WO2020075702A1 - 光学素子および画像表示装置 - Google Patents

光学素子および画像表示装置 Download PDF

Info

Publication number
WO2020075702A1
WO2020075702A1 PCT/JP2019/039611 JP2019039611W WO2020075702A1 WO 2020075702 A1 WO2020075702 A1 WO 2020075702A1 JP 2019039611 W JP2019039611 W JP 2019039611W WO 2020075702 A1 WO2020075702 A1 WO 2020075702A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
anisotropic layer
image
optically anisotropic
optical
Prior art date
Application number
PCT/JP2019/039611
Other languages
English (en)
French (fr)
Inventor
齊藤 之人
佐藤 寛
克己 篠田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020551158A priority Critical patent/JP7136911B2/ja
Publication of WO2020075702A1 publication Critical patent/WO2020075702A1/ja
Priority to US17/226,193 priority patent/US11287685B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0136Head-up displays characterised by optical features comprising binocular systems with a single image source for both eyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Definitions

  • the present invention relates to an optical element that guides incident light and an image display device that uses this optical element.
  • AR glasses which are described in Non-Patent Document 1, for displaying a virtual image and various kinds of information and the like on an actually viewed scene, have been put into practical use.
  • AR glasses are also called smart glasses, head mounted displays (HMD (Head Mounted Display)), AR glasses, and the like.
  • HMD Head Mounted Display
  • Non-Patent Document 1 in the AR glass, as an example, an image displayed by a display (optical engine) is incident on one end of a light guide plate, propagated, and emitted from the other end, so that the user can A virtual image is displayed overlaid on the actual scene.
  • an image (projection light) displayed on the display is diffracted (refracted) by using a diffraction element and is incident on one end of the light guide plate.
  • light is introduced into the light guide plate at an angle, and the light is guided by being totally reflected in the light guide plate.
  • the light guided in the light guide plate is also diffracted by the diffractive element at the other end of the light guide plate, emitted from the light guide plate to the observation position by the user, and an image is displayed.
  • An optical element (liquid crystal diffractive element) described in Patent Document 1 is exemplified as an example of a diffractive element that is used for an AR glass and that allows light to enter the light guide plate at an angle.
  • the optical element comprises a plurality of laminated birefringent sublayers that change the direction of propagation of light therethrough according to Bragg conditions, the laminated birefringent sublayers defining the respective grating periods. With a local optical axis that varies along each interface between adjacent ones of the layers.
  • the optical element described in Patent Document 1 has a plurality of optically anisotropic layers formed by using a composition containing a liquid crystal compound, and the optically anisotropic layer is a liquid crystal compound.
  • Circularly polarized light is refracted toward the upstream or downstream side in one direction of rotation. Therefore, by using this optical element, the image on the display can be diffracted, the light can be guided to the light guide plate at an angle, and the light can be guided in the light guide plate.
  • AR glasses are required to have a wide viewing angle (FOV (Field of View)) which is a region for displaying an image.
  • FOV Field of View
  • a sufficient viewing angle may not be obtained in some cases.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and allows incident light to be incident on the light guide plate at a plurality of different angles. For example, by using the AR glass, a wide field of view can be obtained.
  • An object of the present invention is to provide an optical element capable of displaying an image at a corner and an image display device using the optical element.
  • the optical element of the present invention has the following configuration.
  • the optical axis derived from the liquid crystal compound, which is formed between the light guide plate and the switching ⁇ / 2 plate and is formed by using the composition containing the liquid crystal compound, is continuously oriented along at least one in-plane direction.
  • the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along only one in-plane direction.
  • Optical element In the liquid crystal alignment pattern of the first optically anisotropic layer, the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along only one in-plane direction.
  • the direction of the optical axis derived from the liquid crystal compound is continuous only in one direction in the plane.
  • the liquid crystal alignment pattern of the first optical anisotropic layer and the liquid crystal alignment pattern of the second optical anisotropic layer are the same in one direction in the plane [3 ]
  • the optical element of description [5] The optical element according to any one of [1] to [4], which has a plurality of combinations of a switching ⁇ / 2 plate and a first optical anisotropic layer.
  • An image display device including the optical element according to any one of [1] to [5] and a display that irradiates an image on the optical element.
  • the image display device according to [6] wherein the display irradiates the optical element with an image at an angle with respect to the normal to the main surface of the light guide plate.
  • incident light can be incident on the light guide plate at a plurality of different angles and emitted from the light guide plate.
  • the image display device of the present invention can display an image in a wide viewing angle by using it in, for example, an AR glass.
  • FIG. 1 is a diagram conceptually showing an example of the image display device of the present invention using the optical element of the present invention.
  • FIG. 2 is a partially enlarged view conceptually showing the optical element of the present invention.
  • FIG. 3 is a diagram conceptually showing the liquid crystal diffraction element of the optical element shown in FIG.
  • FIG. 4 is a conceptual diagram for explaining the configuration of the liquid crystal diffraction element shown in FIG.
  • FIG. 5 is a schematic plan view of the optically anisotropic layer of the liquid crystal diffraction element shown in FIG.
  • FIG. 6 is a conceptual diagram showing the action of the optically anisotropic layer of the liquid crystal diffraction element shown in FIG.
  • FIG. 1 is a diagram conceptually showing an example of the image display device of the present invention using the optical element of the present invention.
  • FIG. 2 is a partially enlarged view conceptually showing the optical element of the present invention.
  • FIG. 3 is a diagram conceptually showing the liquid crystal diffraction element of the optical
  • FIG. 7 is a conceptual diagram showing the action of the optically anisotropic layer of the liquid crystal diffraction element shown in FIG.
  • FIG. 8 is a diagram conceptually showing another example of the optically anisotropic layer of the optical element of the present invention.
  • FIG. 9 is a partially enlarged view conceptually showing another example of the image display device of the present invention using another example of the optical element of the present invention.
  • FIG. 10 is a partially enlarged view conceptually showing another example of the optical element of the present invention.
  • FIG. 11 is a diagram conceptually showing an example of an exposure apparatus that exposes the alignment film of the liquid crystal diffraction element shown in FIG.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • (meth) acrylate is used to mean “one or both of acrylate and methacrylate”.
  • identical includes an error range generally accepted in the technical field.
  • FIG. 1 conceptually shows an example of the image display device of the present invention using the optical element of the present invention.
  • the image display device 10 shown in FIG. 1 is used as an AR glass as a suitable example.
  • the optical element of the present invention can be used for optical elements such as transparent displays and head-up displays. Further, the image display device of the present invention can also be used in an image display device using these optical elements.
  • Such an image display device 10 has a display 12, an optical element 14 of the present invention, and a diffractive element 16.
  • the optical element 14 of the present invention has a light guide plate 20, a liquid crystal diffraction element 24, and a switching ⁇ / 2 plate 26 (see FIG. 2).
  • the display 12 displays an image (video) observed by the user U and irradiates the optical element 14 with the image.
  • the display 12 illuminates the displayed image on the switching ⁇ / 2 plate 26.
  • the display 12 switches the image to be displayed according to the switching of the phase difference by the switching ⁇ / 2 plate 26 described later.
  • the display 12 divides the image to be displayed into two images (two screens) of a right image and a left image, and according to the switching of the phase difference by the switching ⁇ / 2 plate 26, the right image and the left image are displayed. Switch and display alternately. That is, the display 12 divides the display image into the right side image and the left side image, and displays the display image in a time division manner on the right side image and the left side image in synchronization with the switching of the phase difference by the switching ⁇ / 2 plate 26. .
  • the display 12 is not limited, and various known displays (projectors) used for AR glasses and the like can be used.
  • the display 12 include a liquid crystal display, an organic electroluminescence display, and the like.
  • An example of the liquid crystal display is a reflective liquid crystal display element (Liquid Csytal on Silicon (LCOS)).
  • the image display device 10 may include various optical elements used for AR glasses and the like, such as a condensing lens that condenses the image displayed by the display 12, as necessary.
  • the display 12 emits a circularly polarized image. Therefore, when the display body irradiates a non-polarized image, the display 12 has, for example, a circularly polarizing plate composed of a linear polarizer and a ⁇ / 4 plate, and when the display body irradiates a linearly polarized image. Has a ⁇ / 4 plate, for example. In the image display device 10 of the illustrated example, the display 12 irradiates a right circularly polarized image as an example.
  • the display 12 irradiates the optical element 14 with an image at an angle with respect to a normal line to the main surface of the light guide plate 20 described later.
  • the main surface is the maximum surface of the sheet-shaped material (plate-shaped material, film).
  • the normal line of the principal surface is a line in a direction orthogonal to the principal surface.
  • the “normal line of the main surface of the light guide plate 20” is also referred to as the “normal line of the light guide plate 20”.
  • the display 12 is one direction in which the direction of the optical axis 36A of the liquid crystal compound 36 changes while rotating in the optical anisotropic layer 34 described later with respect to the normal line of the light guide plate 20 (direction of arrow X in the figure described below).
  • the optical element 14 is illuminated with an image at an angle.
  • the angle may be appropriately set according to the diffracting power of the liquid crystal diffractive element 24 described later, the material (refractive index, etc.) for forming the light guide plate 20, and the like.
  • the normal line of the light guide plate 20 is basically the normal line of the main surface of the switching ⁇ / 2 plate 26, which will be described later, and the optical anisotropic layer 34 (first optical difference). It may or may not coincide with the normal to the principal surfaces of the anisotropic layer and the second optically anisotropic layer).
  • the light guide plate on the incident side may be formed obliquely, and the switching ⁇ / 2 plate and the optically anisotropic layer may be attached to the inclined surface.
  • the retardation value of the switching ⁇ / 2 plate 26 is a value in the traveling direction of light.
  • the optical element 14 is the optical element of the present invention.
  • FIG. 2 conceptually shows a partially enlarged view of the optical element 14.
  • the optical element 14 has the light guide plate 20, the liquid crystal diffraction element 24, and the switching ⁇ / 2 plate 26.
  • the light guide plate 20 is a known light guide plate that reflects and guides (propagates) the light that has entered inside, except that it has an inclined surface 20a described later.
  • the light guide plate 20 is not limited, and various known light guide plates used in AR glasses and backlight units for liquid crystal displays can be used.
  • the end surface of the light guide plate 20 on the opposite side to the diffraction element 16 is an inclined surface 20 a that is inclined with respect to the normal to the main surface of the light guide plate 20.
  • a liquid crystal diffraction element 24, which will be described later, is provided on the inclined surface 20a. That is, in the light guide plate 20, the inclined surface 20a serves as an incident surface for the image displayed on the display 12.
  • the switching ⁇ / 2 plate 26 is a ⁇ / 2 plate capable of switching the phase difference between zero (“0”) and ⁇ / 2.
  • the phase difference ⁇ / 2 of the switching ⁇ / 2 plate 26 means that the in-plane retardation of the switching ⁇ / 2 plate 26 is ⁇ / 2.
  • the switching ⁇ / 2 plate 26 having a phase difference of ⁇ / 2 means a plate having an in-plane retardation Re ( ⁇ ) at a specific wavelength ⁇ nm of Re ( ⁇ ) ⁇ / 2. This formula may be achieved at any wavelength in the visible light range (for example, 550 nm).
  • the in-plane retardation Re (550) at the wavelength of 550 nm satisfies the following relationship. 210 nm ⁇ Re (550) ⁇ 300 nm
  • the display 12 displays the left side image when the phase difference of the switching ⁇ / 2 plate 26 is zero, and displays the right side image when the phase difference of the switching ⁇ / 2 plate 26 is ⁇ / 2 in a time division manner.
  • the display 12 emits an image of right circularly polarized light.
  • the switching ⁇ / 2 plate 26 transmits the incident right circularly polarized light as the right circularly polarized light, and when the phase difference is ⁇ / 2, the incident right circularly polarized light is the left circularly polarized light. And make it transparent.
  • switching ⁇ / 2 plate 26 there is no limitation on the switching ⁇ / 2 plate 26, and various known ⁇ / 2 plates that can switch the phase difference between zero and ⁇ / 2 can be used.
  • a ⁇ / 2 liquid crystal cell and a ⁇ / 2 plate that electrically switches the orientation of the liquid crystal compound in the liquid crystal cell to zero the phase difference are illustrated.
  • two transparent substrates each having a transparent electrode and an alignment film subjected to an alignment treatment are arranged so as to be separated so that the rubbing directions are antiparallel (antiparallel), and
  • a switching ⁇ / 2 plate is exemplified by a liquid crystal cell in which a liquid crystal compound is injected into.
  • This switching ⁇ / 2 plate can switch the phase difference between zero and ⁇ / 2 by applying different voltages between the transparent electrodes.
  • the phase difference may remain due to the behavior of the liquid crystal compound when the phase difference is set to zero.
  • the birefringent film may be attached so that the slow axis of the residual retardation of the liquid crystal cell and the slow axis of the birefringent film are orthogonal to each other to cancel the retardation.
  • the slow axis of the residual retardation of the liquid crystal cell is specifically the alignment direction.
  • a cell using a nematic liquid crystal is generally used, but a nematic liquid crystal having a positive birefringence or a negative birefringence can be used.
  • ferroelectric liquid crystal, reverberant dielectric liquid crystal, and blue layer liquid crystal can be used.
  • an EO element device composed of an electro-optic crystal can be used.
  • a liquid crystal diffraction element 24 is arranged between the light guide plate 20 and the switching ⁇ / 2 plate 26 so as to be sandwiched between them. That is, the optical element 14 of the illustrated example is formed by laminating the light guide plate 20, the liquid crystal diffraction element 24, and the switching ⁇ / 2 plate 26 in this order.
  • the light guide plate 20 and the liquid crystal diffractive element 24, and the liquid crystal diffractive element 24 and the switching ⁇ / 2 plate 26 are bonded by a bonding layer provided between the layers.
  • the bonding layer those made of various known materials can be used as long as they can bond the objects to be bonded together.
  • a bonding layer it has fluidity at the time of bonding and becomes solid after that, even a layer made of an adhesive is a soft gel-like (rubber-like) solid at the time of bonding
  • the bonding layer is used for bonding sheet-like materials such as an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optical transparent double-sided tape, and an ultraviolet curable resin in optical devices and optical elements.
  • OCA optical Clear Adhesive
  • a known one may be used.
  • the light guide plate 20, the liquid crystal diffraction element 24, and the switching ⁇ / 2 plate 26 are laminated and held by a frame body or a jig, and the optical element of the present invention. May be configured.
  • the optical element of the present invention is not limited to the configuration in which the light guide plate 20, the liquid crystal diffractive element 24, and the switching ⁇ / 2 plate 26 are closely adhered to each other as in the illustrated example, and one or more of these members can be used. It is also possible to use a configuration in which the elements are arranged in a separated state.
  • FIG. 3 conceptually shows the liquid crystal diffraction element 24.
  • the liquid crystal diffraction element 24 shown in FIG. 3 includes a support 30, an alignment film 32, and an optically anisotropic layer 34.
  • the optically anisotropic layer 34 of the liquid crystal diffraction element 24 is the first optically anisotropic layer in the present invention.
  • the optical element 14 in the illustrated example includes the support 30, the alignment film 32, and the optically anisotropic layer 34, but the present invention is not limited to this.
  • the optical element 14 of the present invention may have only the alignment film 32 and the optically anisotropic layer 34 in which the support 30 is peeled off after the liquid crystal diffraction element 24 is attached to the switching ⁇ / 2 plate 26, for example. .
  • the optical element 14 of the present invention has, for example, only the optically anisotropic layer 34 in which the support 30 and the alignment film 32 are peeled off after the liquid crystal diffraction element 24 is bonded to the switching ⁇ / 2 plate 26. But it's okay.
  • the support 30 supports the alignment film 32 and the optically anisotropic layer 34.
  • various sheet-shaped materials film, plate-shaped material
  • a transparent support is preferable, and a polyacrylic resin film such as polymethylmethacrylate, a cellulose resin film such as cellulose triacetate, a cycloolefin polymer film, polyethylene terephthalate (PET), polycarbonate, and polychlorinated Examples thereof include vinyl.
  • cycloolefin polymer film examples include, for example, a product name “Arton” manufactured by JSR and a product name “Zeonor” manufactured by Nippon Zeon.
  • the support is not limited to a flexible film and may be a non-flexible substrate such as a glass substrate.
  • the thickness of the support 30 is not limited, and the thickness capable of holding the alignment film and the optically anisotropic layer may be appropriately set depending on the material forming the support 30 and the like.
  • the thickness of the support 30 is preferably 1 to 1000 ⁇ m, more preferably 3 to 250 ⁇ m, and further preferably 5 to 150 ⁇ m.
  • the alignment film 32 is formed on the surface of the support 30.
  • the alignment film 32 is an alignment film for aligning the liquid crystal compound 36 in a predetermined liquid crystal alignment pattern when forming the optically anisotropic layer 34.
  • the direction of the optical axis 36A (see FIG. 3) derived from the liquid crystal compound 36 is along one in-plane direction (arrow X direction described later). And has a liquid crystal alignment pattern that changes while continuously rotating. Therefore, the alignment film of the liquid crystal diffraction element 24 is formed such that the liquid crystal compound 36 of the optically anisotropic layer 34 is aligned in this liquid crystal alignment pattern.
  • the direction of the optical axis 36A rotates is also simply referred to as “the optical axis 36A rotates”.
  • a rubbing treatment film made of an organic compound such as a polymer an oblique vapor deposition film of an inorganic compound, a film having microgrooves, and a Langmuir-containing organic compound such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride and methyl stearylate.
  • LB Liuir-Blodgett: Langmuir-Blodgett
  • the alignment film formed by the rubbing treatment can be formed by rubbing the surface of the polymer layer with paper or cloth in a certain direction several times.
  • Materials used for the alignment film include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and Preferable examples are materials used for forming an alignment film described in JP-A-2005-128503.
  • the alignment film 32 is preferably a so-called photo-alignment film that is formed by irradiating a photo-alignment material with polarized light or non-polarized light. . That is, in the liquid crystal diffraction element 24, a photo-alignment film formed by applying a photo-alignment material on the support 30 is preferably used as the alignment film 32. Irradiation with polarized light can be performed on the photo-alignment film from a vertical direction or an oblique direction, and irradiation with non-polarized light can be performed on the photo-alignment film from an oblique direction.
  • Examples of the photo-alignment material used for the photo-alignment film that can be used in the present invention include JP-A 2006-285197, JP-A 2007-76839, JP-A 2007-138138, and JP-A 2007-94071.
  • the photodimerizable compounds described in JP-A-12823, particularly cinnamate compounds, chalcone compounds and coumarin compounds are exemplified as preferable examples.
  • azo compounds, photocrosslinkable polyimides, photocrosslinkable polyamides, photocrosslinkable esters, cinnamate compounds, and chalcone compounds are preferably used.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the method for forming the alignment film 32 is not limited, and various known methods can be used depending on the material for forming the alignment film 32. As an example, a method of forming an alignment pattern by applying an alignment film on the surface of the support 30 and drying it and then exposing the alignment film with a laser beam is exemplified.
  • FIG. 11 conceptually shows an example of an exposure apparatus that exposes the alignment film 32 on the surface of the support 30 to form an alignment pattern.
  • the exposure apparatus 60 shown in FIG. 11 includes a light source 64 including a laser 62, a beam splitter 68 that splits the laser light M emitted by the laser 62 into two light rays MA and MB, and two separated light rays MA and
  • the mirrors 70A and 70B and the ⁇ / 4 plates 72A and 72B, which are respectively arranged on the optical path of the MB, are provided.
  • the light source 64 has a polarizing plate and emits linearly polarized light P 0 .
  • the ⁇ / 4 plates 72A and 72B have optical axes that are orthogonal to each other.
  • the ⁇ / 4 plate 72A converts the linearly polarized light P 0 (light ray MA) into right circularly polarized light P R
  • the ⁇ / 4 plate 72B converts the linearly polarized light P 0 (light ray MB) into left circularly polarized light P L.
  • the support 30 having the alignment film 32 before the formation of the alignment pattern is arranged in the exposed portion, the two light rays MA and the light rays MB intersect each other on the alignment film 32 and interfere with each other, and the interference light is directed to the alignment film 32.
  • the polarization state of the light with which the alignment film 32 is irradiated changes periodically in the form of interference fringes.
  • the cycle of the alignment pattern can be adjusted by changing the crossing angle ⁇ of the two light rays MA and MB.
  • the optically anisotropic layer 34 By forming the optically anisotropic layer 34 on the alignment film 32 having the alignment pattern in which the alignment state is periodically changed, the optical axis 36A derived from the liquid crystal compound 36 is unidirectional, as described later. It is possible to form the optically anisotropic layer 34 having a liquid crystal alignment pattern that continuously rotates toward. Further, by rotating the optical axes of the ⁇ / 4 plates 72A and 72B by 90 °, the rotation direction of the optical axis 36A can be reversed.
  • the alignment film 32 is provided as a preferred aspect and is not an essential constituent element.
  • the optically anisotropic layer 34 is derived from the liquid crystal compound 36 by forming an alignment pattern on the support 30 by a method of rubbing the support 30 or a method of processing the support 30 with a laser beam or the like. It is also possible to adopt a configuration having a liquid crystal alignment pattern in which the direction of the optical axis 36A is changed while continuously rotating along at least one direction in the plane. That is, in the present invention, the support 30 may act as an alignment film.
  • the optically anisotropic layer 34 is formed on the surface of the alignment film 32.
  • the optically anisotropic layer 34 shows only the liquid crystal compound 36 (liquid crystal compound molecule) on the surface of the alignment film.
  • the optically anisotropic layer 34 has an aligned liquid crystal compound 36 as in the optically anisotropic layer formed using a composition containing a normal liquid crystal compound. It has a stacked structure. Regarding this point, the same applies to FIGS. 6 and 7 described later.
  • the optically anisotropic layer 34 is formed by using the composition containing the liquid crystal compound 36.
  • the optically anisotropic layer 34 functions as a general ⁇ / 2 plate, that is, it is orthogonal to each other contained in the light incident on the optically anisotropic layer. It has a function of giving a half wavelength, that is, a phase difference of 180 ° to the two linearly polarized light components.
  • the optically anisotropic layer 34 has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes in the plane while continuously rotating in one direction indicated by the arrow X.
  • the display 12 irradiates the optical element 14 with an image at an angle with respect to the normal line of the light guide plate 20 in the arrow X direction (upstream side or downstream side).
  • “having an angle with respect to the normal line of the light guide plate 20” is also referred to as “tilting with respect to the normal line of the light guide plate 20”.
  • the optical axis 36A derived from the liquid crystal compound 36 is an axis having the highest refractive index in the liquid crystal compound 36, that is, a so-called slow axis.
  • the optical axis 36A is along the long axis direction of the rod shape.
  • “one direction indicated by arrow X” is also simply referred to as “arrow X direction”.
  • the optical axis 36A derived from the liquid crystal compound 36 is also referred to as “optical axis 36A of the liquid crystal compound 36” or “optical axis 36A”.
  • the liquid crystal compounds 36 are two-dimensionally aligned in a plane parallel to the arrow X direction and the Y direction orthogonal to the arrow X direction in the optically anisotropic layer. . 1 to 4, and FIGS. 6 and 7 described later, the Y direction is a direction orthogonal to the paper surface.
  • FIG. 5 conceptually shows a plan view of the optically anisotropic layer 34.
  • the plan view is a view of the liquid crystal diffraction element 24 seen from above in FIG. 3, that is, a view of the liquid crystal diffraction element 24 seen from the thickness direction.
  • it is a view of the optically anisotropic layer 34 viewed from a direction orthogonal to the principal surface.
  • the thickness direction is the laminating direction of each layer (film).
  • the liquid crystal compound 36 only shows the liquid crystal compound 36 on the surface of the alignment film 32.
  • the optically anisotropic layer 34 has a structure in which the liquid crystal compound 36 is stacked from the liquid crystal compound 36 on the surface of the alignment film 32 in the thickness direction as shown in FIG. It is as follows.
  • the optically anisotropic layer 34 has a liquid crystal alignment pattern in which the direction of the optical axis 36A derived from the liquid crystal compound 36 changes while continuously rotating in the direction of the arrow X, that is, one direction indicated by the arrow X.
  • the direction of the optical axis 36A of the liquid crystal compound 36 changing while continuously rotating in the arrow X direction means, specifically, the liquid crystal arrayed along the arrow X direction.
  • the angle formed by the optical axis 36A of the compound 36 and the arrow X direction differs depending on the position in the arrow X direction, and the angle formed by the optical axis 36A and the arrow X direction along the arrow X direction is from ⁇ to ⁇ + 180 °.
  • the angle is sequentially changed up to ⁇ -180 °.
  • the difference in angle between the optical axes 36A of the liquid crystal compounds 36 adjacent to each other in the direction of the arrow X is preferably 45 ° or less, more preferably 15 ° or less, and further preferably smaller. .
  • the optical axis 36A is oriented in the Y direction orthogonal to the arrow X direction, that is, in the Y direction orthogonal to one direction in which the optical axis 36A continuously rotates.
  • the same liquid crystal compound 36 is arranged at equal intervals.
  • the liquid crystal compounds 36 arranged in the Y direction have the same angle formed by the direction of the optical axis 36A and the arrow X direction.
  • the optical axis 36A of the liquid crystal compound 36 is moved in the arrow X direction in which the direction of the optical axis 36A is continuously rotated and changed in the plane.
  • the length (distance) of rotation by 180 ° is defined as the length ⁇ of one period in the liquid crystal alignment pattern.
  • the length of one period in the liquid crystal alignment pattern is defined by the distance from the angle ⁇ between the optical axis 36A of the liquid crystal compound 36 and the arrow X direction to ⁇ to ⁇ + 180 °.
  • the distance between the centers of the two liquid crystal compounds 36 having the same angle with respect to the arrow X direction in the arrow X direction is defined as the length ⁇ of one cycle.
  • the distance between the centers in the arrow X direction of two liquid crystal compounds 36 in which the direction of the arrow X and the direction of the optical axis 36A coincide with each other is defined as the length of one cycle.
  • the length ⁇ of one cycle is also referred to as “one cycle ⁇ ”.
  • the liquid crystal alignment pattern of the optically anisotropic layer 34 repeats this one period ⁇ in the arrow X direction, that is, in one direction in which the direction of the optical axis 36A continuously changes and changes.
  • the liquid crystal compounds arranged in the Y direction have the same angle between the optical axis 36A and the arrow X direction.
  • the arrow X direction is one direction in which the direction of the optical axis of the liquid crystal compound 36 rotates.
  • a region in which the liquid crystal compound 36 having the same angle formed by the optical axis 36A and the arrow X direction is arranged in the Y direction is referred to as a region R.
  • the value of in-plane retardation (Re) in each region R is preferably half wavelength, that is, ⁇ / 2.
  • the refractive index difference associated with the refractive index anisotropy of the region R in the optically anisotropic layer means the refractive index in the direction of the slow axis in the plane of the region R and the direction orthogonal to the direction of the slow axis.
  • the refractive index difference is defined by the difference with the refractive index of.
  • the refractive index difference ⁇ n due to the refractive index anisotropy of the region R is the refractive index of the liquid crystal compound 36 in the direction of the optical axis 36A and the liquid crystal compound 36 in the direction perpendicular to the optical axis 36A in the plane of the region R. Equal to the difference with the index of refraction. That is, the refractive index difference ⁇ n is equal to the refractive index difference of the liquid crystal compound 36.
  • the incident light L 1 which is polarized light
  • the incident light L 1 is given a phase difference of 180 ° by passing through the optically anisotropic layer 34, and the transmitted light L 2 is converted into right circularly polarized light.
  • the absolute phase thereof changes according to the direction of the optical axis 36A of each liquid crystal compound 36.
  • the direction of the optical axis 36A changes while rotating along the arrow X direction, the amount of change in the absolute phase of the incident light L 1 varies depending on the direction of the optical axis 36A.
  • the liquid crystal alignment pattern formed on the optically anisotropic layer 34 is a periodic pattern in the direction of the arrow X
  • the incident light L 1 that has passed through the optically anisotropic layer 34 is as shown in FIG.
  • a periodic absolute phase Q1 is given in the arrow X direction corresponding to the direction of each optical axis 36A.
  • the equiphase surface E1 tilted in the opposite direction to the arrow X direction is formed. Therefore, the transmitted light L 2 is refracted so as to be inclined toward the direction perpendicular to the equiphase surface E1, and travels in a direction different from the traveling direction of the incident light L 1 .
  • the left-handed circularly polarized incident light L 1 is converted into the right-handed circularly polarized transmitted light L 2 that is inclined by a certain angle in the arrow X direction with respect to the incident direction.
  • the optical anisotropic layer 34 has a right side.
  • the incident light L 4 passes through the optically anisotropic layer 34, is given a phase difference of 180 °, and is converted into left circularly polarized transmitted light L 5.
  • the absolute phase thereof changes according to the direction of the optical axis 36A of each liquid crystal compound 36.
  • the amount of change in the absolute phase of the incident light L 4 differs depending on the direction of the optical axis 36A.
  • the liquid crystal alignment pattern formed on the optically anisotropic layer 34 is a periodic pattern in the direction of the arrow X
  • the incident light L 4 that has passed through the optically anisotropic layer 34 is as shown in FIG.
  • a periodic absolute phase Q2 is given in the arrow X direction corresponding to the direction of each optical axis 36A.
  • the incident light L 4 is right circularly polarized light
  • the absolute phase Q2 which is periodic in the arrow X direction corresponding to the direction of the optical axis 36A is opposite to the left circularly polarized incident light L 1.
  • the incident light L 4 forms an equiphase surface E2 inclined in the direction of the arrow X, which is opposite to the incident light L 1 . Therefore, the incident light L 4 is refracted so as to be inclined toward the direction perpendicular to the equiphase surface E2, and travels in a direction different from the traveling direction of the incident light L 4 . In this way, the incident light L 4 is converted into left circularly polarized transmitted light L 5 which is inclined by a certain angle in the direction opposite to the arrow X direction with respect to the incident direction.
  • the value of the in-plane retardation of the plurality of regions R is preferably a half wavelength, but the surface of the plurality of regions R of the optically anisotropic layer 34 with respect to incident light having a wavelength of 550 nm.
  • the internal retardation Re (550) ⁇ n 550 ⁇ d is preferably within the range defined by the following formula (1).
  • ⁇ n 550 is the refractive index difference due to the refractive index anisotropy of the region R when the wavelength of the incident light is 550 nm
  • d is the thickness of the optically anisotropic layer 34.
  • the in-plane retardation Re (550) ⁇ n 550 ⁇ d of the plurality of regions R of the optically anisotropic layer 34 satisfies the expression (1), the amount of light incident on the optically anisotropic layer 34 is sufficient.
  • the circularly polarized light component of the quantity can be converted into circularly polarized light traveling in a direction inclined in the forward direction or the reverse direction with respect to the arrow X direction.
  • d is preferably within the range defined by the following formula (1-2), and can be set appropriately. 0.7 ⁇ nm ⁇ ⁇ n ⁇ ⁇ d ⁇ 1.3 ⁇ nm (1-2)
  • the values of the in-plane retardation of the plurality of regions R in the optically anisotropic layer 34 can be used outside the range of the above formula (1).
  • ⁇ n 550 ⁇ d ⁇ 200 nm or 350 nm ⁇ n 550 ⁇ d
  • the light traveling in the same direction as the traveling direction of the incident light and the traveling direction of the incident light are different from each other. It can be divided into light.
  • ⁇ n 550 ⁇ d approaches 0 nm or 550 nm, the component of light traveling in the same direction as the traveling direction of the incident light increases, and the component of light traveling in the direction different from the traveling direction of the incident light decreases.
  • each in-plane retardation Re (450) ⁇ n 450 ⁇ d of the region R of the optically anisotropic layer 34 with respect to the incident light having a wavelength of 450 nm, and the region of the optically anisotropic layer 34 with respect to the incident light having a wavelength of 550 nm.
  • Each in-plane retardation Re (550) ⁇ n 550 ⁇ d of R preferably satisfies the following formula (2).
  • ⁇ n 450 is a refractive index difference due to the refractive index anisotropy of the region R when the wavelength of incident light is 450 nm.
  • Formula (2) represents that the liquid crystal compound 36 contained in the optically anisotropic layer 34 has reverse dispersibility. That is, when the formula (2) is satisfied, the optically anisotropic layer 34 can handle incident light having a wavelength in a wide band.
  • the optically anisotropic layer 34 can adjust the angle of refraction of the transmitted lights L 2 and L 5 by changing one period ⁇ of the formed liquid crystal alignment pattern. Specifically, the shorter one period ⁇ of the liquid crystal alignment pattern is, the stronger the lights passing through the liquid crystal compounds 36 adjacent to each other interfere with each other, so that the transmitted lights L 2 and L 5 can be largely refracted. Further, by making the rotation direction of the optical axis 36A of the liquid crystal compound 36, which rotates along the arrow X direction, the reverse direction, the refraction direction of the transmitted light can be reversed. That is, in the example shown in FIGS. 3 to 7, the rotation direction of the optical axis 36A toward the arrow X direction is clockwise, but by making this rotation direction counterclockwise, the refraction direction of the transmitted light is changed. You can go in the opposite direction.
  • the optically anisotropic layer 34 is composed of a cured layer of a liquid crystal composition containing a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and the optical axis of the rod-shaped liquid crystal compound or the optical axis of the discotic liquid crystal compound is oriented as described above. It has a liquid crystal alignment pattern.
  • the optically anisotropic layer 34 functions as a so-called ⁇ / 2 plate, but in the present invention, a laminate in which the support 30 and the alignment film 32 are integrally provided functions as a ⁇ / 2 plate.
  • the liquid crystal composition for forming the optically anisotropic layer 34 contains a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and further contains other components such as a leveling agent, an alignment control agent, a polymerization initiator and an alignment aid. You may contain the component.
  • the optically anisotropic layer 34 preferably has a wide band with respect to the wavelength of incident light, and is preferably composed of a liquid crystal material having a birefringence which is inversely dispersed. It is also preferable to impart a twist component to the liquid crystal composition, or to stack different retardation layers, so that the optically anisotropic layer has a substantially broad band with respect to the wavelength of incident light.
  • Japanese Laid-Open Patent Publication No. 2014-089476 discloses a method of realizing a wide band patterned ⁇ / 2 plate by laminating two layers of liquid crystal having different twist directions in an optically anisotropic layer. Can be preferably used in the present invention.
  • -Rod liquid crystal compound As the rod-shaped liquid crystal compound, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxane, tolan, and alkenylcyclohexylbenzonitrile are preferably used. In addition to the above low-molecular liquid crystal molecules, high-molecular liquid crystal molecules can be used.
  • the rod-shaped liquid crystal compound it is more preferable to fix the orientation of the rod-shaped liquid crystal compound by polymerization.
  • the polymerizable rod-shaped liquid crystal compound Makromol. Chem. , 190, 2255 (1989), Advanced Materials, 5 (107) (1993), U.S. Pat. Nos. 4,683,327, 5,622,648, 5,770,107, and International Publication No. 95/22586, No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, No. 6-16616, No. 7-110469, No. 11-80081.
  • the compounds described in Japanese Patent Application Publication No. 2001-64627, etc. can be used.
  • the rod-shaped liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can also be preferably used.
  • the discotic liquid crystal compound for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
  • the liquid crystal compound 36 rises in the thickness direction in the optically anisotropic layer, and the optical axis 36A derived from the liquid crystal compound has a disc surface. Is defined as an axis perpendicular to the so-called fast axis (see FIG. 8).
  • a diffraction element 16 (diffraction grating) is attached to the light guide plate 20 so as to be separated from the liquid crystal diffraction element 24 in the surface direction.
  • the diffractive element 16 is separated from the liquid crystal diffractive element 24 in the plane direction of the light guide plate 20 in a direction opposite to the direction in which the optical axis 36A rotates in the optically anisotropic layer 34 of the liquid crystal diffractive element 24, that is, the direction of the arrow X. Is affixed to the opposite side.
  • the method for attaching the diffraction element 16 is not limited, and examples thereof include the method for attaching the liquid crystal diffraction element 24 and the light guide plate 20 described above.
  • the diffractive element 16 is not limited, and various kinds of diffractive elements that are used to extract the light guided (propagated) in the light guide plate from the light guide plate in AR glass or the like can be used.
  • a surface relief type diffractive element in which fine irregularities are formed on a transparent substrate a holographic diffractive element, a liquid crystal element described in Patent Document 1, and a cholesteric liquid crystal described in International Publication No. 2016/194961.
  • a liquid crystal element or the like using is exemplified.
  • the diffractive element may be provided on the same side of the light guide plate 20 as the liquid crystal diffractive element 24 and the like.
  • the present invention will be described in more detail by explaining the operation of the image display device 10.
  • the display 12 inclines in the arrow X direction with respect to the normal line of the light guide plate 20 and irradiates the switching ⁇ / 2 plate 26 with an image.
  • the display 12 inclines in the direction opposite to the arrow X direction with respect to the normal line of the light guide plate 20 in the arrow X direction, and irradiates the switching ⁇ / 2 plate 26 with an image.
  • the display 12 divides the image to be displayed, that is, the image observed by the user U into a right image and a left image, and synchronizes the display image with the right image in synchronization with the switching of the phase difference by the switching ⁇ / 2 plate 26.
  • the left image and the left image are displayed in a time-sharing manner.
  • the display 12 displays the left side image when the phase difference of the switching ⁇ / 2 plate 26 is zero, and displays the right side image when the phase difference of the switching ⁇ / 2 plate 26 is ⁇ / 2. indicate.
  • the switching ⁇ / 2 plate 26 switches the phase difference between zero and ⁇ / 2 at a predetermined time interval.
  • the display 12 illuminates the right circularly polarized image, for example. Therefore, when the phase difference of the switching ⁇ / 2 plate 26 is zero, right circularly polarized light is incident on the optically anisotropic layer 34.
  • the optically anisotropic layer 34 As shown in FIG. 7, when the right circularly polarized incident light L 4 is incident on the optically anisotropic layer 34, the light is diffracted in the direction opposite to the arrow X direction, and the left circularly polarized transmitted light L 4 is transmitted. Emit as 5 .
  • the display 12 irradiates an image obliquely with respect to the normal line of the light guide plate 20 in the direction opposite to the arrow X direction. Further, the display 12 displays the left image when the phase difference of the switching ⁇ / 2 plate 26 is zero. Therefore, the left image is further angled by the optically anisotropic layer 34 in the direction opposite to the arrow X direction with respect to the normal line of the light guide plate 20, and is guided at a shallow angle as shown by the solid line in FIG. The light enters the optical plate 20 and is guided.
  • the right circularly polarized light emitted from the display 12 is converted into the left circularly polarized light, and the left circularly polarized light is incident on the optically anisotropic layer 34.
  • the left circularly polarized incident light L 1 is incident on the optically anisotropic layer 34, it diffracts the light in the direction of the arrow X to obtain right circularly polarized transmitted light L 2 .
  • the display 12 irradiates an image obliquely with respect to the normal line of the light guide plate 20 in the direction opposite to the arrow X direction.
  • the display 12 displays the right image when the phase difference of the switching ⁇ / 2 plate 26 is ⁇ / 2. Therefore, the right-side image is returned by the optically anisotropic layer 34 in the direction (arrow X direction) opposite to the direction of irradiation by the display 12, and the angle in the arrow X direction with respect to the normal line of the light guide plate 20 is reduced. As indicated by the broken line in FIG. 1, the light enters the light guide plate 20 at a deep angle.
  • the right-side image (broken line) and the left-side image (dashed-dotted line) incident on the light guide plate 20 at different angles are guided inside the light guide plate 20 at different reflection angles, diffracted (refracted) by the diffraction element 16, and reflected.
  • the light is emitted from the light guide plate 20 and emitted to the observation position by the user U, and an image is displayed.
  • the right-side image and the left-side image are guided through different optical paths with different reflection angles, the right-side image and the left-side image are emitted to different positions of the observation position (observation visual field) by the user U due to diffraction by the diffraction element 16.
  • a part of the external light in the background passes straight through the diffractive element 16 and the light guide plate 20 and is observed by the user U, as indicated by the alternate long and short dash line in FIG.
  • the image display device 10 of the present invention by switching the image on the display 12 and switching the phase difference by the switching ⁇ / 2 plate 26, the right image and the left image obtained by dividing the display image into two can be displayed.
  • the light is divided and incident on the light guide plate 20 at different diffraction angles. Therefore, in the image display device 10 of the present invention, the right-side image and the left-side image obtained by dividing the display image into two can be guided by different optical paths having different reflection angles and can be displayed at different positions. That is, according to the present invention, the time-divided right-side image and left-side image can be emitted to positions where the user U has different observation positions.
  • an image can be displayed with a wider viewing angle (FOV) than that of the conventional AR glass or the like in which light is incident on the light guide plate at one diffraction angle.
  • FOV viewing angle
  • the divided image is temporally (field-sequentially) divided into two diffraction angles and is incident on the light guide plate 20 and is switched.
  • the display image on the display 12 in a time-division manner in response to the switching of the phase difference by the ⁇ / 2 plate 26, compared with the conventional AR glass or the like in which light is incident on the light guide plate at one diffraction angle.
  • Images can be displayed with a wide viewing angle.
  • FIG. 9 shows a partially enlarged view of another embodiment of the optical element and the image display device of the present invention. Since the image display device 40 shown in FIG. 9 uses the same members as the above-described image display device 10, the same members are designated by the same reference numerals, and the following description will be made mainly on different parts. However, in the image display device 40 shown in FIG. 9, the light guide plate 20A is an ordinary flat plate-like light guide plate having no inclined surface as an incident surface of light on the end face. Regarding this point, FIG. 10 described later is also the same.
  • the image display device 40 shown in FIG. 9 is, as a preferred embodiment, the image display device 10 (optical element 14) described above further provided with a liquid crystal diffraction element 42. Therefore, although omitted in FIG. 9, the image display device 40 has the diffraction element 16 on the upper surface in the vicinity of the right end portion of the light guide plate 20 as in the image display device 10 shown in FIG. . Further, in FIG. 9, the liquid crystal diffractive element 42 and the switching ⁇ / 2 plate 26 are separated from each other in order to show the operation of the liquid crystal diffractive element 42, but the liquid crystal diffractive element 42 and the switching ⁇ / 2 plate 26 are separated. May be in close contact with each other similarly to the liquid crystal diffraction element 24 and the switching ⁇ / 2 plate 26, or may be separated as shown in FIG.
  • the liquid crystal diffractive element 42 is basically the same as the liquid crystal diffractive element 24 described above, and includes a support 30, an alignment film 32, and an optically anisotropic layer 34.
  • the optically anisotropic layer 34 of the liquid crystal diffraction element 42 is the second optically anisotropic layer in the present invention.
  • the switching ⁇ / 2 plate 26 is arranged between the liquid crystal diffraction element 24 and the liquid crystal diffraction element 42. Therefore, the switching ⁇ / 2 plate 26 is arranged between the first optically anisotropic layer and the second optically anisotropic layer.
  • the display 12 irradiates the right-handed circularly polarized image on the switching ⁇ / 2 plate 26 obliquely with respect to the normal line of the light guide plate 20.
  • the display 12 displays an image of left circularly polarized light whose turning direction is opposite to the normal direction of the light guide plate 20. It is incident on the liquid crystal diffraction element 42.
  • the rotation direction of the optical axis 36A of the liquid crystal compound 36 in the direction of the arrow X is the optical anisotropy of the liquid crystal diffraction element 24.
  • This is the opposite direction of the functional layer 34. That is, as shown in FIG. 5 and the like, in the optically anisotropic layer 34 (first optically anisotropic layer) of the liquid crystal diffraction element 24, the rotation direction of the optical axis 36A toward the arrow X direction is clockwise. .
  • the rotation direction of the optical axis 36A in the arrow X direction is counterclockwise.
  • the liquid crystal diffractive element 24 and the liquid crystal diffractive element 42 have the same optically anisotropic layer 34 except that the rotation direction of the optical axis 36A is reversed. Therefore, one direction in which the optical axis 36A of the liquid crystal compound 36 in the optically anisotropic layer 34 rotates coincides with the arrow X direction. Further, as described above, the display 12 irradiates the liquid crystal diffraction element 42 with left-handed circularly polarized light from the direction normal to the light guide plate 20.
  • the rotation direction of the optical axis 36A of the liquid crystal compound 36 in the direction of the arrow X is reversed from clockwise to counterclockwise. Therefore, the left circularly polarized incident light L 4 incident on the liquid crystal diffractive element 42 (optically anisotropic layer 34 (second optically anisotropic layer)) is converted into right circularly polarized light and is the reverse of FIG. The light is refracted in the direction opposite to the arrow X direction. That is, the transmitted light of the liquid crystal diffraction element 42 (optical anisotropic layer 34) is emitted in the same direction as the transmitted light L 5 shown in FIG. 7.
  • the irradiation direction of the image on the display 12 incident on the switching ⁇ / 2 plate 26 is the same as that of the image display device 10 shown in FIG.
  • the irradiation direction is in the direction opposite to the arrow X, which is inclined in the arrow X direction.
  • the image on the display 12 incident on the switching ⁇ / 2 plate 26 is right circularly polarized light. That is, the light incident on the switching ⁇ / 2 plate 26 is emitted in the direction opposite to the arrow X, which is inclined in the arrow X direction with respect to the normal line of the light guide plate 20, as in the image display device 10 shown in FIG. Since the right-handed circularly polarized light is emitted, the operation thereafter is similar to that of the image display device 10 shown in FIG.
  • the image display device 40 shown in FIG. 9 has the liquid crystal diffraction element 24 and the liquid crystal diffraction element 42 (the second optical anisotropic layer) sandwiching the switching ⁇ / 2 plate 26, and thus has a wide field of view like the image display device 10. In addition to realizing the corner, it is not necessary to incline the irradiation direction of the image by the display 12 with respect to the normal line of the light guide plate 20, and the image display device can be downsized.
  • the liquid crystal diffractive element 24 and the liquid crystal diffractive element 42 have the same optically anisotropic layer 34 except that the rotation direction of the optical axis 36A of the liquid crystal compound 36 is opposite. Therefore, in the optically anisotropic layer 34, one period ⁇ in which the optical axis 36A of the liquid crystal compound 36 rotates by 180 ° is equal to the liquid crystal diffraction element 24 (first optically anisotropic layer) and the liquid crystal diffraction element 42 (second optical difference layer). Is the same as that of the isotropic layer).
  • the present invention is not limited to this, and the liquid crystal diffractive element 24 and the liquid crystal diffractive element 42 may have different periods in the optically anisotropic layer.
  • the liquid crystal diffractive element 24 and the liquid crystal diffractive element 42 have different one period ⁇ in the optically anisotropic layer, it is preferable to shorten the one period ⁇ of the liquid crystal diffractive element 42 on the display 12 side. In this way, after the light is largely bent by the liquid crystal diffractive element 42, it is divided into two small directions by the liquid crystal diffractive element 24, so that a wide angle range centering on a large bending angle can be obtained.
  • the display 12 irradiates an image from the normal direction of the light guide plate 20 as a preferable mode in which the image display device 40 can be downsized.
  • the embodiment having the liquid crystal diffractive element 42 (second optical anisotropic layer) according to the present invention is not limited to this, and the display 12 is the same as the image display device 10 shown in FIG.
  • the liquid crystal diffractive element 42 may be irradiated with an image from a direction having an angle with respect to the normal line.
  • the image emitted by the display 12 does not necessarily have to be circularly polarized light, and may be a non-polarized image. However, considering the utilization efficiency of the image illuminated by the display 12 and the like, in the image display device 40 shown in FIG. 9 as well, it is preferable that the display 12 illuminate right or left circularly polarized light.
  • the present invention is not limited to this, and may have two sets of the liquid crystal diffraction element 24 and the switching ⁇ / 2 plate 26 as conceptually shown in FIG. There may be three or more combinations of the element 24 and the switching ⁇ / 2 plate 26.
  • the number of diffraction angles divided in time (field sequential) is increased, and the light incident on the light guide plate 20 at different angles.
  • FIG. 10 exemplifies an image display device 40 having the same configuration as that of FIG. 9 using the liquid crystal diffraction element 42 and the flat light guide plate 20A.
  • the light guide plate 20 having the inclined surface 20a as the light incident surface on the end surface as shown in FIG. 1 is used.
  • a laminated body of the liquid crystal diffraction element 24 and the switching ⁇ / 2 plate 26 may be provided on the inclined surface 20a.
  • the optical axis 36A of the liquid crystal compound 36 in the liquid crystal alignment pattern of the optically anisotropic layer 34 is continuously rotated only along the arrow X direction. are doing.
  • the present invention is not limited to this, and if the optical axis 36A of the liquid crystal compound 36 is continuously rotated along one direction in the optically anisotropic layer, the optical axis of the liquid crystal compound 36 There may be a plurality of one directions whose directions change while continuously rotating.
  • a diffractive optical method for enlarging the exit pupil can be used for improving visibility.
  • an optical method using a plurality of diffractive elements that is, a diffractive optical method with incoupling, intermediate and outcoupling diffractive elements can be used. This method is described in detail in Japanese Patent Publication No. 2008-546020.
  • Example 1 ⁇ Production of liquid crystal diffraction element> (Support and saponification treatment of support)
  • a support a commercially available triacetyl cellulose film (Z-TAC manufactured by FUJIFILM Corporation) was prepared.
  • the support was passed through a dielectric heating roll having a temperature of 60 ° C. to raise the surface temperature of the support to 40 ° C.
  • the following alkaline solution was applied using a bar coater at a coating amount of 14 mL (liter) / m 2 , the support was heated to 110 ° C., and a steam type far infrared heater ( It was transported for 10 seconds under Noritake Company Limited.
  • the following coating solution for forming an undercoat layer was continuously applied to the alkali-saponified surface of the support with a # 8 wire bar.
  • the support on which the coating film was formed was dried with hot air of 60 ° C. for 60 seconds and further with hot air of 100 ° C. for 120 seconds to form an undercoat layer.
  • Coating solution for forming undercoat layer ⁇ Modified polyvinyl alcohol 2.40 parts by mass Isopropyl alcohol 1.60 parts by mass Methanol 36.00 parts by mass Water 60.00 parts by mass ⁇ ⁇
  • the following coating liquid for forming an alignment film was continuously coated on a support having an undercoat layer formed thereon with a # 2 wire bar.
  • the support on which the coating film of the coating liquid for forming an alignment film was formed was dried on a hot plate at 60 ° C. for 60 seconds to form an alignment film.
  • Coating liquid for forming alignment film ⁇ Material for photo-alignment A 1.00 mass part Water 16.00 mass part Butoxyethanol 42.00 mass part Propylene glycol monomethyl ether 42.00 mass part ⁇ ⁇
  • the alignment film was exposed using the exposure apparatus shown in FIG. 11 to form an alignment film having an alignment pattern.
  • a semiconductor laser that emits laser light having a wavelength (405 nm) was used.
  • the exposure amount by the interference light was 100 mJ / cm 2 .
  • One cycle of the alignment pattern formed by the interference of the two laser beams was controlled by changing the crossing angle (crossing angle ⁇ ) of the two beams. As described above, one period of the alignment pattern is the length by which the optical axis derived from the liquid crystal compound is rotated by 180 °.
  • the optically anisotropic layer was formed by applying the composition in multiple layers on the alignment film.
  • Multi-layer coating refers to first coating the composition of the first layer on the alignment film, heating and cooling, and then performing ultraviolet curing to prepare a liquid crystal fixing layer, and then stacking the second and subsequent layers on the liquid crystal fixing layer. This means repeating coating, application, heating and cooling, and then UV curing.
  • the following composition was applied on the alignment film, and the coating film was heated to 70 ° C. on a hot plate. Then, after cooling to 25 ° C, the alignment of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet rays having a wavelength of 365 nm at a dose of 100 mJ / cm 2 using a high pressure mercury lamp in a nitrogen atmosphere. At this time, the film thickness of the first liquid crystal layer was 0.2 ⁇ m.
  • the second and subsequent layers were overcoated on this liquid crystal layer, heated and cooled under the same conditions as above, and then UV cured to prepare a liquid crystal immobilization layer.
  • repeated coating was repeated until the total thickness reached the desired film thickness to form an optically anisotropic layer, and a liquid crystal diffraction element was produced.
  • the polarizing microscope shows that the optically anisotropic layer finally has ⁇ n 550 ⁇ thickness (Re (550)) of the liquid crystal of 275 nm and has a periodic alignment surface as shown in FIG. confirmed.
  • Re (550) thickness
  • the liquid crystal alignment pattern of this optically anisotropic layer one cycle in which the optical axis derived from the liquid crystal compound was rotated by 180 ° was 2.8 ⁇ m.
  • the measurement of “ ⁇ n 550 ⁇ d” and the like was performed in the same manner.
  • a glass substrate having an ITO (Indium Tin Oxide) electrode was provided with a polyimide film as an alignment film, and the alignment film was rubbed.
  • the two glass substrates thus obtained were opposed to each other in an arrangement in which the rubbing directions were antiparallel, and the cell gap was set to 3.5 ⁇ m.
  • a liquid crystal compound having ⁇ n of 0.099 was injected into the cell gap to prepare a homogeneous liquid crystal cell.
  • a birefringent film having an in-plane retardation (Re (550)) of 35 nm was attached so that the alignment direction of the produced homogeneous liquid crystal cell and the slow axis were orthogonal to each other, to produce a switching ⁇ / 2 plate.
  • Re (550) of the switching ⁇ / 2 plate becomes zero, and when a voltage of 9.1 V is applied, switching ⁇ / 2 is applied. It was confirmed that the Re (550) of the plate became 275 nm and the phase difference could be switched between zero and ⁇ / 2.
  • Liquid crystal compound L-1 100.00 parts by mass Chiral agent B 9.13 parts by mass Polymerization initiator (manufactured by BASF, Irgacure (registered trademark) 907) 3.00 parts by weight Photosensitizer (KAYACURE DETX-S manufactured by Nippon Kayaku) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 2840.00 parts by mass ⁇ ----
  • a glass light guide plate (refractive index 1.52) as shown in FIG. 1 was prepared.
  • One end surface of the light guide plate in the longitudinal direction was processed into an inclined surface as shown in FIG. 1 to form an inclined surface (incident surface) in order to allow light to enter the light guide plate obliquely.
  • the inclined surface was inclined at 60 ° with respect to the longitudinal direction of the light guide plate.
  • the produced liquid crystal diffractive element was attached to the inclined surface of the light guide plate, and the switching ⁇ / 2 plate was attached to the liquid crystal diffractive element.
  • An optical element was produced.
  • the bonding was performed using an adhesive (SK Dyne 2057, manufactured by Soken Chemical Co., Ltd.).
  • the liquid crystal diffractive element was attached to the light guide plate so that the one direction in which the optical axis of the liquid crystal compound rotates in the optically anisotropic layer and the longitudinal direction of the light guide plate coincided with each other.
  • the reflection-type liquid crystal diffractive element thus prepared was attached to the main surface of the end of the light guide plate opposite to the liquid crystal diffractive element.
  • a display that emits a right-handed circularly polarized image was prepared.
  • This display is a projection type liquid crystal display element in which a projection light source and a convex lens are combined with a reflection type liquid crystal display element.
  • the linearly polarized light emitted from the reflective liquid crystal display element is converted into right circularly polarized light by a ⁇ / 4 plate.
  • This display was arranged so as to irradiate an image toward the main surface of the switching ⁇ / 2 plate, and an image display device was produced.
  • Example 1 An image was displayed using the produced image display device, and the viewing angle was measured. In the evaluation, a green image was used.
  • Example 1 the phase difference of zero in the switching ⁇ / 2 plate and the phase difference of ⁇ / 2 (275 nm) were switched by changing the applied voltage.
  • the display image is divided into half in the horizontal direction, and the display image is displayed on the right side image and the left side image at the same timing as the switching between the phase difference zero and the phase difference ⁇ / 2 on the switching ⁇ / 2 plate.
  • the images and images are displayed in a time-sharing manner.
  • the viewing angle of Comparative Example 1 was 15 °
  • the viewing angle of Example 1 was 30 °, and it was confirmed that the viewing angle could be expanded. From the above results, the effect of the present invention is clear.

Abstract

ARグラス等の視野角を広視野角化できる光学素子(14)、および、この光学素子(14)を用いる画像表示装置(10)の提供を課題とする。導光板(20)と、位相差をゼロとλ/2とに切り替え可能なスイッチングλ/2板(26)と、導光板(20)とスイッチングλ/2板(26)との間に配置される、液晶化合物を含む組成物を用いて形成された、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する第1光学異方性層(24)と、を有する光学素子(14)によって、課題を解決する。

Description

光学素子および画像表示装置
 本発明は、入射した光を導光する光学素子、および、この光学素子を用いる画像表示装置に関する。
 近年、非特許文献1に記載されるような、実際に見ている光景に、仮想の画像および各種の情報等を重ねて表示する、AR(Augmented Reality(拡張現実))グラスが実用化されている。ARグラスは、スマートグラス、ヘッドマウントディスプレイ(HMD(Head Mounted Display))、および、ARメガネ等とも呼ばれている。
 非特許文献1に示されるように、ARグラスは、一例として、ディスプレイ(光学エンジン)が表示した画像を、導光板の一端に入射して伝播し、他端から出射することにより、使用者が実際に見ている光景に、仮想の画像を重ねて表示する。
 ARグラスでは、回折素子を用いて、ディスプレイが表示した画像(投影光)を回折(屈折)させて導光板の一方の端部に入射する。これにより、角度を付けて導光板に光を導入して、導光板内で全反射させることにより導光させる。導光板内を導光した光は、導光板の他方の端部において同じく回折素子によって回折されて、導光板から使用者による観察位置に出射され、画像が表示される。
 ARグラスに利用される、導光板に角度をつけて光を入射させる回折素子の一例として、特許文献1に記載される光学素子(液晶回折素子)が例示される。
 この光学素子は、ブラッグ条件に従って内部を通過する光の伝播の方向を変更する複数の積層複屈折副層を備え、積層複屈折副層は、それぞれの格子周期を画定するように積層複屈折副層の隣接するものの間のそれぞれの境界面に沿って変化する局所光学軸を備えるものである。
 特許文献1に記載される光学素子は、具体的には、液晶化合物を含む組成物を用いて形成された複数層の光学異方性層を有し、この光学異方性層が、液晶化合物の光学軸の向きが面内の一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 このような光学素子に円偏光が入射すると、円偏光の旋回方向を逆転すると共に、円偏光の旋回方向、および、液晶化合物の光学軸が回転する一方向に応じて、液晶化合物の光学軸が回転する一方向の上流または下流側に向かって、円偏光を屈折させる。
 従って、この光学素子を用いることで、ディスプレイによる画像を回折させて、角度を付けて導光板に光を導入して、導光板内で光を導光できる。
特開2017-522601号公報
Bernard C. Kress et al., Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices, SID 2017 DIGEST, pp.127-131
 ところで、ARグラスには、画像を表示する領域である視野角(FOV(Field of View))が広いことが要求される。
 しかしながら、特許文献1に記載される光学素子をARグラスに用いた場合には、十分な視野角が得られない場合もある。
 本発明の目的は、このような従来技術の問題点を解決することにあり、入射した光を複数の異なる角度で導光板に入射することができ、例えば、ARグラスに用いることにより、広い視野角での画像の表示を可能にする光学素子、および、この光学素子を用いる画像表示装置を提供することにある。
 この課題を解決するために、本発明の光学素子は、以下の構成を有する。
 [1] 導光板と、
 位相差をゼロとλ/2とに切り替え可能なスイッチングλ/2板と、
 導光板とスイッチングλ/2板との間に配置される、液晶化合物を含む組成物を用いて形成された、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する第1光学異方性層と、を有することを特徴とする光学素子。
 [2] 第1光学異方性層の液晶配向パターンにおいて、液晶化合物由来の光学軸の向きが面内の一方向のみに沿って連続的に回転しながら変化している、[1]に記載の光学素子。
 [3] 液晶化合物を含む組成物を用いて形成された、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する第2光学異方性層を有し、スイッチングλ/2板が、第1光学異方性層と第2光学異方性層との間に配置される、[1]または[2]に記載の光学素子。
 [4] 第1光学異方性層の液晶配向パターン、および、第2光学異方性層の液晶配向パターンにおいて、液晶化合物由来の光学軸の向きが面内の一方向のみに沿って連続的に回転しながら変化するものであり、第1光学異方性層の液晶配向パターン、および、第2光学異方性層の液晶配向パターンにおいて、面内の一方向が同方向である、[3]に記載の光学素子。
 [5] スイッチングλ/2板と第1光学異方性層との組み合わせを、複数組、有する、[1]~[4]のいずれかに記載の光学素子。
 [6] [1]~[5]のいずれかに記載の光学素子と、光学素子に画像を照射するディスプレイと、を有する画像表示装置。
 [7] 導光板の主面の法線に対して角度を有して、ディスプレイが光学素子に画像を照射する、[6]に記載の画像表示装置。
 [8] 光学素子が、第2光学異方性層を有するものであり、導光板の主面の法線方向から、ディスプレイが光学素子に画像を照射する、[6]に記載の画像表示装置。
 [9] ディスプレイが、円偏光の画像を照射する、[6]~[8]のいずれかに記載の画像表示装置。
 [10] ディスプレイが、画像を複数に分割して、分割した画像を時分割して表示する、[6]~[9]のいずれかに記載の画像表示装置。
 [11] ディスプレイによる画像の時分割表示と、スイッチングλ/2板による位相差の切り替えとが同期している、[10]に記載の画像表示装置。
 本発明の光学素子によれば、入射した光を複数の異なる角度で導光板に入射して、導光板から出射できる。また、本発明の画像表示装置は、例えばARグラスに用いることにより、広い視野角で画像を表示できる。
図1は、本発明の光学素子を用いる本発明の画像表示装置の一例を概念的に示す図である。 図2は、本発明の光学素子を概念的に示す部分拡大図である。 図3は、図1に示す光学素子の液晶回折素子を概念的に示す図である。 図4は、図3に示す液晶回折素子の構成を説明するための概念図である。 図5は、図3に示す液晶回折素子の光学異方性層の概略平面図である。 図6は、図3に示す液晶回折素子の光学異方性層の作用を示す概念図である。 図7は、図3に示す液晶回折素子の光学異方性層の作用を示す概念図である。 図8は、本発明の光学素子の光学異方性層の別の例を概念的に示す図である。 図9は、本発明の光学素子の別の例を用いる本発明の画像表示装置の別の例を概念的に示す部分拡大図である。 図10は、本発明の光学素子の別の例を概念的に示す部分拡大図である。 図11は、図3に示す液晶回折素子の配向膜を露光する露光装置の一例を概念的に示す図である。
 以下、本発明の光学素子および画像表示装置について、添付の図面に示される好適実施例を基に詳細に説明する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。
 本明細書において、Re(λ)は、波長λにおける面内のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本明細書において、Re(λ)は、AxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
   遅相軸方向(°)
   Re(λ)=R0(λ)
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
 図1に、本発明の光学素子を用いる、本発明の画像表示装置の一例を概念的に示す。
 図1に示す画像表示装置10は、好適な一例として、ARグラスとして利用されるものである。なお、本発明の光学素子は、ARグラス以外にも、透明ディスプレイおよびヘッドアップディスプレイ等の光学素子にも利用可能である。また、本発明の画像表示装置は、これらの光学素子を用いる画像表示装置にも利用可能である。
 このような画像表示装置10は、ディスプレイ12と、本発明の光学素子14と、回折素子16とを有する。
 後述するが、本発明の光学素子14は、導光板20と、液晶回折素子24と、スイッチングλ/2板26とを有する(図2参照)。
 [ディスプレイ]
 ディスプレイ12は、使用者Uが観察する画像(映像)を表示して、画像を光学素子14に照射するものである。
 図示例においては、ディスプレイ12は、表示した画像をスイッチングλ/2板26に照射する。
 本発明の画像表示装置10において、ディスプレイ12は、後述するスイッチングλ/2板26による位相差の切り替えに応じて、表示する画像を切り替える。
 一例として、ディスプレイ12は、表示する画像を右側画像と左側画像との2画像(2画面)に分け、スイッチングλ/2板26による位相差の切り替えに応じて、右側画像と左側画像とを、交互に切り替えて表示する。すなわち、ディスプレイ12は、表示画像を右側画像と左側画像とに分け、スイッチングλ/2板26による位相差の切り替えに同期して、表示画像を右側画像と左側画像とに時分割して表示する。
 本発明の画像表示装置10において、ディスプレイ12には、制限はなく、例えば、ARグラス等に用いられる公知のディスプレイ(プロジェクター)が、各種、利用可能である。
 ディスプレイ12としては、一例として、液晶ディスプレイ、および、有機エレクトロルミネッセンスディスプレイ等が例示される。液晶ディスプレイとしては、例えば、反射型液晶表示素子(Liquid Csytal on Silicon(LCOS))が例示される。
 また、画像表示装置10は、必要に応じて、ディスプレイ12が表示した画像を集光する集光レンズ等、ARグラス等に用いられる各種の光学素子を有してもよい。
 ディスプレイ12は、円偏光の画像を照射する。従って、ディスプレイ12は、ディスプレイ本体が無偏光の画像を照射する場合には、例えば直線偏光子とλ/4板とからなる円偏光板を有し、ディスプレイ本体が直線偏光の画像を照射する場合には、例えばλ/4板を有する。
 図示例の画像表示装置10において、ディスプレイ12は、一例として、右円偏光の画像を照射する。
 図1に示す例においては、ディスプレイ12は、後述する導光板20の主面の法線に対して、角度を有して画像を光学素子14に照射する。なお、主面とは、シート状物(板状物、フィルム)の最大面である。また、主面の法線とは、主面と直交する方向の線である。以下の説明では、『導光板20の主面の法線』を『導光板20の法線』とも言う。
 ディスプレイ12は、導光板20の法線に対して、後述する光学異方性層34において液晶化合物36の光学軸36Aの方向が回転しながら変化する一方向(後述する図中の矢印X方向)に角度を有して、光学素子14に画像を照射する。
 ディスプレイ12による画像の照射方向と、導光板20の法線とが成す角度には、制限はなく、導光板20への入射光の角度が、導光板20内を適正に導光できるようになる角度を、後述する液晶回折素子24の回折力、導光板20の形成材料(屈折率など)等に応じて、適宜、設定すればよい。
 なお、本発明の光学素子14において、導光板20の法線は、基本的に、後述するスイッチングλ/2板26の主面の法線、および、光学異方性層34(第1光学異方性層および第2光学異方性層)の主面の法線と、一致してもよいし、一致しなくてもよい。例えば、入射側の導光板を斜めに形成して、斜面にスイッチングλ/2板および光学異方性層を貼合してもよい。なお、スイッチングλ/2板26のリタデーション値は光の進行方向に対する値である。
 [光学素子]
 本発明の画像表示装置10において、光学素子14は、本発明の光学素子である。
 図2に、光学素子14の部分拡大図を概念的に示す。上述したように、光学素子14は、導光板20、液晶回折素子24およびスイッチングλ/2板26を有する。
 <導光板>
 光学素子14において、導光板20は、後述する傾斜面20aを有する以外は、内部に入射した光を反射して導光(伝搬)する、公知の導光板である。
 導光板20には、制限はなく、ARグラスおよび液晶ディスプレイのバックライトユイット等で用いられている公知の導光板が、各種、利用可能である。
 なお、図1に示すように、導光板20の回折素子16と逆側の端面は、導光板20の主面の法線に対して傾斜する傾斜面20aとなっている。画像表示装置10においては、この傾斜面20aに後述する液晶回折素子24が設けられる。すなわち、導光板20においては、この傾斜面20aがディスプレイ12が表示した画像の入射面となる。
 <スイッチングλ/2板>
 スイッチングλ/2板26は、位相差を、ゼロ(『0』)とλ/2とに切り替え可能なλ/2板である。なお、スイッチングλ/2板26の位相差がλ/2とは、スイッチングλ/2板26の面内のレタデーションがλ/2であることを意味する。また、位相差がλ/2であるスイッチングλ/2板26とは、特定の波長λnmにおける面内レタデーションRe(λ)がRe(λ)≒λ/2を満たす板をいう。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。なかでも、波長550nmにおける面内レタデーションRe(550)が、以下の関係を満たすことが好ましい。
 210nm≦Re(550)≦300nm
 ディスプレイ12は、一例として、スイッチングλ/2板26の位相差がゼロの時に左側画像を、スイッチングλ/2板26の位相差がλ/2の時に右側画像を、時分割して表示する。
 また、上述したように、ディスプレイ12は、右円偏光の画像を照射する。従って、スイッチングλ/2板26は、位相差がゼロの時には、入射した右円偏光を、右円偏光のまま透過させ、位相差がλ/2の時には、入射した右円偏光を左円偏光にして透過させる。
 スイッチングλ/2板26には、制限はなく、位相差をゼロとλ/2とを切り替えることができる公知のλ/2板が、各種、利用可能である。
 一例として、λ/2の液晶セルと、この液晶セルにおける液晶化合物の配向を電気的に切り替えて位相差をゼロにするλ/2板が例示される。
 より具体的な一例として、透明電極と配向処理を施した配向膜とを有する2枚の透明基板を、ラビング方向が反平行(アンチパラレル)となるように離間して配置し、透明基板の間に液晶化合物を注入した液晶セルによる、スイッチングλ/2板が例示される。このスイッチングλ/2板は、透明電極間に異なる電圧を印加することで、位相差をゼロとλ/2とに切り替えることができる。
 なお、このスイッチングλ/2板では、位相差ゼロの設定の状態において、液晶化合物の挙動に起因して位相差が残留してしまう場合がある。この際には、複屈折フィルムを、液晶セルの残留位相差の遅相軸と、複屈折フィルムの遅相軸とが直交するように貼合して、この位相差を相殺してもよい。液晶セルの残留位相差の遅相軸とは、具体的には、配向方向である。
 スイッチングλ/2板26としては、ネマチック液晶を用いたセルを用いるのが一般的であるが、正の複屈折率または負の複屈折率のネマチック液晶を用いることができる。これ以外にも、強誘電性液晶、反響誘電性液晶、ブルー層液晶を用いることができる。また、電気光学結晶で構成されたEO素子デバイスも用いることができる。
 <液晶回折素子>
 光学素子14において、導光板20とスイッチングλ/2板26との間には、両者に挟持されるように、液晶回折素子24が配置される。
 すなわち、図示例の光学素子14は、導光板20と、液晶回折素子24と、スイッチングλ/2板26とを、この順番で積層したものである。
 図示は省略するが、導光板20と液晶回折素子24、および、液晶回折素子24とスイッチングλ/2板26とは、層間に設けられた貼合層によって貼り合わされている。
 本発明において、貼合層は、貼り合わせの対象となる物同士を貼り合わせられる層であれば、公知の各種の材料からなるものが利用可能である。貼合層としては、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、ならびに、紫外線硬化型樹脂等の、光学装置および光学素子等でシート状物の貼り合わせに用いられる公知のものを用いればよい。
 あるいは、貼合層で貼り合わせるのではなく、導光板20、液晶回折素子24、および、スイッチングλ/2板26を積層して、枠体または治具等で保持して、本発明の光学素子を構成してもよい。
 なお、本発明の光学素子は、図示例のように導光板20、液晶回折素子24、および、スイッチングλ/2板26を密着して積層した構成に制限はされず、これらの部材の1以上を、離間した状態で配列した構成も、利用可能である。
 図3に、液晶回折素子24を概念的に示す。図3に示す液晶回折素子24は、支持体30と、配向膜32と、光学異方性層34とを有する。図示例においては、液晶回折素子24の光学異方性層34は、本発明における第1光学異方性層である。
 なお、図示例の光学素子14は、支持体30と、配向膜32と、光学異方性層34とを有するが、本発明は、これに制限はされない。本発明の光学素子14は、例えば、液晶回折素子24をスイッチングλ/2板26に貼り合わせた後に、支持体30を剥離した、配向膜32および光学異方性層34のみを有するものでもよい。または、本発明の光学素子14は、例えば、液晶回折素子24をスイッチングλ/2板26に貼り合わせた後に、支持体30および配向膜32を剥離した、光学異方性層34のみを有するものでもよい。
 <<支持体>>
 液晶回折素子24において、支持体30は、配向膜32および光学異方性層34を支持するものである。
 支持体30は、配向膜32および光学異方性層34を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 支持体30としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、シクロオレフィンポリマー系フィルム、ポリエチレンテレフタレート(PET)、ポリカーボネート、および、ポリ塩化ビニル等を挙げることができる。シクロオレフィンポリマー系フィルムとしては、例えば、JSR社製の商品名「アートン」、および、日本ゼオン社製の商品名「ゼオノア」等が例示される。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。
 支持体30の厚さには、制限はなく、支持体30の形成材料等に応じて、配向膜および光学異方性層を保持できる厚さを、適宜、設定すればよい。
 支持体30の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
 <<配向膜>>
 液晶回折素子24において、支持体30の表面には配向膜32が形成される。
 配向膜32は、光学異方性層34を形成する際に、液晶化合物36を所定の液晶配向パターンに配向するための配向膜である。
 後述するが、液晶回折素子24において、光学異方性層34は、液晶化合物36に由来する光学軸36A(図3参照)の向きが、面内の一方向(後述する矢印X方向)に沿って連続的に回転しながら変化している液晶配向パターンを有する。従って、液晶回折素子24の配向膜は、光学異方性層34の液晶化合物36が、この液晶配向パターンで配向されるように、形成される。
 以下の説明では、『光学軸36Aの向きが回転』を単に『光学軸36Aが回転』とも言う。
 配向膜32は、公知の各種のものが利用可能である。
 例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
 ラビング処理による配向膜は、ポリマー層の表面を紙または布で一定方向に、数回、擦ることにより形成できる。
 配向膜に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報記載の配向膜等の形成に用いられる材料が好ましく例示される。
 本発明の光学素子14を構成する液晶回折素子24においては、配向膜32は、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜が好適に利用される。すなわち、液晶回折素子24においては、配向膜32として、支持体30上に、光配向材料を塗布して形成した光配向膜が、好適に利用される。
 偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
 本発明に利用可能な光配向膜に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性エステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましい例として例示される。
 中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性エステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
 配向膜の厚さには制限はなく、配向膜の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。
 配向膜の厚さは、0.01~5μmが好ましく、0.05~2μmがより好ましい。
 配向膜32の形成方法には、制限はなく、配向膜32の形成材料に応じた公知の方法が、各種、利用可能である。一例として、配向膜を支持体30の表面に塗布して乾燥させた後、配向膜をレーザ光によって露光して、配向パターンを形成する方法が例示される。
 図11に、支持体30の表面に配向膜32を露光して配向パターンを形成する露光装置の一例を概念的に示す。
 図11に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離するビームスプリッター68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。
 なお、図示は省略するが、光源64は偏光板を備え、直線偏光P0を出射する。λ/4板72Aおよび72Bは、互いに直交する光学軸を備えている。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
 配向パターンを形成される前の配向膜32を有する支持体30が露光部に配置され、2つの光線MAと光線MBとを配向膜32上において交差させて干渉させ、その干渉光を配向膜32に照射して露光する。
 この際の干渉により、配向膜32に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、配向膜32において、配向状態が周期的に変化する配向パターンが得られる。
 露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物36に由来する光学軸36Aが一方向に沿って連続的に回転する配向パターンにおいて、光学軸36Aが回転する1方向における、光学軸36Aが180°回転する1周期の長さを調節できる。
 このような配向状態が周期的に変化した配向パターンを有する配向膜32上に、光学異方性層34を形成することにより、後述するように、液晶化合物36に由来する光学軸36Aが一方向に向かって連続的に回転する液晶配向パターンを有する、光学異方性層34を形成できる。
 また、λ/4板72Aおよび72Bの光学軸を各々90°回転することにより、光学軸36Aの回転方向を逆にすることができる。
 なお、本発明の光学素子において、配向膜32は、好ましい態様として設けられるものであり、必須の構成要件ではない。
 例えば、支持体30をラビング処理する方法、支持体30をレーザ光等で加工する方法等によって、支持体30に配向パターンを形成することにより、光学異方性層34が、液晶化合物36に由来する光学軸36Aの向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも、可能である。すなわち、本発明においては、支持体30を配向膜として作用させてもよい。
 <<光学異方性層>>
 液晶回折素子24において、配向膜32の表面には光学異方性層34が形成される。
 なお、図3においては、図面を簡略化して液晶回折素子24の構成を明確に示すために、光学異方性層34は、配向膜の表面の液晶化合物36(液晶化合物分子)のみを示している。しかしながら、光学異方性層34は、図4に概念的に示すように、通常の液晶化合物を含む組成物を用いて形成された光学異方性層と同様に、配向された液晶化合物36が積み重ねられた構造を有する。この点に関しては、後述する図6および図7も同様である。
 前述のように、液晶回折素子24において、光学異方性層34は、液晶化合物36を含む組成物を用いて形成されたものである。
 光学異方性層34は、面内レタデーションの値をλ/2に設定した場合に、一般的なλ/2板としての機能、すなわち、光学異方性層に入射した光に含まれる互いに直交する2つの直線偏光成分に半波長すなわち180°の位相差を与える機能を有している。
 光学異方性層34は、面内において、液晶化合物に由来する光学軸の向きが、矢印Xで示す一方向に連続的に回転しながら変化する液晶配向パターンを有する。
 上述したように、ディスプレイ12は、導光板20の法線に対して、この矢印X方向(上流側または下流側)に角度を有して、光学素子14に画像を照射する。以下の説明では、『導光板20の法線に対して角度を有して』を『導光板20の法線に対して傾斜して』とも言う。
 なお、液晶化合物36に由来する光学軸36Aとは、液晶化合物36において屈折率が最も高くなる軸、いわゆる遅相軸である。例えば、液晶化合物36が棒状液晶化合物である場合には、光学軸36Aは、棒形状の長軸方向に沿っている。
 以下の説明では、『矢印Xで示す一方向』を単に『矢印X方向』とも言う。また、以下の説明では、液晶化合物36に由来する光学軸36Aを、『液晶化合物36の光学軸36A』または『光学軸36A』とも言う。
 光学異方性層において、液晶化合物36は、それぞれ、光学異方性層において、矢印X方向と、この矢印X方向と直交するY方向とに平行な面内に二次元的に配向している。なお、図1~図4、ならびに、後述する図6および図7では、Y方向は、紙面に直交する方向となる。
 図5に、光学異方性層34の平面図を概念的に示す。
 なお、平面図とは、図3において、液晶回折素子24を上方から見た図であり、すなわち、液晶回折素子24を厚さ方向から見た図である。言い換えれば、光学異方性層34を主面と直交する方向から見た図である。厚さ方向とは、すなわち、各層(膜)の積層方向である。
 また、図5では、液晶回折素子24の構成を明確に示すために、図3と同様、液晶化合物36は配向膜32の表面の液晶化合物36のみを示している。しかしながら、光学異方性層34は、厚さ方向には、図4に示されるように、この配向膜32の表面の液晶化合物36から、液晶化合物36が積み重ねられた構造を有するのは、前述のとおりである。
 光学異方性層34は、面内において、液晶化合物36に由来する光学軸36Aの向きが、矢印X方向すなわち矢印Xで示す一方向に沿って連続的に回転しながら変化する液晶配向パターンを有する。
 液晶化合物36の光学軸36Aの向きが矢印X方向(面内における一方向)に連続的に回転しながら変化しているとは、具体的には、矢印X方向に沿って配列されている液晶化合物36の光学軸36Aと、矢印X方向とが成す角度が、矢印X方向の位置によって異なっており、矢印X方向に沿って、光学軸36Aと矢印X方向とが成す角度がθからθ+180°あるいはθ-180°まで、順次、変化していることを意味する。
 なお、矢印X方向に互いに隣接する液晶化合物36の光学軸36Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
 一方、光学異方性層34を形成する液晶化合物36は、矢印X方向と直交するY方向、すなわち光学軸36Aが連続的に回転する一方向と直交するY方向では、光学軸36Aの向きが等しい液晶化合物36が等間隔で配列されている。
 言い換えれば、光学異方性層34を形成する液晶化合物36において、Y方向に配列される液晶化合物36同士では、光学軸36Aの向きと矢印X方向とが成す角度が等しい。
 光学異方性層34においては、このような液晶化合物36の液晶配向パターンにおいて、面内で光学軸36Aの向きが連続的に回転して変化する矢印X方向において、液晶化合物36の光学軸36Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期の長さΛとする。言い換えれば、液晶配向パターンにおける1周期の長さは、液晶化合物36の光学軸36Aと矢印X方向とのなす角度がθからθ+180°となるまでの距離により定義される。
 すなわち、矢印X方向に対する角度が等しい2つの液晶化合物36の、矢印X方向の中心間の距離を、1周期の長さΛとする。具体的には、図3および図5に示すように、矢印X方向と光学軸36Aの方向とが一致する2つの液晶化合物36の、矢印X方向の中心間の距離を、1周期の長さΛとする。以下の説明では、この1周期の長さΛを『1周期Λ』とも言う。
 光学異方性層34の液晶配向パターンは、この1周期Λを、矢印X方向すなわち光学軸36Aの向きが連続的に回転して変化する一方向に、繰り返す。
 上述のように光学異方性層34において、Y方向に配列される液晶化合物は、光学軸36Aと矢印X方向とが成す角度が等しい。矢印X方向とは、液晶化合物36の光学軸の向きが回転する1方向である。この光学軸36Aと矢印X方向とが成す角度が等しい液晶化合物36が、Y方向に配置された領域を、領域Rとする。
 この場合に、それぞれの領域Rにおける面内レタデーション(Re)の値は、半波長すなわちλ/2であるのが好ましい。これらの面内レタデーションは、領域Rの屈折率異方性に伴う屈折率差Δnと光学異方性層の厚さとの積により算出される。ここで、光学異方性層における領域Rの屈折率異方性に伴う屈折率差とは、領域Rの面内における遅相軸の方向の屈折率と、遅相軸の方向に直交する方向の屈折率との差により定義される屈折率差である。すなわち、領域Rの屈折率異方性に伴う屈折率差Δnは、光学軸36Aの方向の液晶化合物36の屈折率と、領域Rの面内において光学軸36Aに垂直な方向の液晶化合物36の屈折率との差に等しい。つまり、屈折率差Δnは、液晶化合物36の屈折率差に等しい。
 このような光学異方性層34に円偏光が入射すると、光は、屈折され、かつ、円偏光の方向が変換される。
 この作用を、図6および図7に概念的に示す。なお、光学異方性層34は、液晶化合物の屈折率差と光学異方性層の厚さとの積の値がλ/2であるとする。
 図6に示すように、光学異方性層34の液晶化合物の屈折率差と光学異方性層の厚さとの積の値がλ/2の場合に、光学異方性層34に左円偏光である入射光L1が入射すると、入射光L1は、光学異方性層34を通過することにより180°の位相差が与えられて、透過光L2は、右円偏光に変換される。
 また、入射光L1は、光学異方性層34を通過する際に、それぞれの液晶化合物36の光学軸36Aの向きに応じて絶対位相が変化する。このとき、光学軸36Aの向きは、矢印X方向に沿って回転しながら変化しているため、光学軸36Aの向きに応じて、入射光L1の絶対位相の変化量が異なる。さらに、光学異方性層34に形成された液晶配向パターンは、矢印X方向に周期的なパターンであるため、光学異方性層34を通過した入射光L1には、図6に示すように、それぞれの光学軸36Aの向きに対応した矢印X方向に周期的な絶対位相Q1が与えられる。これにより、矢印X方向に対して逆の方向に傾いた等位相面E1が形成される。
 そのため、透過光L2は、等位相面E1に対して垂直な方向に向かって傾くように屈折され、入射光L1の進行方向とは異なる方向に進行する。このように、左円偏光の入射光L1は、入射方向に対して矢印X方向に一定の角度だけ傾いた、右円偏光の透過光L2に変換される。
 一方、図7に示すように、光学異方性層34の液晶化合物の屈折率差と光学異方性層の厚さとの積の値がλ/2のとき、光学異方性層34に右円偏光の入射光L4が入射すると、入射光L4は、光学異方性層34を通過することにより、180°の位相差が与えられて、左円偏光の透過光L5に変換される。
 また、入射光L4は、光学異方性層34を通過する際に、それぞれの液晶化合物36の光学軸36Aの向きに応じて絶対位相が変化する。このとき、光学軸36Aの向きは、矢印X方向に沿って回転しながら変化しているため、光学軸36Aの向きに応じて、入射光L4の絶対位相の変化量が異なる。さらに、光学異方性層34に形成された液晶配向パターンは、矢印X方向に周期的なパターンであるため、光学異方性層34を通過した入射光L4は、図5に示すように、それぞれの光学軸36Aの向きに対応した矢印X方向に周期的な絶対位相Q2が与えられる。
 ここで、入射光L4は、右円偏光であるので、光学軸36Aの向きに対応した矢印X方向に周期的な絶対位相Q2は、左円偏光である入射光L1とは逆になる。その結果、入射光L4では、入射光L1とは逆に矢印X方向に傾斜した等位相面E2が形成される。
 そのため、入射光L4は、等位相面E2に対して垂直な方向に向かって傾くように屈折され、入射光L4の進行方向とは異なる方向に進行する。このように、入射光L4は、入射方向に対して矢印X方向とは逆の方向に一定の角度だけ傾いた左円偏光の透過光L5に変換される。
 光学異方性層34において、複数の領域Rの面内レタデーションの値は、半波長であるのが好ましいが、波長が550nmである入射光に対する光学異方性層34の複数の領域Rの面内レタデーションRe(550)=Δn550×dが下記式(1)に規定される範囲内であるのが好ましい。ここで、Δn550は、入射光の波長が550nmである場合の、領域Rの屈折率異方性に伴う屈折率差であり、dは、光学異方性層34の厚さである。
  200nm≦Δn550×d≦350nm・・・(1)
 すなわち、光学異方性層34の複数の領域Rの面内レタデーションRe(550)=Δn550×dが式(1)を満たしていれば、光学異方性層34に入射した光の十分な量の円偏光成分を、矢印X方向に対して順方向または逆方向に傾いた方向に進行する円偏光に変換することができる。面内レタデーションRe(550)=Δn550×dは、225nm≦Δn550×d≦340nmがより好ましく、250nm≦Δn550×d≦330nmがさらに好ましい。
 なお、上記式(1)は波長550nmである入射光に対する範囲であるが、波長がλnmである入射光に対する光学異方性層の複数の領域Rの面内レタデーションRe(λ)=Δnλ×dは下記式(1-2)に規定される範囲内であるのが好ましく、適宜設定することができる。
  0.7λnm≦Δnλ×d≦1.3λnm・・・(1-2)
 また、光学異方性層34における、複数の領域Rの面内レタデーションの値は、上記式(1)の範囲外で用いることもできる。具体的には、Δn550×d<200nmまたは350nm<Δn550×dとすることで、入射光の進行方向と同一の方向に進行する光と、入射光の進行方向とは異なる方向に進行する光に分けることができる。Δn550×dが0nmまたは550nmに近づくと入射光の進行方向と同一の方向に進行する光の成分は増加し、入射光の進行方向とは異なる方向に進行する光の成分は減少する。
 さらに、波長が450nmの入射光に対する光学異方性層34の領域Rのそれぞれの面内レタデーションRe(450)=Δn450×dと、波長が550nmの入射光に対する光学異方性層34の領域Rのそれぞれの面内レタデーションRe(550)=Δn550×dは、下記式(2)を満たすのが好ましい。ここで、Δn450は、入射光の波長が450nmである場合の、領域Rの屈折率異方性に伴う屈折率差である。
  (Δn450×d)/(Δn550×d)<1.0・・・(2)
 式(2)は、光学異方性層34に含まれる液晶化合物36が逆分散性を有していることを表している。すなわち、式(2)が満たされることにより、光学異方性層34は、広帯域の波長の入射光に対応できる。
 光学異方性層34は、形成された液晶配向パターンの1周期Λを変化させることにより、透過光L2およびL5の屈折の角度を調節できる。
 具体的には、液晶配向パターンの1周期Λが短いほど、互いに隣接した液晶化合物36を通過した光同士が強く干渉するため、透過光L2およびL5を大きく屈折させることができる。
 さらに、矢印X方向に沿って回転する、液晶化合物36の光学軸36Aの回転方向を逆方向にすることにより、透過光の屈折の方向を、逆方向にできる。すなわち、図3~図7に示す例では、矢印X方向に向かう光学軸36Aの回転方向は時計回りであるが、この回転方向を反時計回りにすることで、透過光の屈折の方向を、逆方向にできる。
 光学異方性層34は、棒状液晶化合物または円盤状液晶化合物を含む液晶組成物の硬化層からなり、棒状液晶化合物の光学軸または円盤状液晶化合物の光学軸が、上記のように配向された液晶配向パターンを有している。
 支持体30上に配向膜32を形成し、配向膜32上に液晶組成物を塗布、硬化することにより、液晶組成物の硬化層からなる光学異方性層34を得ることができる。なお、いわゆるλ/2板として機能するのは光学異方性層34であるが、本発明は、支持体30および配向膜32を一体的に備えた積層体がλ/2板として機能する態様を含む。
 また、光学異方性層34を形成するための液晶組成物は、棒状液晶化合物または円盤状液晶化合物を含有し、さらに、レベリング剤、配向制御剤、重合開始剤および配向助剤などのその他の成分を含有していてもよい。
 また、光学異方性層34は、入射光の波長に対して広帯域であることが望ましく、複屈折率が逆分散となる液晶材料を用いて構成されていることが好ましい。また、液晶組成物に捩れ成分を付与することにより、また、異なる位相差層を積層することにより、入射光の波長に対して光学異方性層を実質的に広帯域にすることも好ましい。例えば、光学異方性層において、捩れ方向が異なる2層の液晶を積層することによって広帯域のパターン化されたλ/2板を実現する方法が特開2014-089476号公報等に示されており、本発明において好ましく使用することができる。
―棒状液晶化合物―
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および、特願2001-64627号公報などに記載の化合物を用いることができる。さらに、棒状液晶化合物としては、例えば、特表平11-513019号公報および特開2007-279688号公報に記載のものも好ましく用いることができる。
―円盤状液晶化合物―
 円盤状液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報に記載のものを好ましく用いることができる。
 なお、光学異方性層に円盤状液晶化合物を用いた場合には、光学異方性層において、液晶化合物36は厚さ方向に立ち上がっており、液晶化合物に由来する光学軸36Aは、円盤面に垂直な軸、いわゆる進相軸として定義される(図8参照)。
 [回折格子]
 画像表示装置10において、導光板20には、面方向に液晶回折素子24と離間して、回折素子16(回折格子)が貼着される。回折素子16は、導光板20の面方向において、液晶回折素子24の光学異方性層34において光学軸36Aが回転する一方向すなわち矢印X方向と逆方向に離間して、液晶回折素子24とは逆側の面に貼着される。
 なお、回折素子16の貼着方法には、制限はなく、例えば、上述した液晶回折素子24と導光板20との貼着方法が例示される。
 回折素子16には、制限はなく、ARグラス等において、導光板内を導光(伝搬)した光を、導光板から取り出すために用いられる各種の回折素子が利用可能である。
 一例として、透明な基材に微細な凹凸を形成した表面レリーフ型回折素子、ホログラフィック回折素子、特許文献1に記載される液晶素子、および、国際公開第2016/194961号に記載されるコレステリック液晶を用いる液晶素子等が例示される。
 なお、回折素子は、導光板20の液晶回折素子24等と同じ側に設けてもよい。
 <画像表示装置の作用>
 以下、画像表示装置10の作用を説明することにより、本発明について、より詳細に説明する。
 図示例の画像表示装置10において、ディスプレイ12は、導光板20の法線に対して矢印X方向に傾斜して、スイッチングλ/2板26に画像を照射する。図示例においては、ディスプレイ12は、矢印X方向と逆方向に向かって、導光板20の法線に対して矢印X方向に傾斜して、スイッチングλ/2板26に画像を照射する。
 また、ディスプレイ12は、表示する画像すなわち使用者Uが観察する画像を、右側画像と左側画像とに分け、スイッチングλ/2板26による位相差の切り替えに同期して、表示画像を右側画像と左側画像とに時分割して表示する。本例においては、一例として、ディスプレイ12は、スイッチングλ/2板26の位相差がゼロの時に左側画像を表示し、スイッチングλ/2板26の位相差がλ/2の時に、右側画像を表示する。
 スイッチングλ/2板26は、所定の時間間隔で、位相差を、ゼロとλ/2とに切り替える。
 上述したように、ディスプレイ12は、一例として、右円偏光の画像を照射する。従って、スイッチングλ/2板26の位相差がゼロの時には、光学異方性層34には、右円偏光が入射する。
 図7に示すように、光学異方性層34は、右円偏光の入射光L4が入射した際には、矢印X方向と逆方向に光を回折して、左円偏光の透過光L5として、出射する。
 上述したように、ディスプレイ12は、矢印X方向と逆方向に向かって、導光板20の法線に対して斜めに画像を照射する。また、ディスプレイ12は、スイッチングλ/2板26の位相差がゼロの時には、左側画像を表示する。従って、左側画像は、光学異方性層34によって、さらに、導光板20の法線に対して矢印X方向と逆方向に角度を付けられ、図1に実線で示すように、浅い角度で導光板20に入射して、導光される。
 逆に、スイッチングλ/2板26の位相差がλ/2の時には、ディスプレイ12が照射した右円偏光は左円偏光に変換され、光学異方性層34には、左円偏光が入射する。
 図6に示すように、光学異方性層34は、左円偏光の入射光L1が入射した際には、矢印X方向に光を回折して、右円偏光の透過光L2として、出射する。
 上述したように、ディスプレイ12は、矢印X方向と逆方向に向かって、導光板20の法線に対して斜めに画像を照射する。また、ディスプレイ12は、スイッチングλ/2板26の位相差がλ/2の時には、右側画像を表示する。従って、右側画像は、光学異方性層34によって、ディスプレイ12による照射方向と逆方向(矢印X方向)に角度を戻され、導光板20の法線に対する矢印X方向の角度を小さくされ、図1に破線で示すように、深い角度で導光板20に入射する。
 互いに異なる角度で導光板20に入射された右側画像(破線)および左側画像(一点鎖線)は、異なる反射角度で導光板20内を導光され、回折素子16によって回折(屈折)して反射され、導光板20から出射されて、使用者Uによる観察位置に出射され、画像が表示される。
 ここで、右側画像および左側画像は、異なる反射角で異なる光路を導光されるので、回折素子16による回折によって、使用者Uによる観察位置(観察視野)の異なる位置に出射される。
 なお、背景の外光の一部は、図1に一点鎖線で示すように、回折素子16および導光板20を直進通過して、使用者Uに観察される。
 このように、本発明の画像表示装置10では、ディスプレイ12による画像の切り替え、および、スイッチングλ/2板26による位相差の切り替えによって、表示画像を2分割した右側画像と左側画像とを、時分割して、異なる回折角で導光板20に入射する。
 そのため、本発明の画像表示装置10においては、表示画像を2分割した右側画像と左側画像とを、反射角度が異なる、異なる光路で導光して、異なる位置に表示できる。すなわち、本発明によれば、時分割した右側画像と左側画像とを、使用者Uによる観察位置の異なる位置に出射できる。その結果、本発明によれば、1つの回折角で導光板に光を入射している従来のARグラス等に比して、広い視野角(FOV)で画像を表示できる。
 言い換えれば、本発明によれば、スイッチングλ/2板26による位相差の切り替えによって、分割した画像を時間的(フィールドシーケンシャル)に2つの回折角に分けて、導光板20に入射すると共に、スイッチングλ/2板26による位相差の切り替に応じて、ディスプレイ12による表示画像を時分割で切り替えることにより、1つの回折角で導光板に光を入射している従来のARグラス等に比して、広い視野角で画像を表示できる。
 [他の実施形態]
 図9に本発明の光学素子および画像表示装置の別の態様の部分拡大図を示す。
 なお、図9に示す画像表示装置40は、上述した画像表示装置10と同じ部材を用いるので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行う。ただし、図9に示す画像表示装置40において、導光板20Aは、端面に光の入射面となる傾斜面を有さない、通常の平板状の導光板である。この点に関しては、後述する図10も同様である。
 図9に示す画像表示装置40は、好ましい態様として、上述した画像表示装置10(光学素子14)に、さらに、液晶回折素子42を設けたものである。従って、図9では省略しているが、画像表示装置40は、導光板20の右側端部近傍の図中上面に、図1に示す画像表示装置10と同様に回折素子16を有している。
 また、図9においては、液晶回折素子42の作用を示すために、液晶回折素子42とスイッチングλ/2板26とを離間して示しているが、液晶回折素子42とスイッチングλ/2板26とは、液晶回折素子24およびスイッチングλ/2板26と同様に密着してもよく、または、図9に示すように離間してもよい。
 液晶回折素子42は、基本的に、上述した液晶回折素子24と同様のものであり、支持体30と、配向膜32と、光学異方性層34とを有する。液晶回折素子42の光学異方性層34は、本発明における第2光学異方性層である。
 液晶回折素子42を有する態様では、スイッチングλ/2板26は、液晶回折素子24と液晶回折素子42との間に配置される。従って、スイッチングλ/2板26は、第1光学異方性層と第2光学異方性層との間に配置される。
 上述した画像表示装置10においては、ディスプレイ12は、右円偏光の画像を、導光板20の法線に対して斜めに、スイッチングλ/2板26に照射している。
 これに対して、液晶回折素子42(第2光学異方性層)を有する画像表示装置40では、ディスプレイ12は、導光板20の法線方向から、旋回方向が逆の左円偏光の画像を液晶回折素子42に入射する。
 また、図9に示す画像表示装置40では、液晶回折素子42の光学異方性層34における、矢印X方向に向かう液晶化合物36の光学軸36Aの回転方向は、液晶回折素子24の光学異方性層34の逆方向である。
 すなわち、図5等に示されるように、液晶回折素子24の光学異方性層34(第1光学異方性層)は、矢印X方向に向かう光学軸36Aの回転方向は、時計回りである。これに対して、液晶回折素子42の光学異方性層34(第2光学異方性層)における、矢印X方向に向かう光学軸36Aの回転方向は、反時計回りである。
 上述したように、液晶回折素子24と液晶回折素子42とは、光学軸36Aの回転方向が逆転している以外は、同じ光学異方性層34を有する。従って、光学異方性層34における液晶化合物36の光学軸36Aが回転する1方向は、矢印X方向で一致している。
 また、上述したように、ディスプレイ12は、導光板20の法線方向から左円偏光を液晶回折素子42に照射する。さらに、液晶回折素子42の光学異方性層34は、矢印X方向に向かう液晶化合物36の光学軸36Aの回転方向が、時計回りから反時計回りに逆転している。
 そのため、液晶回折素子42(光学異方性層34(第2光学異方性層))に入射した左円偏光の入射光L4は、右円偏光に変換され、かつ、図6とは逆方向である、矢印X方向と逆方向に屈折される。すなわち、液晶回折素子42(光学異方性層34)の透過光は、図7に示す透過光L5と同方向に出射される。
 従って、スイッチングλ/2板26に入射する、ディスプレイ12の画像の照射方向は、図9に示すように、上述した図1に示す画像表示装置10と同様、導光板20の法線に対して矢印X方向に傾斜した、矢印Xと逆方向への照射方向となる。また、スイッチングλ/2板26に入射するディスプレイ12の画像は、右円偏光となる。
 すなわち、スイッチングλ/2板26に入射する光は、上述した図1に示す画像表示装置10と同様、導光板20の法線に対して矢印X方向に傾斜した、矢印Xと逆方向に照射される右円偏光となるので、これ以降の作用は、上述した図1に示す画像表示装置10と同様になる。
 図9に示す画像表示装置40は、液晶回折素子24と共にスイッチングλ/2板26を挟む液晶回折素子42(第2光学異方性層)を有することにより、画像表示装置10と同様に広い視野角を実現する共に、ディスプレイ12による画像の照射方向を導光板20の法線に対して傾斜させる必要を無くして、画像表示装置の小型化を図れる。
 液晶回折素子24と液晶回折素子42とは、液晶化合物36の光学軸36Aの回転方向が逆である以外には、同じ光学異方性層34を有する。従って、光学異方性層34において、液晶化合物36の光学軸36Aが180°回転する1周期Λは、液晶回折素子24(第1光学異方性層)と液晶回折素子42(第2光学異方性層)とで、同じである。
 しかしながら、本発明は、これに制限はされず、液晶回折素子24と液晶回折素子42とで、光学異方性層における1周期は、異なってもよい。上述したように、光学異方性層における1周期が短いほど、光学異方性層(液晶回折素子)における光の回折力は、高くなる。従って、液晶回折素子24と液晶回折素子42とで、光学異方性層における1周期Λが異なる場合に、どちらの1周期Λを短くするか、ならびに、1周期Λの差等は、導光板20の形成材料、および、液晶化合物36の種類(Δnなど)等に応じて、適宜、設定すればよい。
 なお、液晶回折素子24と液晶回折素子42とで、光学異方性層における1周期Λが異なる場合には、ディスプレイ12側の液晶回折素子42の1周期Λを短くするのが好ましい。このようにすると、液晶回折素子42で大きく光を曲げておいた後で、液晶回折素子24で小さく2つの方向に分けることで、大きな曲げ角度を中心とした幅広い角度範囲が得られる。
 また、図9に示す例では、画像表示装置40の小型化が可能な好ましい態様として、ディスプレイ12は、導光板20の法線方向から画像を照射している。
 しかしながら、本発明における液晶回折素子42(第2光学異方性層)を有する態様は、これに制限はされず、図1に示す画像表示装置10と同様に、ディスプレイ12が、導光板20の法線に対して角度を有する方向から、液晶回折素子42に画像を照射するようにしてもよい。
 なお、図9に示す画像表示装置40では、ディスプレイ12が照射する画像は、必ずしも円偏光である必要は無く、無偏光の画像でもよい。
 しかしながら、ディスプレイ12が照射する画像の利用効率等を考慮すると、図9に示す画像表示装置40でも、ディスプレイ12は、右または左の円偏光を照射するのが好ましい。
 図1(図2)に示す画像表示装置10および図9に示す画像表示装置40は、共に、液晶回折素子24(第1光学異方性層)とスイッチングλ/2板26との組み合わせを、1組のみ有する。
 本発明は、これに制限はされず、図10に概念的に示すように、液晶回折素子24とスイッチングλ/2板26との組み合わせを、2組、有してもよく、または、液晶回折素子24とスイッチングλ/2板26との組み合わせを、3組以上、有してもよい。
 液晶回折素子24とスイッチングλ/2板26との組み合わせを、複数組、有することにより、時間的(フィールドシーケンシャル)に分ける回折角の数を増加して、導光板20に入射する角度の異なる光すなわち分割画像の数を増やして、より好適に視野角を広くし、かつ、視野角を細かく制御できる。
 なお、図10は、液晶回折素子42と平板状の導光板20Aとを用いる図9と同様の構成の画像表示装置40で例示してる。しかしながら、液晶回折素子24とスイッチングλ/2板26との組み合わせを、複数、有する構成でも、図1に示すような、端面に光の入射面となる傾斜面20aを有する導光板20を用い、傾斜面20aに液晶回折素子24とスイッチングλ/2板26との積層体を設けてもよい。
 図3~図7に示す光学異方性層は、好ましい態様として、光学異方性層34の液晶配向パターンにおける液晶化合物36の光学軸36Aは、矢印X方向のみに沿って、連続して回転している。
 しかしながら、本発明は、これに制限はされず、光学異方性層において、液晶化合物36の光学軸36Aが一方向に沿って連続して回転するものであれば、液晶化合物36の光学軸の向きが連続的に回転しながら変化する一方向を、複数、有してもよい。
 本発明の光学素子および画像表示装置においては、視認の改善のため、射出瞳を拡大する回折光学方法を用いることができる。
 具体的には、複数個の回折要素を使用する光学的方法、すなわち内結合、中間および外結合回折要素を備えた回折光学方法を用いることができる。本方法は特表2008-546020号公報に詳しく記載がある。
 以上、本発明の光学素子および画像表示装置について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 [実施例1]
 <液晶回折素子の作製>
(支持体、および、支持体の鹸化処理)
 支持体として、市販されているトリアセチルセルロースフィルム(富士フイルム社製、Z-TAC)を用意した。
 支持体を、温度60℃の誘電式加熱ロールを通過させて、支持体の表面温度を40℃に昇温した。
 その後、支持体の片面に、バーコーターを用いて下記に示すアルカリ溶液を塗布量14mL(リットル)/m2で塗布し、支持体を110℃に加熱し、さらに、スチーム式遠赤外ヒーター(ノリタケカンパニーリミテド社製)の下を、10秒間搬送した。
 続いて、同じくバーコーターを用いて、支持体のアルカリ溶液塗布面に、純水を3mL/m2塗布した。次いで、ファウンテンコーターによる水洗およびエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンを10秒間搬送して乾燥させ、支持体の表面をアルカリ鹸化処理した。
  アルカリ溶液
―――――――――――――――――――――――――――――――――
 水酸化カリウム                  4.70質量部
 水                       15.80質量部
 イソプロパノール                63.70質量部
 界面活性剤
    SF-1:C1429O(CH2CH2O)2OH   1.0 質量部
 プロピレングリコール              14.8 質量部
―――――――――――――――――――――――――――――――――
(下塗り層の形成)
 支持体のアルカリけん化処理面に、下記の下塗り層形成用塗布液を#8のワイヤーバーで連続的に塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、下塗り層を形成した。
  下塗り層形成用塗布液
―――――――――――――――――――――――――――――――――
 下記変性ポリビニルアルコール           2.40質量部
 イソプロピルアルコール              1.60質量部
 メタノール                   36.00質量部
 水                       60.00質量部
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000001
(配向膜の形成)
 下塗り層を形成した支持体上に、下記の配向膜形成用塗布液を#2のワイヤーバーで連続的に塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
  配向膜形成用塗布液
―――――――――――――――――――――――――――――――――
 光配向用素材A                  1.00質量部
 水                       16.00質量部
 ブトキシエタノール               42.00質量部
 プロピレングリコールモノメチルエーテル     42.00質量部
―――――――――――――――――――――――――――――――――
-光配向用素材A-
Figure JPOXMLDOC01-appb-C000002
(配向膜の露光)
 図11に示す露光装置を用いて配向膜を露光して、配向パターンを有する配向膜を形成した。
 露光装置において、半導体レーザとして波長(405nm)のレーザ光を出射するものを用いた。干渉光による露光量を100mJ/cm2とした。なお、2つのレーザ光およびの干渉により形成される配向パターンの1周期は、2つの光の交差角(交差角α)を変化させることによって制御した。配向パターンの1周期とは、上述のように、液晶化合物由来の光学軸が180°回転する長さである。
(光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物を調製した。
  組成物
―――――――――――――――――――――――――――――――――
 液晶化合物L-1               100.00質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                          3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                          1.00質量部
 レベリング剤T-1                0.08質量部
 メチルエチルケトン              313.00質量部
―――――――――――――――――――――――――――――――――
  液晶化合物L-1
Figure JPOXMLDOC01-appb-C000003
  レベリング剤T-1
Figure JPOXMLDOC01-appb-C000004
 光学異方性層は、組成物を配向膜上に多層塗布することにより形成した。多層塗布とは、先ず配向膜の上に1層目の組成物を塗布、加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱、冷却後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、液晶層の総厚が厚くなった時でも配向膜の配向方向が液晶層の下面から上面にわたって反映される。
 先ず1層目は、配向膜上に下記の組成物を塗布して、塗膜をホットプレート上で70℃に加熱した。その後、25℃に冷却した後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を100mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。この時の1層目の液晶層の膜厚は0.2μmであった。
 2層目以降は、この液晶層に重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、光学異方性層を形成して、液晶回折素子を作製した。
 光学異方性層は、最終的に液晶のΔn550×厚さ(Re(550))が275nmになり、かつ、図5に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、2.8μmであった。以下、特に記載が無い場合には、『Δn550×d』等の測定は、同様に行った。
 <スイッチングλ/2板の作製>
 ITO(Indium Tin Oxide)電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。
 得られた二枚のガラス基板を、ラビング方向が反平行になる配置で向かい合わせ、セルギャップを3.5μmに設定した。セルギャップにΔnが0.099の液晶性化合物(メルク社製、ZLI4792)を注入し、ホモジニアス液晶セルを作製した。
 さらに、作製したホモジニアス液晶セルの配向方向と、遅相軸とが直交するように、面内リターデーション(Re(550))が35nmの複屈折フィルムを貼りつけ、スイッチングλ/2板を作製した。
 作製したスイッチングλ/2板のITO電極間に、1.9Vの電圧を印加すると、スイッチングλ/2板のRe(550)がゼロになり、9.1Vの電圧を印加すると、スイッチングλ/2板のRe(550)が275nmとなり、位相差を、ゼロとλ/2とに切り替えられることを確認した。
 <反射型液晶回折素子の作製>
 先に作製した液晶回折素子と同様に支持体および配向膜の形成と露光を行った。ただし、液晶配向パターンの1周期が0.42μmになるように露光の交差角を設定した。
 その後、液晶回折素子の作製方法のうち液晶組成物のみ下記組成物に変更し、光学異方性層を形成した。これにより反射型液晶回折素子を作製した。
  組成物
―――――――――――――――――――――――――――――――――
 液晶化合物L-1               100.00質量部
 キラル剤B                    9.13質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                          3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                          1.00質量部
 レベリング剤T-1                0.08質量部
 メチルエチルケトン             2840.00質量部
―――――――――――――――――――――――――――――――――
キラル剤B
Figure JPOXMLDOC01-appb-C000005

 この反射型液晶回折素子の、液晶化合物由来の光学軸が180°回転する1周期は、0.42μmであった。
 <光学素子および画像表示装置の作製>
 図1に示すようなガラス製の導光板(屈折率1.52)を用意した。導光板の長手方向の一方の端面は、光を斜めから導光板に入射するために、図1に示すように斜面に加工して傾斜面(入射面)とした。傾斜面は導光板の長手方向に対して60°傾斜させた。
 この導光板の傾斜面に、作製した液晶回折素子を貼合し、液晶回折素子にスイッチングλ/2板を貼合して。光学素子を作製した。貼合は、接着剤(総研化学社製、SKダイン2057)を用いて行った。
 液晶回折素子は、光学異方性層において液晶化合物の光学軸が回転する一方向と、導光板の長手方向とが一致するようにして、導光板に貼合した。
 図1に示すように、導光板の液晶回折素子等とは逆側の端部の主面に、作製した反射型液晶回折素子を貼合した。
 右円偏光の画像を出射するディスプレイを用意した。このディスプレイは、反射型液晶表示素子に投射光源と凸レンズとを組み合わせた投射型液晶表示素子である。反射型液晶表示素子の出射光の直線偏光をλ/4板により右円偏光に変換している。
 このディスプレイを、スイッチングλ/2板の主面に向けて画像を照射するように配置して、画像表示装置を作製した。
 [比較例1]
 光学素子がスイッチングλ/2板を有さない以外は、実施例1と同様に画像表示装置を作製した。
 [評価]
 作製した画像表示装置を用いて画像を表示して、視野角を測定した。なお、評価においては緑色の画像を用いた。
 実施例1においては、スイッチングλ/2板における位相差ゼロと位相差λ/2(275nm)とを、印加電圧を変えることにより切り替えた。
 また、実施例1においては、表示画像を横方向に半分に分けて、スイッチングλ/2板における位相差ゼロと位相差λ/2との切り替えにタイミングを合わせて、表示画像を右側画像と左側画像とに時分割して表示した。
 その結果、比較例1の視野角は15°であったのに対し、実施例1の視野角は30°となり、視野角を拡大できることを確認した。
 以上の結果より、本発明の効果は明らかである。
 ARグラスなどの用途に好適に利用可能である。
 10,40 画像表示装置
 12 ディスプレイ
 14 光学素子
 16 回折素子
 20 導光板
 24,42 液晶回折素子
 26 スイッチングλ/2板
 30 支持体
 32 配向膜
 34 光学異方性層
 36 液晶化合物
 36A 光学軸
 60 露光装置
 62 レーザ
 64 光源
 68 ビームスプリッター
 70A,70B ミラー
 72A,72B λ/4板
 L1,L2 入射光
 L4,L5 入射光
 M レーザ光
 MA,MB 光線
 PO 直線偏光
 PR 右円偏光
 PL 左円偏光
 Q1,Q2 絶対位相
 E1,E2 等位相面
 U 使用者

Claims (11)

  1.  導光板と、
     位相差をゼロとλ/2とに切り替え可能なスイッチングλ/2板と、
     前記導光板と前記スイッチングλ/2板との間に配置される、液晶化合物を含む組成物を用いて形成された、前記液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する第1光学異方性層と、を有することを特徴とする光学素子。
  2.  前記第1光学異方性層の前記液晶配向パターンにおいて、前記液晶化合物由来の光学軸の向きが面内の一方向のみに沿って連続的に回転しながら変化している、請求項1に記載の光学素子。
  3.  液晶化合物を含む組成物を用いて形成された、前記液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する第2光学異方性層を有し、
     前記スイッチングλ/2板が、前記第1光学異方性層と前記第2光学異方性層との間に配置される、請求項1または2に記載の光学素子。
  4.  前記第1光学異方性層の前記液晶配向パターン、および、前記第2光学異方性層の前記液晶配向パターンにおいて、前記液晶化合物由来の光学軸の向きが面内の一方向のみに沿って連続的に回転しながら変化するものであり、
     前記第1光学異方性層の前記液晶配向パターン、および、前記第2光学異方性層の前記液晶配向パターンにおいて、前記面内の一方向が同方向である、請求項3に記載の光学素子。
  5.  前記スイッチングλ/2板と前記第1光学異方性層との組み合わせを、複数組、有する、請求項1~4のいずれか1項に記載の光学素子。
  6.  請求項1~5のいずれか1項に記載の光学素子と、前記光学素子に画像を照射するディスプレイと、を有する画像表示装置。
  7.  前記導光板の主面の法線に対して角度を有して、前記ディスプレイが前記光学素子に画像を照射する、請求項6に記載の画像表示装置。
  8.  前記光学素子が、前記第2光学異方性層を有するものであり、
     前記導光板の主面の法線方向から、前記ディスプレイが前記光学素子に画像を照射する、請求項6に記載の画像表示装置。
  9.  前記ディスプレイが、円偏光の画像を照射する、請求項6~8のいずれか1項に記載の画像表示装置。
  10.  前記ディスプレイが、画像を複数に分割して、前記分割した画像を時分割して表示する、請求項6~9のいずれか1項に記載の画像表示装置。
  11.  前記ディスプレイによる画像の時分割表示と、前記スイッチングλ/2板による位相差の切り替えとが同期している、請求項10に記載の画像表示装置。
PCT/JP2019/039611 2018-10-12 2019-10-08 光学素子および画像表示装置 WO2020075702A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020551158A JP7136911B2 (ja) 2018-10-12 2019-10-08 画像表示装置
US17/226,193 US11287685B2 (en) 2018-10-12 2021-04-09 Optical element and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193246 2018-10-12
JP2018193246 2018-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,193 Continuation US11287685B2 (en) 2018-10-12 2021-04-09 Optical element and image display device

Publications (1)

Publication Number Publication Date
WO2020075702A1 true WO2020075702A1 (ja) 2020-04-16

Family

ID=70165015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039611 WO2020075702A1 (ja) 2018-10-12 2019-10-08 光学素子および画像表示装置

Country Status (3)

Country Link
US (1) US11287685B2 (ja)
JP (1) JP7136911B2 (ja)
WO (1) WO2020075702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215748A1 (ja) * 2021-04-09 2022-10-13 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522601A (ja) * 2014-07-31 2017-08-10 ノース・キャロライナ・ステイト・ユニヴァーシティ ブラッグ液晶偏光格子
WO2019093228A1 (ja) * 2017-11-13 2019-05-16 富士フイルム株式会社 光学素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130555A1 (en) 2007-04-16 2008-10-30 North Carolina State University Low-twist chiral liquid crystal polarization gratings and related fabrication methods
US10386558B2 (en) * 2013-03-13 2019-08-20 Imagineoptix Corporation Polarization conversion systems with geometric phase holograms
CN104460020B (zh) * 2014-11-29 2018-04-10 华为技术有限公司 光束处理器件、光束衰减切换器件及光波长选择开关系统
WO2018156784A1 (en) 2017-02-23 2018-08-30 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
US10451885B2 (en) 2017-03-28 2019-10-22 Facebook Technologies, Llc Multifocal system using pixel level polarization controllers and folded optics
IL308526A (en) * 2017-10-26 2024-01-01 Magic Leap Inc Broadband adjustable lens assembly for augmented reality display
EP3807715A4 (en) 2018-06-15 2022-03-23 Magic Leap, Inc. WIDE FIELD OF VIEW POLARIZATION SWITCHES AND LIQUID CRYSTAL OPTICAL ELEMENTS WITH FORWARD TILT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522601A (ja) * 2014-07-31 2017-08-10 ノース・キャロライナ・ステイト・ユニヴァーシティ ブラッグ液晶偏光格子
WO2019093228A1 (ja) * 2017-11-13 2019-05-16 富士フイルム株式会社 光学素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215748A1 (ja) * 2021-04-09 2022-10-13 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ

Also Published As

Publication number Publication date
JP7136911B2 (ja) 2022-09-13
US11287685B2 (en) 2022-03-29
US20210302744A1 (en) 2021-09-30
JPWO2020075702A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
CN113168016B (zh) 导光元件、图像显示装置及传感装置
WO2019131966A1 (ja) 光学素子、導光素子および画像表示装置
JP7261810B2 (ja) 光学積層体、導光素子およびar表示デバイス
US11150517B2 (en) Optical element, light guide element, and image display device
JP7394794B2 (ja) 反射光学素子、導光素子および画像表示素子
JP6739647B2 (ja) ウェアラブルディスプレイデバイス
JP7427077B2 (ja) 光学素子、画像表示ユニットおよびヘッドマウントディスプレイ
US20220057638A1 (en) Light guide element and image display apparatus
US11796854B2 (en) Optical member and image display apparatus
JP2023160888A (ja) 光学素子および画像表示装置
US20210223581A1 (en) Optical laminate, light guide element, and ar display device
WO2020075702A1 (ja) 光学素子および画像表示装置
JP2021107871A (ja) 投映型画像表示システム
US11500211B2 (en) Display device
JP7476228B2 (ja) 光学部材および画像表示装置
JP7292414B2 (ja) 導光素子および画像表示装置
JP7470714B2 (ja) 導光素子および画像表示装置
JP7303326B2 (ja) 導光素子および画像表示装置
WO2024070693A1 (ja) 偏光回折素子、光学素子および光学装置
JP7360481B2 (ja) 光学素子および画像表示装置
JP7199523B2 (ja) 光照射装置およびセンサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871362

Country of ref document: EP

Kind code of ref document: A1