구 각도 및 상기 공칭 출구 각도 사이의 값을 갖는 터보기기.
  23. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, 평균 절대 각도 αP는 상기 임펠러 입구의 입구 각도와 같고, 상기 임펠러 통로의 출구 부분의 공칭 출구 각도에 근접하고, 상기 적어도 하나의 채널은 상기 입구 각도 및 상기 공칭 출구 각도 사이의 각도로 상기 2차 유동 부분의 부분을 가이드하도록 설계되는 터보기기.
  24. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 평균 절대 각도 αP를 구비하고, α는 실질적으로 αP와 동일한 터보기기.
  25. 제 1 항에 있어서,
    적어도 하나의 채널은, 상기 임펠러 통로와 잠긴 유체 통로 사이에 유체 소통을 제공하기 위해, 상기 잠긴 유체 통로와 적어도 하나의 개구부를 포함하는 터보기기.
  26. 제 25 항에 있어서,
    상기 적어도 하나의 개구부는 상기 임펠러 통로를 따라 위치된 복수 개의 유체 개구부들을 포함하는 터보기기.
  27. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 복수 개의 채널들이고, 상기 복수 개의 채널들 중 적어도 하나는 상기 다운스트림 요소의 상기 슈라우드 사이드에 위치되고, 상기 복수 개의 채널들 중 적어도 하나는 상기 다운스트림 요소의 상기 허브 사이드에 위치되는 터보기기.
  28. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 상기 다운스트림 요소의 상기 슈라우드 사이드에 위치되는 터보기기.
  29. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 복수 개의 채널들이고, 상기 복수 개의 채널들 중 적어도 하나는 상기 다운스트림 요소의 상기 허브 사이드에 위치되는 터보기기.
  30. 제 29 항에 있어서,
    상기 트레일링 엣지들은 상기 허브의 다운스트림 최대 범위의 다운스트림에 위치되고, 상기 적어도 하나의 채널의 시작 위치는 상기 다운스트림 최대 범위 및 상기 트레일링 엣지들의 업스트림에 인접하는 터보기기.
  31. 제 29 항에 있어서,
    상기 허브는 상기 다운스트림 요소의 상기 허브 사이드의 부분에 오버랩하고, 상기 허브는 적어도 하나의 액세스 개구부를 구비하고, 상기 액세스 개구부는 상기 허브의 폭을 통해 연장하고 상기 임펠러 통로 및 상기 적어도 하나의 채널 사이의 유체 소통을 제공하는 터보기기.
  32. 제 1 항에 있어서,
    상기 다운스트림 요소는 베인리스 디퓨저인 터보기기.
  33. 제 1 항에 있어서,
    상기 다운스트림 요소는 복수 개의 베인들을 구비하는 블레이드된 요소이고, 복수 개의 베인들은 그것들 사이에 베인 통로들을 규정하는 터보기기.
  34. 제 33 항에 있어서,
    상기 적어도 하나의 채널은 복수 개의 채널들을 포함하고, 복수 개의 채널들 각각은 상기 베인 통로들 중 하나에 실질적으로 정렬되는 터보기기.
  35. 제 33 항에 있어서,
    상기 적어도 하나의 채널은 복수 개의 채널들을 포함하고, 상기 복수 개의 채널들은 상기 복수 개의 베인 통로들로부터 클락되고, 상기 복수 개의 채널들의 상기 중심선들은 상기 베인 통로들의 중심선들로부터 둘레방향으로 오프셋되는 터보기기.
  36. 제 1 항에 있어서,
    상기 다운스트림 요소는 디퓨저이고, 상기 다운스트림 요소의 상기 슈라우드 사이드 및 상기 허브 사이드는 폭을 갖는 디퓨저 통로를 규정하고, 상기 디퓨저는 적어도 하나의 스트롱 사이드 핀치 영역을 포함하고, 상기 스트롱 사이드 핀치 영역은 상기 유동장의 상기 스트롱 사이드에 인접한 상기 허브 사이드 및 상기 슈라우드 사이드 중 하나 상에 볼록한 표면을 포함하는 상기 디퓨저 통로 폭의 감소를 제공하고, 상기 볼록한 표면은 상기 슈라우드 사이드 및 상기 허브 사이드 중 다른 하나 상에 통로 폭 감소 보다 더 큰 통로 폭 감소를 제공하는 터보기기.
  37. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 상기 위크 사이드 절대 속도의 자오선 성분을 증가시키기 위해 설계 및 구성되는 터보기기.
  38. 제 1 항에 있어서,
    상기 임펠러는 원심 임펠러인 터보기기.
  39. 제 1 항에 있어서,
    상기 적어도 하나의 채널은 상기 다운스트림 요소의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나에 형성되는 터보기기.
  40. 제 4 항에 있어서,
    상기 적어도 하나의 채널의 상기 시작은 상기 발산 영역의 자오선 위치에 위치되는 터보기기.
  41. 제 1 항에 있어서,
    상기 유동장은 자오선 평균 절대 각도 분포를 가지며, 상기 적어도 하나의 채널의 상기 각도 α는, 상기 유동장 자오선 평균 절대 각도 분포와 실질적으로 동일한 자오선 각도 분포를 갖는 터보기기.
  42. 제 1 항에 있어서,
    상기 유동장은 1차 유동 부분 및 2차 유동 부분을 포함하고, 상기 1차 유동 부분은 자오선 평균 절대 각도 분포 αP(%M)를 갖고, 상기 적어도 하나의 채널의 상기 각도 α는 자오선 각도 분포 α(%M)를 갖고, α(%M)는 실질적으로 αP(%M)와 동일한 터보기기.
  43. 제 1 항에 있어서,
    상기 다운스트림 요소는 상기 다운스트림 요소의 상기 입구에 인접하게 위치된 리딩 엣지들을 갖는 블레이드들의 열을 포함하고, 상기 적어도 하나의 채널의 일부는 상기 다운스트림 요소의 블레이드들의 열의 상기 리딩 엣지들의 다운스트림에 위치되는 터보기기.
  44. 입구, 슈라우드 사이드 및 허브 사이드를 구비하는 베인리스 디퓨저;
    복수 개의 블레이드들을 포함하는 임펠러; 및
    유동 쪽 방향으로 연장하고 상기 베인리스 디퓨저의 상기 허브 사이드 및 상기 슈라우드 사이드 중 적어도 하나에 형성되는 적어도 하나의 고정 채널, 상기 적어도 하나의 고정 채널은 상기 유동 쪽 방향으로 적어도 하나의 고정 채널로 진입하는 작동 유체를 안내하도록 설계됨;
    을 포함하는 터보기기.
  45. 제 44 항에 있어서,
    상기 임펠러는 상기 임펠러의 입구로부터 출구까지 자오선 길이(M)을 갖고, 상기 적어도 하나의 고정 채널은 상기 임펠러의 출구 영역을 가로질러 상기 임펠러에 의해 생성된 유동장의 유동 쪽 각도 프로파일과 실질적으로 동일한 유동 쪽 곡률을 갖고, 상기 출구 영역은 상기 임펠러의 적어도 대략 10%M에 걸쳐서 연장하는 터보기기.
  46. 제 45 항에 있어서,
    상기 유동 쪽 각도 프로파일은 상기 유동장의 1차 유동 부분의 평균 절대 각도 프로파일인 터보기기.
  47. 제 44 항에 있어서,
    상기 임펠러 블레이드들은 트레일링 엣지들을 구비하고, 상기 적어도 하나의 고정 채널의 일부는 상기 트레일링 엣지들의 업스트림에 위치되는 터보기기.
  48. 제 45 항에 있어서,
    상기 유동 쪽 각도 프로파일은 상기 유동장의 평균 절대 각도 프로파일인 터보기기.
  49. 트레일링 엣지들을 구비하는 복수 개의 블레이드들을 갖는 임펠러;
    상기 복수 개의 블레이드들을 마주하는 면을 구비하는 슈라우드;
    입구를 구비하는 다운스트림 요소, 상기 다운스트림 요소는 디퓨저 또는 고정자임; 및
    유동 쪽 방향으로 연장하고 상기 슈라우드에 형성된 적어도 하나의 고정 채널을 포함하고,
    상기 적어도 하나의 고정 채널은 유동 쪽 곡률을 갖고, 상기 유동 쪽 곡률은 임펠러 블레이드 트레일링 엣지들의 업스트림 위치로부터 다운스트림 요소 입구의 다운스트림 위치까지 연장하는 유동 쪽 거리에 걸쳐 상기 임펠러에 의해 생성된 유동장의 유동 쪽 각도 프로파일과 실질적으로 동일하도록 설계되고 구성되는 터보기기.
  50. 제 49 항에 있어서,
    상기 임펠러는 상기 임펠러의 입구로부터 출구까지 자오선 길이(M)을 갖고, 임펠러 블레이드 트레일링 엣지들의 업스트림 위치는 상기 트레일링 엣지들의 적어도 10%M 업스트림인 터보기기.
  51. 제 50 항에 있어서,
    상기 임펠러 블레이드 트레일링 엣지들의 업스트림 위치는 상기 트레일링 엣지들의 적어도 30%M 업스트림인 터보기기.
  52. 제 1 항에 있어서,
    상기 적어도 하나의 채널의 시작 위치는 상기 임펠러의 상기 입구의 다운스트림에 위치되는 터보기기.
  53. 제 47 항에 있어서,
    상기 임펠러 블레이드들은 리딩 엣지들을 갖고, 상기 적어도 하나의 고정 채널의 시작 위치는 상기 리딩 엣지들의 다운스트림에 위치되는 터보기기.
  54. 제 49 항에 있어서,
    상기 적어도 하나의 고정 채널은 상기 다운스트림 요소의 상기 입구의 다운스트림으로 연장하고, 상기 임펠러 블레이더들의 상기 트레일링 엣지들의 업스트림에 위치된 시작 위치를 갖는 터보기기.
  55. 제 54 항에 있어서,
    상기 임펠러 블레이드는 리딩 엣지들을 갖고, 상기 적어도 하나의 고정 채널의 시작 위치는 상기 리딩 엣지들의 다운스트림에 위치되는 터보기기.
  56. 제 54 항에 있어서,
    상기 다운스트림 요소는 베인리스 디퓨저인 터보기기.
  57. 제 1 항 내지 제 56 항 중 어느 한 항에 있어서,
    상기 임펠러는 방사상 임펠러인 터보기기.
  58. 제 1 항 내지 제 56 항 중 어느 한 항에 있어서,
    상기 터보기기는 단일 스테이지 방사상 압축기인 터보기기.
KR1020177001985A 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법 KR102502353B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237005500A KR20230028811A (ko) 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201462016431P 2014-06-24 2014-06-24
US62/016,431 2014-06-24
US201462069462P 2014-10-28 2014-10-28
US62/069,462 2014-10-28
US201562103233P 2015-01-14 2015-01-14
US201562103231P 2015-01-14 2015-01-14
US62/103,233 2015-01-14
US62/103,231 2015-01-14
PCT/US2015/037514 WO2015200533A1 (en) 2014-06-24 2015-06-24 Flow control structures for turbomachines and methods of designing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237005500A Division KR20230028811A (ko) 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법

Publications (2)

Publication Number Publication Date
KR20170028367A KR20170028367A (ko) 2017-03-13
KR102502353B1 true KR102502353B1 (ko) 2023-02-21

Family

ID=54869216

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020177001985A KR102502353B1 (ko) 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법
KR1020237005500A KR20230028811A (ko) 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020237005500A KR20230028811A (ko) 2014-06-24 2015-06-24 터보기기를 위한 유동 제어 구조 및 그 설계 방법

Country Status (6)

Country Link
US (3) US9845810B2 (ko)
EP (1) EP3161324B1 (ko)
JP (3) JP6866019B2 (ko)
KR (2) KR102502353B1 (ko)
CN (2) CN106574636B (ko)
WO (1) WO2015200533A1 (ko)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116842A1 (en) 2013-01-23 2014-07-31 Concepts Eti, Inc. Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
US9618002B1 (en) * 2013-09-27 2017-04-11 University Of South Florida Mini notched turbine generator
US20180225409A1 (en) * 2014-01-14 2018-08-09 Charles C. Solvason Performance analysis and monitoring of radial turbomachinery
CN106574636B (zh) 2014-06-24 2021-08-24 概创机械设计有限责任公司 用于涡轮机的流动控制结构及其设计方法
GB2531029B (en) * 2014-10-07 2020-11-18 Cummins Ltd Compressor and turbocharger
DK3276177T3 (da) * 2015-03-27 2021-01-18 Ebara Corp Spiralhuspumpe
CN112814945B (zh) 2015-04-30 2023-09-01 概创机械设计有限责任公司 扩散器中的偏置通路以及对应的设计该扩散器的方法
EP3131025A1 (en) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Method for the prediction of surge in a gas compressor
ITUB20153620A1 (it) * 2015-09-15 2017-03-15 Nuovo Pignone Tecnologie Srl Girante per turbomacchina ad elevata rigidezza, turbomacchina comprendente detta girante e metodo di produzione
EP3239460A1 (de) * 2016-04-27 2017-11-01 Siemens Aktiengesellschaft Verfahren zum profilieren von schaufeln einer axialströmungsmaschine
DE102016112709A1 (de) * 2016-07-12 2018-01-18 Miele & Cie. Kg Dichtungsvorrichtung für ein Gebläselaufrad und Gebläse
FR3065023B1 (fr) * 2017-04-07 2019-04-12 Safran Aircraft Engines Diffuseur axial renforce
US11248483B2 (en) * 2017-06-01 2022-02-15 Nanyang Technological University Turbine housing and method of improving efficiency of a radial/mixed flow turbine
CN108050074A (zh) * 2017-11-09 2018-05-18 西安理工大学 一种能提高轴流泵性能稳定性的进口锥管
JP6768628B2 (ja) * 2017-12-06 2020-10-14 三菱重工マリンマシナリ株式会社 遠心圧縮機及びターボチャージャ
CN108223439A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.0519轻介质高能头压缩机模型级及设计方法
CN108223440A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.07轻介质高能头压缩机模型级及设计方法
CN107906049A (zh) * 2017-12-29 2018-04-13 沈阳透平机械股份有限公司 流量系数0.0571轻介质高能头压缩机模型级及设计方法
CN108194413A (zh) * 2017-12-29 2018-06-22 沈阳透平机械股份有限公司 流量系数0.0205轻介质高能头压缩机模型级及设计方法
CN108223435A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.0226轻介质高能头压缩机模型级及设计方法
CN107906048A (zh) * 2017-12-29 2018-04-13 沈阳透平机械股份有限公司 流量系数0.0154轻介质高能头压缩机模型级及设计方法
CN108180167A (zh) * 2017-12-29 2018-06-19 沈阳透平机械股份有限公司 流量系数0.0366轻介质高能头压缩机模型级及设计方法
CN108223441A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.0127轻介质高能头压缩机模型级及设计方法
CN108488098A (zh) * 2017-12-29 2018-09-04 沈阳透平机械股份有限公司 流量系数0.0298轻介质高能头压缩机模型级及设计方法
CN108194414A (zh) * 2017-12-29 2018-06-22 沈阳透平机械股份有限公司 流量系数0.0328轻介质高能头压缩机模型级及设计方法
CN108150452A (zh) * 2017-12-29 2018-06-12 沈阳透平机械股份有限公司 流量系数0.0115轻介质高能头压缩机模型级及设计方法
CN109989821B (zh) * 2017-12-29 2020-07-03 上海博泽电机有限公司 护风圈和冷却风扇系统以及其风门布局方法和设备
CN108223431A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.04轻介质高能头压缩机模型级及设计方法
CN108223437A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.044轻介质高能头压缩机模型级及设计方法
CN108223434B (zh) * 2017-12-29 2020-11-27 沈阳透平机械股份有限公司 流量系数0.0618轻介质高能头压缩机模型级及设计方法
CN107906050A (zh) * 2017-12-29 2018-04-13 沈阳透平机械股份有限公司 流量系数0.014轻介质高能头压缩机模型级及设计方法
CN108223436A (zh) * 2017-12-29 2018-06-29 沈阳透平机械股份有限公司 流量系数0.0169轻介质高能头压缩机模型级及设计方法
CN108150450A (zh) * 2017-12-29 2018-06-12 沈阳透平机械股份有限公司 流量系数0.0186轻介质高能头压缩机模型级及设计方法
CN108561331A (zh) * 2017-12-29 2018-09-21 沈阳透平机械股份有限公司 流量系数0.0264轻介质高能头压缩机模型级及设计方法
CN108591082A (zh) * 2018-07-25 2018-09-28 江苏涞森环保设备有限公司 一种轴向推力自平衡型多级离心鼓风机
US10422344B1 (en) * 2018-09-13 2019-09-24 Borgwarner Inc. Turbocharger turbine diffuser with deswirl ribs
KR20200079039A (ko) * 2018-12-24 2020-07-02 엘지전자 주식회사 2단 원심식 압축기
US10914318B2 (en) 2019-01-10 2021-02-09 General Electric Company Engine casing treatment for reducing circumferentially variable distortion
KR102211594B1 (ko) * 2019-01-18 2021-02-02 인하대학교 산학협력단 부분 디퓨저 베인을 포함하는 원심펌프
US11136993B2 (en) 2019-04-03 2021-10-05 Pratt & Whitney Canada Corp. Diffuser pipe with asymmetry
CN110513326B (zh) * 2019-08-27 2024-04-23 浙江理工大学 一种主动控制压力脉动的离心泵叶轮
CN111080003B (zh) * 2019-12-10 2023-05-02 华能威宁风力发电有限公司 一种适应复杂山地风电场的测风塔规划选址方法
TWI724872B (zh) * 2020-04-17 2021-04-11 建準電機工業股份有限公司 離心扇輪及具有該離心扇輪的離心風扇
CN111523186B (zh) * 2020-05-19 2024-01-19 重庆水泵厂有限责任公司 双吸水泵用吸水室形状的优化方法
EP4193035A1 (en) 2020-08-07 2023-06-14 Concepts NREC, LLC Flow control structures for enhanced performance and turbomachines incorporating the same
CN112594064B (zh) * 2020-11-25 2021-12-14 北京航空航天大学 一种基于轴流压气机级间测量参数的s2流场诊断方法
CN112560233A (zh) * 2020-12-01 2021-03-26 贵州大学 一种微型三元叶片泵的建模方法
WO2022119709A1 (en) * 2020-12-03 2022-06-09 Danfoss A/S Refrigerant compressor including diffuser with grooves
CN113513373B (zh) * 2021-07-08 2023-05-30 哈尔滨工程大学 一种变几何涡轮一维气动设计方法
CN114321000B (zh) * 2022-01-19 2023-10-13 重庆水泵厂有限责任公司 一种不对称双吸叶轮及双吸离心泵
EP4283137A1 (en) * 2022-05-25 2023-11-29 Otto-von-Guericke-Universität Magdeburg Centrifugal pump
US11882979B2 (en) 2022-05-27 2024-01-30 Haier Us Appliance Solutions, Inc. Centrifugal pump diffuser housings
CN117128187A (zh) * 2023-10-17 2023-11-28 上海交通大学 一种应用闭式叶轮的离心压缩机扩稳增效的端壁处理方法
CN117332532B (zh) * 2023-12-01 2024-03-08 陕西空天信息技术有限公司 一种轴流叶轮机械叶片模型构建方法及装置

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029813A (en) 1932-10-25 1936-02-04 Mey Rene De Guiding vane for fans or the like
US2967013A (en) 1954-10-18 1961-01-03 Garrett Corp Diffuser
US2991927A (en) 1958-02-03 1961-07-11 Thomas E Quick Apparatus for moving fluids
US3369737A (en) 1962-12-10 1968-02-20 Gen Electric Radial flow machine
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
US3781128A (en) 1971-10-12 1973-12-25 Gen Motors Corp Centrifugal compressor diffuser
FR2205949A5 (ko) * 1972-11-06 1974-05-31 Cit Alcatel
US3893787A (en) 1974-03-14 1975-07-08 United Aircraft Corp Centrifugal compressor boundary layer control
US3904312A (en) 1974-06-12 1975-09-09 Avco Corp Radial flow compressors
GB1518293A (en) * 1975-09-25 1978-07-19 Rolls Royce Axial flow compressors particularly for gas turbine engines
US4131389A (en) * 1975-11-28 1978-12-26 The Garrett Corporation Centrifugal compressor with improved range
US4063848A (en) * 1976-03-24 1977-12-20 Caterpillar Tractor Co. Centrifugal compressor vaneless space casing treatment
JPS605788B2 (ja) 1977-10-20 1985-02-14 株式会社東芝 水車ケーシング
US4212585A (en) * 1978-01-20 1980-07-15 Northern Research And Engineering Corporation Centrifugal compressor
GB2034435A (en) 1978-10-24 1980-06-04 Gerry U Fluid rotary power conversion means
JPS56113097A (en) 1980-02-08 1981-09-05 Hitachi Ltd Diffuser for centrifugal hydraulic machine
FR2487018A1 (fr) * 1980-07-16 1982-01-22 Onera (Off Nat Aerospatiale) Perfectionnements aux compresseurs supersoniques
US4479755A (en) 1982-04-22 1984-10-30 A/S Kongsberg Vapenfabrikk Compressor boundary layer bleeding system
US4606699A (en) * 1984-02-06 1986-08-19 General Electric Company Compressor casing recess
GB2245312B (en) 1984-06-19 1992-03-25 Rolls Royce Plc Axial flow compressor surge margin improvement
US4626168A (en) * 1985-05-15 1986-12-02 Dresser Industries, Inc. Diffuser for centrifugal compressors and the like
EP0229519B2 (en) 1985-12-24 1996-11-13 Holset Engineering Company Limited Improvements in and relating to compressors
US4781530A (en) * 1986-07-28 1988-11-01 Cummins Engine Company, Inc. Compressor range improvement means
US4824325A (en) 1988-02-08 1989-04-25 Dresser-Rand Company Diffuser having split tandem low solidity vanes
US4877373A (en) * 1988-02-08 1989-10-31 Dresser-Rand Company Vaned diffuser with small straightening vanes
US4902200A (en) * 1988-04-25 1990-02-20 Dresser-Rand Company Variable diffuser wall with ribbed vanes
US5228832A (en) 1990-03-14 1993-07-20 Hitachi, Ltd. Mixed flow compressor
US5178516A (en) 1990-10-02 1993-01-12 Hitachi, Ltd. Centrifugal compressor
US5489186A (en) 1991-08-30 1996-02-06 Airflow Research And Manufacturing Corp. Housing with recirculation control for use with banded axial-flow fans
JP2743658B2 (ja) 1991-10-21 1998-04-22 株式会社日立製作所 遠心圧縮機
JPH05149296A (ja) * 1991-11-28 1993-06-15 Daikin Ind Ltd 遠心圧縮機
JPH064398U (ja) * 1992-06-19 1994-01-21 三菱重工業株式会社 遠心圧縮機
US5316441A (en) 1993-02-03 1994-05-31 Dresser-Rand Company Multi-row rib diffuser
US5368440A (en) 1993-03-11 1994-11-29 Concepts Eti, Inc. Radial turbo machine
JP3482668B2 (ja) * 1993-10-18 2003-12-22 株式会社日立製作所 遠心形流体機械
US5730580A (en) 1995-03-24 1998-03-24 Concepts Eti, Inc. Turbomachines having rogue vanes
DE19722353A1 (de) 1997-05-28 1998-12-03 Klein Schanzlin & Becker Ag Kreiselpumpe mit einer Einlaufleiteinrichtung
GB2337795A (en) 1998-05-27 1999-12-01 Ebara Corp An impeller with splitter blades
US6164911A (en) 1998-11-13 2000-12-26 Pratt & Whitney Canada Corp. Low aspect ratio compressor casing treatment
US6231301B1 (en) * 1998-12-10 2001-05-15 United Technologies Corporation Casing treatment for a fluid compressor
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
JP3578692B2 (ja) * 2000-03-02 2004-10-20 株式会社 日立インダストリイズ ターボ圧縮機
EP1134427B1 (en) 2000-03-17 2004-09-22 Hitachi, Ltd. Turbo machines
CN1190597C (zh) * 2000-03-20 2005-02-23 株式会社日立制作所 涡轮式泵送装置
JP3899829B2 (ja) 2001-02-28 2007-03-28 株式会社日立プラントテクノロジー ポンプ
EP1404975B1 (en) 2001-06-15 2009-08-26 Concepts ETI, Inc. Flow stabilizing device
CN1192172C (zh) * 2001-07-27 2005-03-09 三菱重工业株式会社 离心压缩机
DE10205363A1 (de) * 2002-02-08 2003-08-21 Rolls Royce Deutschland Gasturbine
WO2004018844A1 (de) * 2002-08-23 2004-03-04 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
GB0325215D0 (en) 2003-10-29 2003-12-03 Rolls Royce Plc Design of vanes for exposure to vibratory loading
KR100568183B1 (ko) 2004-01-08 2006-04-05 삼성전자주식회사 터보압축기
US7025557B2 (en) 2004-01-14 2006-04-11 Concepts Eti, Inc. Secondary flow control system
US7189059B2 (en) 2004-10-27 2007-03-13 Honeywell International, Inc. Compressor including an enhanced vaned shroud
JP2006170112A (ja) * 2004-12-17 2006-06-29 Mitsubishi Heavy Ind Ltd 流体機械の不安定流動抑制装置
US7448852B2 (en) 2005-08-09 2008-11-11 Praxair Technology, Inc. Leaned centrifugal compressor airfoil diffuser
US8016557B2 (en) 2005-08-09 2011-09-13 Praxair Technology, Inc. Airfoil diffuser for a centrifugal compressor
US7658592B1 (en) 2005-12-29 2010-02-09 Minebea Co., Ltd. Slots in fan housing to reduce tonal noise
EP1860325A1 (de) 2006-05-26 2007-11-28 ABB Turbo Systems AG Diffusor
US7758303B1 (en) * 2006-07-31 2010-07-20 General Electric Company FLADE fan with different inner and outer airfoil stagger angles at a shroud therebetween
US20080044273A1 (en) * 2006-08-15 2008-02-21 Syed Arif Khalid Turbomachine with reduced leakage penalties in pressure change and efficiency
FR2907519B1 (fr) * 2006-10-20 2011-12-16 Snecma Nageoire de plateforme de soufflante
JP5050511B2 (ja) * 2006-12-04 2012-10-17 株式会社Ihi 遠心圧縮機におけるディフューザの構造
DE102007037924A1 (de) * 2007-08-10 2009-02-12 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
JP4952465B2 (ja) * 2007-09-13 2012-06-13 株式会社Ihi パイプディフューザ式遠心圧縮機
US8499229B2 (en) 2007-11-21 2013-07-30 Micro Technology, Inc. Method and apparatus for reading data from flash memory
EP2090788A1 (en) * 2008-02-14 2009-08-19 Napier Turbochargers Limited Impeller and turbocharger
DE102008011644A1 (de) * 2008-02-28 2009-09-03 Rolls-Royce Deutschland Ltd & Co Kg Gehäusestrukturierung für Axialverdichter im Nabenbereich
US7941300B1 (en) 2008-02-29 2011-05-10 Florida Turbine Technologies, Inc. Process for the design of an airfoil
US8506237B2 (en) 2008-03-12 2013-08-13 Concepts Eti, Inc. Radial-flow turbomachines having performance-enhancing features
DE102008019603A1 (de) * 2008-04-18 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Strömungsmaschine mit schaufelreiheninterner Fluid-Rückführung
US8052384B2 (en) 2008-06-17 2011-11-08 Hamilton Sundstrand Corporation Centrifugal pump with segmented diffuser
JP2010025000A (ja) * 2008-07-22 2010-02-04 Hitachi Plant Technologies Ltd 遠心流体機械
JP5316365B2 (ja) 2009-10-22 2013-10-16 株式会社日立プラントテクノロジー ターボ型流体機械
WO2011053278A1 (en) 2009-10-27 2011-05-05 General Electric Company Droplet catcher for centrifugal compressor
US8616836B2 (en) 2010-07-19 2013-12-31 Cameron International Corporation Diffuser using detachable vanes
JP5905315B2 (ja) 2012-03-29 2016-04-20 三菱重工業株式会社 遠心圧縮機
WO2014116842A1 (en) 2013-01-23 2014-07-31 Concepts Eti, Inc. Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
US10240613B2 (en) * 2013-05-14 2019-03-26 Dresser-Rand Company Supersonic compressor with structural arrangement to increase pressure energy in a discharge process fluid received from a centrifugal impeller
CN106574636B (zh) 2014-06-24 2021-08-24 概创机械设计有限责任公司 用于涡轮机的流动控制结构及其设计方法

Also Published As

Publication number Publication date
JP6866019B2 (ja) 2021-04-28
KR20230028811A (ko) 2023-03-02
KR20170028367A (ko) 2017-03-13
JP7300476B2 (ja) 2023-06-29
JP2021102967A (ja) 2021-07-15
CN113685377A (zh) 2021-11-23
US9970456B2 (en) 2018-05-15
WO2015200533A1 (en) 2015-12-30
US20150369073A1 (en) 2015-12-24
CN106574636A (zh) 2017-04-19
US9845810B2 (en) 2017-12-19
EP3161324B1 (en) 2021-09-22
JP2017523338A (ja) 2017-08-17
JP2022091926A (ja) 2022-06-21
EP3161324A1 (en) 2017-05-03
US20180258950A1 (en) 2018-09-13
US11085460B2 (en) 2021-08-10
CN106574636B (zh) 2021-08-24
US20170016457A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
KR102502353B1 (ko) 터보기기를 위한 유동 제어 구조 및 그 설계 방법
US9551225B2 (en) Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
RU2666933C1 (ru) Деталь или узел газотурбинного двигателя и соответствующий газотурбинный двигатель
Ješe et al. Numerical study of pump-turbine instabilities under pumping mode off-design conditions
RU2667855C2 (ru) Рабочее колесо компрессора
KR101808076B1 (ko) 효율 및 흡입성능을 동시에 최적화하는 원심 및 사류 펌프 임펠러 최적화 설계 방법, 이에 의하여 설계된 원심 및 사류 펌프 임펠러 및 원심 및 사류 펌프
EP1532367A2 (en) Centrifugal impeller and pump apparatus
Kuang et al. Effect of hub inclination angle on internal and external characteristics of centrifugal pump impellers
US11828188B2 (en) Flow control structures for enhanced performance and turbomachines incorporating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant