KR102487551B1 - 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법 - Google Patents

플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법 Download PDF

Info

Publication number
KR102487551B1
KR102487551B1 KR1020170117234A KR20170117234A KR102487551B1 KR 102487551 B1 KR102487551 B1 KR 102487551B1 KR 1020170117234 A KR1020170117234 A KR 1020170117234A KR 20170117234 A KR20170117234 A KR 20170117234A KR 102487551 B1 KR102487551 B1 KR 102487551B1
Authority
KR
South Korea
Prior art keywords
wafer
chamber
align
plasma etching
electrostatic chuck
Prior art date
Application number
KR1020170117234A
Other languages
English (en)
Other versions
KR20190030032A (ko
Inventor
이준수
김재훈
민경학
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020170117234A priority Critical patent/KR102487551B1/ko
Priority to US15/924,978 priority patent/US10290527B2/en
Publication of KR20190030032A publication Critical patent/KR20190030032A/ko
Priority to KR1020220185024A priority patent/KR102582667B1/ko
Application granted granted Critical
Publication of KR102487551B1 publication Critical patent/KR102487551B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

본 발명은 얼라인 챔버 및 공정 챔버를 구비하는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법을 제공한다. 반도체 소자의 제조 방법은 상기 플라즈마 식각 장치의 얼라인 챔버로 웨이퍼를 로딩하는 단계와, 상기 공정 챔버의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경하는 단계와, 상기 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 공정 챔버의 정전척 상으로 이송하는 단계와, 상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함하되, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 경향에 따라 회전시킨다.

Description

플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법{Manufacturing method of semiconductor device using plasma etching apparatus}
본 발명의 기술적 사상은 반도체 소자의 제조 방법에 관한 것으로, 보다 상세하게는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법에 관한 것이다.
플라즈마 식각 장치는 반도체 소자의 제조에 이용될 수 있다. 플라즈마 식각 장치는 공정 챔버 내에서 플라즈마를 이용하여 웨이퍼를 플라즈마 식각 처리할 수 있다. 플라즈마 식각 장치를 이용하여 공정 챔버 내의 웨이퍼를 플라즈마 식각 처리할 경우, 웨이퍼 상에 플라즈마 균일도를 조절하기가 어려워 식각 균일도가 떨어질 수 있다.
본 발명의 기술적 사상이 해결하고자 하는 과제는 플라즈마 식각 장치를 이용한 웨이퍼를 플라즈마 식각 처리할 때 식각 균일도를 향상시킬 수 있는 반도체 소자의 제조 방법을 제공하는 데 있다.
상술한 과제를 해결하기 위하여, 본 발명의 기술적 사상의 일 실시예는 얼라인 챔버 및 공정 챔버를 구비하는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법을 제공한다. 반도체 소자의 제조 방법은 플라즈마 식각 장치의 얼라인 챔버로 웨이퍼를 로딩하는 단계와, 상기 공정 챔버의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경하는 단계와, 상기 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 공정 챔버의 정전척 상으로 이송하는 단계와, 상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함하되, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 경향에 따라 회전시킨다.
본 발명의 기술적 사상의 일 실시예는 얼라인 챔버 및 공정 챔버를 구비하는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법을 제공한다. 반도체 소자의 제조 방법은 상기 플라즈마 식각 장치의 얼라인 챔버로 웨이퍼를 로딩하는 단계; 상기 플라즈마 식각 장치의 메인 컨트롤러로부터 상기 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터를 얻는 단계와, 상기 식각 산포 데이터에 따라 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경시키는 단계와, 상기 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 공정 챔버의 정전척 상으로 이송하는 단계와, 및 상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함한다.
또한, 본 발명의 기술적 사상의 일 실시예는 플라즈마 식각 장치의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계와, 상기 웨이퍼 컨테이너에 탑재된 웨이퍼를 제1 이송 로봇을 이용하여 제1 얼라인 챔버로 이송하는 단계와, 공정 챔버의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경시키는 단계와, 상기 제1 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 제1 이송 로봇을 이용하여 상기 플라즈마 식각 장치의 로드락 챔버로 로딩하는 단계와, 상기 로드락 챔버 내의 상기 회전된 웨이퍼를 이송 챔버에 위치하는 제2 이송 로봇을 이용하여 상기 공정 챔버의 복수개의 히팅 존들(heating zones)이 마련된 정전척 상으로 이송하는 단계와, 상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함한다.
상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치에 맞추어 회전시키고, 상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들의 경계 부분에 상기 임계 크기 측정 위치가 놓이지 않도록 회전시키거나, 상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들중 어느 하나에 복수개의 임계 크기 측정 위치들이 놓이지 않도록 회전시킨다.
본 발명의 기술적 사상의 일 실시예의 반도체 소자의 제조 방법은 플라즈마 식각 장치를 이용하여 공정 챔버 내의 웨이퍼를 플라즈마 식각 처리할 때, 얼라인 챔버에서 공정 챔버 내의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 맞추어 웨이퍼를 회전시켜 식각 균일도를 향상시킬 수 있다.
본 발명의 기술적 사상의 일 실시예의 반도체 소자의 제조 방법은 플라즈마 식각 장치를 이용하여 공정 챔버 내의 웨이퍼를 플라즈마 식각 처리할 때, 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터에 따라 얼라인 챔버에서 웨이퍼를 회전시켜 식각 균일도를 향상시킬 수 있다.
도 1은 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치를 도시한 평면도이다.
도 2는 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치를 도시한 단면도이다.
도 3은 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치의 로드 포트부, 설비 전방 단부 모듈 및 제1 얼라인 챔버를 도시한 평면도이다.
도 4는 도 1 내지 도 3에 도시한 플라즈마 식각 장치의 제조 공정 설비를 설명하기 위하여 도시한 단면도이다.
도 5는 도 4의 정전척을 도시한 단면도이다.
도 6a 및 도 6b는 도 4의 정전척의 히팅 존들을 설명하기 위한 정전척의 평면도이다.
도 7은 도 6b의 히터 전극을 이용한 정전척의 온도 제어를 설명하기 위한 단면도이다.
도 8은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
도 9는 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
도 10은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
도 11은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
도 12는 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
도 13a 및 도 13b는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치의 얼라인 챔버에서의 웨이퍼 회전을 설명하기 위한 평면도이다.
도 14는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치에 의해 플라즈마 식각 처리된 웨이퍼의 임계 크기 측정 위치를 도시한 도면이다.
도 15a, 도 15b, 도 16a 및 도 16b는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치에 의해 플라즈마 식각 처리된 웨이퍼의 임계 크기 측정 위치에 대응되는 정전척의 히팅 존들을 설명하기 위한 평면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 본 발명의 실시예들은 어느 하나로만 구현될 수도 있고, 또한, 이하의 실시예들은 하나 이상을 조합하여 구현될 수도 있다. 따라서, 본 발명의 기술적 사상을 하나의 실시예에 국한하여 해석되지는 않는다.
본 명세서에서, 구성 요소들의 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 본 명세서에서는 본 발명을 보다 명확히 설명하기 위하여 도면을 과장하여 도시한다.
도 1은 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치를 도시한 평면도이다.
구체적으로, 플라즈마 식각 장치(400)는 복수 매의 웨이퍼(기판, 90)를 처리할 수 있는 클러스터 시스템일 수 있다. 클러스터(cluster) 시스템은 이송 로봇(또는 핸들러(handler))과 그 주위에 마련된 복수의 기판 처리 모듈을 포함하는 멀티 챔버형 기판 처리 시스템을 지칭할 수 있다.
플라즈마 식각 장치(400)는 로드 포트부(50), 설비 전방 단부 모듈(equipment front end module, 100), 제1 얼라인 챔버(200), 제2 얼라인 챔버(200a) 및 제조 공정 설비(300)를 포함할 수 있다. 플라즈마 식각 장치(400)는 제1 얼라인 챔버(200) 및 제2 얼라인 챔버(200a)를 포함하였으나, 필요에 따라서 제1 얼라인 챔버(200) 및 제2 얼라인 챔버(200a)중 어느 하나만을 포함할 수 있다.
로드 포트부(50)는 설비 전방 단부 모듈(100)의 전단에 웨이퍼 컨테이너(54)와 웨이퍼 컨테이너(54)가 놓여지는 웨이퍼 컨테이너 지지대(52)를 포함할 수 있다. 설비 전방 단부 모듈(100)은 대기압에서 동작되는 제1 이송 로봇(102)이 구비될 수 있다.
웨이퍼 컨테이너(54)는 웨이퍼들을 수납하는 용기로 이송 중에 대기중의 이물이나 화학적인 오염으로부터 웨이퍼를 보호하기 위해 밀폐형의 전면 개방 일체식 포드(FOUP)가 이용될 수 있다. 설비 전방 단부 모듈(100)의 전단에는 웨이퍼 컨테이너(54)가 놓여지는 웨이퍼 컨테이너 지지대(52)를 포함하는 로드 포트부(50)가 설치될 수 있다.
제1 이송 로봇(102)은 전면 개방 일체식 포드(FOUP, front open unified pod) 형태의 웨이퍼 컨테이너(또는 웨이퍼 캐리어, 54)와 제조 공정 설비(300)의 로드락 챔버(302, load lock chamber) 사이에서 웨이퍼(90)의 이송을 담당할 수 있다.
제1 이송 로봇(102)은 웨이퍼 컨테이너(또는 웨이퍼 캐리어, 54)와 제1 얼라인 챔버(200)사이, 또는 제1 얼라인 챔버(200)와 로드락 챔버(302) 사이에 웨이퍼(90)의 이송을 담당할 수 있다. 예컨대, 제1 이송 로봇(102)은 웨이퍼 컨테이너(또는 웨이퍼 캐리어, 54)에서 도 1의 화살표로 표시한 바와 같이 제1 얼라인 챔버(200)로 웨이퍼(90)를 이송한 후, 제1 얼라인 챔버(200)에서 로드락 챔버(302)로 웨이퍼(90)를 이송할 수 있다.
제1 얼라인 챔버(200)는 설비 전방 단부 모듈(100)의 일측 또는 양측에 위치하며 별도로 설치될 수 있다. 제1 얼라인 챔버(200)는 설비 전방 단부 모듈(100)의 내부로 일부 삽입하여 설치될 수 있다. 제1 얼라인 챔버(200)에는 얼라인 컨트롤러(210)가 연결되어 있다. 제1 얼라인 챔버(200)에는 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내의 정전척에 마련된 히팅 존들(heating zones)에 부합되게 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다.
더하여, 얼라인 컨트롤러(210)에는 플라즈마 식각 장치(400)의 메인 컨트롤러(1250)가 연결되어 있을 수 있다. 제1 얼라인 챔버(200)에서는 메인 컨트롤러(1250) 및 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터에 따라 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다.
제1 얼라인 챔버(200)에서는 메인 컨트롤러(1250) 및 얼라인 컨트롤러(210)를 이용하여 플라즈마 식각 처리후 수행되는 임계 크기(critical dimension, CD)의 측정 위치에 맞추어 웨이퍼(90)를 회전시킬 수 있다. 이상과 같이 제1 얼라인 챔버(200) 내의 웨이퍼(90)는 정전척에 마련된 히팅 존, 비교 웨이퍼에서 측정된 식각 산포 데이터 및/또는 임계 크기의 측정 위치에 근거하여 회전시킬 수 있다.
제조 공정 설비(300)는 로드락 챔버(302), 이송 챔버(304) 및 공정 챔버(308)를 포함할 수 있다. 제조 공정 설비(300)는 웨이퍼(90), 예컨대 300mm 직경의 웨이퍼를 이송할 수 있는 이송 챔버(304)와, 웨이퍼(90) 상에 플라즈마 식각 공정, 예컨대 건식 식각 공정을 수행하기 위한 복수개의 공정 챔버(308)를 포함할 수 있다. 이송 챔버(304)에는 회동이 자유롭게 마련된 제2 이송 로봇(306)이 구비될 수 있다. 이송 챔버(304)의 각 변에는 웨이퍼(90)의 플라즈마 식각 공정을 수행하기 위한 공정 챔버들(308), 2개의 로드락 챔버(302) 및 제2 얼라인 챔버(200a)가 연결될 수 있다.
로드락 챔버(302)에 로딩된 웨이퍼(90)는 제2 이송 로봇(306)을 이용하여 제2 얼라인 챔버(200a)로 로딩될 수 있다. 제2 얼라인 챔버(200a)에는 얼라인 컨트롤러(210)가 연결되어 있다. 제2 얼라인 챔버(200a)에는 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내의 정전척에 마련된 히팅 존들(heating zones)에 부합되게 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다.
더하여, 제2 얼라인 챔버(200a)에서 메인 컨트롤러(1250) 및 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터에 따라 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다.
제2 얼라인 챔버(200a)에서는 메인 컨트롤러(1250) 및 얼라인 컨트롤러(210)를 이용하여 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치에 맞추어 웨이퍼(90)를 회전시킬 수 있다. 이상과 같이 제2 얼라인 챔버(200a) 내의 웨이퍼(90)는 정전척에 마련된 히팅 존, 비교 웨이퍼에서 측정된 식각 산포 데이터 및/또는 임계 크기 측정 위치에 근거하여 회전시킬 수 있다. 더하여, 플라즈마 식각 장치(400)의 메인 컨트롤러(1250)로부터 얻어진 식각 산포 데이터는 소프트웨어적으로 얼라인 컨트롤러(210)에 피드백되어 웨이퍼(90)의 회전 각도가 자동적으로 조절될 수 있다.
제1 얼라인 챔버(200) 및 제2 얼라인 챔버(200a) 중 적어도 하나를 거친 웨이퍼(90)는 제2 이송 로봇(306)을 이용하여 공정 챔버(308)로 로딩되어 플라즈마 처리 될 수 있다. 제1 얼라인 챔버(200) 및 제2 얼라인 챔버(200a)중 어느 하나를 거친 웨이퍼(90)는 앞서 설명한 바와 같이 정전척에 마련된 히팅 존들(heating zones)에 부합되게 웨이퍼(90)를 회전시켰기 때문에 식각 균일도를 향상시킬 수 있다.
플라즈마 식각 장치(400)에서 처리되는 웨이퍼(90)는 대표적으로 반도체 회로를 제조하기 위한 것일 수 있다. 플라즈마 식각 장치(400)의 도시된 구성 외에도 집적 회로 또는 칩의 완전한 제조에 요구되는 모든 프로세스를 수행하기 위해 다수의 프로세싱 시스템들이 요구될 수 있다. 그러나 본 발명의 명확한 설명을 위하여 통상적인 구성이나 당업자 수준에서 이해될 수 있는 구성들은 생략하였다.
로드락 챔버(302)는 이송 챔버(304)의 제2 이송 로봇(306)이 웨이퍼(90)를 로딩 또는 언로딩하는 시기에 이송 챔버(304)와 동일한(근접한) 진공분위기를 형성하고 설비 전방 단부 모듈(100)로부터 미가공 웨이퍼를 공급 받을 수 있다. 이미 가공된 웨이퍼(90)를 설비 전방 단부 모듈(100)로 이송시키게 될 때에는 로드락 챔버(302)는 대기압 상태로서 유지된다.
로드락 챔버(302)는 이송 챔버(304)의 기압 상태가 변화되는 것을 방지시키기 위해 그 자체적으로 진공 상태와 대기압 상태를 교차하면서 압력을 유지하게 되는 특징이 있다. 도시하지 않았지만, 로드락 챔버(302) 내부에는 웨이퍼(90)가 임시 대기하는 버퍼 스테이지가 설치될 수 있다.
공정 챔버(308)에서 플라즈마 식각 처리된 웨이퍼(90)는 이송 챔버(304)의 제2 이송 로봇(306)에 의해 진공 상태의 로드락 챔버(302) 내로 이송될 수 있다. 로드락 챔버(302)로 이송된 웨이퍼(90)는 제1 이송 로봇(102)을 이용하여 웨이퍼 컨테이너(54)로 이송될 수 있다.
도 2는 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치를 도시한 단면도이고, 도 3은 본 발명의 기술적 사상의 일 예에 의한 반도체 소자의 제조 방법을 설명하기 위한 플라즈마 식각 장치의 로드 포트부, 설비 전방 단부 모듈 및 제1 얼라인 챔버를 도시한 평면도이다.
구체적으로, 플라즈마 식각 장치(400)는 앞서 설명한 바와 같이 로드 포트부(50), 설비 전방 단부 모듈(100), 제조 공정 설비(300) 및 제1 얼라인 챔버(200)를 포함할 수 있다. 로드 포트부(50)는 앞서 설명한 바와 같이 설비 전방 단부 모듈(100)의 전단에 웨이퍼 컨테이너(54)와 웨이퍼 컨테이너(54)가 놓여지는 웨이퍼 컨테이너 지지대(52)를 포함할 수 있다.
설비 전방 단부 모듈(100)은 웨이퍼 컨테이너(54)와 제조 공정 설비(300)간에 웨이퍼(90)를 이송하기 위한 것일 수 있다. 설비 전방 단부 모듈(100)은 내부 일정 공간(118)을 갖는 하우징(housing, 128), 클리닝부(cleaning unit, 140), 제1 이송 로봇(transfer robot, 102)을 가질 수 있다. 하우징(128)은 직육면체의 형상을 가질수 있다. 하우징(128)과 제조 공정 설비(300)와 인접하는 일측면인 하우징(128)의 후면(rear wall, 130)에는 웨이퍼 이송을 위한 통로인 반입구(132)가 형성될 수 있고, 하우징(128)의 전면(142)에는 개구부가 형성된다.
클리닝부(140)는 하우징(128) 내부를 일정 청정도로 유지하기 위해 하우징(128) 내의 상부에 배치된다. 클리닝부(140)는 하우징(128) 내의 상부에 배치되는 팬(fan, 136)과 필터(filter, 138)를 포함할 수 있다. 팬(136)은 하우징(128) 내의 상부에서 하부로 공기가 흐르도록 하며, 필터(138)는 공기 중의 파티클을 제거하여 공기를 여과한다.
하우징(128)의 하부면에는 공기의 배기통로인 배기구(131)가 형성될 수 있다. 공기는 자연 배기되거나 펌프(도시되지 않음)에 의해 강제 배기될 수 있다. 제1 이송 로봇(102)은 로드 포트부(50)와 제조 공정 설비(300)간 웨이퍼(90)를 이송하며 로봇 컨트롤러(134)에 의해 제어될 수 있다. 이송 로봇(660)은 하나 또는 둘 이상이 설치될 수 있으며, 하우징(128) 내에 배치된다.
하우징(128)의 전면(142) 개구부에는 웨이퍼 컨테이너(54)의 도어(126)가 위치할 수 있다. 하우징(128) 내에는 웨이퍼 컨테이너(54)의 도어를 오픈하는 도어 오프너(124)가 설치될 수 있다. 도어 오프너(124)는 도어 홀더(120), 아암(122), 및 구동부(도시되지 않음)를 가질 수 있다. 도어 홀더(120)는 도어(126)와 상응되는 크기 및 형상을 가질 수 있다. 아암(122)은 도어 홀더(120)의 후면에 고정 결합되고, 구동부에 의해 구동될 수 있다.
도 3에 도시한 바와 같이 제1 이송 로봇(102)을 포함하는 설비 전방 단부 모듈(100)의 전단에는 웨이퍼 컨테이너(54) 및 웨이퍼 컨테이너 지지대(52)를 포함하는 로드 포트부(50)가 위치할 수 있다. 설비 전방 단부 모듈(100)의 후단에는 제조 공정 설비의 로드락 챔버(302)가 위치할 수 있다.
설비 전방 단부 모듈(100)의 일측 단부에는 제1 얼라인 챔버(200)가 위치한다. 제1 얼라인 챔버(200)는 설비 전방 단부 모듈(100)의 하우징(128) 내부로 일부 삽입하여 설치될 수 있다. 앞서 설명한 바와 같이 제1 얼라인 챔버(200)에는 얼라인 컨트롤러(210) 및 메인 컨트롤러(1250)가 연결되어 있다.
제1 얼라인 챔버(200)에는 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내의 정전척에 마련된 히팅 존들(heating zones)에 부합되게 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다.
제1 얼라인 챔버(200)에는 메인 컨트롤러(1250) 및 얼라인 컨트롤러(210)를 이용하여 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터에 따라 웨이퍼(90)를 회전시켜 식각 균일도를 향상시킬 수 있다. 다시 말해, 플라즈마 식각 장치(400)의 메인 컨트롤러(1250)로부터 얻어진 식각 산포 데이터는 소프트웨어적으로 얼라인 컨트롤러(210)에 피드백되어 웨이퍼(90)의 회전 각도가 자동적으로 조절되어 식각 균일도를 향상시킬 수 있다.
도 4는 도 1 내지 도 3에 도시한 플라즈마 식각 장치의 제조 공정 설비를 설명하기 위하여 도시한 단면도이고, 도 5는 도 4의 정전척을 도시한 단면도이다.
구체적으로, 도 4는 도 1 내지 도 3의 플라즈마 식각 장치(400)에 포함되는 제조 공정 설비(300), 특히 공정 챔버(308) 및 정전척(1101)을 설명하기 위하여 도시한 것이다. 도 5는 도 4의 정전척(1101)을 보다 자세하게 설명하기 위하여 도시한 것이다. 제조 공정 설비(300)는 유도 결합 방식(inductively coupled type)으로 발생되는 플라즈마(ICP, inductively coupled plasma)를 이용하여 정전척(1101)에 탑재되는 웨이퍼(90)를 식각 처리하는 플라즈마 처리 장치일 수 있다. 정전척(1101)은 용량 결합 방식(charge coupled type)으로 발생되는 플라즈마(CCP, charge coupled plasma)를 이용한 식각 처리 장치에도 사용될 수 있다.
제조 공정 설비(300)는 원통형의 공정 챔버(308)의 하부 중앙에 웨이퍼(90)를 탑재하는 정전척(1101)을 갖는 정전척 어셈블리(1400, electrostatic chuck assembly)를 구비할 수 있다. 정전척 어셈블리(1400)는 웨이퍼(90), 예컨대 실리콘 웨이퍼를 흡착하는 정전척(1101, electrostatic chuck)과, 정전척(1101)의 작동을 제어하는 제어부(1200, control part)를 포함할 수 있다.
정전척(1101)은 도 4 및 도 5에 도시한 바와 같이 베이스(1110, base), 및 접착층(1130)에 의해 베이스(1110)에 접착된 유전 적층체(1140)를 포함할 수 있다. 유전 적층체(1140)는 베이스(1110) 상에 차례로 적층된 히터 유전층(1141, heater dielectric layer)과 정전 유전층(1142, electrostatic dielectric layer)을 포함할 수 있다.
접착층(1130)은 제1 접착제(1131)와 제2 접착제(1132)를 포함하는 이중막 구조일 수 있다. 제1 접착제(1131)와 제2 접착제(1132) 사이에 금속판(1120)이 더 제공될 수 있다. 베이스(1110)는 금속, 예컨대 알루미늄(Al), 타이타늄(Ti), 스테인레스 스틸(stainless steel), 텅스텐(W), 혹은 이들의 합금과 같은 금속으로 구성된 원형 형태나 디스크 형태를 가질 수 있다.
정전척(1101)은 플라즈마를 이용하여 웨이퍼(90)를 식각 처리하는 플라즈마 식각 처리 장치에 사용될 수 있다. 이 경우 정전척(1101)이 설치되는 공정 챔버(308)의 내부가 고온 환경으로 조성되고, 고온의 플라즈마에 웨이퍼(90)가 노출될 경우 웨이퍼(90)에 이온충격(ion bombardment)과 같은 손상이 가해질 수 있다. 웨이퍼(90)의 손상을 피하기 위해 그리고 균일한 플라즈마 처리를 위해 웨이퍼(90)를 냉각할 필요성이 있을 수 있다.
웨이퍼(90)의 냉각을 위해 베이스(1110)에는 냉각수가 흐르는 냉각수 채널(1112)이 더 제공되어 있을 수 있다. 예컨대, 냉각수는 물, 에틸렌글리콜, 실리콘오일, 액체 테플론, 물과 글리콜과의 혼합물을 포함 할 수 있다. 냉각수 채널(1112)은 베이스(1110)의 중심축을 중심으로 동심원형(concentrical) 혹은 나선형(helical)의 파이프 구조를 가질 수 있다.
냉각수 채널(1112)은 도 5에 도시한 바와 같이 냉각수가 유입되는 입구(1112a)와 냉각수가 유출되는 출구(1112b)를 포함할 수 있고, 입구(1112a)와 출구(1112b)는 제어부(1200)의 온도 조절기(1230, temperature adjuster)에 연결될 수 있다. 온도 조절기(1230)에 의해 냉각수 채널(1112)에서 순환하는 냉각수의 흐름 속도와 온도가 조절될 수 있다.
베이스(1110)는 제어부(1200)의 바이어스 파워 소스(1220, bias power source)에 전기적으로 연결될 수 있다. 바이어스 파워 소스(1220)로부터 고주파 파워(high frequency or radio frequency)가 베이스(1110)에 인가되고, 이에 따라 베이스(1110)는 플라즈마 발생을 위한 전극 역할을 할 수 있다.
베이스(1110)는 도 4 및 도 5에 도시한 바와 같이 온도 센서(114)를 더 포함할 수 있다. 온도 센서(1114)는 측정된 베이스(1110)의 온도를 제어부(1200)의 메인 컨트롤러(1250, controller)로 전송할 수 있다. 온도 센서(1114)로부터 측정된 온도를 토대로 정전척(1101)의 온도, 예컨대 정전 유전층(1150) 혹은 웨이퍼(90)의 온도가 예측될 수 있다.
히터 유전층(1141)은 임베디드된(embedded) 히터 전극(1145, heater electrode)을 포함할 수 있다. 히터 유전층(1141)은 세라믹, 예컨대, 알루미늄 산화층(Al2O3), 알루미늄 질화층(AlN), 이트륨 산화층(Y2O3)이나 레진, 예컨대 폴리이미드와 같은 유전체로 구성될 수 있다. 히터 유전층(1141)은 원형 형태나 디스크 형태일 수 있다.
히터 전극(1145)은 전도체, 예컨대 텅스텐(W), 구리(Cu), 니켈(Ni), 몰리브덴(Mo), 타이타늄(Ti), 니켈-크롬 합금(Ni-Cr alloy), 니켈-알루미늄 합금(Ni-Al alloy) 등과 같은 금속 혹은 텅스텐 카바이드(WC), 몰리브덴 카바이드(MoC), 타이타늄나이트라이드(TiN) 등과 같은 전도성 세라믹으로 구성될 수 있다.
히터 전극(1145)은 제어부(1200)의 히터 파워 소스(1240, heater power source)와 전기적으로 연결될 수 있다. 히터 파워 소스(1240)로부터 파워, 예컨대 교류전압에 의해 히터 전극(1145)이 발열되어 정전척(1101) 내지 웨이퍼(90)의 온도가 조절될 수 있다. 히터 전극(1145)은 히터 유전층(1141)의 중심축을 기준으로 동심원형 혹은 나선형의 패턴을 가질 수 있다.
정전 유전층(1142) 내에는 임베디드된 흡착 전극(1155, adsorption electrode)이 설치될 수 있다. 흡착 전극(1155)은 클램프 전극이라 칭할 수도 있다. 정전 유전층(1142)은 세라믹, 예컨대, 알루미늄 산화층(Al2O3), 알루미늄 질화층(AlN), 이트륨 산화층(Y2O3)이나 레진, 예컨대 폴리이미드와 같은 유전체로 구성될 수 있다. 정전 유전층(1142)은 원형 형태나 디스크 형태일 수 있다.
정전 유전층(1142) 상에 웨이퍼(90)가 배치될 수 있다. 흡착 전극(1155)은 전도체, 가령 텅스텐(W), 구리(Cu), 니켈(Ni), 몰리브덴(Mo), 니켈-크롬 합금(Ni-Cr alloy), 니켈-알루미늄 합금(Ni-Al alloy) 등과 같은 금속 혹은 텅스텐 카바이드(WC), 몰리브덴 카바이드(MoC), 타이타늄나이트라이드(TiN) 등과 같은 전도성 세라믹으로 구성될 수 있다.
흡착 전극(1155)은 제어부(1200)의 정전척 파워 소스(1210, ESC power source)와 전기적으로 연결될 수 있다. 정전척 파워 소스(1210)로부터 인가된 파워, 예컨대 직류전압에 의해 흡착 전극(1155)과 웨이퍼(90) 사이에 정전기력(electrostatic force)이 발생되어 웨이퍼(90)가 정전 유전층(1142) 상에 흡착될 수 있다. 흡착 전극(1155)은 도 5에 도시한 바와 같이 정전 유전층(1142) 내에 서로 이격되어 위치하는 복수개의 서브 흡착 전극들(1155a)로 구성될 수 있다.
유전 적층체(1140)는 히터 유전층(1141)과 정전 유전층(1142) 사이에 제공된 열산포층(1147, heat distribution layer)을 선택적으로 더 포함할 수 있다. 열산포층(1147)은 가령 약 10W/mK 이상의 열전도도를 갖는 알루미늄 질화층(AlN), 보론 질화층(BN), 텅스텐층(W), 몰리브덴층(Mo) 등을 포함할 수 있다. 열산포층(1147)은 히터 전극(1145)에서 발생된 열을 더 균일하게 산포할 수 있다.
정전척 파워 소스(1210), 바이어스 파워 소스(1220), 히터 파워 소스(1240), 및 온도 조절기(1230)는 메인 컨트롤러(1250)에 의해 제어될 수 있다. 가령, 온도 센서(1114)로부터 측정된 온도를 토대로 메인 컨트롤러(1250)는 정전척(1101) 내지 웨이퍼(90)의 온도를 읽어내고, 히터 파워 소스(1240)의 파워를 조절하여 히터 전극(1145)으로부터 발생되는 발열량을 조절할 수 있다. 이에 따라, 정전척(1101) 내지 웨이퍼(90)의 온도가 적절하게 제어될 수 있다.
정전척(1101)은 웨이퍼(90)에 균일한 전기장이 인가되기에 적합한 계단 구조를 가질 수 있다. 정전 유전층(1142)은 접착층의 도움없이 히터 유전층(1141)과 결합될 수 있다. 히터 유전층(1141)은 2중막 구조를 갖는 접착층(1130)에 의해 베이스(110)에 결합될 수 있다.
정전척(1101)은 공정 챔버(308)의 내측벽에 고정된 지지부(1116)에 의해 지지될 수 있다. 정전척(1101)과 공정 챔버(308)의 내측벽 사이에 배플판(1125)이 제공될 수 있다. 공정 챔버(308)의 하부에 배기관(1124)이 마련되고, 배기관(1124)은 진공 펌프(1126)에 연결될 수 있다. 공정 챔버(308)의 외측벽 상에 웨이퍼(90)의 반입과 반출을 담당하는 개구(1127)를 개폐하는 게이트 밸브(1128)가 제공될 수 있다.
공정 챔버(308)의 천장에 정전척(101)으로부터 이격된 유전체창(1152)이 제공될 수 있다. 유전체창(1152) 위에 나선 혹은 동심원과 같은 코일 형상의 고주파 안테나(1154)를 수용하는 안테나실(1156)이 공정 챔버(308)와 일체로 설치될 수 있다. 고주파 안테나(1154)는 임피던스 정합기(1158)를 거쳐 플라즈마 발생용 고주파 파워 소스(1157, RFpower source)와 전기적으로 연결될 수 있다. 고주파 파워 소스(1157)는 플라즈마 발생에 적합한 고주파 파워를 출력할 수 있다. 임피던스 정합기(1158)는 고주파 파워 소스(1156)의 임피던스와 부하, 예컨대 고주파 안테나(1154))의 임피던스의 정합을 위해 제공될 수 있다.
가스 공급 소스(1166)는 공정 챔버(308)의 측벽에 설비된 가령 노즐이나 포트홀과 같은 공급 장치(1164)를 통해 공정 챔버(308)로 처리 가스, 예컨대 식각가스를 공급할 수 있다. 식각 처리를 실행하기 위해, 게이트 밸브(1128)를 열어 웨이퍼(90)를 공정 챔버(308) 내의 정전척(1101) 상에 로딩(또는 탑재)할 수 있다. 정전척 파워 소스(1210)로부터 정전척(1101)으로의 파워 인가로써 발생되는 정전기력에 의해 웨이퍼(90)가 정전척(1101)에 흡착될 수 있다.
가스 공급 소스(1166)로부터 식각 가스가 공정 챔버(308)로 도입될 수 있다. 이 때, 진공 펌프(1126)로써 공정 챔버(308) 내의 압력을 정해진 수치로 설정할 수 있다. 고주파 파워 소스(1156)로부터 파워가 임피던스 정합기(1158)를 거쳐 고주파 안테나(1154)에 인가될 수 있다. 아울러, 바이어스 파워 소스(220)로부터 파워가 베이스(110)에 인가될 수 있다.
공정 챔버(308)로 도입된 식각 가스는 유전체창(1152) 아래의 처리실(1172)에서 균일하게 확산될 수 있다. 고주파 안테나(1154)에 흐르는 전류에 의해서 자기장이 고주파 안테나(1154) 주위에서 발생하고 자력선이 유전체창(1152)을 관통하여 처리실(1172)을 통과할 수 있다. 자기장의 시간적 변화에 의해 유도 전기장이 발생하고, 유도 전기장에 의해 가속된 전자가 에칭 가스의 분자나 원자와 충돌하여 플라즈마가 발생할 수 있다.
이와 같이 플라즈마 발생 유닛을 이용하여 플라즈마의 이온이 웨이퍼(90)에 공급됨으로써 처리실에서 웨이퍼 프로세싱, 즉 에칭 처리가 수행될 수 있다. 플라즈마 발생 유닛은 처리실(1172)로 처리 가스를 공급하는 가스 공급 소스(1166)와, 안테나실(1156)에 제공된 안테나(1154)와, 안테나(1154)에 고주파 파워를 제공하는 고주파 파워 소스(1157)를 포함할 수 있다.
도 6a 및 도 6b는 도 4의 정전척의 히팅 존들을 설명하기 위한 정전척의 평면도이고, 도 7은 도 6b의 히터 전극을 이용한 정전척의 온도 제어를 설명하기 위한 단면도이다.
구체적으로, 도 6a에 도시한 정전척(1101)은 수십개, 예컨대 34개의 히팅 존들(HZ1)을 가질 수 있다. 도 6b의 정전척(1101-1)은 수백개, 예컨대 158개의 히팅 존들(HZ2)을 가질 수 있다. 도 6a 및 도 6b에 도시한 정전척(1101, 1101-1)은 동심원 형태로 히팅 존들(HZ1, HZ2)을 가질 수 있다.
히팅 존들(HZ1, HZ2)의 모양이나 배열은 필요에 따라 다양하게 변경될 수 있다. 히팅 존들(HZ1, HZ2)은 히터 전극(도 4 및 도 5의 1145)의 모양이나 배열에 따라 변경될 수 있다. 히팅 존들(HZ1, HZ2)을 개수를 비교할 때, 도 6b에 도시한 정전척(1101-1)은 도 6a에 도시한 정전척(1101)보다 메인 컨트롤러(1250)를 이용하여 온도를 더 정밀하게 제어할 수 있다.
예시적으로, 도 7을 이용하여 도 6b의 X나 Y 방향으로 히터 전극(1145)을 이용하여 정전척(1101)의 온도 제어를 설명한다. 히터 유전층(1141) 상에 웨이퍼(90)가 탑재될 수 있다. 히터 전극(1145)은 히터 유전층(1141) 내에 설치될 수 있다. 히터 전극(1145)은 히터 유전층(1141) 내에서 X 방향 및/또는 상기 X 방향에 수직한 Y 방향으로 각각 서로 이격되어 위치하는 복수개의 서브 히터 전극들(1145a)로 구성될 수 있다.
서브 히터 전극들(1145a)의 X 방향 및 Y 방향의 배열은 다양하게 구성할 수 있다. 서브 히터 전극들(1145a)의 배치를 다양하게 구성할 경우, 정전척(1101)의 온도를 잘 제어할 수 있다. 서브 히터 전극들(1145a)은 전기 배선(C1 내지 Cn(n은 정수))을 통하여 메인 컨트롤러(1250)에 연결될 수 있다.
메인 컨트롤러(1250)를 이용하여 서브 히터 전극들(1145a)의 전기 배선(C1 내지 Cn)에 각각 다른 크기의 전압을 인가하여 히팅 존들(HZ1, HZ2)의 온도를 제어할 수 있다. 다시 말해, 메인 컨트롤러(1250)를 이용하여 전기 배선(C1 내지 Cn)에 인가되는 전압의 크기를 서로 다르게 하여 서브 히터 전극(1145a)에 대응되는 히팅 존들(HZ1, HZ2)의 온도를 제어할 수 있다.
더하여, 본 발명에서는 앞서 설명한 바와 같이 공정 챔버(308)에 웨이퍼(90)를 로딩하기전에 웨이퍼를 회전시킴으로써 정전척(1101, 1101-1)의 히팅 존들(HZ1, HZ2)의 수나 배열을 변경시키지 않고 정전척(1101, 1101-1)의 온도를 정밀하게 제어할 수 있다.
도 8은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
구체적으로, 도 8의 설명에서 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 8의 설명에서 도 1 내지 도 7과 동일한 내용은 간단히 설명하거나 생략한다. 반도체 소자의 제조 방법(S100)은 얼라인 챔버(200) 및 공정 챔버(308)를 구비하는 플라즈마 식각 장치(400)를 이용하여 수행할 수 있다. 도 8에서, 제1 얼라인 챔버(200)를 이용하여 반도체 소자를 제조하는 것으로 설명하나, 제2 얼라인 챔버(200a)를 이용할 수 도 있다.
반도체 소자의 제조 방법(S100)은 플라즈마 식각 장치(400)의 얼라인 챔버(200)로 웨이퍼(90)를 로딩하는 단계를 포함한다(S105). 얼라인 챔버(200)로 웨이퍼(90)의 로딩은 제1 이송 로봇(102)을 이용하여 수행할 수 있다.
공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 얼라인 챔버(200) 내에 탑재된 웨이퍼(90)를 회전시킴으로써 웨이퍼(90)의 기준점을 회전 및 변경시킨다(S110).
일 실시예에서, 웨이퍼(90)의 회전은 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 경향에 따라 수행할 수 있다. 일 실시예에서, 웨이퍼(90)의 회전은 공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(HZ1, HZ2)의 개수 또는 배열에 따라 회전시킬 수 있다. 일 실시예에서, 웨이퍼(90)의 회전은 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치에 맞추어 수행할 수 있다. 웨이퍼(90)를 임계 크기 측정 위치에 맞추어 회전하는 것에 대해서는 후에 자세하게 설명한다. 웨이퍼(90)의 회전에 의한 웨이퍼(90)의 기준점의 회전 및 변경에 대해서는 후에 자세히 설명한다.
얼라인 챔버(200) 내에서 회전된 웨이퍼(90)를 공정 챔버(308)의 정전척(1101) 상으로 이송시킨다(S115). 웨이퍼(90)의 이송은 제1 이송 로봇(102) 및 제2 이송 로봇(306)을 이용하여 수행할 수 있다.
공정 챔버(308) 내의 정전척(1101) 상에 탑재된 웨이퍼(90)를 플라즈마 식각 처리하여 반도체 소자의 제조 방법을 완성한다(S120). 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막을 식각하는 것을 포함할 수 있다. 다시 말해, 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막, 예컨대 산화막이나 질화막을 식각하는 식각 공정일 수 있다.
도 9는 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
구체적으로, 도 9의 설명에서 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 9의 설명에서 도 1 내지 도 7과 동일한 내용은 간단히 설명하거나 생략한다. 반도체 소자의 제조 방법(S200)은 제1 얼라인 챔버(200), 로드락 챔버(302) 및 공정 챔버(308)를 구비하는 플라즈마 식각 장치(400)를 이용하여 수행할 수 있다. 도 9에서, 제1 얼라인 챔버(200)를 이용하여 반도체 소자를 제조하는 것을 구체적으로 설명한다.
반도체 소자의 제조 방법(S200)은 플라즈마 식각 장치(400)의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계를 포함한다(S205). 제1 이송 로봇(102)을 이용하여 웨이퍼 컨테이너에 탑재된 웨이퍼(90)를 제1 얼라인 챔버(200)로 이송한다(S210).
제1 얼라인 챔버(200) 내에 이송된 웨이퍼를 정전척의 히팅 존들에 부합되게 회전시킨다(S215). 다시 말해, 공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 얼라인 챔버(200) 내에 탑재된 웨이퍼(90)를 회전시킴으로써 웨이퍼(90)의 기준점을 회전 및 변경시킨다.
아울러서, 앞서 설명한 바와 같이 제1 얼라인 챔버(200) 내의 웨이퍼(90)는 비교 웨이퍼에서 측정된 식각 산포 데이터 및/또는 임계 크기 측정 위치에 근거하여 회전시킬 수 있다. 웨이퍼(90)의 회전에 의한 웨이퍼(90)의 기준점의 회전 및 변경에 대해서는 후에 자세히 설명한다.
제1 얼라인 챔버(200) 내에서 회전된 웨이퍼(90)를 제1 이송 로봇(102)을 이용하여 로드락 챔버(302)로 이송한다(S220). 계속하여, 로드락 챔버(302)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308) 내로 이송한다(S225). 로드락 챔버(302)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308)의 정전척(1101) 상으로 이송시킨다.
공정 챔버(308) 내의 정전척(1101) 상에 탑재된 웨이퍼(90)를 플라즈마 식각 처리한다(S230). 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막을 식각하는 것을 포함할 수 있다. 다시 말해, 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막, 예컨대 산화막이나 질화막을 식각하는 식각 공정일 수 있다.
계속하여, 공정 챔버(308) 내의 플라즈마 식각 처리된 웨이퍼(90)를 제1 및 제2 이송 로봇(102, 306)을 이용하여 로드 포트부(50)로 언로딩하는 것을 포함하여 반도체 소자의 제조 공정을 완성한다(S235).
도 10은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
구체적으로, 도 10의 설명에서 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 10의 설명에서 도 1 내지 도 7과 동일한 내용은 간단히 설명하거나 생략한다. 반도체 소자의 제조 방법(S300)은 제2 얼라인 챔버(200a), 로드락 챔버(302) 및 공정 챔버(308)를 구비하는 플라즈마 식각 장치(400)를 이용하여 수행할 수 있다. 도 10에서, 제2 얼라인 챔버(200a)를 이용하여 반도체 소자를 제조하는 것을 구체적으로 설명한다.
반도체 소자의 제조 방법(S300)은 플라즈마 식각 장치(400)의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계를 포함한다(S305). 제1 이송 로봇(102)을 이용하여 웨이퍼 컨테이너에 탑재된 웨이퍼(90)를 로드락 챔버(302)로 이송한다(S310). 로드락 챔버(302)에 탑재된 웨이퍼(90)를 제2 이송 로봇을 이용하여 제2 얼라인 챔버(200a)로 이송한다(S315).
제2 얼라인 챔버(200a) 내에 이송된 웨이퍼를 정전척의 히팅 존들에 부합되게 회전시킨다(S320). 다시 말해, 공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 제2 얼라인 챔버(200a) 내에 탑재된 웨이퍼(90)를 회전시킴으로써 웨이퍼(90)의 기준점을 회전 및 변경시킨다.
아울러서, 앞서 설명한 바와 같이 제2 얼라인 챔버(200a) 내의 웨이퍼(90)는 비교 웨이퍼에서 측정된 식각 산포 데이터 및/또는 임계 크기 측정 위치에 근거하여 회전시킬 수 있다. 웨이퍼(90)의 회전에 의한 웨이퍼(90)의 기준점의 회전 및 변경에 대해서는 후에 자세히 설명한다.
제2 얼라인 챔버(200a) 내에서 회전된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308) 내로 이송한다(S325). 제2 얼라인 챔버(200a)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308)의 정전척(1101) 상으로 이송시킨다.
공정 챔버(308) 내의 정전척(1101) 상에 탑재된 웨이퍼(90)를 플라즈마 식각 처리한다(S330). 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막을 식각하는 것을 포함할 수 있다. 계속하여, 공정 챔버(308) 내의 플라즈마 식각 처리된 웨이퍼(90)를 제1 및 제2 이송 로봇(102, 306)을 이용하여 로드 포트부(50)로 언로딩하는 것을 포함하여 반도체 소자의 제조 공정을 완성한다(S335).
도 11은 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
구체적으로, 도 11의 설명에서 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 11의 설명에서 도 1 내지 도 7과 동일한 내용은 간단히 설명하거나 생략한다. 반도체 소자의 제조 방법(S400)은 제1 얼라인 챔버(200), 로드락 챔버(302) 및 공정 챔버(308)를 구비하는 플라즈마 식각 장치(400)를 이용하여 수행할 수 있다. 도 11에서, 제1 얼라인 챔버(200)를 이용하여 반도체 소자를 제조하는 것을 구체적으로 설명한다.
반도체 소자의 제조 방법(S400)은 플라즈마 식각 장치(400)의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계를 포함한다(S405). 제1 이송 로봇(102)을 이용하여 웨이퍼 컨테이너에 탑재된 웨이퍼(90)를 제1 얼라인 챔버(200)로 이송한다(S410).
플라즈마 식각 장치(400)의 메인 컨트롤러(1250)로부터 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터를 획득한다(S415).
제1 얼라인 챔버(200) 내에 이송된 웨이퍼를 메인 컨트롤러로부터 획득된 식각 산포 데이터에 근거하여 회전시킨다(S420). 다시 말해, 메인 컨트롤러(1250)로부터 획득된 식각 산포 데이터에 근거하여 제1 얼라인 챔버(200) 내에 탑재된 웨이퍼(90)를 회전시킴으로써 웨이퍼(90)의 기준점을 회전 및 변경시킨다. 아울러서, 앞서 설명한 바와 같이 제1 얼라인 챔버(200) 내의 웨이퍼(90)는 임계 크기 측정 위치에 근거하여 회전시킬 수 있다.
제1 얼라인 챔버(200) 내에 탑재된 웨이퍼(90)의 회전 각도는 메인 컨트롤러(1250)에 연결된 얼라인 컨트롤러(210)에 의해 조절될 수 있다. 플라즈마 식각 장치의 메인 컨트롤러(1250)로부터 얻어진 식각 산포 데이터는 소프트웨어적으로 얼라인 컨트롤러(210)에 피드백되어 웨이퍼(90)의 회전 각도가 자동적으로 조절될 수 있다. 웨이퍼(90)의 회전에 의한 웨이퍼(90)의 기준점의 회전 및 변경에 대해서는 후에 자세히 설명한다.
제1 얼라인 챔버(200) 내에서 회전된 웨이퍼(90)를 제1 이송 로봇(102)을 이용하여 로드락 챔버(302)로 이송한다(S425). 계속하여, 로드락 챔버(302)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308) 내로 이송한다(S430). 로드락 챔버(302)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308)의 정전척(1101) 상으로 이송시킨다.
공정 챔버(308) 내의 정전척(1101) 상에 탑재된 웨이퍼(90)를 플라즈마 식각 처리한다(S435). 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막을 식각하는 것을 포함할 수 있다. 다시 말해, 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막, 예컨대 산화막이나 질화막을 식각하는 식각 공정일 수 있다.
계속하여, 공정 챔버(308) 내의 플라즈마 식각 처리된 웨이퍼(90)를 제1 및 제2 이송 로봇(102, 306)을 이용하여 로드 포트부(50)로 언로딩하는 것을 포함하여 반도체 소자의 제조 공정을 완성한다(S440).
도 12는 본 발명의 기술적 사상의 일 예에 따라 플라즈마 식각 장치를 이용하여 반도체 소자의 제조하는 방법을 설명하기 위한 흐름도이다.
구체적으로, 도 12의 설명에서 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 12의 설명에서 도 1 내지 도 7과 동일한 내용은 간단히 설명하거나 생략한다. 반도체 소자의 제조 방법(S500)은 제2 얼라인 챔버(200a), 로드락 챔버(302) 및 공정 챔버(308)를 구비하는 플라즈마 식각 장치(400)를 이용하여 수행할 수 있다. 도 12에서, 제2 얼라인 챔버(200a)를 이용하여 반도체 소자를 제조하는 것을 구체적으로 설명한다.
반도체 소자의 제조 방법(S500)은 플라즈마 식각 장치(400)의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계를 포함한다(S505). 제1 이송 로봇(102)을 이용하여 웨이퍼 컨테이너에 탑재된 웨이퍼(90)를 로드락 챔버(302)로 이송한다(S510). 로드락 챔버(302)에 탑재된 웨이퍼(90)를 제2 이송 로봇을 이용하여 제2 얼라인 챔버(200a)로 이송한다(S515).
플라즈마 식각 장치(400)의 메인 컨트롤러로부터 공정 챔버(308) 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터를 획득한다(S520).
제2 얼라인 챔버(200a) 내에 이송된 웨이퍼를 메인 컨트롤러로부터 획득된 식각 산포 데이터에 근거하여 회전시킨다(S525). 다시 말해, 메인 컨트롤러로부터 획득된 식각 산포 데이터에 근거하여 제2 얼라인 챔버(200a) 내에 탑재된 웨이퍼(90)를 회전시킴으로써 웨이퍼(90)의 기준점을 회전 및 변경시킨다. 아울러서, 앞서 설명한 바와 같이 제2 얼라인 챔버(200a) 내의 웨이퍼(90)는 임계 크기 측정 위치에 근거하여 회전시킬 수 있다.
제2 얼라인 챔버(200a) 내에 탑재된 웨이퍼(90)의 회전 각도는 메인 컨트롤러(1250)에 연결된 얼라인 컨트롤러(210)에 의해 조절될 수 있다. 플라즈마 식각 장치의 메인 컨트롤러(1250)로부터 얻어진 식각 산포 데이터는 소프트웨어적으로 얼라인 컨트롤러(210)에 피드백되어 웨이퍼(90)의 회전 각도가 자동적으로 조절될 수 있다. 웨이퍼(90)의 회전에 의한 웨이퍼(90)의 기준점의 회전 및 변경에 대해서는 후에 자세히 설명한다.
제2 얼라인 챔버(200a) 내에서 회전된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308) 내로 이송한다(S530). 제2 얼라인 챔버(200a)로 이송된 웨이퍼(90)를 제2 이송 로봇(306)을 이용하여 공정 챔버(308)의 정전척(1101) 상으로 이송시킨다.
공정 챔버(308) 내의 정전척(1101) 상에 탑재된 웨이퍼(90)를 플라즈마 식각 처리한다(S535). 플라즈마 식각 처리는 웨이퍼(90) 상에 형성된 물질막을 식각하는 것을 포함할 수 있다. 계속하여, 공정 챔버(308) 내의 플라즈마 식각 처리된 웨이퍼(90)를 제1 및 제2 이송 로봇(102, 306)을 이용하여 로드 포트부(50)로 언로딩하는 것을 포함하여 반도체 소자의 제조 공정을 완성한다(S540).
도 13a 및 도 13b는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치의 얼라인 챔버에서의 웨이퍼 회전을 설명하기 위한 평면도이다.
구체적으로, 도 13a 및 도 13b에서, 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 13a는 웨이퍼(90)가 회전하지 않은 상태를 도시한 것이고, 도 13b는 웨이퍼(90)가 회전 각도(θ)만큼 회전한 상태를 도시한 것이다.
웨이퍼(90)의 기준점은 노치(92, notch)일 수 있다. 도 13에서는 웨이퍼(90)의 기준점으로 노치(92)를 표시하였으나, 플랫존(flat zone) 등 다른 부분이 될 수 있다. 웨이퍼(90)가 회전하지 않을 경우, 도 13a에 도시한 바와 같이 웨이퍼(90)의 기준점인 노치(92)와 웨이퍼(90)의 중심(C)간을 연결한 제1 가상 라인(IL1)이 Y 방향으로 정렬되어 회전 각도는 0도일 수 있다. Y 방향은 이송 로봇(도 1의 102, 306)이 웨이퍼(90)를 이송하기 위하여 진입하는 방향일 수 있다.
웨이퍼(90)가 회전할 경우, 회전 각도(θ)는 웨이퍼(90)가 회전하지 않을 경우의 노치(92)와 웨이퍼(90)의 중심(C)간을 연결한 제1 가상 라인(IL1)과 웨이퍼(90)가 회전하여 회전한 노치(92)와 웨이퍼(90)의 중심(C)간을 연결한 제2 가상 라인 사이(IL2)의 각도일 수 있다. 다시 말해, 회전 각도(θ)는 웨이퍼(90)가 회전한 지점에서 웨이퍼(90)의 중심(C)간을 연결한 제3 가상 라인(IL3)과 웨이퍼(90)가 회전하여 회전한 노치(92)와 웨이퍼(90)의 중심(C)간을 연결한 제2 가상 라인 사이(IL2) 사이의 각도일 수 있다. 앞서 설명한 바와 같이 얼라인 챔버(200, 200a) 내에 탑재된 웨이퍼(90)의 회전 각도(θ)는 얼라인 챔버(200, 200a)와 연결된 얼라인 컨트롤러(210)에 의해 조절될 수 있다.
도 14는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치에 의해 플라즈마 식각 처리된 웨이퍼의 임계 크기 측정 위치를 도시한 도면이다.
구체적으로, 도 14에서, 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 플라즈마 식각 장치(400)에 의해 플라즈마 식각 처리된 웨이퍼(90)의 임계 크기 측정 위치(CD)는 도 14에 도시한 바와 같이 X 및 Y 방향으로 동일한 간격으로 복수개 마련될 수 있다. 임계 크기 측정 위치(CD)는 반도체 소자의 종류, 식각 막질의 종류 등에 따라 측정 개수 및 측정 배열을 다양하게 변경될 수 있다. 웨이퍼(90)는 중심(C)을 둘러싸는 중심부 영역(CR) 및 중심부 영역을 둘러싸는 모서리(에지) 영역(ER)으로 구별할 수 있다. 예컨대, 웨이퍼(90)의 반경이 300mm일 경우, 모서리 영역(ER)의 폭은 예컨대 10mm 내지 50mm일 수 있다.
더하여, 본 발명에서는 앞서 설명한 바와 같이 공정 챔버(308)에 웨이퍼(90)를 로딩하기전에 웨이퍼(90)를 회전시킴으로써 정전척(1101)의 히팅 존들의 수나 배열을 변경시키지 않고 정전척(1101)의 온도를 정밀하게 제어할 수 있다. 이에 따라, 웨이퍼(90)의 중심부 영역(CR)이나 모서리 영역(ER), 특히 모서리 영역(ER)의 정전척(1101)의 온도를 제어하여 식각 균일도를 향상시킬 수 있다.
도 15a, 도 15b, 도 16a 및 도 16b는 본 발명의 기술적 사상에 따라 플라즈마 식각 장치에 의해 플라즈마 식각 처리된 웨이퍼의 임계 크기 측정 위치에 대응되는 정전척의 히팅 존들을 설명하기 위한 평면도이다.
구체적으로, 도 15a, 도 15b, 도 16a 및 도 16b에서, 도 1 내지 도 7과 동일한 참조번호는 동일한 부재를 나타낸다. 도 15a, 도 15b, 도 16a 및 도 16b는 도 6a의 정전척(1101)에 대응되는 임계 크기 측정 위치(CDa-CDh)를 도시한 도면들이다.
앞서 도 14에서 설명한 바와 같이 플라즈마 식각 장치(400)에 의해 플라즈마 식각 처리된 웨이퍼(90)의 임계 크기 측정 위치(CD)는 반도체 소자의 종류나 식각 막질의 종류 등에 따라 측정 개수 및 측정 배열을 다양하게 변경될 수 있다. 본 발명의 반도체 소자의 제조 방법은 얼라인 챔버(200, 200a) 내에 탑재된 웨이퍼(90)를 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치(CD)에 맞추어 회전시킨 후, 플라즈마 처리하여 웨이퍼(90) 내의 임계 크기 차이, 예컨대 식각 균일도를 향상시킬 수 있다.
일 실시예에서, 도 15a는 임계 크기 측정 위치(CDa, CDb)가 정전척(1101)의 하나의 히팅 존(HZa)에 포함되어 있다. 이때, 임계 크기 측정 위치(CDa, CDb)에서 측정된 임계 크기들의 차이가 많이 날 경우, 도 7에 도시한 바와 같이 하나의 히팅 존(HZa)에 해당하는 히팅 전극(도 7의 1145)에 인가되는 전압을 조절하여 임계 크기를 조절하기가 어렵다. 도 15a의 가상 라인(IL4)은 도 13a의 IL1에 대응하는 라인일 수 있다.
이에 반하여, 도 15b에 도시한 바와 같이 공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(Hz)중 어느 하나에 복수개의 임계 크기 측정 위치들이 놓이지 않도록 웨이퍼(90)를 회전 각도(θ)만큼 회전시킨다. 도 15b의 가상 라인(IL4) 및 가상 라인(IL5)은 각각 도 13b의 IL3 및 IL2에 대응하는 라인일 수 있다.
이렇게 되면, 임계 크기 측정 위치(CDa, CDb)가 정전척(1101)의 두개의 히팅 존들(HZa, HZb)에 포함되어 있다. 결과적으로, 임계 크기 측정 위치(CDc, CDd)에서 측정된 임계 크기들의 차이가 많이 나더라도, 도 7에 도시한 바와 같이 2개의 히팅 존(HZa, HZb)에 해당하는 히팅 전극(도 7의 1145)에 인가되는 전압을 조절하여 임계 크기를 용이하게 조절할 수 있다.
일 실시예에서, 도 16a는 임계 크기 측정 위치(CDe, CDf)가 정전척(1101)의 히팅 존(HZc-HZe)의 경계가 형성되어 있다. 이때, 임계 크기 측정 위치(CDe, CDf)에서 측정되는 임계 크기는 3개의 히팅 존(HZc-HZe)에 해당하는 히팅 전극(도 7의 1145)에 인가되는 전압을 조절하여 임계 크기(CDe, CDf)를 조절하기가 어렵다. 도 16a의 가상 라인(IL4)은 도 13a의 IL1에 대응하는 라인일 수 있다.
이에 반하여, 도 16b에 도시한 바와 같이 공정 챔버(308)의 정전척(1101)에 마련된 복수개의 히팅 존들(HZc-HZe)의 경계 부분에 임계 크기 측정 위치가 놓이지 않도록 웨이퍼(90)를 회전 각도(θ)만큼 회전시킨다. 도 16b의 가상 라인(IL4) 및 가상 라인(IL6)은 각각 도 13b의 IL3 및 IL2에 대응하는 라인일 수 있다.
이렇게 되면, 임계 크기 측정 위치(CDa, CDb)가 정전척(1101)의 두개의 히팅 존들(HZc, HZe)에 포함되어 있다. 2개의 히팅 존(HZc, HZe)에 해당하는 히팅 전극(도 7의 1145)에 인가되는 전압을 조절하여 임계 크기(CDg, CDh)를 용이하게 조절할 수 있다.
이상 본 발명을 도면에 도시된 실시예를 참고로 설명하였으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형, 치환 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해하여야 한다. 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
50: 로드 포트부, 90: 웨이퍼, 100: 설비 전방 단부 모듈, 102, 306: 이송 로봇, 200, 200a: 얼라인 챔버, 300: 제조 공정 설비, 302: 로드락 챔버, 308: 공정 챔버, 400: 플라즈마 식각 장치

Claims (10)

  1. 얼라인 챔버 및 공정 챔버를 구비하는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법에 있어서,
    상기 플라즈마 식각 장치의 얼라인 챔버로 웨이퍼를 로딩하는 단계;
    상기 공정 챔버의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경하는 단계;
    상기 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 공정 챔버의 정전척 상으로 이송하는 단계; 및
    상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함하되,
    상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 경향에 따라 회전시키는 것을 특징으로 하는 반도체 소자의 제조 방법.
  2. 삭제
  3. 제1항에 있어서, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들의 개수 또는 배열에 따라 회전시키는 것을 특징으로 하는 반도체 소자의 제조 방법.
  4. 제1항에 있어서, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치에 맞추어 회전시키는 것을 특징으로 하는 반도체 소자의 제조 방법.
  5. 제4항에 있어서, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들의 경계 부분에 상기 임계 크기 측정 위치가 놓이지 않도록 회전시키거나,
    상기 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들중 어느 하나에 복수개의 임계 크기 측정 위치들이 놓이지 않도록 회전시키는 것을 특징으로 하는 반도체 소자의 제조 방법.
  6. 제1항에 있어서, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼의 회전 각도는 상기 얼라인 챔버와 연결된 얼라인 컨트롤러에 의해 조절되고,
    상기 웨이퍼의 기준점이 노치일 경우,
    상기 회전 각도는 상기 웨이퍼가 회전하지 않을 경우의 상기 노치와 상기 웨이퍼의 중심간을 연결한 제1 가상 라인과 상기 웨이퍼가 회전하여 회전한 노치와 상기 웨이퍼의 중심간을 연결한 제2 가상 라인 사이의 각도인 것을 특징으로 하는 반도체 소자의 제조 방법.
  7. 얼라인 챔버 및 공정 챔버를 구비하는 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법에 있어서,
    상기 플라즈마 식각 장치의 얼라인 챔버로 웨이퍼를 로딩하는 단계;
    상기 플라즈마 식각 장치의 메인 컨트롤러로부터 상기 공정 챔버 내에서 먼저 플라즈마 식각 처리된 복수개의 비교 웨이퍼들에서 측정된 식각 산포 데이터를 얻는 단계;
    상기 식각 산포 데이터에 따라 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경시키는 단계;
    상기 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 공정 챔버의 정전척 상으로 이송하는 단계; 및
    상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.
  8. 제7항에 있어서, 상기 얼라인 챔버 내에 탑재된 상기 웨이퍼의 회전 각도는 상기 메인 컨트롤러에 연결된 얼라인 컨트롤러에 의해 조절되고, 상기 플라즈마 식각 장치의 상기 메인 컨트롤러로부터 얻어진 식각 산포 데이터는 소프트웨어적으로 상기 얼라인 컨트롤러에 피드백되어 상기 웨이퍼의 회전 각도가 자동적으로 조절되는 것을 특징으로 하는 반도체 소자의 제조 방법.
  9. 플라즈마 식각 장치의 로드 포트부의 웨이퍼 컨테이너에 웨이퍼를 로딩하는 단계;
    상기 웨이퍼 컨테이너에 탑재된 웨이퍼를 제1 이송 로봇을 이용하여 제1 얼라인 챔버로 이송하는 단계;
    공정 챔버의 정전척에 마련된 복수개의 히팅 존들(heating zones)에 부합하게 상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼를 회전시킴으로써 상기 웨이퍼의 기준점을 변경시키는 단계;
    상기 제1 얼라인 챔버 내에서 회전된 상기 웨이퍼를 상기 제1 이송 로봇을 이용하여 상기 플라즈마 식각 장치의 로드락 챔버로 로딩하는 단계;
    상기 로드락 챔버 내의 상기 회전된 웨이퍼를 이송 챔버에 위치하는 제2 이송 로봇을 이용하여 상기 공정 챔버의 복수개의 히팅 존들(heating zones)이 마련된 정전척 상으로 이송하는 단계; 및
    상기 공정 챔버 내의 상기 정전척 상에 탑재된 상기 웨이퍼를 플라즈마 식각 처리하는 단계를 포함하되,
    상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 플라즈마 식각 처리후 수행되는 임계 크기 측정 위치에 맞추어 회전시키고,
    상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들의 경계 부분에 상기 임계 크기 측정 위치가 놓이지 않도록 회전시키거나,
    상기 제1 얼라인 챔버 내에 탑재된 상기 웨이퍼는 상기 공정 챔버의 상기 정전척에 마련된 복수개의 히팅 존들중 어느 하나에 복수개의 임계 크기 측정 위치들이 놓이지 않도록 회전시키는 것을 특징으로 하는 반도체 소자의 제조 방법.
  10. 제9항에 있어서, 상기 이송 챔버에는 제2 얼라인 챔버가 더 연결되어 있고,
    상기 로드락 챔버에 탑재된 웨이퍼는 상기 제2 얼라인 챔버로 이송되는 단계와, 상기 제2 얼라인 챔버 내에 탑재된 상기 웨이퍼는 회전하여 상기 웨이퍼의 기준점을 변경시키는 단계와, 및 상기 제2 얼라인 챔버에서 회전된 상기 웨이퍼를 상기 제2 이송 로봇을 이용하여 상기 공정 챔버 내로 이송하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.
KR1020170117234A 2017-09-13 2017-09-13 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법 KR102487551B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170117234A KR102487551B1 (ko) 2017-09-13 2017-09-13 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법
US15/924,978 US10290527B2 (en) 2017-09-13 2018-03-19 Method of manufacturing semiconductor device by using plasma etching apparatus
KR1020220185024A KR102582667B1 (ko) 2017-09-13 2022-12-26 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170117234A KR102487551B1 (ko) 2017-09-13 2017-09-13 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220185024A Division KR102582667B1 (ko) 2017-09-13 2022-12-26 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190030032A KR20190030032A (ko) 2019-03-21
KR102487551B1 true KR102487551B1 (ko) 2023-01-11

Family

ID=65631465

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170117234A KR102487551B1 (ko) 2017-09-13 2017-09-13 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법
KR1020220185024A KR102582667B1 (ko) 2017-09-13 2022-12-26 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220185024A KR102582667B1 (ko) 2017-09-13 2022-12-26 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법

Country Status (2)

Country Link
US (1) US10290527B2 (ko)
KR (2) KR102487551B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220003862A (ko) * 2020-07-02 2022-01-11 삼성전자주식회사 유도 결합형 플라즈마 처리 장치
CN112750736B (zh) * 2020-12-31 2023-02-03 深圳泰德半导体装备有限公司 上下料控制方法、存储介质、等离子清洗设备
US12014898B2 (en) * 2021-09-27 2024-06-18 Applied Materials, Inc. Active temperature control for RF window in immersed antenna source
KR102546998B1 (ko) * 2023-02-22 2023-06-23 이상주 플라즈마 세정 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481277B1 (ko) 2002-05-10 2005-04-07 한국디엔에스 주식회사 반도체 제조 장치 및 방법
KR100479305B1 (ko) * 2002-08-20 2005-03-25 삼성전자주식회사 얼라인 마크 패턴인식방법
US6770852B1 (en) 2003-02-27 2004-08-03 Lam Research Corporation Critical dimension variation compensation across a wafer by means of local wafer temperature control
WO2005055312A1 (ja) 2003-12-04 2005-06-16 Hirata Corporation 基板位置決めシステム
US7534627B2 (en) 2006-08-07 2009-05-19 Sokudo Co., Ltd. Methods and systems for controlling critical dimensions in track lithography tools
JP5030542B2 (ja) 2006-11-10 2012-09-19 株式会社日立ハイテクノロジーズ 真空処理装置
JP4616873B2 (ja) * 2007-09-28 2011-01-19 東京エレクトロン株式会社 半導体製造装置、基板保持方法及びプログラム
KR101011637B1 (ko) 2008-06-24 2011-01-28 참엔지니어링(주) 버퍼 모듈을 갖는 웨이퍼 가공 장치 및 그의 기능 수행 방법
KR20100089647A (ko) 2009-02-04 2010-08-12 세메스 주식회사 반도체 제조 장치
KR101362677B1 (ko) 2010-11-29 2014-02-12 한국산업기술대학교산학협력단 플랫존 영상을 이용하여 반도체 웨이퍼의 위치를 정렬하기 위한 장치 및 그 방법
JP2012146721A (ja) 2011-01-07 2012-08-02 Hitachi High-Technologies Corp 真空処理装置
KR101510224B1 (ko) 2014-01-07 2015-04-09 코리아테크노(주) 얼라이너와 이것을 이용한 웨이퍼 분류장치

Also Published As

Publication number Publication date
KR20190030032A (ko) 2019-03-21
KR102582667B1 (ko) 2023-09-25
US20190080948A1 (en) 2019-03-14
US10290527B2 (en) 2019-05-14
KR20230005094A (ko) 2023-01-09

Similar Documents

Publication Publication Date Title
KR102582667B1 (ko) 플라즈마 식각 장치를 이용한 반도체 소자의 제조 방법
CN109585252B (zh) 可旋转加热静电夹盘
TWI613752B (zh) 原位可移除式靜電吸盤
JP6014661B2 (ja) プラズマ処理装置、及びプラズマ処理方法
JP6219229B2 (ja) ヒータ給電機構
TWI765922B (zh) 具有小間隙之銷升降器組件
CN108352352B (zh) 可偏压可旋转静电夹盘
WO2016126425A1 (en) Low temperature chuck for plasma processing systems
US20200273681A1 (en) Apparatus and method for treating substrate
US11056367B2 (en) Buffer unit, and apparatus for treating substrate with the unit
US20170221750A1 (en) Conductive wafer lift pin o-ring gripper with resistor
WO2020106386A1 (en) A cluster processing system for forming a transition metal material
TWI801390B (zh) 用於高溫處理腔室的靜電吸座及其形成方法
JP2019201086A (ja) 処理装置、部材及び温度制御方法
JPH07147311A (ja) 搬送アーム
KR20210008549A (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
TWI816223B (zh) 電漿產生裝置、使用其之基板處理裝置及電漿產生方法
TWI831544B (zh) 升降銷單元、包括其的基板支撐單元及基板處理設備
KR102428349B1 (ko) 지지 유닛, 이를 포함하는 기판 처리 장치 및 지지 유닛 제조 방법
TWI830335B (zh) 具有平衡rf阻抗的雙極esc
JP2008227506A (ja) 基板処理方法
KR20220089820A (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
TW202331918A (zh) 電漿處理裝置及電漿處理方法
KR20150117227A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
TW202301546A (zh) 傳送組合件及具有該傳送組合件的處理基板的設備

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent