KR102484474B1 - 브래그 액정 편광 격자 - Google Patents

브래그 액정 편광 격자 Download PDF

Info

Publication number
KR102484474B1
KR102484474B1 KR1020167032899A KR20167032899A KR102484474B1 KR 102484474 B1 KR102484474 B1 KR 102484474B1 KR 1020167032899 A KR1020167032899 A KR 1020167032899A KR 20167032899 A KR20167032899 A KR 20167032899A KR 102484474 B1 KR102484474 B1 KR 102484474B1
Authority
KR
South Korea
Prior art keywords
light
stacked
liquid crystal
bragg
thickness
Prior art date
Application number
KR1020167032899A
Other languages
English (en)
Other versions
KR20170037884A (ko
Inventor
마이클 제이. 에스쿠티
제이슨 디. 케카스
라비 케이. 코만두리
Original Assignee
이매진옵틱스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이매진옵틱스 코포레이션 filed Critical 이매진옵틱스 코포레이션
Publication of KR20170037884A publication Critical patent/KR20170037884A/ko
Application granted granted Critical
Publication of KR102484474B1 publication Critical patent/KR102484474B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Abstract

광학 요소는 브래그 조건에 따라 이를 통해 통과하는 광의 전파의 방향을 변경하도록 구성된 액정 서브층과 같은 복수의 적층된 복굴절 서브층을 포함한다. 적층된 복굴절 서브층은 각각의 격자 주기를 형성하도록 적층된 복굴절 서브층의 인접한 서브층들 사이의 각각의 계면을 따라 변하는 로컬 광축을 각각 포함한다. 적층된 복굴절 서브층의 각각의 두께는 광의 파장보다 작을 수도 있다. 관련 장치 및 작동 방법이 또한 설명된다.

Description

브래그 액정 편광 격자{BRAGG LIQUID CRYSTAL POLARIZATION GRATINGS}
우선권 주장
본 출원은 그 개시내용이 본 명세서에 그대로 참조로서 합체된, 2014년 7월 31일 출원되고 발명의 명칭이 "브래그 액정 편광 격자"인 미국 가특허 출원 제62/031,260호로부터 우선권을 주장한다.
기술분야
본 발명은 편광 격자에 관한 것으로서, 더 구체적으로는 액정 편광 격자 및 관련 디바이스의 제조에 관한 것이다.
편광 격자(PG)는 광학 이방성을 갖는 박막을 패터닝함으로써 형성된 회절성 광학 요소이다. 더 구체적으로, PG는 다른 특징들 중에서도, 광축 자체와 동일 평면 상에 있는(예를 들어, XY 평면) 방향을 따라 선형으로 변화하는[예를 들어, φ(x) = πx/Λ] 로컬 광축을 갖고, 균질성 이방성 크기를 갖는다. 이는 PG에 고유할 수도 있는 광학 특성을 제공할 수 있고, 해당 광학 특성은 고회절 효율, 제한된 회절 차수, 및/또는 편광 선택성을 포함하지만 이에 한정되지는 않는다. 광-배향(photo-alignment) 및 액정(liquid crystal: LC) 재료를 사용하여, PG는 스위칭 가능 및 중합 가능 LC의 모두에서, 고품질로 제조될 수도 있다. 후자의 경우에, PG는 단일 배향층을 갖는 LC의 다수의 서브층으로서 형성될 수도 있다. 저분자량 중합 가능 LC(LCP)로도 칭하는 반응성 메조겐(reactive mesogen)에 카이럴 도펀트(chiral dopant)를 첨가함으로써, 각각의 층 내의 카이럴 트위스트가 성취될 수도 있다. 이 카이럴 트위스트는 고회절 효율의 대역폭을 적합하게 하는데 사용될 수 있다.
회절 격자와 광의 상호작용은 재료 및 기하학적 파라미터의 모두의 복잡한 조합에 의해 영향을 받을 수 있다. 특정 격자 구성의 광학 거동의 체제를 식별하기 위해 무차원 파라미터(Q)를 사용하는 것은 회절 격자의 분야에서 통상적일 수도 있다.
Figure 112016115093617-pct00001
(1)
여기서 λ는 광의 진공 파장이고, d는 격자 두께이고, Λ는 광학 요소의 격자 주기(즉, 피치)이고, n은 평균 굴절률이다. 이 프레임워크에서, 브래그 체제는 Q>1으로서 정의될 수 있고, 라만-나스(Raman-Nath) 체제는 Q<1으로서 정의될 수 있고, Q~1은 양쪽의 특성을 갖는 혼합된 체제를 칭할 수도 있다.
통상의 PG는 라만-나스 체제, 즉 소위 근축 근사(paraxial approximation)에 대략 대응하는 구성으로 구성될 수도 있다. 이 체제에서, PG는 간명한 분석 이론에 의해 일반적으로 양호하게 설명될 수 있는 고(~100%) 회절 효율 및 광학 거동을 명시할 수 있다. 에스쿠티(Escuti) 등의 미국 특허 제7,692,759호에 설명된 바와 같이, 고회절 구성은 두께 d = λ/2(ne - no) = λ/2Δn의 비-카이럴 단축 복굴절 재료에서 성취될 수도 있는, 반파 지연 조건에서의 이 체제에서 발생할 수도 있고, 여기서 Δn = (ne - no)는 복굴절이고, ne 및 no는 각각 이상(extra-ordinary) 및 정상(ordinary) 굴절률이다. 다른 통상의 구성에서, 반파 조건은 예를 들어 에스쿠티 등의 미국 특허 제8,305,523호 및 제8,339,566호에 설명된 바와 같이, 다수의 카이럴 LC 층의 특정 조합에 의해 성취될 수 있다. 이 반파 조건이 만족될 때, PG는 통상적으로 이론적으로는 100%를 원형 편광된 입력을 갖는 단일의 1차 차수로 회절하고 그리고/또는 50%를 선형 편광된 또는 비편광된 광을 갖는 각각 1차 차수로 회절할 수 있다. 최근에, 이러한 PG는 특히 벌크 LC 재료에 의한 작동 파장(λ)보다 훨씬 더 큰 격자 주기(Λ)를 갖는 PG에 대해, >99% 효율(그리고 본질적으로 헤이즈가 없음)을 보고하는 다수의 그룹으로 물리적으로 실현되었다.
본 발명의 실시예는 큰 회절각에서 고회절 효율이 가능한 광학 요소를 제공한다.
본 발명의 몇몇 실시예에 따르면, 광을 회절하기 위한 광학 요소 또는 장치는 격자 주기, 두께, 및 브래그 조건(Q>1)이 작동 파장에 대해 얻어지도록 하는 평균 굴절률을 갖는 적어도 하나의 액정 편광 격자를 포함한다. 예를 들어, 약 400 nm 내지 약 1700 nm의 작동 파장 범위에서, 장치는 약 100 nm 내지 약 10000 nm의 집성 두께, 및 약 300 nm 내지 약 5000 nm의 격자 주기를 갖는 복수의 적층된 액정 서브층을 포함한다. 특정 실시예에서, 약 1530 nm 내지 약 1565 nm의 작동 파장 범위 및 약 1000 nm의 격자 주기에 대해, 장치는 약 100 nm 내지 약 300 nm의 각각의 두께, 및 약 6000 nm의 집성 두께를 갖는 복수의 적층된 액정 서브층을 포함할 수도 있다.
몇몇 실시예에서, 편광 격자는 기판 상에 제공된 다수의 적층된 중합된 네마틱 액정 서브층을 포함할 수도 있다. 기판은 투명성 또는 반사성일 수도 있다.
몇몇 실시예에서, 각각의 액정 서브층은 격자 주기보다 작은 두께를 가질 수도 있다.
몇몇 실시예에서, 액정 서브층은 서브층 사이의 계면에 정돈된 액정 분자 배향에 의해 형성될 수도 있는 로컬 광축을 가질 수도 있다.
몇몇 실시예에서, 액정 서브층은 그 각각의 두께에 걸쳐 회전된 각각의 로컬 광축을 갖는 카이럴층을 포함할 수도 있다. 액정 서브층의 카이럴성, 뿐만 아니라 그 위에 입사된 광의 입사각 및/또는 편광은 그로부터 출력된 광의 회절각에 영향을 미칠 수 있다.
본 발명의 다른 실시예에 따르면, 광학 요소는 브래그 조건에 따라 이를 통해 통과하는 광의 전파의 방향을 변경하고 광의 편광을 변경하도록 구성된 복수의 적층된 복굴절 서브층을 포함한다. 적층된 복굴절 서브층은 각각의 서브층 격자 주기를 형성하도록 적층된 복굴절 서브층의 인접한 서브층들 사이의 각각의 계면을 따라 변하는 로컬 광축을 각각 포함한다.
몇몇 실시예에서, 적층된 복굴절 서브층 각각은 광의 파장보다 작을 수도 있는 두께를 갖는다.
몇몇 실시예에서, 적층된 복굴절 서브층은 이에 의해 형성된 광학 요소의 격자 주기(Λ)보다 작은 그리고/또는 각각의 격자 주기보다 작은 각각의 두께를 가질 수도 있고, 각각의 두께의 합을 포함하는 집성 두께는 광학 요소의 격자 주기(Λ)보다 크고 그리고/또는 각각의 격자 주기보다 클 수도 있다.
몇몇 실시예에서, 광의 파장은 파장(λ)을 포함하고, 각각의 격자 주기는 광학 요소의 주기(Λ)를 형성하고, 집성 두께는 두께(d)를 포함하고, 적층된 복굴절 서브층의 평균 굴절률은 변수 Q가 파장(λ)에 대해 1보다 크도록 하는 굴절률(n)을 포함하고, 여기서 Q = 2πλd/Λ2n이다.
몇몇 실시예에서, 적층된 복굴절 서브층은 약 0.4 미만의 복굴절율을 갖는 재료를 포함할 수도 있다.
몇몇 실시예에서, 적층된 복굴절 서브층은 로컬 광축을 형성하는 액정 분자 배향을 구비한 액정 서브층을 각각 포함할 수도 있다.
몇몇 실시예에서, 적층된 복굴절 서브층의 하나 이상의 로컬 광축은 각각의 트위스트각을 형성하도록 그 각각의 두께에 걸쳐 회전될 수도 있다.
몇몇 실시예에서, 각각의 트위스트각 및/또는 각각의 두께 중 임의의 것들은 적층된 복굴절 서브층 사이에서 상이할 수도 있다.
몇몇 실시예에서, 복수의 적층된 복굴절 서브층은 광의 입사 편광과는 상이한, 실질적으로 동일한 편광을 갖는 0차 빔 및 1차 빔으로 광을 회절하도록 구성될 수도 있다.
몇몇 실시예에서, 복수의 적층된 복굴절 서브층은 브래그각에 대략 동일한 입사각에서 광을 수용하는 것에 응답하는 약 94% 이상의 회절 효율로 광을 1차 빔으로 회절하도록 구성될 수도 있다.
몇몇 실시예에서, 0차 및 1차 빔의 상이한 전파각 사이의 차이는 브래그각에 대략 동일한 입사각에서 광을 수용하는 것에 응답하여 약 45도 초과, 약 60도 초과, 또는 최대 약 90도일 수도 있다.
몇몇 실시예에서, 0차 및 1차 빔의 실질적으로 동일한 편광은 동일한 좌우상(handedness)의 대략적으로 원형 편광일 수도 있다.
몇몇 실시예에서, 반사 요소는 적층된 복굴절 서브층으로부터 출력된 0차 빔 및/또는 1차 빔을 수용하고 0차 빔 및/또는 1차 빔을 이를 향해 다시 반사하도록 배열되거나 위치될 수도 있다.
몇몇 실시예에서, 반사 요소는 적층된 복굴절 서브층으로부터 0차 빔 및/또는 1차 빔을 수용하는 것에 응답하여 복수의 상이한 편광을 갖는 광을 출력하도록 구성될 수도 있다.
몇몇 실시예에서, 적층된 복굴절 서브층의 각각의 격자 주기는 광의 파장보다 작다.
몇몇 실시예에서, 투명 기판이 복수의 적층된 복굴절 서브층에 광학적으로 결합될 수도 있다. 복수의 적층된 복굴절 서브층은 투명 기판 내의 내부 전반사(TIR)를 위한 임계각보다 큰 각도에서 광을 1차 빔으로 회절하도록 구성될 수도 있다.
몇몇 실시예에서, 복수의 적층된 복굴절 서브층은 각각의 제1 격자 주기를 갖는 제1 복굴절 서브층일 수도 있고, 브래그 조건에 따라 이를 통해 통과하는 광의 제1 파장의 전파의 방향을 변경하도록 구성될 수도 있다. 복수의 적층된 제2 복굴절 서브층은 제1 복굴절 서브층 상에 있을 수도 있고, 브래그 조건에 따라 이를 통해 통과하는 광의 제2 파장의 전파의 방향을 변경하도록 각각 구성될 수도 있다. 제2 복굴절 서브층은 각각의 제2 격자 주기를 형성하기 위해 그 사이의 각각의 계면을 따라 변하는 각각의 로컬 광축을 가질 수도 있다. 제1 및 제2 복굴절 서브층은 광의 제1 및 제2 파장을 각각의 1차 빔 내로 각각 회절하도록 구성될 수도 있다.
몇몇 실시예에서, 각각의 1차 빔은 실질적으로 동일한 전파 방향을 가질 수도 있다.
몇몇 실시예에서, 제2 격자 주기, 제2 복굴절 서브층의 집성 두께, 및/또는 제2 복굴절 서브층의 평균 굴절률은 제1 복굴절층의 것들과는 상이할 수도 있다.
몇몇 실시예에서, 적층된 복굴절 서브층은 상이한 로컬 격자 주기를 갖는 제1 및 제2 나란한 제2 영역을 각각 포함할 수도 있다.
몇몇 실시예에서, 각각의 격자 주기는 약 1000 나노미터 이하일 수도 있고, 적층된 복굴절 서브층은 약 100 nm 내지 약 300 nm의 각각의 두께를 갖는다.
몇몇 실시예에서, 광의 파장은 약 400 나노미터(nm) 내지 약 1700 nm일 수도 있다.
몇몇 실시예에서, 적층된 복굴절 서브층은 각각의 격자 주기의 절반 이하인 각각의 두께를 가질 수도 있다.
본 발명의 또 다른 실시예에 따르면, 회절 광학 요소는 두께(d)[즉, 두께(d)를 갖는 단일 단계에서 형성된 액정층 또는 집합 두께(d)를 갖는 다수의 서브층으로 형성된 액정층], 평균 굴절률(n)을 갖고, 변수 Q가 광의 작동 파장(λ)에 대해 1보다 크도록 하는 회절 광학 요소의 격자 주기(Λ)를 형성하도록 그 표면을 따른 방향에서 변하는 액정 분자 배향을 포함하는 적어도 하나의 액정층을 포함하고, 여기서 Q = 2πλd/Λ2n이다.
몇몇 실시예에서, 회절 광학 요소의 격자 주기(Λ)는 광의 작동 파장(λ)보다 작을 수도 있다.
몇몇 실시예에서, 격자 주기(Λ)는 적어도 하나의 액정층 내에서 다양할 수도 있다. 예를 들어, 적어도 하나의 액정층은 그 섹션 또는 부분 내에 상이한 로컬 격자 주기를 각각 갖는 상이한 섹션 또는 부분을 포함할 수도 있다. 더 일반적으로, 적어도 하나의 액정층의 일 부분은 일 세트의 파라미터를 갖는 브래그 편광 격자를 형성할 수도 있고, 반면에 적어도 하나의 액정층의 다른 부분은 상이한 브래그 편광 격자 파라미터를 가질 수도 있고, 또는 심지어 다른 유형의 요소에 대응하는 파라미터(예를 들어, 비-브래그 편광 격자)를 가질 수도 있다.
몇몇 실시예에서, 적어도 하나의 액정층은 복수의 적층된 중합된 네마틱 액정 서브층일 수도 있고, 적층된 중합된 액정 서브층의 각각의 두께는 광의 작동 파장(λ)보다 작을 수도 있다.
몇몇 실시예에서, 적층된 중합된 네마틱 액정 서브층의 각각의 두께는 회절 광학 요소의 격자 주기(Λ)보다 작을 수도 있다. 적층된 중합된 네마틱 액정 서브층의 각각의 두께는 회절 광학 요소의 격자 주기(Λ) 및 광의 작동 파장(λ)보다 큰 두께(d)를 집합적으로 형성될 수도 있다.
몇몇 실시예에서, 적층된 중합된 네마틱 액정 서브층 중 하나 이상의 액정 분자 배향은 각각의 트위스트각(φ)을 형성하도록 그 각각의 두께에 걸쳐 회전될 수도 있고, 각각의 트위스트각(φ) 및/또는 각각의 두께는 적층된 중합된 네마틱 액정 서브층 사이에서 상이할 수도 있다.
본 발명의 몇몇 실시예는 따라서 이를 통해 통과하는 광의 방향 및 편광을 변경하도록 각각 구성된 복수의 적층된 복굴절 서브층을 포함하고, 서브층은 각각의 격자 주기를 형성하도록 서브층들 사이의 각각의 계면을 따른 방향에서 변하는 각각의 로컬 광축을 갖고, 적층된 복굴절 서브층의 각각의 격자 주기, 각각의 두께, 및 평균 굴절률은 광의 파장에 대해 브래그 조건을 형성한다.
몇몇 실시예에 따른 다른 장치 및/또는 방법은 이하의 도면 및 상세한 설명의 검토시 관련 기술분야의 통상의 기술자에게 명백해질 것이다. 모든 이러한 부가의 실시예는, 상기 실시예의 임의의 및 모든 조합에 추가하여, 본 명세서에 내에 포함되고, 본 발명의 범주 내에 있고, 첨부된 청구범위에 의해 보호되도록 의도된다.
도 1은 본 발명의 몇몇 실시예에 따른 브래그 액정 편광 격자(LCPG)의 구조 및 파라미터를 도시하는 도면이다.
도 2는 본 발명의 몇몇 실시예에 따른 투과성 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 3a는 본 발명의 몇몇 실시예에 따른 투과성 브래그 LCPG 회절 효율 측정을 위한 셋업을 도시하는 도면이다.
도 3b는 본 발명의 몇몇 실시예에 따라 제조된 투과성 브래그 LCPG로부터의 측정된 투과율을 도시하는 도면이다.
도 4는 본 발명의 몇몇 실시예에 따른 반사성 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 5a는 본 발명의 몇몇 실시예에 따른 반사성 브래그 LCPG 회절 효율 측정을 위한 셋업을 도시하는 도면이다.
도 5b는 본 발명의 몇몇 실시예에 따라 제조된 반사성 브래그 LCPG로부터의 측정된 반사율을 도시하는 도면이다.
도 6은 본 발명의 몇몇 실시예에 따른 경사형 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 7은 본 발명의 몇몇 실시예에 따른 투과성 경사형 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 8은 본 발명의 몇몇 실시예에 따른 반사성 경사형 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 9는 본 발명의 몇몇 실시예에 따른 도파로 내로의 내부 전반사를 성취하도록 구성된 투과성 경사형 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 10a는 본 발명의 몇몇 실시예에 따른, 1차 회절이 도파로 내의 내부 전반사(TIR)를 성취하는, 경사형 브래그 LCPG 회절 효율 측정을 위한 셋업을 도시하는 도면이다.
도 10b는 본 발명의 몇몇 실시예에 따른 도파로의 에지 외부의 측정된 투과율을 도시하는 도면이다.
도 11은 본 발명의 몇몇 실시예에 따른 도파로 내로의 내부 전반사를 성취하도록 구성된 반사성 경사형 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 12는 본 발명의 몇몇 실시예에 따른 적층된 브래그 LCPG를 도시하는 도면이다.
도 13은 본 발명의 몇몇 실시예에 따른 편광 빔 스플리터(PBS)로서 작용하도록 구성된 투과성 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 14는 본 발명의 몇몇 실시예에 따른 반사면과 조합하여 PBS로서 작용하는 투과성 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 15는 본 발명의 몇몇 실시예에 따른 화상 제어 시스템을 성취하기 위해 반사성 LC 디스플레이와 조합하여 PBS로서 작용하는 투과성 브래그 LCPG에 의한 광파 거동을 도시하는 도면이다.
도 16a는 본 발명의 몇몇 실시예에 따른 홀로그래픽 리소그래피를 사용하여 브래그 PG를 제조하는 방법을 도시하는 도면이다.
도 16b는 본 발명의 몇몇 실시예에 따른 격자 복제 접근법을 사용하여 브래그 PG를 제조하는 방법을 도시하는 도면이다.
본 발명은 본 발명의 실시예가 도시되어 있는 첨부 도면을 참조하여 더 완전히 후술된다. 그러나, 본 발명은 다수의 상이한 형태로 실시될 수도 있고, 본 명세서에 설명된 실시예에 한정되는 것으로서 해석되어서는 안된다. 오히려, 이들 실시예는 본 개시내용이 철저하고 완전할 것이도록 제공된 것이고, 관련 기술분야의 통상의 기술자에게 본 발명의 범주를 완전히 전달할 것이다. 도면에서, 층 및 영역의 크기 및 상대 크기는 명료화를 위해 과장되어 있을 수도 있다. 유사한 도면 부호가 전체에 걸쳐 유사한 요소를 나타낸다.
용어, 제1, 제2, 제3 등이 다양한 요소, 구성요소, 영역, 층 및/또는 섹션을 설명하기 위해 본 명세서에 사용될 수도 있지만, 이들 요소, 구성요소, 영역, 층 및/또는 섹션은 이들 용어에 의해 한정되어서는 안된다는 것이 이해될 수 있을 것이다. 이들 용어는 오직 하나의 요소, 구성요소, 영역, 층 또는 섹션을 다른 영역, 층 또는 섹션으로부터 구별하는데 사용된다. 따라서, 후술되는 제1 요소, 구성요소, 영역, 층 또는 섹션은 본 발명의 교시로부터 벗어나지 않고 제2 요소, 구성요소, 영역, 층 또는 섹션이라 명명될 수 있다.
"밑", "아래", "하부", "하위", "위", "상부" 등과 같은 공간적 상대 용어가 도면에 도시된 바와 같은 다른 요소(들) 또는 특징부(들)에 대한 하나의 요소 또는 특징부의 관계를 설명하도록 용이한 설명을 위해 본 명세서에 사용될 수도 있다. 공간적 상대 용어는 도면에 도시된 방위에 추가하여 사용 또는 작동시에 디바이스의 상이한 방위를 포함하도록 의도된다는 것이 이해될 수 있을 것이다. 예를 들어, 도면 내의 디바이스가 전복되는 경우, 다른 요소 또는 특징부 "아래" 또는 "밑" 또는 "하위"에 있는 것으로서 설명된 요소는 이후 다른 요소 또는 특징부 "위"에 배향될 것이다. 따라서, 용어 "아래" 및 "하위"는 위 그리고 아래의 모두의 방위를 포함할 수 있다. 디바이스는 달리 배향될 수도 있고(90도 회전되거나 다른 방위에 있음), 본 명세서에 사용된 공간적 상대 기술어는 이에 따라 해석된다. 게다가, 층이 2개의 층 "사이에" 있는 것으로서 언급될 때, 이는 단지 2개의 층 사이의 층일 수 있고, 또는 하나 이상의 개재층이 또한 존재할 수도 있다는 것이 또한 이해될 수 있을 것이다.
본 명세서에 사용된 용어는 단지 특정 실시예를 설명하기 위한 것이고, 본 발명의 한정이 되도록 의도된 것은 아니다. 본 명세서에 사용될 때, 단수 형태는 문맥상 명백히 달리 지시되지 않으면, 복수 형태를 마찬가지로 포함하도록 의도된다. 용어 "포함한다" 및/또는 "포함하는"은 본 명세서에 사용될 때, 언급된 특징부, 완전체, 단계, 동작, 요소, 및/또는 구성요소의 존재를 설명하지만, 하나 이상의 다른 특징부, 완전체, 단계, 동작, 요소, 구성요소, 및/또는 이들의 그룹의 존재 또는 추가를 배제하는 것은 아니라는 것이 또한 이해될 수 있을 것이다. 본 명세서에 사용될 때, 용어 "및/또는"은 연계된 열거된 아이템의 하나 이상의 임의의 그리고 모든 조합을 포함한다.
요소 또는 층이 다른 요소 또는 층 "위"에 있는 것으로서, "연결된" 것으로서, "결합된" 것으로서, 또는 "인접한" 것으로서 언급될 때, 이는 다른 요소 또는 층에 대해 직접적으로 위에 있고, 연결되고, 결합되거나, 또는 인접한 것일 수 있고, 또는 개재 요소 또는 층이 존재할 수도 있다는 것이 이해될 수 있을 것이다. 대조적으로, 요소가 다른 요소 또는 층 "위에 직접" 있는 것으로서, "직접 연결된" 것으로서, "직접 연결된" 것으로서" 또는 "바로 인접한" 것으로서 언급될 때, 어떠한 개재 요소 또는 층도 존재하지 않는다.
본 발명의 실시예는 본 발명의 이상화된 실시예(및 중간 구조체)의 개략도인 단면도를 참조하여 본 명세서에 설명된다. 이와 같이, 예를 들어 제조 기술 및/또는 공차의 결과로서 도시의 형상으로부터의 변형이 예측되게 된다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 한정되는 것으로서 해석되어서는 안되고, 예를 들어 제조로부터 발생하는 형상의 편차를 포함한다. 이에 따라, 도면에 도시된 영역은 본질적으로 개략적이고, 이들의 형상은 디바이스의 영역의 실제 형상을 예시하도록 의도된 것은 아니고, 본 발명의 범주를 한정하도록 의도된 것은 아니다.
달리 정의되지 않으면, 본 명세서에 사용된 모든 용어(기술적 및 과학적 용어를 포함함)는 본 발명이 속하는 관련 기술분야의 통상의 기술자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 통상적으로 사용되는 사전에 정의된 것들과 같은 용어는 관련 기술분야 및/또는 본 명세서에의 문맥에서 이들의 의미에 일치하는 의미를 갖는 것으로서 해석되어야 하고, 본 명세서에 분명하게 그와 같이 정의되지 않으면 이상화된 또는 과도하게 형식적인 의미로 해석되지 않을 것이라는 것이 또한 이해될 수 있을 것이다.
라만-나스 체제에서 몇몇 통상의 PG는 λ에 근접한 격자 주기(즉, Λ ~ λ)를 가질 수도 있는데, 여기서 두께는 반파 지연 조건에 대략적으로 상응할 수도 있다. 수직 입사를 위한 회절각(θ)은 이하로서 정의될 수도 있고:
sin(θ) = λ/Λ (2)
여기서, Λ가 λ에 근접함에 따라(Λ ~ λ), θ는 더욱 더 커지고 결국에는 90°가 된다. Λ < λ일 때, θ는 허수가 되고, 광은 격자 내의 도파로일 수도 있다. 그러나, 큰 회절각(즉, Λ가 λ에 근접할 때)에서 고회절 효율은 불가능하거나 실현 불가능할 수도 있다. 예를 들어, 몇몇 수치적 시뮬레이션에 따르면, 큰 회절각에서 고회절 효율은 점점 더 높은 복굴절을 갖는 재료를 사용함으로써 성취될 수도 있지만, λ에 근접하는 Λ에 대해, 요구 복굴절은 실현 불가능하게 높다(즉, Δn > 0.4). 다른 수치적 시뮬레이션은 이들 발견을 지원하는데, 이들 중 일부는 액정이 사용될 때, 실행 불가능하게 높은 복굴절(Δn)에 대한 요구 때문에 제조가 과제가 될 수도 있다는 것을 인식할 수도 있다. 마찬가지로, Λ
Figure 112016115093617-pct00002
λ를 갖는 액정 기반 편광 격자는, Δn ~ 0.59를 갖는 이상적인 시뮬레이션된 경우에도, 최고 예측된 회절 효율이 대략 30%일 수도 있기 때문에, 실험적으로 실현되지 않을 수도 있다는 것이 인식될 수도 있다.
브래그 체제에서 편광 격자(PG)의 통상의 사용은 다소 제한되어 왔는데, 이는 아마도 더 작은 주기의 PG가 제조되기에 더욱 어려울 수도 있고 그리고/또는 더욱 복잡한 이론적 분석을 필요로 할 수도 있기 때문이다. 그러나, 이 체제는 몇몇 용례가 광학 시스템의 각구경(angular aperture)을 증가시키기 위해 큰 회절각이 바람직할 수도 있기 때문에 중요할 수도 있다. 이러한 용례는 원격통신, 디스플레이, 촬상 센서, 및 비-기계적 레이저빔 조향을 포함할 수도 있다.
본 발명의 몇몇 실시예는 브래그 체제에서 PG의 통상의 사용이 전형적으로, 격자 주기(Λ)가 입사광의 파장(λ)(본 명세서에서 또한 작동 파장이라 칭함)보다 큰 경우, 즉 Λ > λ인 경우(예를 들어, λ가 Λ에 근접하는 경우)에 초점을 맞춘다는 인식으로부터 발생할 수도 있다. 브래그 PG의 이전의 예에서, 실험 연구는 광활성 폴리머를 채용하였고, 아조벤젠 모이어티(moiety)와의 벌크 광유도성 분자 재배향에 기초하여, Λ = 2 ㎛, d = 100 ㎛, 및 λ = 633 nm일 때, ≥90% 회절 효율을 성취하였다. 그러나, 이 부류의 재료의 한계는 두꺼운 필름에 대한 헤이즈(즉, 산란) 및 흡수의 발생일 수도 있고, 훨씬 더 두꺼운 필름이 더 작은 Λ를 갖는 브래그 PG에 대해 요구될 수도 있다. 예를 들어, 이전의 경우에서와 동일하지만 Λ = λ = 633 nm를 갖는 Q에 도달하기 위해, 식 (1)은, 동일한 재료에 의한 두께가 (2/0.633)2 = 10배 더 크거나, 또는 d = 1 mm일 필요가 있을 것이고, 이는 헤이즈 및 흡수가 필름을 사용 불가능하게 할 가능성이 있는 두께라는 점을 나타내고 있다.
몇몇 수치적 시뮬레이션 및 이론적 분석은 100%만큼 높은 회절 효율이 브래그 체제에 가능할 수 있다는 것을 나타낼 수도 있지만, 이는 전형적으로 두께가 반파 지연 두께보다 훨씬 더 클 때, 그리고 광이 경사져서 입사할 때 관찰될 수도 있다. 그러나, 상기 시뮬레이션 및 분석은 양호한 회절 효율 및 낮은 손실을 갖는 PG를 어떻게 제조해야 하는지에 대한 지표를 거의 또는 전혀 제공하지 않는다. 이와 같이, 통상의 PG는 큰 회절각에 대해 액정(LC)을 사용하지 않을 수도 있는데, 이는 부분적으로, 이들이 실현 불가능하게 또는 불가능하게 두꺼울 수도 있고, 그리고/또는 액정 재료의 이상 ne 및 정상 no 굴절률의 차이를 나타내는 불가능하게 높은 복굴절(Δn)을 갖는 재료를 필요로 하기 때문이다. 더욱이, 통상의 브래그 PG는 벌크 LC 재료를 사용하는 가능성을 인식하지 않을 수도 있다.
본 발명의 실시예는 최대 약 90°의 큰 회절각(θ)(즉, Λ에 근접하는 λ) 및 고효율의 모두를 갖는 PG를 제공함으로써 상기 및/또는 다른 문제점을 처리할 수도 있다. 브래그 조건(Q>1)이 작동 파장에 대해 얻어지도록 선택된 격자 주기(Λ), 두께(d), 및/또는 평균 굴절률(n)을 갖는 LC 재료로 형성된 브래그 PG는 이를 가능하게 할 수도 있고, 라만-나스 PG와 동일한 방식으로 재료 복굴절에 의해 한정되지 않을 수도 있다. 본 발명의 실시예에 의해 처리된 다른 문제점은 작거나 크건간에, 임의의 회절각에서 통상의 브래그 PG와 연계된 흡수(등) 손실 및/또는 제조 어려움을 포함한다. 본 발명의 몇몇 실시예에 따른 브래그 액정 편광 격자(LCPG)는 투명하며, 통상의 LC 재료 및 프로세스를 채용할 수 있기 때문에 더 용이하게 제조될 수도 있다.
더 구체적으로, 본 발명의 실시예는 개별적으로 코팅되고 중합된 벌크 LC 재료 및 다수의 서브층(이를 통해 통과될 광의 작동 파장보다 작은 각각의 두께를 가질 수도 있음)을 채용할 수 있어, 브래그 체제를 위해 요구되는 큰 두께를 성취하고, 이에 의해 종래의 통상의 방법 및 재료의 제한을 회피하여 고회절 효율(예를 들어, 대략 또는 최대 100%)을 명시하는 저손실 및 고품질 브래그 PG를 물리적으로 실현한다.
도 1은 본 발명의 몇몇 실시예에 따른 브래그 LCPG(100)를 도시하고 있다. 브래그 LCPG(100)는 기판(110), 광배향층(115), 및 그 사이의 계면을 따른 방향으로 변화하는 각각의 로컬 광축을 갖는 복수의 적층된 복굴절 서브층[벌크 네마틱 LC 층(105a, 105b, ... 105n)으로서 도시되어 있음]을 포함하고, 서브층의 각각은 개별적으로 코팅되고 중합될 수도 있고 이들의 관련 파라미터는 Q>1이 되도록 배열되거나 선택된다. 도 1의 예에서, 각각의 층(105a, 105b, ... 105n) 내의 액정 분자 배향은 층(105a, 105b, ... 105n) 사이의 각각의 계면을 따라 변화하지만 층(105a, 105b, ... 105n)의 각각의 두께에 걸쳐 균일한 로컬 광축을 형성한다. 기판(110)은 강성 또는 가요성, 및/또는 투명 또는 반사성일 수도 있다. 광배향층(115)은 배향 방향이 φ(x) = πx/Λ를 따르도록 패터닝되어 있는 선형 광중합성 폴리머(LPP)일 수 있다.
벌크 네마틱 LC 층(105a, 105b, ... 105n)은 중합된 반응성 LC 모노머층으로서 설명될 수 있고, 편의상 그리고 일관성을 위해 본 명세서에서 LC 폴리머(LCP) 서브층이라 칭할 수도 있다. 각각의 얇은 LCP 서브층(105a, 105b, ... 105n)은 식 (1)의 전체 또는 총 브래그 PG 두께(d)(= d1 + d2 + ... dN)를 집합적으로 형성하는 그 고유의 두께(d1, d2, ..., dN)를 갖고, 위 그리고 아래의 서브층과의 계면에 배향된 로컬 광축을 갖는다. 2개 이상의 서브층(105a, 105b, ... 105n)은 각각 동일한 두께를 가질 수도 있지만, 본 발명의 실시예는 이와 같이 한정되는 것은 아니고, 상이한 두께를 갖는 서브층(105a, 105b, ... 105n)을 포함할 수도 있다는 것에 유의한다. 마찬가지로, 각각의 LCP 서브층(105a, 105b, ... 105n)은 요소(100)를 위한 전체 광학 격자 주기(Λo)[더 일반적으로 본 명세서에서 광학 요소 격자 주기(Λ)라 칭함]를 형성할 수도 있는 각각의 서브층 또는 표면 격자 주기(Λs)를 갖는다. 광학 요소 격자 주기(Λ)가 도 1의 실시예에서 서브층 격자 주기(Λs)에 동일한 것으로서(즉, Λo = Λs) 예시되었으나, 광학 요소 격자 주기(Λ)는 다른 실시예에서 서브층 격자 주기(Λs) 이하일 수도 있다(즉, Λo ≤ Λs). 각각의 서브층 두께(d1, d2, ..., dN)는 작동 파장(λ) 및/또는 광학 요소 격자 주기(Λ)보다 작을 수도 있어(예를 들어, 광학 요소 격자 주기의 대략 절반 이하, 즉 d# ≤ Λ/2), 고품질 LC 배향을 용이하게 하지만(그 개시내용이 본 명세서에 참조로서 합체된, 에스쿠티 등의 미국 특허 제8,064,035호 참조), 집성 또는 총 브래그 PG 두께(d)는 몇몇 실시예에서 광학 요소 격자 주기(Λ) 및/또는 작동 파장(λ)보다 클 수도 있는 것에 또한 유의한다. 더 일반적으로, 다른 파라미터가 일정하면, 브래그 효과를 위해 요구되는 두께(d)는 광학 요소 격자 주기(Λ)가 증가함에 따라 증가할 수도 있다.
이와 관련하여, LCP 층은 통상의 액정 폴리머와는 구별된다는 것이 주목되어야 한다. 본 발명의 몇몇 실시예에서 채용된 LCP 박막은 그 위에서 이들이 코팅되거나 다른 방식으로 형성되는 표면의 특징에 의해 배향되고 이후에 강성 폴리머 네트워크 내로 중합되는 저분자량 반응성 LC 분자를 포함한다. 특히, 브래그 PG의 주기적 패턴은 LCP 층 직접보다는, 광배향층의 표면 내로 기록될 수 있다. 역으로, 다수의 통상의 액정 폴리머는 액정 구성요소를 갖는 고분자량 폴리머일 수도 있고, 브래그 PG의 주기적 패턴은 전형적으로 예를 들어, 광유도된 분자 재배향을 거쳐, 재료 내로 직접 기록된다.
도 2는 투명 기판(210)[도 1의 기판(110)과는 상이할 수도 있음] 상에 형성되거나 장착될 때 도 1의 브래그 LCPG(100)가 어떻게 작동하는지를 예시하는 광학 요소(200)를 도시하고 있다. 기생 반사 및 누설과는 별개로, 각도(θi)로 입사된 광파(290)는, 광(290)의 입사각(θi)이 브래그각 관계[θi = θB = sin- 1(λ/(2Λ))]를 만족할 때, 각도 θm =0 및 θm =1 각각을 따라, 0차(m=0) 및 1차(m=1)에 대응하는 브래그 LCPG(100)에 의해 단지(또는 실질적으로) 2개의 회절 차수(299, 299')로 분할될 수 있고, 여기서 θB는 브래그각이라 칭한다. 도 2의 표기법에 따르면, 전통적인 회절식에 따라, sin θm =1 = sin θi - λ/Λ = -λ/(2Λ)이다. 달리 말하면, θm =1 = -θB는 1차 출력 빔(299')의 입사각(θi) 및 회절각(θm=1)이 브래그각(θB)에 동일하지만, 1차 출력 빔(299')의 회절각(θm=1)은 [요소(200)에 수직인 방향에 대해] 방향이 반대라는 것을 의미한다. 0차 출력 빔(299)의 회절각(θm=0)은 요소(200)에 수직인 방향에 대해 입사각(θi)에 동일하다. 더욱이, 격자 파라미터(즉, Λ, d, 및 Δn)는 입사 광파 파라미터(즉, θi 및 λ)가 제공되면 향상된 또는 최적 회절 효율에 대해 선택될 수도 있다. 몇몇 실시예에서[예를 들어, 브래그 LCPG(100)가 완전히 회절함], 출력 광파 또는 빔(299, 299')은 실질적으로 동일한 원형 편광을 가질 수 있고, 이들의 상대 효율은 부분적으로 입사 편광에 의해 결정될 수도 있다. 특히, 입사 광파(290)가 원형 편광을 구비하고 소위 브래그각을 따라 입력될 때, 대향 원형 편광을 갖는, 1차(299') 내로의 최대 100% 회절 효율이 이론적으로 가능하다. 다른 실시예에서[예를 들어, 브래그 LCPG(100)가 50% 효율과 같이 부분적으로 회절함], 1차 출력 빔(299')은 원형 편광될 수도 있고, 반면에 0차 출력 빔(299)은 타원형, 비원형 편광을 가질 수도 있다. 따라서, 본 명세서에 설명된 바와 같이 브래그 LCPG는 입사광의 편광 및 전파 방향의 모두를 변경한다.
도 2의 실시예의 대표적인 예로서, 파장 λ = 1550 nm에 대한 브래그 LCPG가 일 측에 반사 방지 코팅을 갖는 투명 유리 기판 상에 제조되었다. 광학 요소에 대한 격자 피치는 Λ = 1 ㎛ 또는 1000 lines/mm가 되도록, 즉 격자 피치 또는 주기(Λ)가 작동 파장(λ)보다 작도록 선택되었다. 직교 원형 편광을 갖는 2개의 간섭성 UV 레이저빔(355 nm)을 간섭하는 PG 홀로그래픽 리소그래피 방법을 사용하여 노출되었던 LPP 재료 LIA-COO1(DIC Corporation Japan)이 사용되었다. LCP에 대해, RMS03-001C(Merck Chemicals Ltd., 1550 nm에서 Δn ~ 0.1 및 n ~ 1.57을 가짐)가 사용되었다. 이 LCP의 대략 30개의 얇은 층[광학 요소 격자 주기(Λ) 및 작동 파장(λ)보다 작은 ~216 nm의 각각의 두께를 가짐]은 예를 들어 코만두리(Komanduri) 등의 "Multi-twist retarders: Broadband retardation control using self-aligning reactive liquid crystal layers", Optics Express 21, 404-420 (2013),에 보고된 것들과 유사한 기술을 사용하여 LPP 층 상에 스핀 코팅되었다. 총 두께(d) ~6.5 ㎛(30개의 LCP 서브층의 두께의 합을 나타냄)가 회절 효율을 증가시키거나 최대화하도록 선택되었다. 본 명세서에 설명된 브래그 LCPG의 몇몇 실시예는 최대 약 20 ㎛의 총 두께(d)를 가질 수도 있다. 제2 투명 유리 기판이 박막을 보호하고 공기-유리 반사 손실을 감소시키거나 최소화하기 위해 LCP 상에 부착되었다. 본 예에서, Q ~40이고 브래그 체제에 양호하다.
도 3a는 전술된 예에서 브래그 LCPG를 특징화하는데 사용된 측정 셋업(309)을 도시하고 있다. 1550 nm 레이저(310)로부터의 선형 편광된 광이 1/4 파장판(QWP)(320)을 통해 통과되어, 입사각(θi)에서 브래그 LCPG(300)에 제공되었던 원형 편광된 광(390)을 제공하도록 편광 상태를 조정하였다. 각도(θi)는 샘플 브래그 LCPG(300)를 회전함으로써 변경되었다. 0차(399) 및 1차(399')에서 회절된 광의 양은 광검출기(330, 330')를 사용함으로써 측정되었다.
도 3b는 다양한 입사각에서 전술된 투과성 샘플 브래그 LCPG(300)에 대해 측정된 데이터를 도시한다. 도 3b에 도시된 바와 같이, 0차 투과율은 입력광(390)이 원형 편광될 때 최소값에 도달하였다. 이 구성에서, 입사각(θi)이 변경됨에 따라, 0차의 절대 최소값은 51°에서 측정되었는데, 이는 sin-1(λ/(2Λ)) = sin-1(1.55/2)~51°로서 산출된 브래그각에 매우 가깝다. 도 3b에도 보여지는 바와 같이, 이 각도(51°)에서 0차 내에서 입사광의 <1%이 관찰되었고, 입사광(390)의 ~94%가 1차로 회절되었다. ~4% 손실은 수직 입사를 위해 선택되거나 최적화되었던 반사 방지 코팅을 포함하는 공기-유리 계면의 잔류 반사에 주로 기인할 수도 있다. 이 효과를 정규화함으로써, 본 측정에서 ~99% 회절 효율(=0.94/(0.94+0.01))이 성취되었다. 이는 LCPG를 갖는 브래그 회절의 유효화일 뿐만 아니라, 이들 결과는 상이한 방법 및 재료에 따라 형성된 통상의 브래그 격자(즉, 비-PG 유형) 및 종래의 브래그 PG로부터 관찰된 것들을 충족하거나 초과한다. 부가적으로, 양쪽 차수(399, 399')의 회절 효율은 편광 감응성일 수 있다. 입사광(390)의 편광 상태가 직교 원형 편광 사이에서 변경됨에 따라[QWP(320)를 회전시킴으로써], 실질적으로 모든 파워가 1차(399')로부터 0차(399)로 시프트된다. 편광 명암비(이들 차수에서 최대-대-최소 파워로서 정의됨)는 양쪽 차수(399, 399')에 대해 ~130:1로 측정되었다. 또한, 0차(399) 및 1차(399') 모두의 편광 상태는 원형이며 동일한 좌우상인 것으로 측정되고 확인된다는 것에 또한 유의한다.
본 발명의 또 다른 실시예에 따른 브래그 LCPG 구성을 포함하는 광학 요소(400)가 도 2의 실시예(200)의 반사성 버전인 도 4에 도시되어 있다. 도 1과 유사한 브래그 LCPG 층(100')은 금속 미러 또는 반도체와 같은 반사 기판(410) 상에 형성되거나 장착되고, 여기서 총 두께(d)는 도 2의 LCPG 층(100)의 두께의 대략 절반이다. 입사 광파(490)는, 출력광 또는 빔(499, 499')의 모든 각도가 반사 기판(410)에 의한 반사에 기인하여 요소(400)의 동일한 측면에 있는 점을 제외하고는, 도 2에서와 유사하게 거동한다. 즉, 0차(m=0) 및 1차(m=1) 출력 광빔(499, 499') 각각에 대응하는 회절각(θm=0, θm=1)은 도 2에 도시된 것과 동일하지만 반대이다. 본 실시예의 광파는 LCPG 층(100')을 통해 2회 통과해야 하기 때문에, LCPG 층(100')의 총 두께(d)는 이전의 경우의 두께의 대략 절반으로 선택되어야 한다.
도 4의 실시예(400)의 대표적인 예로서, 파장 λ = 1550 nm에 대한 브래그 LCPG가 일 측에 반사 방지 코팅을 갖는 투명 유리 기판 상에 제조되었다. 모든 파라미터, 재료, 및 제조 방법은 대략 15개의 LCP 서브층을 코팅함으로써 성취되었던 총 두께(d) = 3 ㎛을 제외하고는, 이전의 대표적인 예의 것과 유사하거나 동일하다. 박막은 이어서 알루미늄 미러에 라미네이팅되었다. 도 5a는 브래그 LCPG 샘플(500)을 평가하기 위한 측정 셋업(509)을 도시하고 있고, 도 5b는 상이한 입사각에서 측정된 0차 및 1차 반사율을 도시하고 있다. 특히, 1550 nm 레이저(510)로부터의 선형 편광된 광이 1/4 파장판(QWP)(520)을 통해 통과되어, 입사각(θi)에서 브래그 LCPG(500)에 제공되었던 원형 편광된 광(590)을 제공하도록 편광 상태를 조정하였다. 각도(θi)는 샘플 브래그 LCPG(500)를 회전함으로써 변경되었다. 0차(599) 및 1차(599')에서 회절된 광의 양은 광검출기(530, 530')를 사용함으로써 측정되었다. 도 2의 실시예에 관한 이전의 예에 대조적으로, 도 5b에 도시된 데이터는 입사각이 변경됨에 따라 강한 발진을 나타낸다. 그럼에도 불구하고, 0차에서의 전역 최소값(~13%)이, 1차에서 최대 반사율(~83%)이 발생하는 51°의 동일한 브래그각에서 관찰되었다. 이는 86% 회절 효율(=0.83/(0.83+0.13))에 대응한다. 이는 (LCP 두께가 이 경우에 약간 너무 얇을 수도 있기 때문에) 가능한 한 높지는 않지만, 그럼에도 불구하고 LCPG로부터 브래그 회절의 증명이다.
본 발명의 또 다른 실시예에 따른 브래그 LCPG(600)가 LCP 재료 및 결과적인 구조체를 제외하고는, 도 1의 실시예(100)과 유사한 도 6에 도시되어 있다. 이 경우에, 중합성 카이럴 네마틱 LC 혼합물은 z 방향에서 나선형 트위스트를 유도하는 LCP로서 채용된다. 따라서, 각각의 얇은 LCP 서브층(605a, 605b, ... 605n)은 그 고유의 두께(d1, d2, ..., dN) 뿐만 아니라 전체 요소(600)를 위한 φ의 총 트위스트까지 가산하는 그 고유의 카이럴 트위스트(φ1, φ2, ... φN)를 갖는다. 달리 말하면, 서브층(605a, 605b, ... 605n)의 하나 이상의 액정 분자 배향은 서브층(605a, 605b, ... 605n) 사이의 각각의 계면을 따라 변할 뿐만 아니라 각각의 트위스트각(φ1, φ2, ..., φN)을 형성하도록 서브층(605a, 605b, ... 605n)의 각각의 두께(d1, d2, ..., dN)에 걸쳐 변하는 로컬 광축을 형성한다. 이는 또한 몇몇 통상의 경사형 브래그 격자에서 주기적인 구조체의 각도 경사와 유사한, "경사형" 브래그 LCPG를 성취한다. 서브층(605a, 605b, ... 605n)은 동일한 두께 및 트위스트를 각각 가질 수도 있지만, 본 발명의 실시예는 이와 같이 한정되는 것은 아니고, 상이한 두께 및/또는 트위스트를 갖는 서브층(605a, 605b, ... 605n)을 포함할 수도 있다는 것에 유의한다. 각각의 서브층 두께는 작동 파장(λ) 및/또는 격자 주기(Λ)보다 작을 수도 있어(즉, d#≤Λ/2), 고품질 LC 배향을 용이하게 한다는 것에 또한 유의한다(에스쿠티 등의 미국 특허 제8,064,035호 참조). 더 구체적으로, 각각의 LCP 서브층(605a, 605b, ... 605n)은 요소(600)를 위한 전체 광학 격자 주기(Λo)[본 명세서에서 광학 요소 격자 주기(Λ)라 칭함]를 형성하는 각각의 서브층 또는 표면 격자 주기(Λs)를 갖는다. 광학 요소 격자 주기(Λ)는 도 6의 실시예에 도시된 경사형 브래그 LCPG에서 서브층 격자 주기(Λs)보다 작지만(즉, Λos), 다른 실시예에서 서브층 격자 주기(Λs)에 동일할 수도 있다(즉, Λo = Λs)
도 6의 실시예의 대표적인 예는 도 7 및 도 8에 도시되어 있고, 여기서 도 6의 경사형 브래그 LCPG(600)는 1차를 상이한 각도(θm = 1)로 회절시킨다(도 2 및 도 3 참조). 이 경사는 카이럴 네마틱 LCP 재료 자체의 동시적 나선형 트위스팅 작용을 거쳐 성취되고, 입사 브래그각 및/또는 1차 회절각에 대한 부가의 제어를 제공하여, 다른 등가의 비경사형(즉, 비-카이럴) 버전에 비교하여 더 크거나 작도록 수정되게 한다. 카이럴 분자는 예를 들어, 그 개시내용이 본 명세서에 참조로서 합체된, 발명의 명칭이 "저-트위스트 카이럴 액정 편광 격자 및 관련 제조 방법"인 에스쿠티 등의 미국 특허 출원 제12/596,189호(현재 미국 특허 제8,339,566호)에 설명된 바와 같이, 트위스트각을 정밀하게 제어하기 위해 비-카이럴 네마틱 LC에 추가될 수도 있다. 서브층이 상이한 카이럴 트위스트를 가질 때, 그 개시내용이 본 명세서에 참조로서 합체된, 발명의 명칭이 "광대역 편광 변환 및 관련 제조 방법을 위한 멀티-트위스트 지연제"인 에스쿠티 등의 미국 특허 출원 제13/646,166호에 설명된 바와 같이, 대역폭 및 각도 응답을 포함하는 브래그 LCPG 거동의 부가의 태양을 제어하는 것이 가능하다는 것에 유의한다.
특히, 도 7의 광학 요소(700)는 투명 기판(710) 상에 형성되거나 장착될 때 도 6의 브래그 LCPG(600)의 작동을 도시하고 있다. 도 7에 도시된 바와 같이, 각도(θi)로 입사된 광파(790)는 각도 θm =0 및 θm =1 각각을 따라, 브래그 LCPG(600)에 의해 0차(m=0) 및 1차(m=1)에 대응하는 오직(또는 실질적으로) 2개의 회절 차수(799, 799')로 분할된다.
도 8의 광학 요소(800)는 금속 미러 또는 반도체와 같은, 반사 기판(810) 상에 형성되거나 장착될 때 도 6과 유사한 브래그 LCPG(600')의 작동을 도시하고 있다. 본 실시예의 광파는 LCPG 층(600)을 통해 2회 통과해야 하기 때문에, LCPG 층(600')의 총 두께(d)는 도 7의 LCPG 층(600)의 두께의 대략 절반이다. 입사 광파(890)는, 출력광 또는 빔(899, 899')의 모든 각도가 반사 기판(810)에 의한 반사에 기인하여 요소(800)의 동일한 측면에 있는 것을 제외하고는, 도 7에서와 유사하게 거동한다.
본 발명의 또 다른 실시예에 따른 브래그 LCPG 구성을 포함하는 광학 요소(900)가 도 9에 도시되어 있고, 여기서 도 6의 경사형 브래그 LCPG(600)가 투명 기판(910)에 광학적으로 결합되고 그 기판(910) 내의 1차 광 출력 빔(999')의 1차 회절각(θm=1)은 임계각보다 크고 내부 전반사(TIR)를 야기한다. 이는 입력 광파(990)가 TIR을 지원하는 도파로의 모드 내로 지향되기 때문에, 때때로 도파로 커플링이라 칭한다. 광학 커플링을 성취하기 위한 다양한 방식이 존재하며, 다양한 방식은 기판(910) 상에 직접 브래그 LCPG(600)를 형성하는 것, 또는 상이한 기판 상에 브래그 LCPG(600)를 형성하고 이후에 TIR이 발생하는 최종 기판(910)에 이를 라미네이팅하는 것을 포함하지만 이에 한정되지는 않는다. 역 거동이 이 동일한 구조체로 발생하는데 - 입사 광파 또는 빔이 적절한 각도에서 그리고 적절한 파장으로 기판(910) 내부에서 미리 도광되는 경우, 경사형 브래그 LCPG(600)는 기판 외부로 이를 회절할 수 있다는 것에 유의한다. 이는 때때로 아웃-커플링이라 칭한다. 브래그 LCPG에 의한 도파로 인-커플링 및 아웃-커플링은 다수의 용례에서 유용하며, 다수의 용례는 평면형 광파 회로, 광섬유 커플러, 분산형 피드백 레이저, 광학 센서, 니어 투 아이(near-to-eye) 및 헤즈업(heads-up) 디스플레이, 백라이트(등)를 위한 회전 필름, 및 태양열 집중기를 포함하지만 이에 한정되지는 않는다. 0차 출력 빔(999)의 회절각(θm=0)은 요소(900)에 수직인 방향에 대해 입사각(θi)에 동일하다.
도 9의 실시예의 대표적인 예로서, 파장 λ = 1550 nm에 대한 경사형 브래그 LCPG가 일 측에 반사 방지 코팅을 갖는 투명 유리 기판 상에 제조되었다. 모든 파라미터, 재료, 및 제조 방법은 카이럴 네마틱 LCP 재료의 사용을 제외하고는, 도 2의 실시예에 관한 대표적인 예의 것과 유사하거나 동일하다. 이 카이럴 네마틱 LC는 소량(2 중량 %)의 카이럴 도펀트 CB15(Merck Chemicals Ltd.)를 LCP 모재 RMS03-001C 내에 첨가함으로써 준비되었다. 이는 유사한 두께(d)(~ 6 ㎛)를 갖는 트위스트(φ) = 400° 내지 500°를 생성하는 것으로 추정된다. 광학 요소를 위한 전체 격자 피치는 Λ = 1 ㎛ 또는 1000 lines/mm과 동일하게 유지된다는 것에 유의한다. 이들 파라미터는 입력광이 기판에 거의 수직인 방향으로부터 입사될 때 유리 기판(굴절률 ~1.5) 내로 1차 회절의 TIR을 성취하도록 선택되었다.
도 10a는 도 9의 예의 투과성 경사형 브래그 LCPG를 특징화하는데 사용된 측정 셋업(1009)을 도시하고 있다. 특히, 1550 nm 레이저(1010)로부터의 선형 편광된 광이 1/4 파장판(QWP)(1020)을 통해 통과되어, 샘플 브래그 LCPG(1000)를 회전시킴으로써 변경되었던 입사각(θi)에서 브래그 LCPG(1000)에 제공되었던 원형 편광된 광(1090)을 제공하도록 편광 상태를 조정하였다. 0차(1099) 및 1차(1099')에서 회절된 광의 양은 광검출기(1030, 1030')를 사용함으로써 측정되었다. 도 10b는 입력광(1090)이 원형 편광되고 입사각(θi)이 변경되었을 때의 결과를 도시하고 있다. 작은 입사각에 대해, 0차 파워는 낮고, θi = 5°에서 ~7%의 최소값을 갖는다. 거의 또는 실질적으로 모든 남아 있는 광이 도파로(즉, 기판) 내로 결합되고 TIR을 다수회 경험하였다. 샘플 내의 불균일성에 기인하여, 몇몇 산란 손실이 도파로 내에서 경험되었다. 그럼에도 불구하고, 이 광의 대부분(~64%)은 결국에는 기판으로부터 검출기 내로 탈출되었다. 경사형 브래그 LCPG와의 상호작용 후에 발생하는, 이 효과의 정규화에 의해, 적어도 ~90% 회절 효율(=0.64/(0.64+0.07))이 성취되었다. 효율은 카이럴 농도 및/또는 LCP 두께를 조정함으로써 그리고/또는 최적 입사각을 조정함으로써 더욱 향상될 수 있다.
본 발명의 또 다른 실시예에 따른 브래그 LCPG 구성을 포함하는 광학 요소(1100)가 도 9의 실시예(900)의 변형예인 도 11에 도시되어 있다. 이 경우에, 경사형 브래그 LCPG(600')는 반사형이고(도 8 참조), 입사광(1190)의 반대측에 배열된다. 도 9에서와 같이, 1차 회절 방향은 또한 TIR이 발생하는 방향을 따른다. 특히, 도 11에 도시된 바와 같이, 브래그 LCPG(600')는 금속 미러 또는 반도체와 같은, 반사 기판(1110b) 상에 형성되거나 장착되고, 반사 기판(1110b)에 대향하는 투명 기판(1110a)에 광학적으로 결합된다. 본 실시예의 광파는 LCPG 층(600')을 통해 2회 통과해야 하기 때문에, LCPG 층(600')의 총 두께(d)는 도 9의 LCPG 층(600)의 두께의 대략 절반이다. 입사광(1190)은 투명 기판(1110a)을 통해 경사형 브래그 LCPG(600')로 투과되고 0차 및 1차 빔으로 회절되는데, 이들 빔은 반사 기판(1110b)에 의해 반사되고 경사형 브래그 LCPG(600')(이는 빔의 편광을 반전시킴)를 통해 재차 투과되어 0차(1199) 및 1차(1199') 광 출력 빔을 투명 기판(1110a)에 제공한다. 기판(1110a) 내의 1차 광 출력 빔(1199')의 회절각(θm=1)은 임계각보다 크고 내부 전반사(TIR)를 야기한다. 0차 광 출력 빔(1199)의 회절각(θm=0)은 요소(1100)에 수직인 방향에 대해 입사각(θi)에 동일하지만 반대이다.
본 발명의 다른 실시예에 따른 브래그 LCPG 구성을 포함하는 광학 요소(1200)가 도 12에 도시되어 있고, 여기서 2개 이상의 브래그 LCPG(1201, 1202)는 선택적으로 접착제(1205), 기판, 및/또는 다른 평면형 요소가 그 사이에 있는 상태로, 기판(1210) 상에 적층된 구성으로 배열된다. 각각의 브래그 LCPG(1201, 1202)는 예를 들어, 도 1 및/또는 도 6의 실시예(100 및/또는 600)에 따라 형성될 수 있고, 서로 상이한 적어도 하나의 파라미터[예를 들어, 광학 요소 격자 주기(Λ), 두께(d), 및/또는 트위스트(φ)]를 갖도록 구성될 수도 있다. 예로서, 2개의 브래그 LCPG(1201, 1202)는 2개의 상이한 파장(λ1, λ2)을 포함하는 입사광(1290)을 높은 또는 최적의 효율로, 실질적으로 동일한 1차 방향[출력 빔(1299')에 의해 도시됨]으로 회절하도록 구성될 수도 있는데, 이는 각각의 브래그 LCPG(1201, 1202)가 상이한 광학 요소 격자 주기(Λλ1, Λλ2)를 갖는 것을 적어도 요구할 수도 있다. 또한, 부가의 브래그 LCPG에 의해, 이러한 스택은, 실질적으로 모든 광이 브래그 LCPG의 편광 특성을 사용하여 편광 변환 시스템(Polarization Conversion System: PCS)에서와 실질적으로 동일한 편광으로 수직 방향을 따라 재지향되도록 설계될 수도 있다. 적층된 브래그 LCPG는 다수의 용례에서 바람직하게 채용될 수 있고, 다수의 용례는 니어 투 아이 및 헤즈업 디스플레이, 백라이트(등)를 위한 회전 필름, 프로젝터, 태양열 집중기, 광파이버 커플러, 분산형 피드백 레이저, 빔 조향, 및 광학 데이터 저장 디바이스를 포함하지만 이에 한정되지는 않는다.
본 발명의 몇몇 실시예에 따른 편광 빔 스플리터(PBS)(1300)가 도 13에 도시되어 있고, 여기서 도 6의 실시예에 따른 브래그 LCPG(600)는 편광 빔 스플리터(PBS)로서 작용하도록 구성된다. 브래그 LCPG(600)는 특정 입사각(θi)(예를 들어, 45° 부근)에서 입사광(1390)을 수용하고, 바람직하게는 서로로부터 약 45° 초과, 서로로부터 약 60° 초과, 또는 서로로부터 최대 대략 90°의 방향에서 출력광(1399, 1399')을 2개의 출력 회절 차수[0차 출력광(1399) 및 1차 출력광(1399'); 또한 투과성 광파(1399) 및 회절성 광파(1399')라 칭함]으로 회절하도록 구성되고, 여기서 각각의 회절 차수(1399, 1399')는 입력 편광 상태에 무관하게, 동일한 좌우상을 갖도록 대략적으로 원형 편광될 수도 있다. 지연제는 입력 및 출력 편광 상태 양쪽을 제어하도록 브래그 LCPG(600)의 어느 하나의 측면 상에 선택적으로 추가될 수도 있지만, 이는 요구되는 것은 아니다. 도 13은 입사광(1390)이 브래그 LCPG(600)의 단지 일 측으로부터만 진입하는 단일 패스 구성(1300)을 도시하고 있다. PBS 요소(1300)는 분광학, 디스플레이, 홀로그래피, 및 편광측정법을 포함하는 다수의 용례에서 유용할 수도 있다.
도 14의 PBS 구성(1400)은 도 13의 실시예와 유사하지만, 또한 반사면(1410), 물체, 또는 디바이스를 갖는 브래그 LCPG PBS(600)를 추가로 포함한다. 반사면은 도 13의 투과성(1399) 또는 회절성(1399') 광 출력 경로 중 하나에 구성되거나 배열될 수도 있다. 도 14의 예에서, 0차 광빔(1499)은 투과되고, 반면에 반사면(1410)은 1차/회절된 광빔 경로(1499') 내에 배치된다. 반사면(1410)은 다양한 편광을 생성하는 특징부 및/또는 특성을 가질 수도 있고, 이러한 혼합된 편광 상태를 갖는 광(1480)을 제2 패스를 위한 브래그 LCPG(600)를 향해 재차 적어도 부분적으로 재지향한다. 반사면(1410)은 다수의 형태로 구현될 수 있고, 다수의 구현 형태는 패터닝된 복굴절 구조체, 위상적 높이차, 및/또는 복수의 재료를 포함하지만 이에 한정되지는 않는다. 브래그 LCPG(600)를 향해 재차 반사된 광(1480)은 그 편광에 따라 분석되고, 도 14에 도시된 바와 같이, 광(1489')의 일부는 회절되고 광(1489)의 일부는 투과된다. 이러한 실시예는 계측, 편광측정법, 원격 감지, 및 촬상을 포함하는 다양한 용례를 위해 유용할 수도 있다.
도 15는 도 14의 실시예와 유사하지만, 반사면(1510)이 예를 들어, 프로젝션 디스플레이 시스템의 부분으로서, LC 마이크로디스플레이와 같은 LC 디스플레이 시스템인 PBS 구성(1500)을 도시하고 있다. 그러나, LC 마이크로디스플레이와의 배열에서 브래그 LCPG PBS의 조합은 적응성 광학 기기 및 홀로그래피를 포함하는 다수의 다른 용례에 대해 유용한 일반적인 서브조립체이고, 프로젝션 디스플레이 용례에 한정되는 것은 아니라는 것에 유의한다. 도 15에서, 제1 패스에서 투과된 0차 광파(1599)는 빔 정지부에 의해 차단되어, LCPG(600)로 재차 송신된 기생 반사를 감소시키거나 방지하고 투사된 화상 내의 높은 콘트라스트를 보장한다. 회절된 1차 광파(1599')는 반사성 LC 디스플레이(1510) 상에 지향되고, 이에 의해 반사된다. 도 14의 실시예와 유사하게, 반사면(1510)은 다양한 편광을 야기하고 몇몇 실시예에서 이러한 혼합된 편광 상태를 갖는 광(1580)을 브래그 LCPG(600)를 향해 적어도 부분적으로 재지향하는 특징 및/또는 특성을 가질 수도 있다. LC 디스플레이(1510)로부터 반사된 광빔(1580)은 편광 감응성 브래그 LCPG(600)에 의해 0차/투과된 그리고 1차/거절된 광빔(1589, 1589')으로 선택적으로 분리되는 화상 정보를 포함하는데, 여기서 투과된 광파(1589)는 예를 들어 스크린 상의 배율 및 투사를 위한 투사 렌즈로 지향된다. 회절된 광파(1589')는 차단되거나 재생된다. 이 구성(1500)은 다양한 LC 프로젝션 디스플레이 시스템에 사용될 수도 있고, 따라서 이러한 용례에 관련된다.
상기 설명에서, "표준 PG 홀로그래픽 리소그래피 방법"은 도 16a 및 도 16b에 도시된 구성을 칭할 수도 있다. 도 16a 및 도 16b는 예를 들어 그 개시내용이 본 명세서에 참조로서 합체된 에스쿠티 등의 미국 특허 제8,358,400호에 설명된 바와 같은 광배향 재료 및 LC 재료를 사용하여, 결과적인 LCPG가 브래그 조건(Q>1)을 만족하도록 광학 요소 격자 주기를 규정하기 위해 LPP 내에 PG 배향 조건을 패터닝하기 위한 2개의 가능한 접근법(1600a, 1600b)을 도시하고 있다. 공간적으로 변화하는 편광 패턴이 배향 방향으로서 LPP에 의해 기록된다. PG에 대해, 편광 패턴은 주로 전체에 걸쳐 그러나 위치에 선형적으로 의존하는 배향각으로(즉, φ(x) = πx/Λ) 선형 편광될 수도 있다. 광원은 고도의 간섭성 및 시준된 광원(1610)(예를 들어, 레이저)일 수도 있고, 또는 편광기(1612)를 통해 투과되는 부분 간섭성 및/또는 부분 시준된 광원(1610b)[예를 들어, 고압 램프 또는 발광 다이오드(LED)]일 수도 있다. 광원(1610a, 1610b)은 자외선(UV) 파장에서 방출할 수도 있지만, 이는 요구되는 것은 아니다. 도 16a의 제1 접근법(1600a)은, 광원(1610a)의 출력이 빔 스플리터(1603), 미러(1607), 및 파장판(1608)을 통해 통과된 후에, 2개의 결과적인 빔(반대 원형 편광을 갖는 것으로서 도시됨)이 기록면(1615)에서 간섭하고, 본 명세서에 설명된 다수의 예에 사용되었기 때문에, 홀로그래픽 리소그래피라 칭한다. 도 16b의 제2 접근법(1600b)은, 예를 들어 에스쿠티 등의 미국 특허 제8,358,400호에 설명된 바와 같이, 마스크 패턴(1616)이 복제본 PG(1617) 상에 복사되기 때문에, 근접도 리소그래피, 또는 홀로그래픽 복제라 칭한다. 어느 하나가 본 명세서에 설명된 브래그 LCPG의 패터닝 및 제조를 위해 사용될 수도 있다.
본 명세서에 설명된 실시예는 주로 소정의 브래그 LCPG 내의 광학 요소 격자 주기가 전체에 걸쳐 일정한 배열에 초점을 맞추었다. 그러나, 동일한 브래그 LCPG의 상이한 영역이 상이한 로컬 격자 주기를 가질 수 있고, A(x, y)를 효과적으로 제공하여, 잠재적으로 2차원 1>(x, y)인 광축 각도를 야기한다는 것이 이해될 수 있을 것이다. 본 명세서에 설명된 실시예의 임의의 이러한 수정예가 본 발명의 범주 내에 포함된다는 것이 또한 이해될 수 있을 것이다.
이에 따라, 본 발명의 실시예는 큰 회절각을 또한 포함하는 브래그 체제에서 PG의 고효율 회절을 성취하는 종래의 문제점을 극복하는 구조체, 방법, 및 사용을 다루는 브래그 액정 편광 격자(LCPG)라 칭하는 새로운 부류의 광학 요소를 제공한다. 몇몇 실시예는 브래그 LCPG를 사용하여 도파로로/로부터 인/아웃- 커플링을 위한 필름을 포함한다. 본 발명의 실시예는 통상의 요소보다 더 간단한 방식으로 브래그 PG 내의 편광 선택성을 갖는 고회절 효율 및 제한된 회절 차수를 더 낮은 손실로 성취할 수 있고, 더 넓은 설계 파라미터 공간을 지지할 수 있다. 본 발명의 실시예는 다양한 용례에서 사용될 수 있고, 다양한 용례는 편광측정법 및 타원계측법, 바이오영상, 자기광학 데이터 저장 장치, 편광 멀티플렉싱/디멀티플렉싱, 편광 기반 광 변조기, 편광 스위치, 및 빔 스플리터를 포함하지만 이에 한정되지는 않는다.
본 발명의 실시예에 따라 제조되는 몇몇 브래그 LCPG 요소는 예를 들어, 그 개시내용이 본 명세서에 참조로서 합체된, 발명의 명칭이 "저-트위스트 카이럴 액정 편광 격자 및 관련 제조 방법"인 에스쿠티 등의 미국 특허 출원 제12/596,189호 및 발명의 명칭이 "광대역 편광 변환을 위한 멀티-트위스트 지연제 및 관련 제조 방법"인 에스쿠티 등의 미국 특허 출원 제13/646,166호에 설명된 무채색 PG 및 MTR의 기술을 사용하여, 광대역 스펙트럼을 가질 수도 있다.
본 발명의 실시예는 액정(LC) 재료를 참조하여 본 명세서에 설명된다. 액정은 분자의 정돈된 배열이 존재하는 액체를 포함할 수도 있다. 전형적으로, 액정(LC) 분자는 세장형(막대형) 또는 편평형(디스크형) 형상을 갖는 이방성일 수도 있다. 이방성 분자의 정돈 결과로서, 벌크 LC는 종종 그 기계적, 전기적, 자기, 및/또는 광학 특성에서의 이방성과 같은, 그 물리적 특성에서의 이방성을 나타낸다. 본 명세서에 사용될 때, 액정은 네마틱상, 카이럴 네마틱상, 스멕틱상, 강유전성상, 및/또는 다른 상을 가질 수 있다. 막대형 또는 디스크형 성질의 결과로서, LC 분자의 배향의 분포는 액정 디스플레이(LCD)에서와 같은, 광학 용례에서 중요한 역할을 할 수도 있다. 이들 용례에서, LC 배향은 배향면에 의해 지시될 수도 있다. 배향면은 LC가 제어 가능한 방식으로 표면에 대해 배향하도록 처리될 수도 있다. 다수의 광중합성 폴리머가 본 명세서에 설명된 편광 격자를 생성하기 위해 배향층으로서 사용될 수도 있다. 광중합성인 것에 추가하여, 이들 재료는 LC에 대해 불활성일 수도 있고, LC 디바이스의 작동 온도의 범위(예를 들어, 약 -50℃ 내지 약 100℃)에 걸쳐 안정한 배향을 제공해야 하고, 본 명세서에 설명된 제조 방법과 호환 가능해야 한다. 본 발명의 몇몇 실시예와 함께 사용을 위한 부가의 구조체 및/또는 방법은 그 개시내용이 본 명세서에 그대로 참조로서 합체된, 에스쿠티 등의 PCT 공보 WO 2006/092758호에 설명되어 있다.
본 명세서에 사용될 때, "투과성" 또는 "투명" 기판 또는 요소는 입사광의 적어도 일부가 이를 통해 통과하게 할 수도 있다는 것이 관련 기술분야의 통상의 기술자에 의해 이해될 수 있을 것이다. 달리 말하면, 본 명세서에 설명된 투과성 또는 투명 요소는 반드시 완벽하게 투명할 필요는 없고, 등방성 또는 2색성 흡수 특징을 가질 수도 있고 그리고/또는 다르게는 입사광의 일부를 흡수할 수도 있다. 대조적으로, "반사성" 기판은 본 명세서에 사용될 때 입사광의 적어도 일부를 반사할 수도 있다. 투명 기판 또는 스페이서는 몇몇 실시예에서 유리 기판일 수도 있다.
또한, "중합성 액정"은 중합될 수 있는 비교적 저분자량 액정 재료를 칭할 수도 있고, 또한 본 명세서에서 "반응성 메소젠"이라 칭할 수도 있다. 대조적으로, "비반응성 액정"은 중합되지 않을 수도 있는 비교적 저분자량 액정 재료를 칭할 수도 있다.
본 명세서에 사용될 때, "0차" 광은 입사광의 방향에 실질적으로 평행한 방향에서, 즉 실질적으로 유사한 입사각에서 전파하며, 본 명세서에서 "축상(on-axis)" 광이라 칭할 수도 있다. 대조적으로, "1차" 광과 같은 "비-0차 광"은 입사광에 평행하지 않은 방향으로 전파하며, 본 명세서에서 "축외(off-axis)" 광이라 칭한다. "부분적으로 시준된" 광은 본 명세서에 사용될 때, 서로 실질적으로 평행하게 전파하지만, 일부의 발산(예를 들어, 소스로부터 거리에 따른 빔 직경의 차이)을 가질 수도 있는 광선 또는 빔을 설명할 수도 있다.
몇몇 실시예에서, 광원은 타원 편광된 또는 부분적으로 편광된 광(예를 들어, 몇몇 레이저 다이오드 및 LED 광원으로부터의 것과 같은)을 제공할 수 있다는 것이 추가로 이해될 수 있을 것이다.
반사 방지 코팅이 주위 매체(예를 들어, 공기)와 간섭하는 모든 표면 상에 도포될 수도 있다는 것이 또한 이해될 수 있을 것이다. 본 명세서에 설명된 광학 요소는 몇몇 경우에, 이들 사이에 공기 간극이 없이 함께 라미네이팅될 수도 있고, 다른 경우에 그 사이에 공기 간극을 갖고 배열될 수도 있다는 것이 또한 이해될 수 있을 것이다.
본 명세서에 설명될 때, 용어 "지연제" 및 "파장판"은 상호교환 가능하게 사용될 수도 있고, 달리 지시되지 않으면, 이하의 부가의 용어: 단축이고, 이축이고 또는 불균질한 임의의 "지연판", "보상 필름", 및 "복굴절판"과 등가인 것으로 또한 고려된다는 것이 이해될 수 있을 것이다. 본 명세서에 설명된 바와 같은 지연제는 광대역(즉, 무색성) 또는 협대역(즉, 유색성)일 수도 있다.
본 발명의 실시예는 본 명세서에 설명된 특정 재료에 한정되는 것은 아니고, 본 명세서에 설명된 바와 같이 기능하는 임의의 그리고 모든 재료층을 사용하여 구현될 수도 있다는 것이 또한 이해될 수 있을 것이다.
다수의 상이한 실시예가 상기 상세한 설명 및 도면과 관련하여, 본 명세서에 개시되어 있다. 이들 실시예의 모든 조합 및 서브조합을 문자적으로 설명하고 예시하기 위해 과도한 반복 및 모호성이 존재할 것이라는 것이 이해될 수 있을 것이다. 이에 따라, 도면을 포함하여, 본 명세서는 본 명세서에 설명된 본 발명의 실시예의 모든 조합 및 서브조합의, 그리고 이를 구성하고 사용하는 방식 및 프로세스의 완전한 기록된 설명을 구성하도록 해석되어야 하고, 임의의 이러한 조합 또는 서브조합에 청구범위를 지지해야 한다.
도면 및 명세서에서, 본 발명의 실시예가 개시되어 있으며, 특정 용어가 채용되지만, 이들은 한정의 목적이 아니라 단지 일반적이고 설명적인 개념으로 사용된 것이다.

Claims (26)

  1. 광학 요소이며,
    브래그 조건에 따라 이를 통해 통과하는 광의 전파의 방향을 변경하도록 구성된 복수의 적층된 복굴절 서브층을 포함하고,
    상기 적층된 복굴절 서브층은 각각의 격자 주기를 형성하도록 상기 적층된 복굴절 서브층의 인접한 서브층들 사이의 각각의 계면을 따라 변하는 로컬 광축을 각각 포함하고,
    상기 복수의 적층된 복굴절 서브층은 브래그각에 동일한 입사각에서 광을 수용하는 것에 응답하는 94% 이상의 회절 효율로 광을 1차 빔으로 회절하도록 구성되고,
    0차 빔과 1차 빔의 전파각 사이의 차이는 브래그각에 동일한 입사각에서 광을 수용하는 것에 응답하여 45도보다 큰, 광학 요소.
  2. 제1항에 있어서,
    상기 적층된 복굴절 서브층 각각은 광의 파장보다 작은 두께를 갖는, 광학 요소.
  3. 제2항에 있어서,
    각각의 두께는 그 로컬 광축에 의해 형성된 각각의 격자 주기보다 작고, 각각의 두께의 합을 포함하는 집성 두께는 각각의 격자 주기보다 큰, 광학 요소.
  4. 제3항에 있어서,
    상기 광의 파장은 파장(λ)을 포함하고, 각각의 격자 주기는 광학 요소의 주기(Λ)를 형성하고, 집성 두께는 두께(d)를 포함하고, 상기 적층된 복굴절 서브층의 평균 굴절률은 변수 Q가 파장(λ)에 대해 1보다 크도록 하는 굴절률(n)을 포함하고, 여기서 Q = 2πλd/Λ2n인, 광학 요소.
  5. 제4항에 있어서,
    상기 적층된 복굴절 서브층은 0.4 미만의 복굴절율을 갖는 재료를 포함하는, 광학 요소.
  6. 제5항에 있어서,
    상기 적층된 복굴절 서브층은 로컬 광축을 형성하는 액정 분자 배향을 구비한 액정 서브층을 각각 포함하는, 광학 요소.
  7. 제4항에 있어서,
    상기 적층된 복굴절 서브층의 하나 이상의 로컬 광축은 각각의 트위스트각을 형성하도록 그 각각의 두께에 걸쳐 회전되는, 광학 요소.
  8. 제7항에 있어서,
    각각의 트위스트각 또는 각각의 두께 중 어느 것은 상기 적층된 복굴절 서브층 사이에서 상이한, 광학 요소.
  9. 제1항에 있어서,
    상기 복수의 적층된 복굴절 서브층은 광의 입사 편광과는 상이한, 실질적으로 동일한 편광을 갖는 0차 빔 및 1차 빔으로 광을 회절하도록 구성되는, 광학 요소.
  10. 삭제
  11. 삭제
  12. 제9항에 있어서,
    상기 0차 빔 및 1차 빔의 실질적으로 동일한 편광은 동일한 좌우상의 적어도 원형 편광을 포함하는, 광학 요소.
  13. 제2항에 있어서,
    상기 적층된 복굴절 서브층으로부터 출력된 0차 빔 및 1차 빔 중 적어도 하나를 수용하고 상기 0차 빔 및 1차 빔 중 적어도 하나를 이를 향해 다시 반사하도록 위치된 반사 요소를 더 포함하는, 광학 요소.
  14. 제13항에 있어서,
    상기 반사 요소는 상기 적층된 복굴절 서브층으로부터 상기 0차 빔 및 1차 빔 중 적어도 하나를 수용하는 것에 응답하여 복수의 상이한 편광을 갖는 광을 출력하도록 구성되는, 광학 요소.
  15. 제1항에 있어서,
    상기 적층된 복굴절 서브층의 각각의 격자 주기는 광의 파장보다 작은, 광학 요소.
  16. 제15항에 있어서,
    상기 복수의 적층된 복굴절 서브층에 광학적으로 결합된 투명 기판을 더 포함하고,
    상기 복수의 적층된 복굴절 서브층은 상기 투명 기판 내의 내부 전반사(TIR)를 위한 임계각보다 큰 각도에서 광을 1차 빔으로 회절하도록 구성되는, 광학 요소.
  17. 제1항에 있어서,
    상기 복수의 적층된 복굴절 서브층은 각각의 제1 격자 주기를 갖는 제1 복굴절 서브층을 포함하고, 브래그 조건에 따라 이를 통해 통과하는 광의 제1 파장의 전파의 방향을 변경하도록 구성되고,
    상기 제1 복굴절 서브층 상에 있으며, 브래그 조건에 따라 이를 통해 통과하는 광의 제2 파장의 전파의 방향을 변경하도록 각각 구성된 복수의 적층된 제2 복굴절 서브층을 더 포함하고,
    상기 제2 복굴절 서브층은 각각의 제2 격자 주기를 형성하기 위해 그 사이의 각각의 계면을 따라 변하는 각각의 로컬 광축을 갖고,
    상기 제1 및 제2 복굴절 서브층은 광의 제1 및 제2 파장을 각각의 1차 빔 내로 각각 회절하도록 구성되는, 광학 요소.
  18. 제17항에 있어서,
    각각의 1차 빔은 실질적으로 동일한 전파 방향을 갖는, 광학 요소.
  19. 제17항에 있어서,
    상기 제2 격자 주기, 제2 복굴절 서브층의 집성 두께, 및 제2 복굴절 서브층의 평균 굴절률 중 적어도 하나는 제1 복굴절층의 것들과는 상이한, 광학 요소.
  20. 제2항에 있어서,
    광의 파장은 400 나노미터(nm) 내지 1700 nm인, 광학 요소.
  21. 제20항에 있어서,
    각각의 격자 주기는 1000 나노미터(nm) 이하이고, 각각의 두께는 100 nm 내지 300 nm인, 광학 요소.
  22. 회절 광학 요소이며,
    적어도 하나의 액정층으로서, 두께(d), 평균 굴절률(n)을 갖고, 변수 Q가 광의 작동 파장(λ)에 대해 1보다 크도록 하는 회절 광학 요소의 격자 주기(Λ)를 형성하도록 그 표면을 따른 방향에서 변하는 액정 분자 배향을 포함하는, 적어도 하나의 액정층을 포함하고, 여기서 Q = 2πλd/Λ2n이며,
    상기 적어도 하나의 액정층은 브래그각에 동일한 입사각에서 광을 수용하는 것에 응답하는 94% 이상의 회절 효율로 광을 1차 빔으로 회절하도록 구성되고,
    0차 빔과 1차 빔의 전파각 사이의 차이는 브래그각에 동일한 입사각에서 광을 수용하는 것에 응답하여 45도보다 큰, 회절 광학 요소.
  23. 제22항에 있어서,
    상기 적어도 하나의 액정층은 복수의 적층된 중합된 네마틱 액정 서브층을 포함하고, 적층된 중합된 액정 서브층의 각각의 두께는 광의 작동 파장(λ)보다 작은, 회절 광학 요소.
  24. 제23항에 있어서,
    상기 적층된 중합된 액정 서브층의 각각의 두께는 회절 광학 요소의 격자 주기(Λ)보다 작고, 적층된 중합된 네마틱 액정 서브층의 각각의 두께는 회절 광학 요소의 격자 주기(Λ) 및 광의 작동 파장(λ)보다 큰 두께(d)를 집합적으로 형성하는, 회절 광학 요소.
  25. 제23항에 있어서,
    상기 적층된 중합된 네마틱 액정 서브층 중 하나 이상의 액정 분자 배향은 각각의 트위스트각(φ)을 형성하도록 그 각각의 두께에 걸쳐 회전되고, 각각의 트위스트각(φ) 또는 각각의 두께는 적층된 중합된 네마틱 액정 서브층 사이에서 상이한, 회절 광학 요소.
  26. 제22항에 있어서,
    상기 회절 광학 요소의 격자 주기(Λ)는 광의 작동 파장(λ)보다 작은, 회절 광학 요소.
KR1020167032899A 2014-07-31 2015-07-30 브래그 액정 편광 격자 KR102484474B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462031260P 2014-07-31 2014-07-31
US62/031,260 2014-07-31
PCT/US2015/042860 WO2016019123A1 (en) 2014-07-31 2015-07-30 Bragg liquid crystal polarization gratings

Publications (2)

Publication Number Publication Date
KR20170037884A KR20170037884A (ko) 2017-04-05
KR102484474B1 true KR102484474B1 (ko) 2023-01-04

Family

ID=55179835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167032899A KR102484474B1 (ko) 2014-07-31 2015-07-30 브래그 액정 편광 격자

Country Status (6)

Country Link
US (1) US10859740B2 (ko)
EP (2) EP4215960A1 (ko)
JP (1) JP6726110B2 (ko)
KR (1) KR102484474B1 (ko)
CN (1) CN106575007B (ko)
WO (1) WO2016019123A1 (ko)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564748B1 (ko) 2015-03-16 2023-08-07 매직 립, 인코포레이티드 건강 질환 진단과 치료를 위한 방법 및 시스템
US10254454B2 (en) 2015-06-15 2019-04-09 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
WO2017176898A1 (en) 2016-04-08 2017-10-12 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
US10067347B2 (en) 2016-04-13 2018-09-04 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
US20170373459A1 (en) * 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
US10095045B2 (en) 2016-09-12 2018-10-09 Microsoft Technology Licensing, Llc Waveguide comprising a bragg polarization grating
US10551622B2 (en) 2016-10-26 2020-02-04 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
CA3044242A1 (en) * 2016-11-18 2018-05-24 Magic Leap, Inc. Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
NZ753908A (en) 2016-11-18 2023-11-24 Magic Leap Inc Waveguide light multiplexer using crossed gratings
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
AU2017361424B2 (en) 2016-11-18 2022-10-27 Magic Leap, Inc. Spatially variable liquid crystal diffraction gratings
JP6857384B2 (ja) 2016-11-24 2021-04-14 国立大学法人大阪大学 光学素子
KR102483263B1 (ko) 2016-12-08 2022-12-29 매직 립, 인코포레이티드 콜레스테릭 액정에 기초한 회절 디바이스들
EP3555700B1 (en) 2016-12-14 2023-09-13 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10088686B2 (en) 2016-12-16 2018-10-02 Microsoft Technology Licensing, Llc MEMS laser scanner having enlarged FOV
JP7096253B2 (ja) 2017-01-23 2022-07-05 マジック リープ, インコーポレイテッド 仮想現実、拡張現実、および複合現実システムのための接眼レンズ
CN110546549B (zh) * 2017-02-23 2022-06-07 奇跃公司 具有可变屈光力反射器的显示系统
US10712485B1 (en) * 2017-02-28 2020-07-14 Facebook Technologies, Llc Composite optical coating on a curved optical surface
CN106707578B (zh) 2017-03-20 2020-02-28 京东方科技集团股份有限公司 液晶光栅、显示装置及其控制方法
IL269085B2 (en) 2017-03-21 2023-12-01 Magic Leap Inc Stacked waveguides with different refractive gratings for an integrated field of view
EP3602177B1 (en) 2017-03-21 2023-08-02 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
CN110651216B (zh) 2017-03-21 2022-02-25 奇跃公司 低轮廓分束器
AU2018239264B2 (en) 2017-03-21 2023-05-18 Magic Leap, Inc. Eye-imaging apparatus using diffractive optical elements
CN115220156A (zh) 2017-03-21 2022-10-21 奇跃公司 具有用于分体式光瞳的空间光调制器照射的显示系统
KR102524006B1 (ko) 2017-03-22 2023-04-20 매직 립, 인코포레이티드 디스플레이 시스템들을 위한 깊이 기반 포비티드 렌더링
CA3075096A1 (en) 2017-09-21 2019-03-28 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
CN111566723A (zh) 2017-10-26 2020-08-21 奇跃公司 用于增强现实显示器的宽带自适应透镜组件
WO2019093228A1 (ja) 2017-11-13 2019-05-16 富士フイルム株式会社 光学素子
AU2018386296B2 (en) 2017-12-15 2023-11-23 Magic Leap, Inc. Eyepieces for augmented reality display system
US10394080B2 (en) * 2017-12-28 2019-08-27 Industrial Technology Research Institute Wideband compensation stack film and optical element using the same
US10866426B2 (en) 2018-02-28 2020-12-15 Apple Inc. Scanning mirror display devices
EP3762770A4 (en) 2018-03-07 2022-03-23 Magic Leap, Inc. ADAPTIVE LENS ARRANGEMENTS WITH POLARIZATION-SELECTIVE LENS STACKS FOR AUGMENTED REALITY DISPLAYS
US11846779B2 (en) 2018-03-15 2023-12-19 Meta Platforms Technologies, Llc Display device with varifocal optical assembly
US20190285891A1 (en) 2018-03-15 2019-09-19 Oculus Vr, Llc Image quality of pancharatnam berry phase components using polarizers
US11238836B2 (en) 2018-03-16 2022-02-01 Magic Leap, Inc. Depth based foveated rendering for display systems
KR20200133265A (ko) * 2018-03-16 2020-11-26 디지렌즈 인코포레이티드. 복굴절 제어가 통합된 홀로그래픽 도파관 및 이를 제조하는 방법
WO2019185510A1 (de) * 2018-03-26 2019-10-03 Seereal Technologies S.A. Anzeigevorrichtung
JP6975320B2 (ja) * 2018-03-29 2021-12-01 富士フイルム株式会社 光学素子
JP6975317B2 (ja) 2018-03-29 2021-12-01 富士フイルム株式会社 光学素子
WO2019189818A1 (ja) 2018-03-29 2019-10-03 富士フイルム株式会社 光学素子、導光素子および画像表示装置
JP6980901B2 (ja) 2018-03-29 2021-12-15 富士フイルム株式会社 光学素子、導光素子および画像表示装置
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
US20210033770A1 (en) * 2018-04-17 2021-02-04 Facebook Technologies, Llc Patterned anisotropic films and optical elements therewith
JP7062054B2 (ja) * 2018-05-18 2022-05-02 富士フイルム株式会社 光学素子
CN108761891A (zh) * 2018-06-19 2018-11-06 北京航空航天大学 一种基于折射率补偿的宽谱偏振光栅优化方法
US20200018962A1 (en) * 2018-07-11 2020-01-16 Facebook Technologies, Llc Adaptive lenses for near-eye displays
WO2020022496A1 (ja) 2018-07-27 2020-01-30 富士フイルム株式会社 光学素子、光配向パターンの形成方法および光学素子の製造方法
JP7191970B2 (ja) * 2018-09-28 2022-12-19 富士フイルム株式会社 光学素子および光偏向装置
WO2020075740A1 (ja) * 2018-10-12 2020-04-16 富士フイルム株式会社 光学積層体、導光素子およびar表示デバイス
JP7175995B2 (ja) * 2018-10-12 2022-11-21 富士フイルム株式会社 光学積層体、導光素子および画像表示装置
JP7261810B2 (ja) * 2018-10-12 2023-04-20 富士フイルム株式会社 光学積層体、導光素子およびar表示デバイス
WO2020075702A1 (ja) 2018-10-12 2020-04-16 富士フイルム株式会社 光学素子および画像表示装置
CN113302546A (zh) 2018-11-20 2021-08-24 奇跃公司 用于增强现实显示系统的目镜
WO2020122127A1 (ja) * 2018-12-11 2020-06-18 富士フイルム株式会社 コレステリック液晶層およびコレステリック液晶層の形成方法、ならびに、積層体、導光素子および画像表示装置
WO2020122128A1 (ja) * 2018-12-11 2020-06-18 富士フイルム株式会社 導光素子、画像表示装置およびセンシング装置
WO2020122119A1 (ja) 2018-12-11 2020-06-18 富士フイルム株式会社 液晶回折素子および導光素子
CN109375426B (zh) * 2018-12-14 2021-06-25 中国科学院长春光学精密机械与物理研究所 一种单侧取向有源液晶偏振光栅结构及其制备方法
WO2020197950A1 (en) * 2019-03-25 2020-10-01 Kla Corporation Improved self-moiré grating design for use in metrology
WO2020196550A1 (ja) * 2019-03-28 2020-10-01 富士フイルム株式会社 光学部材、照明装置、および、スクリーン
WO2020203595A1 (ja) * 2019-03-29 2020-10-08 富士フイルム株式会社 合わせガラスおよびヘッドアップディスプレイ
US11422409B2 (en) 2019-04-25 2022-08-23 Meta Platforms Technologies, Llc Broadband optical device including liquid crystal polymer films
WO2020226080A1 (ja) 2019-05-09 2020-11-12 富士フイルム株式会社 液晶回折素子および積層回折素子
WO2020230579A1 (ja) * 2019-05-13 2020-11-19 富士フイルム株式会社 コレステリック液晶層およびコレステリック液晶層の形成方法
US11709308B2 (en) 2019-05-20 2023-07-25 Meta Platforms Technologies, Llc Optical waveguide beam splitter for directional illumination of display
US11307347B2 (en) 2019-05-20 2022-04-19 Facebook Technologies, Llc Display illumination using a wedge waveguide
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
TW202129357A (zh) 2019-06-23 2021-08-01 以色列商魯姆斯有限公司 具有中央凹光學校正的顯示器
US11391948B2 (en) 2019-09-10 2022-07-19 Facebook Technologies, Llc Display illumination using a grating
US11592608B2 (en) 2019-09-10 2023-02-28 Meta Platforms Technologies, Llc Switchable polarization retarder array for active zonal illumination of display
US11726336B2 (en) 2019-09-10 2023-08-15 Meta Platforms Technologies, Llc Active zonal display illumination using a chopped lightguide
CN110646992B (zh) * 2019-09-26 2020-12-29 中国科学院长春光学精密机械与物理研究所 一种双周期复合液晶偏振光栅
WO2021124380A1 (ja) * 2019-12-16 2021-06-24 日本分光株式会社 反射型の偏光分離回折素子、および、これを備えた光学測定装置
WO2021158554A1 (en) * 2020-02-06 2021-08-12 Valve Corporation Polarization-multiplexed optics for head-mounted display systems
TW202136481A (zh) 2020-02-13 2021-10-01 德商馬克專利公司 液晶裝置
TW202136871A (zh) 2020-02-13 2021-10-01 德商馬克專利公司 液晶裝置
JP7433434B2 (ja) 2020-06-19 2024-02-19 富士フイルム株式会社 光学異方性膜、光学素子、光学システム
JP7465968B2 (ja) * 2020-06-19 2024-04-11 富士フイルム株式会社 光学素子、導光素子および液晶組成物
EP4168845A1 (en) * 2020-06-22 2023-04-26 ImagineOptix Corporation Optical elements for reducing visual artifacts in diffractive waveguide displays and systems incorporating the same
WO2022024677A1 (ja) 2020-07-30 2022-02-03 富士フイルム株式会社 透過型液晶回折素子
JP2022068694A (ja) * 2020-10-22 2022-05-10 株式会社ジャパンディスプレイ 液晶光学素子
US11733445B2 (en) * 2020-10-29 2023-08-22 Meta Platforms Technologies, Llc Optical element having multiple layers for reducing diffraction artifacts
US20240019635A1 (en) * 2020-12-01 2024-01-18 Kent State University Polarization state compensator
JP2022147451A (ja) 2021-03-23 2022-10-06 株式会社ジャパンディスプレイ 液晶光学素子
CN113075794A (zh) * 2021-04-06 2021-07-06 业成科技(成都)有限公司 光学模组及近眼显示装置
JPWO2022220184A1 (ko) * 2021-04-12 2022-10-20
IL307778A (en) * 2021-04-29 2023-12-01 Lumus Ltd Increasing the field of view of displays close to the eye
CN113917719B (zh) * 2021-10-15 2022-06-24 上海交通大学 一种实现偏振无关液晶器件大相位大fov的方法
WO2023085398A1 (ja) * 2021-11-12 2023-05-19 富士フイルム株式会社 光学素子、および、画像表示装置
US20230236396A1 (en) * 2022-01-21 2023-07-27 Valve Corporation Compact optics for head-mounted display systems
CN115020989B (zh) * 2022-08-05 2022-11-08 盛纬伦(深圳)通信技术有限公司 一种可调谐线圆极化转换的手性超材料单元及阵列

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140837A1 (en) * 2003-12-30 2005-06-30 Crawford Gregory P. Alignment of liquid crystals
US20130077040A1 (en) 2007-04-16 2013-03-28 North Carolina State University Low-twist chiral optical layers and related fabrication methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903330A (en) * 1995-10-31 1999-05-11 Rolic Ag Optical component with plural orientation layers on the same substrate wherein the surfaces of the orientation layers have different patterns and direction
US6538775B1 (en) * 1999-09-16 2003-03-25 Reveo, Inc. Holographically-formed polymer dispersed liquid crystals with multiple gratings
JP4792679B2 (ja) * 2001-08-24 2011-10-12 旭硝子株式会社 アイソレータおよび電圧可変アッテネータ
AU2003242956A1 (en) * 2002-06-28 2004-01-19 Technion Research And Development Foundation Ltd. Geometrical phase optical elements with space-variant subwavelength gratings
GB0401060D0 (en) * 2004-01-19 2004-02-18 Ezra David Optical devices
US20050275944A1 (en) * 2004-06-11 2005-12-15 Wang Jian J Optical films and methods of making the same
JP5276847B2 (ja) * 2005-03-01 2013-08-28 ダッチ ポリマー インスティテュート メソゲン・フィルム内の偏光回折格子
EP2137571B1 (en) 2007-04-16 2012-11-14 North Carolina State University Methods of fabricating liquid crystal polarization gratings on substrates and related devices
KR101506950B1 (ko) 2007-04-16 2015-03-30 노쓰 캐롤라이나 스테이트 유니버시티 다층 어크로매틱 액정 편광 격자들 및 관련된 제조 방법들
EP2350736B1 (en) * 2008-10-09 2013-03-20 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
US8982313B2 (en) * 2009-07-31 2015-03-17 North Carolina State University Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation
EP2764402A4 (en) * 2011-10-07 2015-05-20 Univ North Carolina State MULTI-TORSION SELF-DELAYERS FOR BROADBAND POLARIZATION TRANSFORMATION AND METHODS OF MANUFACTURING THE SAME
JP6192006B2 (ja) * 2013-06-07 2017-09-06 国立大学法人 東京大学 分光装置、検出装置、光源装置、反応装置及び測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140837A1 (en) * 2003-12-30 2005-06-30 Crawford Gregory P. Alignment of liquid crystals
US20130077040A1 (en) 2007-04-16 2013-03-28 North Carolina State University Low-twist chiral optical layers and related fabrication methods

Also Published As

Publication number Publication date
EP3123215B1 (en) 2023-03-29
KR20170037884A (ko) 2017-04-05
CN106575007B (zh) 2021-07-27
US20160033698A1 (en) 2016-02-04
EP3123215A1 (en) 2017-02-01
EP4215960A1 (en) 2023-07-26
EP3123215A4 (en) 2017-11-01
JP2017522601A (ja) 2017-08-10
JP6726110B2 (ja) 2020-07-22
US10859740B2 (en) 2020-12-08
WO2016019123A1 (en) 2016-02-04
CN106575007A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
KR102484474B1 (ko) 브래그 액정 편광 격자
US10386558B2 (en) Polarization conversion systems with geometric phase holograms
US20240103440A1 (en) Method for Holographic Mastering and Replication
Xiang et al. Nanoscale liquid crystal polymer Bragg polarization gratings
US20200096692A1 (en) Waveguide Device Incorporating a Light Pipe
CN110389401B (zh) 各向异性分子3d排列方法、图案化各向异性膜及光学元件
US20170299941A1 (en) Compact liquid crystal beam steering devices including multiple polarization gratings
US20210389513A1 (en) Liquid crystal optical element and fabrication method thereof
JP2023516558A (ja) 正および負の複屈折分散を有する複屈折材料に基づいたアクロマティック光学デバイス
Kim et al. A compact holographic recording setup for tuning pitch using polarizing prisms
US20230288706A1 (en) Optical elements for reducing visual artifacts in diffractive waveguide displays and systems incorporating the same
Feng et al. 30‐3: Student Paper: Polarization State Exploration and Management in Waveguide Display with Polarization Volume Gratings
JPWO2020075702A1 (ja) 光学素子および画像表示装置
JP7470775B2 (ja) 光結合システムおよび光通信デバイス
Warriner et al. Binary geometric-phase holograms
WO2024038894A1 (ja) 光学素子
Xiang Model-Based Design and Fabrication of Subwavelength and Nonlinear Geometric Phase Holograms
CN117480431A (zh) 用于减少衍射波导显示器中的视觉伪像的光学元件以及包含该光学元件的系统
Belyaev et al. Numerical modeling of the diffraction of light at periodic anisotropic gratings with rectangular surface microrelief
Xue Technology and optimization of optical axis gratings based on
Zhang et al. 56.1: Invited Paper: A Holographic Waveguide Display with Polarization Volume Gratings
Zhang et al. Twisting Structures in Liquid Crystal Polarization Gratings and Lenses. Crystals 2021, 11, 243
US20050185133A1 (en) Diffraction grating wave plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right