KR102466365B1 - 센서 시스템 - Google Patents

센서 시스템 Download PDF

Info

Publication number
KR102466365B1
KR102466365B1 KR1020217009476A KR20217009476A KR102466365B1 KR 102466365 B1 KR102466365 B1 KR 102466365B1 KR 1020217009476 A KR1020217009476 A KR 1020217009476A KR 20217009476 A KR20217009476 A KR 20217009476A KR 102466365 B1 KR102466365 B1 KR 102466365B1
Authority
KR
South Korea
Prior art keywords
layer
passivation
stack
disposed
array
Prior art date
Application number
KR1020217009476A
Other languages
English (en)
Other versions
KR20210037760A (ko
Inventor
트레이시 헬렌 펑
하이 쾅 트란
Original Assignee
일루미나, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일루미나, 인코포레이티드 filed Critical 일루미나, 인코포레이티드
Publication of KR20210037760A publication Critical patent/KR20210037760A/ko
Application granted granted Critical
Publication of KR102466365B1 publication Critical patent/KR102466365B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Optical Measuring Cells (AREA)
  • Burglar Alarm Systems (AREA)
  • Measuring Fluid Pressure (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Micromachines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 시스템은 이미지 센서 구조체 및 플로우 셀을 포함한다. 이미지 센서 구조체는 베이스 기판 상에 배치되는 이미지층을 포함한다. 디바이스 스택은 이미지층 상에 배치된다. 본드 패드는 디바이스 스택에 배치된다. 패시베이션 스택은 디바이스 스택과 본드 패드 상에 배치된다. 나노웰의 어레이는 패시베이션 스택의 상부층에 배치된다. 실리콘관통전극(TSV)은 본드 패드과 전기접촉한다. TSV는 베이스 기판을 통해 연장되어 있다. 재배선층(RDL)은 베이스 기판의 하부면에 배치된다. RDL은 TSV와 전기접촉된다. 플로우 셀은 그 사이에 플로우 채널을 형성하도록 패시베이션 스택의 상부층 상에 배치된다. 플로우 채널은 나노웰의 어레이와 본드 패드 상에 배치된다.

Description

센서 시스템{Sensor System}
센서 시스템, 예를 들어 바이오 센서 시스템은 이미지 센서 구조체의 층들의 패시베이션 스택(본 명세서에서는 "패시베이션 스택")의 상부층에 배치된 플로우 셀을 포함할 수 있으며, 여기서 플로우 셀 및 패시베이션 스택은 그 사이에 플로우 채널을 형성한다. 이러한 센서 시스템은 종종 패시베이션 스택의 상부층에 그리고 플로우 셀의 플로우 채널 내에 배치되는 나노웰의 고밀도 어레이를 사용하여 나노웰 내에 배치되는 분석물에 대해 제어된 반응 프로토콜을 수행한다.
이러한 반응 프로토콜의 예에서, 이미지 센서 구조체의 나노웰 어레이에 배치된 분석물(예를 들어, DNA 세그먼트의 클러스터, 핵산 분자 사슬 등)은 플로우 채널을 통해 유체 흐름으로 분석물로 전달되는 식별 가능한 표지(가령 형광-표지된 분자)로 태그될 수 있다. 이후, 하나 이상의 여기 광이 나노웰 내의 표지된 분석물로 지향될 수 있다. 분석물은 이후 패시베이션 스택을 통해 각각의 나노웰과 연관된 (예를 들어, 바로 아래에 위치된) 이미지 센서 구조체의 광 가이드로 투과될 수 있는 방출 광의 광자를 방출할 수 있다.
각각의 광 가이드의 상부면은 패시베이션 스택의 하부면과 직접 접촉하며, 여기서 각각의 광 가이드의 상부면은 관련된 나노웰로부터 투과된 방출성 광 광자의 상당 부분을 수용한다. 광 가이드는 방출성 광 광자를 이미지 센서 구조체 내에 배치되고 광 가이드와 연관된 (예를 들어, 바로 아래에 위치된) 광 검출기로 지향시킨다. 광 검출기는 방출성 광 광자를 검출한다. 이후, 이미지 센서 구조체 내 디바이스 회로부는 검출된 광자를 이용하여 데이터 신호를 처리하고 전송한다. 이후, 데이터 신호는 분석물의 특성을 나타내기 위해 분석될 수 있다. 이러한 반응 프로토콜의 예는 건강 및 제약 산업 등을 위한 처리량이 많은 DNA 시퀀싱을 포함한다.
이러한 반응 프로토콜로부터 생성된 데이터 처리량을 증가시킬 필요성이 지속적으로 증가함에 따라, 이미지 센서 구조체에서 나노웰 어레이 내 나노웰의 크기를 지속적으로 감소시키고 나노웰 어레이 내 나노웰의 수를 증가시킬 필요성이 증가한다. 또한, 크기를 줄이고 나노웰의 수를 증가시킬 필요성이 증가함에 따라, 이러한 화학 반응을 준비하고 수행하는데 필요한 표면 화학이 센서 시스템 내의 전자 부품(예컨대, 본드 패드)과 호환되는 것이 점점 더 중요해지고 있다.
본 발명은 이미지 센서 시스템의 패시베이션 스택 아래에 배치된 본드 패드를 포함하는 센서 시스템, 예를 들어 바이오 센서 시스템을 제공함으로써 종래 기술에 비해 장점 및 대안을 제공한다. 본드 패드는 패시베이션 스택에 의해 보호되기 때문에, 센서 시스템의 플로우 채널 영역은 더 이상 본드 패드에 의해 제한되지 않으며, 나노웰 뿐 아니라 본드 패드 위에 배치되도록 확대될 수 있다. 따라서, 고정된 풋프린트를 갖는 이미지 센서 구조체를 위한 플로우 채널 아래에 들어갈 수 있는 나노웰의 수가 증가될 수 있다.
본 명세서의 하나 이상의 태양에 따른 시스템은 이미지 센서 구조체 및 플로우 셀을 포함한다. 이미지 센서 구조체는 베이스 기판 상에 배치되는 이미지층을 포함한다. 디바이스 스택은 이미지층 상에 배치된다. 본드 패드는 디바이스 스택에 배치된다. 패시베이션 스택은 디바이스 스택과 본드 패드 상에 배치된다. 나노웰의 어레이는 패시베이션 스택의 상부층에 배치된다. 실리콘관통전극(TSV)은 본드 패드과 전기접촉한다. TSV는 베이스 기판을 통해 연장되어 있다. 재배선층(RDL)은 베이스 기판의 하부면에 배치된다. RDL은 TSV와 전기접촉된다. 플로우 셀은 그 사이에 플로우 채널을 형성하도록 패시베이션 스택의 상부층 상에 배치된다. 플로우 채널은 나노웰의 어레이와 본드 패드 상에 배치된다.
본 명세서의 하나 이상의 태양에 따른 또 다른 시스템은 플로우 셀 및 이미지 센서 구조체를 포함한다. 이미지 센서 구조체는 베이스 기판 상에 배치되는 이미지층을 포함한다. 이미지층은 그 내부에 배치되는 광 검출기의 어레이를 포함한다. 디바이스 스택은 이미지층 상에 배치된다. 복수의 본드 패드들은 디바이스 스택에 배치된다. 광 가이드의 어레이는 디바이스 스택에 배치된다. 패시베이션 스택은 디바이스 스택과 복수의 본드 패드들 상에 배치된다. 나노웰의 어레이는 패시베이션 스택의 상부층에 배치된다. 실리콘관통전극(TSV)은 복수의 본드 패드들의 본드 패드와 전기접촉한다. TSV는 베이스 기판을 통해 연장되어 있다. 재배선층(RDL)은 베이스 기판의 하부면 상에 배치된다. RDL은 TSV와 전기접촉한다. 플로우 셀은 그 사이에 플로우 채널을 형성하도록 패시베이션 스택의 상부층에 배치된다. 플로우 채널은 나노웰의 어레이 및 복수의 본드 패드들 상에 배치된다.
본 명세서의 하나 이상의 태양에 따른 방법은 베이스 기판층 상에 디바이스 스택 및 이미지층을 배치하는 단계를 포함한다. 본드 패드는 디바이스 스택에 배치된다. 패시베이션 스택은 디바이스 스택과 본드 패드 상에 배치된다. 나노웰의 어레이는 패시베이션 스택의 상부층에 형성된다. TSV는 베이스 기판의 하부면을 통해 에칭된다. TSV는 본드 패드로 뻗어있다. TSV는 본드 패스와 전기접촉하도록 도금(plating)된다. RDL은 베이스 기판의 하부면 상에 배치된다. RDL은 TSV와 전기접촉한다. 플로우 셀은 그 사이에 플로우 채널을 형성하도록 패시베이션 스택의 상부층 상에 배치된다. 플로우 채널은 나노웰의 어레이 및 본드 패드 상에 배치된다.
본 발명의 내용 중에 포함되어 있다.
본 명세서는 첨부도면과 함께 하기의 상세한 설명으로부터 더 완전히 이해될 것이다.
도 1은 그 사이에 플로우 채널을 형성하도록 플로우 채널 내에 배치되는 나노웰의 어레이를 가지고 플로우 채널 외부에 배치되는 본드 패드도 또한 가지는 이미지 센서 구조체 상에 배치되는 플로우 셀을 구비한 센서 시스템의 하나의 유형의 일 예의 개략적인 측단면도이다.
도 2는 본 명세서에 개시된 일 예에 따라 그 사이에 플로우 채널을 형성하도록 플로우 채널 내에 배치되는 나노웰의 어레이를 가지고 플로우 채널 내에 배치되는 본드 패드도 또한 가지는 이미지 센서 구조체 상에 배치되는 플로우 셀을 구비한 센서 시스템의 개략적인 측단면도이다.
도 3은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 디바이스 스택에 배치된 광 가이드 및 베이스 기판에 배치된 디바이스 스택을 포함하는, 제조의 중간 단계에서의 도 2의 센서 시스템의 개략적인 단면도이다.
도 4는 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 디바이스 스택에 배치되는 본드 패드를 포함하는, 도 3의 센서 시스템의 개략적인 단면도이다.
도 5는 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 본드 패드 및 디바이스 스택 상에 배치되는 패시베이션 스택을 포함하는, 도 4의 센서 시스템의 개략적인 단면도이다.
도 6은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 패시베이션 스택의 상부층에 배치되는 나노웰을 포함하는, 도 5의 센서 시스템의 개략적인 단면도이다.
도 7은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 베이스 기판의 하부면으로부터 본드 패드로 뻗어있는 실리콘관통전극(TSV)을 포함하는, 도 6의 센서 시스템의 개략적인 단면도이다.
도 8은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 베이스 기판의 하부면에 배치되고 TSV와 전기접촉하는 재배선층(RDL)을 포함하는, 도 7의 센서 시스템의 개략적인 단면도이다.
도 9는 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 RDL의 제1 부분 상에 배치되는 제1 환경 보호층을 포함하는, 도 8의 센서 시스템의 개략적인 단면도이다.
도 10은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 제1 환경 보호층에 결합되는 기계적 지지 구조체 및 RDL의 제2 부분을 덮는 임시 보호층을 포함하는, 도 9의 센서 시스템의 개략적인 단면도이다.
도 11은 본 명세서에 개시된 일 예에 따라, 이미지 센서 구조체가 나노웰 내에 배치되는 하이드로겔 층(hydrogel layer)을 포함하는, 도 10의 센서 시스템의 개략적인 단면도이다.
도 12는 본 명세서에 개시된 일 예에 따라, 플로우 셀이 이미지 센서 구조체와 결합되는, 도 11의 센서 시스템의 개략적인 단면도이다.
도 13은 본 명세서에 개시된 일 예에 따라, 와이어가 RDL의 제2 부분과 결합되는, 도 12의 센서 시스템의 개략적인 단면도이다.
도 14는 본 명세서에 개시된 일 예에 따라, 제2 환경 보호층이 RDL의 제2 부분 및 결합된 와이어 상에 배치되어 센서 시스템의 형성을 완료시키는, 도 13의 센서 시스템의 개략적인 단면도이다.
본 명세서에 개시된 방법, 시스템 및 장치의 구조, 기능, 제조 및 사용의 원리에 대한 전반적인 이해를 제공하기 위해 특정 예가 이제 설명될 것이다. 하나 이상의 예가 첨부도면에 도시되어 있다. 당업자는 본 명세서에 구체적으로 설명되고 첨부도면에 도시된 방법, 시스템 및 장치가 비-제한적인 예이며, 본 명세서의 범위는 청구항들에 의해서만 정의된다는 것을 이해할 것이다. 일 예와 관련하여 도시되거나 설명된 특징들은 다른 예들의 특징과 결합될 수 있다. 이러한 수정 및 변형은 본 명세서의 범위 내에 포함되는 것으로 의도된다.
청구항들을 포함하여, 본 명세서 전반에 걸쳐 사용될 수 있는 용어들 "실질적으로", "대략", "약", "상대적으로" 또는 다른 이런 유사한 용어들은 가공 상의 변형과 같이 작은 변동을 설명하거나 참작하기 위해 사용된다. 예를 들어, 이런 용어들은 ±10% 이하, 예컨대 ±5% 이하, 예컨대 ±2% 이하, 예컨대 ±1% 이하, 예컨대 ±0.5% 이하, 예컨대 ±0.2% 이하, 예컨대 ±0.1% 이하, 예컨대 ±0.05% 이하를 지칭할 수 있다.
본 명세서에서 제공되는 예들은 센서 시스템 및 센서 시스템의 제조방법에 관한 것이다. 더 상세하게, 본 명세서에서 제공되는 예들은 본드 패드 및 나노웰 상에 배치되는 플로우 채널을 갖는 센서 시스템에 관한 것이다.
도 1은 플로우 채널 내에 배치된 나노웰 및 플로우 채널 외부에 배치된 본드 패드를 갖는 종래의 센서 시스템을 도시한다. 도 2는 본 명세서에 따른 나노웰 및 본드 패드 위에 배치된 플로우 채널을 갖는 센서 시스템의 예를 도시한다. 도 3-14는 본 명세서에 따라 도 2의 센서 시스템을 제조하는 방법의 다양한 예를 도시한다.
도 1을 참조하면, 센서 시스템(10)(이 예에서는 바이오 센서 시스템(10))의 한 유형의 예는 이미지 센서 구조체(14)에 결합된 플로우 셀(12)을 포함한다. 센서 시스템(10)의 플로우 셀(12)은 플로우 셀 측벽(18)에 부착되는 플로우 셀 커버(16)를 포함한다 플로우 셀 측벽(18)은 이미지 센서 구조체(14)의 패시베이션 스택(24)의 상부층(22)에 접합되어 그 사이에 플로우 채널(20)을 형성한다.
패시베이션 스택(24)의 상부층(22)은 그 내부에 배치된 다수의 나노웰(26) 어레이를 포함한다. 나노웰(26)은 나노웰(26)의 내부 표면에 부합하는 얇은 하이드로겔(27) 층을 포함한다. 하이드로겔 층(27)은 분석물(28)(예컨대, DNA 세그먼트, 올리고뉴클레오티드, 다른 핵산 사슬 등)을 고정시키고 기능화하는데 도움을 주도록 사용되며, 나노웰(26) 내에 배치될 수 있다.
플로우 셀 커버는 유체 플로우(34)가 플로우 채널(20)을 통해 그리고 플로우 채널(20) 내외로 유동할 수 있도록 크기가 조정되는 입구 포트(30) 및 출구 포트(32)를 포함한다. 유체 플로우(34)는 나노웰(26) 내에 배치되는 분석물(28)에 대해 다수의 다양한 제어된 반응 프로토콜을 수행하는데 사용될 수 있다. 또한, 유체 플로우(34)는 분석물(28)을 태그하는데 사용될 수 있는 식별가능 표지(36)(예컨대, 형광표지된 뉴클레오티드 분자 등)를 전달할 수 있다.
센서 시스템(10)의 이미지 센서 구조체(14)는 베이스 기판(38) 위에 배치된 이미지층(40)을 포함한다. 이미지층(38)은 실리콘 질화물(SixNx)과 같은 유전체 층일 수 있고 그 내부에 배치되는 광 검출기의 어레이를 포함할 수 있다. 본 명세서에서 사용되는 광 검출기(42)는 예를 들어 포토다이오드, CMOS(Complementary Metal Oxide Semiconductor) 재료 또는 둘 다인 반도체일 수 있다. 광 검출기(42)는 나노웰(26)에서 분석물(28)에 부착된 형광 표지(36)로부터 방출되는 방출 광(44)의 광 광자(light photons)를 검출한다. 베이스 기판(38)은 유리, 실리콘 또는 다른 유사한 물질일 수 있다.
디바이스 스택(46)은 이미지층(40) 위에 배치된다. 디바이스 스택(44)은 광 검출기(42)와 인터페이스하고 방출 광(44)의 검출된 광 광자를 사용하여 데이터 신호를 처리하는 다양한 디바이스 회로부(48)를 포함하는 복수의 유전체 층(미도시)을 포함할 수 있다.
또한, 광 가이드(50)의 어레이가 디바이스 스택(46)에 배치된다. 각각의 광 가이드(50)는 광 검출기 어레이 중 적어도 하나의 광 검출기(42)와 관련된다. 예를 들어, 광 가이드(50)는 해당 광 검출기(42) 바로 위에 위치될 수 있다. 광 가이드(50)는 나노웰(26)에 배치된 분석물(28)상의 형광 표지(36)로부터 해당 광 검출기(42)로 방출 광(44)의 광자를 지향시킨다.
또한, 디바이스 스택(46) 내에 광 차폐층(52), 반사 방지층(54) 및 보호 라이너 층(56)이 배치된다. 보호 라이너 층(56)은 실리콘 질화물(SiN) 또는 실리콘 이산화물(SiO2)로 구성될 수 있고, 광 가이드(50)의 내부 벽을 라이너한다. 광 차폐층(52)은 텅스텐(W) 또는 알루미늄(Al)으로 구성될 수 있고, 디바이스 스택(46)으로 투과되는 여기 광(58) 및 방출 광(44)을 감쇠시킨다. 반사 방지층(54)은 아래의 금속층의 포토리소그래피 패터닝(photolithographic patterning)을 위해 텅스텐 질화물(WN) 또는 실리콘 산질화물(SiON)로 구성될 수 있다.
패시베이션 스택(24)은 디바이스 스택(46) 위에 배치된다. 패시베이션 스택(24)은 광 가이드(50)의 상부면(62)과 직접 접촉하는 하부면(60)을 포함한다. 패시베이션 스택(24)은 패시베이션 층(64) 및 화학 보호층(66)(이 경우, 패시베이션 스택(24)의 상부층(22))을 포함할 수 있다. 패시베이션 층(64)은 SiN으로 구성될 수 있고 패시베이션 스택(24)의 하부면(60)을 포함할 수 있다. 화학 보호층(66)은 탄탈륨 오산화물(Ta2O5)로 구성될 수 있고 패시베이션 스택(24)의 상부층(22)일 수 있다.
또한, 나노웰(26)의 어레이는 패시베이션 스택(24)의 상부층(22)에 배치되며, 각각의 나노웰(26)은 광 가이드 어레이의 광 가이드(50)와 관련된다. 예를 들어, 각각의 나노웰(26)은 해당 광 가이드(50) 바로 위에 위치될 수 있어서, 각각의 광 가이드(50)의 상부면(62)으로 진입하는 방출 광의 광자(44)의 대부분이 그 광 가이드의 해당 나노웰(26) 내에서 생성된다. 또한, 나노웰(26)의 어레이는 플로우 채널(20) 내에 배치된다.
또한, 복수의 본드 패드(70)가 디바이스 스택(46)에 배치된다. 본드 패드(70)는 패드 금속(미도시)의 하나 이상의 층으로 구성될 수 있다. 본드 패드는 검출된 광 광자를 사용하여 처리된 데이터 신호를 본드 패드(70)에 본딩된 와이어(72)로 전도하기 위해 디바이스 회로(48)와 인터페이스한다.
작동 중에, 다양한 유형의 여기 광(58)이 나노웰(26)에서 분석물(28) 상으로 조사되어, 표지된 분자(36)가 방출 광(44)을 형광시킨다. 대부분의 방출 광(44)의 광자는 패시베이션 스택(24)을 통해 투과될 수 있고 해당 광 가이드(50)의 상부면(62)으로 입사할 수 있다. 광 가이드(50)는 여기 광(58)의 대부분을 필터링하고 광 가이드(50) 바로 아래에 위치한 해당 광 검출기(42)로 방출 광(44)을 지향시킬 수 있다.
광 검출기(42)는 방출 광 광자를 검출한다. 디바이스 스택(46) 내의 디바이스 회로부(48)는 이렇게 검출된 광자를 이용하여 데이터 신호를 처리하고 전송한다. 이후, 데이터 신호는 본드 패드(70)를 통해 전송되고 분석물의 특성을 나타내기 위해 분석될 수 있다.
본드 패드(70)는 패시베이션 스택(24)의 상부 층(22) 상에 배치된 와이어 본드(74)를 통해 와이어(72)에 본딩되어 데이터 신호의 외부 전송을 가능하게 할 수 있다. 이는 와이어 본딩 또는 솔더 범프 본딩(solder bump bonding)을 통해 공융 금속 본드(eutectic metal bond)를 형성함으로써 수행될 수 있다. 또한, 나노웰(26)의 표면은 나노웰(26) 내에 배치될 수 있는 분석물(28)을 수용할 수 있도록 예를 들어 하이드로겔 층(27)의 증착과 같이 화학적으로 기능화될 수 있다.
그러나, 이러한 와이어 본딩 기술을 위해 패시베이션 스택(24)의 상부 층(22) 상에 본드 패드(70)를 제조하는 공정은 나노웰의 표면 기능화를 오염시킬 수 있다. 또한, 나노웰의 화학적 작용화는 개방 결합 패드 상에 잔류물을 침착시키고/시키거나 잠재적으로 부식시킬 수 있다. 또한, 다양한 제어된 반응 프로토콜 동안 사용되는 플로우 채널(20)을 통한 유체 플로우(34)는 그러한 유체 플로우(34)에 노출된 임의의 본드 패드(70)를 잠재적으로 손상 및/또는 부식시킬 수 있다. 게다가, 와이어(70)가 플로우 채널(20) 내로 연장되어야 한다면, 와이어(72)를 패시베이션 스택(24)의 상부 층(22)에서 본드 패드(70)와 전기적으로 연결하는 것이 어려울 수 있다.
적어도 상기 이유로, 본드 패드(70)는 플로우 셀(12)의 플로우 채널(20) 외부의 패시베이션 스택(24)의 상부 층(22) 상에 배치된다. 따라서, 본드 패드(70)와의 본딩 와이어 또는 솔더 범프는 플로우 채널(20)의 크기를 제한하며, 이는 또한 고정된 풋프린트를 갖는 센서 시스템(10)을 위해 플로우 채널(20) 내에 배치될 수있는 나노웰(26)의 양을 제한한다.
본 명세서에 설명된 예시적인 센서 시스템은 몇몇 측면에서 몇몇 기존의 센서 시스템과 상이하다. 예를 들어, 본 명세서의 일부 예의 본드 패드(70)는 플로우 채널(20) 내에 배치된다. 추가로, 본 명세서의 예는 동일한 바이오센서 풋프린트에서 더 큰 표면적을 덮도록 본드 패드(70) 위로 플로우 채널(20)을 연장시키는 것을 제공한다. 또한, 본 명세서의 예는 플로우 채널(20)을 통한 유체 플로우(34)에 노출됨으로써 본드 패드(70)가 손상 및/또는 부식되는 것을 방지하는 메커니즘을 제공한다.
도 2를 참조하면, 이미지 센서 구조체(104) 상에 배치된 플로우 셀(102)을 갖는 센서 시스템(100)의 예의 측단면도로서, 나노웰의 어레이(108) 및 복수의 본드 패드(110) 위로 연장되는 플로우 채널(106)을 형성한다. 나노웰(108)의 어레이는 이미지 센서 구조체(104)의 패시베이션 스택(114)의 상부 층(112)에 배치된다. 복수의 본드 패드(110)는 패시베이션 스택(114)의 하부면(116) 아래에 배치된다. 더 구체적으로, 본드 패드(110)는 디바이스 스택(118)에 배치되며, 본드 패드(110)의 상부면(120)은 패시베이션 스택의 하부면(116) 아래에 배치된다.
센서 시스템(100)의 플로우 셀(102)은 플로우 셀 측벽(124)에 부착된 플로우 셀 커버(122)를 포함한다. 플로우 셀 측벽(124)은 이미지 센서 구조체(104)의 패시베이션 스택(114)의 상부 층(112)에 본딩되어 그 사이에 플로우 채널(106)을 형성한다.
패시베이션 스택(114)의 상부 층(112)은 그 내부에 배치된 큰 나노웰 어레이(108)를 포함한다. 나노웰(108)은 나노웰(108) 내에 하이드로겔(126)의 얇은 층을 포함한다. 하이드로겔 층(126)은 분석물(128)(예를 들어 DNA 세그먼트, 올리고뉴클레오티드, 다른 핵산 사슬 등)을 고정하고 기능화하는데 사용되며, 이는 나노웰(108) 내에 배치될 수 있다.
플로우 셀 커버(122)는 유체 플로우(134)가 플로우 채널(106)을 통해 그리고 플로우 채널(106) 내외로 유동할 수 있도록 크기가 조정되는 입구 포트(130) 및 출구 포트(132)를 포함한다. 유체 플로우(134)는 나노웰(106) 내에 배치되는 분석물(128)에 대해 다수의 다양한 제어된 반응 프로토콜을 수행하는데 사용될 수 있다. 또한, 유체 플로우(134)는 분석물(128)을 태그하는데 사용될 수 있는 식별가능 표지(136)(예컨대, 형광표지된 뉴클레오티드 분자 등)를 전달할 수 있다. 다양한 제어된 반응 프로토콜 동안, 여기 광(138)은 형광 표지(136)에 인도되어서 표지(136)가 방출 광(140)을 형광되게 한다.
센서 시스템(100)의 이미지 센서 구조체(104)는 베이스 기판(144) 위에 배치된 이미지층(142)을 포함한다. 이미지층(142)은 실리콘 질화물(SiN)과 같은 유전체 층일 수 있고 그 내부에 배치되는 광 검출기(146)의 어레이를 포함할 수 있다. 본 명세서에서 사용되는 광 검출기(146)는 예를 들어 포토다이오드, CMOS(Complementary Metal Oxide Semiconductor) 재료 또는 둘 다인 반도체일 수 있다. 광 검출기(146)는 나노웰(108)에서 분석물(128)에 부착된 형광 표지(136)로부터 방출되는 방출 광(140)의 광 광자를 검출한다. 베이스 기판(144)은 유리, 실리콘 또는 다른 유사한 물질일 수 있다.
디바이스 스택(118)은 이미지층(142) 위에 배치된다. 디바이스 스택(118)은 광 검출기(146)와 인터페이스하고 방출 광(140)의 검출된 광 광자를 사용하여 데이터 신호를 처리하는 다양한 디바이스 회로부(148)를 포함하는 복수의 유전체 층(미도시)을 포함할 수 있다.
또한, 광 가이드(150)의 어레이가 디바이스 스택(118)에 배치된다. 각각의 광 가이드(150)는 광 검출기 어레이 중 적어도 하나의 광 검출기(146)와 관련된다. 예를 들어, 광 가이드(150)는 해당 광 검출기(146) 바로 위에 위치될 수 있다. 광 가이드(150)는 나노웰(108)에 배치된 분석물(128)상의 형광 표지(136)로부터 해당 광 검출기(146)로 방출 광(140)의 광자를 지향시킨다.
광 가이드(150)는 공지된 파장의 여기 광(138)을 필터링하고 공지된 파장의 방출 광(140)을 통해 전송할 수 있는 유기 필터 물질일 수 있다. 광 가이드 물질은 하이 인덱스 폴리머 매트릭스로 배열되는 주문제작 염료분자(custom formulated dye molecules)로 구성될 수 있다.
또한, 디바이스 스택(118) 내에 광 차폐층(152), 반사 방지층(154) 및 보호 라이너 층(156)이 배치된다. 보호 라이너 층(156)은 실리콘 질화물(SiN) 또는 다른 유사 물질과 같은 유전체 물질로 구성될 수 있고, 광 가이드(150)의 내부 벽을 라이너한다. 광 차폐층(152)은 텅스텐(W) 또는 다른 유사한 물질로 구성될 수 있고, 디바이스 스택(118)으로 투과되는 여기 광(140) 및 방출 광(138)을 감쇠시킨다. 반사 방지층(154)은 아래의 금속층의 포토리소그래피 패터닝(photolithographic patterning)을 위해 텅스텐 질화물(WN) 또는 실리콘 산질화물(SiON) 또는 다른 유사한 물질과 같은 반사 방지 화합물로 구성될 수 있다.
패시베이션 스택(114)은 디바이스 스택(118) 위에 배치된다. 패시베이션 스택(114)은 광 가이드(150)의 상부면(158)과 직접 접촉하고 본드 패드(110)의 상부면(120) 위에 있는 하부면(116)을 포함한다. 또한, 패시베이션 스택은 나노웰(108)이 배치되는 상부층(112)을 포함한다.
패시베이션 스택(114)은 임의의 수의 층을 포함할 수 있다. 예를 들어, 패시베이션 스택(114)은 디바이스 스택(118) 위에 배치된 제1 패시베이션 층(160) 및 제1 패시베이션 층(160) 위에 배치된 제1 화학 보호층(162)을 포함할 수 있다. 이 예에서, 패시베이션 스택(114)의 상부 층(112)은 그 내부에 배치된 나노웰(108)을 포함하는 제1 화학 보호층(162)이다.
그러나, 도 2에 도시된 특정 예에서, 패시베이션 스택(114)은 제1 화학 층(162) 위에 배치된 추가의 제2 패시베이션 층(164) 및 제2 패시베이션 층(164) 위에 배치된 추가의 제2 화학 보호층(166)을 포함한다. 도 2의 특정 예에서, 패시베이션 스택(114)의 상부 층(112)은 제2 화학 보호층(166)이며, 나노웰(108)은 제2 화학 보호층(166)에 배치된다.
패시베이션 층들(160, 164)은 SiN으로 구성될 수 있다. 화학 보호층(162, 166)은 탄탈륨 오산화물(Ta2O5) 또는 다른 유사한 재료와 같은 전이 금속 산화물로 구성될 수 있다.
나노웰 어레이의 각각의 나노웰(108)은 광 가이드 어레이의 광 가이드(150)와 관련된다. 예를 들어, 각각의 나노웰(108)은 관련된 광 가이드(150) 바로 위에 위치될 수 있어서, 각각의 광 가이드(150)의 상부면(158)으로 진입하는 방출 광(140)의 광자의 대부분이 광 가이드의 관련 나노웰(108) 내에서 생성된다. 나노웰(108)의 어레이는 플로우 채널(106) 내에 배치된다.
또한, 복수의 본드 패드들(110)은 디바이스 스택(118)에 배치된다. 비록 도 2에는 단지 2개의 본드 패드(110)만이 도시되어 있지만, 하나의 본드 패드로부터 수백 개의 본드 패드들 등에 이르는 임의의 개수의 본드 패드(110)가 있을 수 있다. 본드 패드(110)는 텅스텐, 구리 또는 다른 유사한 재료를 포함하는 임의의 적합한 금속과 같은 패드 금속의 하나 이상의 층(미도시)으로 구성될 수 있다.
실리콘관통전극(TSV)(168)은 본드 패드(110)와 전기적으로 접촉하여 배치된다. TSV(168)는 본드 패드(110)로부터 베이스 기판(144)을 통해 베이스 기판(144)의 하부면(170)까지 연장된다. TSV는 텅스텐 또는 다른 유사한 재료와 같은 전이 금속으로 구성될 수 있다.
재배선층(RDL)(172)은 베이스 기판(144)의 바닥면(170) 상에 배치된다. RDL(172)은 TSV(168)와 전기적으로 접촉한다. RDL은 텅스텐, 구리, 금, 니켈 또는 다른 유사한 재료와 같은 금속으로 구성될 수 있다.
RDL(172)의 제1 부분(176) 위에 제1 환경 보호층(174)이 배치된다. 제1 환경 보호층은 폴리이미드(polyimide)로 구성될 수 있다.
기계적 지지 구조체(178)는 제1 환경 보호층(174) 위에 배치된다. 기계적 지지 층(178)은 실리콘 웨이퍼, 유리 웨이퍼 또는 다른 유사한 재료와 같은 웨이퍼로 구성될 수 있다.
와이어(180)는 RDL(172)의 제2 부분(182)에 전기 접촉으로 본딩되어 와이어 본드(184)를 형성한다. 이는 와이어 본딩, 솔더 범프 본딩을 통해 공융 금속 본드를 형성하거나 다른 공지된 와이어 연결 기술을 이용함으로써 수행될 수 있다. 와이어(180)는 구리 또는 다른 유사한 재료와 같은 전기 전도성 재료를 포함할 수 있다.
제2 환경 보호층(186)은 RDL(172)의 제2 부분(182) 위에 배치되며, 제1 및 제2 환경 보호층(174, 186)은 전체 RDL(172)을 덮는다. 제2 환경 보호층(186)은 예컨대 에폭시, UV 경화성 폴리머 또는 다른 유사한 재료와 같은 폴리머로 구성될 수 있다.
제어된 반응 프로토콜의 작동 동안, 나노웰(108)은 형광 분자 표지(136)로 태그된 분석물(128)을 수용한다. 형광 표지(136)는 플로우 채널(106)을 통해 유체 플로우(134)에 의해 분석물로 전달된다. 형광 표지(136)는 여기 광(138)에 응답하여 방출 광(140)을 생성한다. 방출 광(140)의 광자는 나노웰(108)로부터 패시베이션 스택(114)을 통해 그리고 관련 광 가이드(150)의 상부면(158)으로 투과되며, 이 광 가이드는 나노웰(108) 바로 아래에 위치될 수 있다. 이후, 방출 광(140)의 광자는 관련 광 가이드(150)에 의해 관련 광 검출기(146)로 안내되며, 이 광 검출기는 광 가이드(150) 바로 아래에 위치될 수 있다. 관련 광 검출기(146)는 방출 광(140)의 광자를 검출한다. 또한, 디바이스 회로부(148)는 광 검출기(146)와 통합되어 검출된 방출 광 광자를 처리하고 검출된 방출 광 광자를 사용하여 데이터 신호를 제공한다. 디바이스 회로부(148)는 또한 데이터 신호가 본드 패드(110)를 통해, TSV(168)를 통해 그리고 베이스 기판(114)의 하부면(170)에 위치한 와이어(180) 밖으로 전송되도록 본드 패드(110)와 통합되며, 이런 데이터 신호는 이후 분석될 수 있다.
많은 이러한 제어된 반응 프로토콜 동안, 유체 플로우(134)는 본드 패드(110)의 임의의 노출된 영역에 손상을 줄 수 있고/있거나 부식시킬 수 있다. 그러나, 도 2의 이런 예에서 본드 패드(110)는 본드 패드(110) 상에 배치되는 패시베이션 스택(114)에 의해 보호된다. 따라서, 패시베이션 스택(114)이 플로우 채널(106)과 본드 패드(110) 사이에 배치되기 때문에, 플로우 채널(106)은 본드 패드(110) 위에 배치될 수 있다. 또한, 플로우 셀(102) 영역은 본드 패드(110) 위로 확장되어 플로우 채널(106) 내에 배치된 나노웰(108)의 수를 증가시키고 센서 시스템(100)의 풋프린트를 증가시키지 않으면서 센서 시스템(100)의 처리량을 증가시킬 수 있다.
도 3을 참조하면, 제조의 중간 단계에서 센서 시스템(100)의 예의 측단면도가 도시되어 있다. 공정 흐름의 이런 단계에서, 디바이스 스택(118) 및 이미지층(142)은 베이스 기판층(144) 상에 각각 배치된다.
이미지 층은 그 내부에 배치된 광 검출기 어레이(146)를 포함한다. 이미지 층(142)은 예컨대 화학 기상 증착(CVD) 또는 물리 기상 증착(PVD)과 같은 여러 증착 기술 중 임의의 하나를 사용하여 베이스 기판(144) 위에 배치될 수 있다.
또한, 디바이스 스택(118)의 다수의 유전체 층(미도시)은 그와 연관된 디바이스 회로부(148)와 함께 증착 기술을 사용하여 이미지 층(142) 위에 배치될 수 있다. 광 차폐층(152) 및 반사 방지층(154)은 이후에 예컨대 CVD, PVD, 원자층 증착(ALD) 또는 전기-도금과 같은 임의의 적절한 증착 기술을 사용하여 디바이스 스택(118) 위에 배치될 수 있다.
이후, 공정 흐름에서, 광 가이드 개구(188)의 어레이가 디바이스 스택(118) 내로 에칭된다. 이는 가령 반응성 이온 에칭(RIE)과 같이 이방성 에칭 프로세스와 같은 임의의 적절한 에칭 프로세스를 사용하여 수행될 수 있다. 본 명세서의 에칭 프로세스는 가령 리소그래피 패터닝과 같은 패터닝을 포함할 수 있다.
이후, 보호 라이너 층(156)은 개구(100)의 내부 표면을 포함하여 부분적으로 형성된 이미지 센서 구조체(104) 위에 배치될 수 있다. 이는 가령 CVD, PVD 또는 ALD와 같은 임의의 적합한 증착 기술을 사용하여 수행될 수 있다.
이후, 공정 흐름에서, 광 가이드 층(미도시)은 개구(188)를 채우도록 전체 구조체(100) 위에 배치된다. 광 가이드 층은 공지된 파장의 여기 광(138)을 필터링하고 공지된 파장의 방출 광(140)을 통해 전송할 수 있는 유기 필터 물질로 구성될 수 있다.
이후, 광 가이드 층은 광 가이드 개구(188)에서 광 가이드(150)의 어레이의 형성을 완료하도록 평탄화된다. 각각의 광 가이드(150)는 광 검출기의 어레이의 하나 이상의 광 검출기(146)와 관련된다. 이는 가령 화학기계적 연마 공정과 같은 임의의 적합한 연마 기술을 사용하여 수행될 수 있다.
도 4를 참조하면, 본드 패드(110)는 디바이스 스택(118) 내에 배치된다. 이는 디바이스 스택(118)에 본드 패드 개구(190)를 형성하기 위해 디바이스 스택(118)을 리소그래피 패터닝 및 에칭함으로써 먼저 수행될 수 있다. 이후, 가령 ALD 공정과 같은 임의의 적절한 배치 기술을 사용하여 본드 패드 개구(190) 내에 다양한 층의 본드 패드 금속(미도시)이 배치되어 본드 패드(110)를 형성할 수 있다.
본드 패드(110)가 형성되면, 그 상부면(120)은 전기 탐색(electrical probing)을 위해 노출될 수 있고 전기 탐색에 접근 가능할 수 있다. 전기 탐색은 센서 시스템(100)에서 일련의 수락 테스트(예컨대, 연속성 테스트)를 가능하게 한다.
도 5를 참조하면, 이후, 공정 흐름에서, 패시베이션 스택(114)의 적어도 일부가 디바이스 스택(118) 및 본드 패드(110) 위에 배치된다. 도 5에 도시된 특정 예에서, 제1 패시베이션 층(160)은 제1 패시베이션 층(160)의 하부면(116)이 광 가이드(150)의 상부면(158)과 직접 접촉하도록 광 가이드(150)의 어레이 위에 배치된다. 이어서, 제1 화학 보호층(162)은 제1 패시베이션 층(166) 위에 배치될 수 있다. 제2 패시베이션 층(166)은 이후 제1 화학 보호층(162) 위에 배치될 수 있다. 이들 프로세스 각각은 가령 CVD 또는 PVD와 같은 임의의 적절한 증착 프로세스에 의해 수행될 수 있다. 제1 화학 보호층(162)과 제1 및 제2 패시베이션 층들(160, 164)은 패시베이션 스택(114)의 적어도 일부를 형성한다. 패시베이션 스택(114)의 일부는 이후 본드 패드(110)를 코팅할 수 있다.
도 6을 참조하면, 이후 공정 흐름에서, 나노웰(108)의 어레이는 패시베이션 스택(114)의 상부 층(112)에 형성된다. 각각의 나노웰(108)은 광 가이드의 어레이에서 광 가이드(150)와 관련된다.
도 6에 도시된 특정 예에서, 이는 이후에 제2 화학 보호층(164)에 나노웰(108)의 어레이를 리소그래피 패터닝하고 에칭함으로써 수행된다. 그런 다음, 제2 화학 보호층(164)이 제2 패시베이션 층(164) 상에 배치된다. 제2 화학 보호층(166)은 가령 CVD, PVD 또는 ALD와 같은 임의의 적절한 증착 공정을 사용하여 배치될 수 있다.
제2 화학 보호층(166)은 패시베이션 스택(114)의 상부 층(112)이다. 제2 화학 보호층(166)은 제2 패시베이션 층(164) 내로 에칭된 나노웰(108)에 맞춰서 패시베이션 스택(114)의 상부 층(112)에 나노웰(108)을 형성한다.
도 7을 참조하면, 이후 공정 흐름에서, 베이스 기판(144)은 기결정된 두께로 얇아진다. 이는 가령 화학기계적 연마(CMP) 공정 또는 분쇄 공정과 같은 임의의 적합한 연마 공정에 의해 수행될 수 있다.
일단 얇아지면, TSV(168)는 베이스 기판(144)의 하부면(170)을 통해 에칭된다. TSV(168)는 베이스 기판(144)의 하부면(170)으로부터 본드 패드(110)로 연장되도록 에칭된다. 이는 가령 RIE 공정과 같은 임의의 적절한 에칭 공정에 의해 수행될 수 있다.
이후, TSV(168)는 본드 패드(110)와 전기적으로 접촉하도록 도금된다. 이는 전기 도금 프로세스와 같은 임의의 적절한 도금 프로세스에 의해 수행될 수 있다.
도 8을 참조하면, 이후 공정 흐름에서, RDL(172)은 베이스 기판(144)의 하부면(170) 상에 배치된다. 이는 먼저 하부면(170) 전체에 RDL(172)을 배치한 다음, 기결정된 형상으로 리소그래피에 의해 RDL을 패터닝 및 에칭함으로써 수행될 수 있다.
도 9를 참조하면, 이후 공정 흐름에서, 제1 환경 보호층(174)은 RDL(172)의 제1 부분(176) 위에 배치된다. 이는 가령 CVD 또는 PVD와 같은 임의의 적절한 증착 프로세스에 의해 수행될 수 있다. RDL(172)의 제2 부분(182)은 와이어(180)(도 13에서 가장 잘 보여짐)를 위한 하나 이상의 본딩 장소로서 노출된 채로 남는다.
도 10을 참조하면, 이후 공정 흐름에서, 기계적 지지 구조체(178)는 제1 환경 보호층(174) 위에 본딩된다. 이는 접착제 또는 다른 기계적 본딩 공정과 같은 물리적 본딩에 의해 수행될 수 있다.
이후, 센서 시스템(100)의 후속 처리 동안 임시 보호층(194)은 RDL(172)의 노출된 제2 부분(182) 상에 배치되어 이들 제2 부분(182)을 보호한다. 임시 보호층(194)은 저항 재료로 구성될 수 있다. 임시 보호층(194)은 또한 제거 가능한 감압 접착제 층을 통해 테이프, 유리 또는 실리콘 웨이퍼를 본딩하는 것을 포함하지만 이에 한정되지 않는 몇몇 임시 공정을 이용함으로써 배치될 수 있다. 또한, 임시 보호층(194)은 용매 가용성 왁스 코팅의 형태일 수 있다.
도 11을 참조하면, 이후 공정 흐름에서, 하이드로겔 층(126)은 나노웰(108)에 배치된다. 하이드로겔 층은 가령 실란-프리 아크릴아미드(SFA) 폴리머, 메타크릴아미드, 하이드록시에틸 메타크릴레이트 또는 N-비닐 피롤리디논과 같은 임의의 적합한 폴리머로 구성될 수 있다. 이런 전체 증착 공정을 위해 하기 내용을 포함하지만 이에 국한되지 않는 몇몇 공정이 이용될 수 있다:
- 패시베이션 스택(114)의 상부층(112)을 하이드로겔(126)로 스핀-코팅하는 공정;
- 하이드로겔(126)을 경화시키는 공정; 및
- 하이드로겔(126) 아래로 CMP를 내려서 적어도 실질적으로 나노웰(108)의 내부면 상에 배치되도록 하는 공정.
도 12를 참조하면, 이후 공정 흐름에서, 플로우 셀(102)은 패시베이션 스택(114)의 상부 층(112) 상에 배치되어 그 사이에 플로우 채널(106)을 형성하여, 플로우 채널이 나노웰(108)의 어레이 및 본드 패드(110) 위에 배치된다. 이는 접착 본딩 또는 다른 본딩 공정과 같은 임의의 적합한 본딩 공정에 의해 수행될 수 있다.
도 13을 참조하면, 이후 공정 흐름에서, 임시 보호층(194)은 RDL(172)의 제2 부분(182)을 노출시키도록 제거될 수 있다. 이는 레지스트 박리(resist stripping) 또는 습식 또는 건식 에칭과 같은 임의의 적절한 제거 공정에 의해 수행될 수 있다.
이후, 와이어(180)는 RDL(172)의 제2 부분(182)에 본딩될 수 있어서, 본딩된 와이어(180)는 와이어 본드(184)를 통해 RDL(172)과 전기적으로 접촉된다. 이는 와이어를 통한 공융 금속 본드를 형성함으로써, 솔더 범프 와이어 본드(184)를 형성하기 위한 솔더 범프 본딩에 의해 또는 다른 와이어 본딩 공정을 사용함으로써 수행될 수 있다.
도 14를 참조하면, 이후 공정 흐름에서, 제2 환경 보호층(186)은 RDL(172)의 제2 부분(182) 위에 배치된다. 제2 환경 보호층(186) 및 제1 환경 보호층(174)은 RDL(174)을 완전히 덮는다. 이는 가령 CVD 또는 PVD와 같은 임의의 적합한 증착 공정에 의해 수행될 수 있다.
제1 및 제2 환경 보호층(174, 186)은 또한 RDL(174)에 부착된 와이어(180) 및 와이어 본드(184)를 안정화하고 보호한다. 또한, 제2 환경 보호층의 증착은 센서 시스템(100)의 형성을 완료한다.
상술한 개념(이러한 개념이 서로 일치하는 경우)의 모든 조합은 본 명세서에 개시된 본 발명의 주제의 일부인 것으로 고려된다는 것을 이해해야 한다. 특히, 본 명세서의 말단에 나타나는 청구된 주제의 모든 조합은 본 명세서에 개시된 본 발명의 주제의 일부인 것으로 고려된다.
비록 상술한 예가 특정 예를 참조하여 설명되었지만, 설명된 본 발명의 개념의 사상 및 범위 내에서 많은 변경이 이루어질 수 있음을 이해해야 한다. 따라서, 예들은 설명된 예들로 제한되지 않지만, 하기의 청구항들의 언어에 의해 정의된 전체 범위를 갖도록 의도된다.

Claims (20)

  1. 베이스 기판 층 상에 디바이스 스택 및 이미지층을 각각 배치하는 단계;
    디바이스 스택에 본드 패드를 배치하는 단계;
    디바이스 스택과 본드 패드 상에 패시베이션 스택(passivation stack)의 적어도 한 부분을 배치하는 단계;
    패시베이션 스택의 상부층에 나노웰의 어레이를 형성하는 단계;
    본드 패드에 연장되어 있는 실리콘관통전극(through-silicon via, TSV)을 베이스 기판의 하부면을 통해 에칭하는 단계;
    본드 패드와 전기접촉하도록 TSV를 플레이팅하는 단계;
    TSV와 전기접촉하는 재배선층(redistribution layer, RDL)을 베이스 기판의 하부면에 배치하는 단계; 및
    플로우 채널을 형성하도록 패시베이션 스택의 상부층에 플로우 셀을 배치하는 단계를 포함하며,
    상기 플로우 채널은 본드 패드 및 나노웰의 어레이 상에 배치되는 방법.
  2. 제 1 항에 있어서,
    RDL의 제1 부분 상에 제1 환경 보호층을 배치하는 단계;
    제1 환경 보호층 상에 기계적 지지구조체를 본딩하는 단계; 및
    RDL과 전기접촉하도록 RDL의 제2 부분에 와이어를 본딩하는 단계를 포함하는 방법.
  3. 제 2 항에 있어서,
    RDL의 제2 부분 상에 제2 환경 보호층을 배치하는 단계; 및
    제1 및 제2 환경 보호층으로 전체 RDL을 커버하는 단계를 포함하는 방법.
  4. 제 1 항에 있어서,
    패시베이션 스택의 적어도 한 부분을 배치하는 단계는:
    디바이스 스택과 본드 패드 상에 제1 패시베이션층을 배치하는 단계;
    제1 패시베이션층 상에 제1 화학 보호층을 배치하는 단계; 및
    제1 화학 보호층 상에 제2 패시베이션층 배치하는 단계를 포함하는 방법.
  5. 제 4 항에 있어서,
    나노웰의 어레이를 형성하는 단계는:
    제2 패시베이션층에 나노웰의 어레이를 에칭하는 단계; 및
    제2 패시베이션층 상에 제2 화학 보호층을 배치하는 단계를 포함하는 방법.
  6. 제 1 항에 있어서,
    이미지층은 광 검출기의 어레이를 포함하는 방법.
  7. 제 6 항에 있어서,
    디바이스 스택은 광 가이드의 어레이를 포함하고,
    광 가이드의 어레이의 각각의 광 가이드는 광 검출기의 어레이의 적어도 하나의 광 검출기와 연관되는 방법.
  8. 제 1 항에 있어서,
    플로우 채널을 형성하도록 패시베이션 스택의 상부층에 플로우 셀을 배치하는 단계는:
    패시베이션 스택의 상부층에 플로우 셀 측벽을 본딩하는 단계; 및
    플로우 셀 측벽에 플로우 셀 커버를 부착하는 단계를 포함하는 방법.
  9. 제 1 항에 있어서,
    디바이스 스택 상에 광 차폐층을 배치하는 단계를 더 포함하며,
    광 차폐층은 디바이스 스택과 패시베이션 스택 사이에 배치되는, 방법.
  10. 제 9 항에 있어서,
    본드 패드는 광 차폐층을 통해 뻗어있는 방법.
  11. 베이스 기판 층 상에 디바이스 스택 및 이미지층을 각각 배치하는 단계;
    디바이스 스택에 본드 패드를 배치하는 단계;
    디바이스 스택과 본드 패드 상에 패시베이션 스택(passivation stack)의 적어도 한 부분을 배치하는 단계;
    본드 패드에 연장되어 있는 실리콘관통전극(through-silicon via, TSV)을 베이스 기판의 하부면을 통해 에칭하는 단계;
    본드 패드와 전기접촉하도록 TSV를 플레이팅하는 단계; 및
    패시베이션 스택 상에 플로우 셀을 배치하는 단계를 포함하며,
    이미지층은 광 검출기의 어레이를 포함하고, 디바이스 스택은 광 가이드의 어레이를 포함하며,
    패시베이션 스택은 플로우 셀과 본드 패드 사이에 배치되는 방법.
  12. 제 11 항에 있어서,
    TSV와 전기접촉하는 재배선층(redistribution layer, RDL)을 베이스 기판의 하부면에 배치하는 단계를 더 포함하는 방법.
  13. 제 11 항에 있어서,
    패시베이션 스택 상에 플로우 셀을 배치하는 단계는:
    패시베이션 스택에 플로우 셀 측벽을 본딩하는 단계; 및
    플로우 셀 측벽과 플로우 셀 커버를 부착하는 단계를 포함하는 방법.
  14. 제 11 항에 있어서,
    패시베이션 스택의 적어도 한 부분을 배치하는 단계는:
    디바이스 스택과 본드 패드 상에 제1 패시베이션층을 배치하는 단계;
    제1 패시베이션층 상에 제1 화학 보호층을 배치하는 단계; 및
    제1 화학 보호층 상에 제2 패시베이션층 배치하는 단계를 포함하는 방법.
  15. 제 14 항에 있어서,
    제2 패시베이션층에 나노웰의 어레이를 에칭하는 단계; 및
    제2 패시베이션층 상에 제2 화학 보호층을 배치하는 단계를 더 포함하는 방법.
  16. 베이스 기판 상에 배치되는 이미지층,
    이미지층 상에 배치되는 디바이스 스택,
    디바이스 스택에 배치되는 본드 패드,
    디바이스 스택과 본드 패드 상에 배치되는 패시베이션 스택,
    패시베이션 스택의 상부층에 배치되는 나노웰의 어레이,
    베이스 기판을 통해 연장되어 있고 본드 패드와 전기접촉하는 실리콘관통전극(TSV), 및
    TSV와 전기접촉하고 베이스 기판의 하부면에 배치되는 재배선층(RDL)을 포함하는, 이미지 센서 구조체를 포함하는 시스템으로서,
    플로우 채널은 나노웰의 어레이 상에 배치되고,
    패시베이션 스택은 플로우 채널과 본드 패드 사이에 배치되는 시스템.
  17. 제 16 항에 있어서,
    패시베이션 스택은:
    디바이스 스택과 본드 패드 상에 배치되는 제1 패시베이션층; 및
    제1 패시베이션층 상에 배치되는 제1 화학 보호층을 포함하는 시스템.
  18. 제 17 항에 있어서,
    패시베이션 스택은:
    제1 화학 보호층 상에 배치되는 제2 패시베이션층; 및
    제2 패시베이션층 상에 배치되는 제2 화학 보호층을 포함하는 시스템.
  19. 제 16 항에 있어서,
    이미지층에 배치되는 광 검출기의 어레이; 및
    디바이스 스택에 배치되는 광 가이드의 어레이를 더 포함하며,
    각각의 광 가이드는 광 검출기의 어레이의 적어도 하나의 광 검출기와 연관되는 시스템.
  20. 제 16 항에 있어서,
    디바이스 스택과 패시베이션 스택 사이에 배치되는 광 차폐층을 포함하고,
    본드 패드는 광 차폐층을 통해 뻗어있는 시스템.
KR1020217009476A 2017-12-26 2017-12-26 센서 시스템 KR102466365B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2017/068397 WO2019132857A1 (en) 2017-12-26 2017-12-26 Sensor system
KR1020197036202A KR102237313B1 (ko) 2017-12-26 2017-12-26 센서 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197036202A Division KR102237313B1 (ko) 2017-12-26 2017-12-26 센서 시스템

Publications (2)

Publication Number Publication Date
KR20210037760A KR20210037760A (ko) 2021-04-06
KR102466365B1 true KR102466365B1 (ko) 2022-11-14

Family

ID=67064078

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217009476A KR102466365B1 (ko) 2017-12-26 2017-12-26 센서 시스템
KR1020197036202A KR102237313B1 (ko) 2017-12-26 2017-12-26 센서 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197036202A KR102237313B1 (ko) 2017-12-26 2017-12-26 센서 시스템

Country Status (19)

Country Link
US (3) US10861829B2 (ko)
EP (1) EP3711095B1 (ko)
JP (1) JP6849829B2 (ko)
KR (2) KR102466365B1 (ko)
CN (2) CN113394240A (ko)
AU (2) AU2017444624B2 (ko)
CA (1) CA3066347C (ko)
CO (1) CO2019014448A2 (ko)
CR (1) CR20190592A (ko)
IL (1) IL271047B (ko)
MX (1) MX2019015838A (ko)
MY (1) MY194772A (ko)
PE (1) PE20201178A1 (ko)
PH (1) PH12019502895A1 (ko)
RU (1) RU2739341C1 (ko)
SG (1) SG11201911587TA (ko)
TW (1) TWI711815B (ko)
WO (1) WO2019132857A1 (ko)
ZA (1) ZA201907987B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906320B1 (en) 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
US10861829B2 (en) * 2017-12-26 2020-12-08 Illumina, Inc. Sensor system
EP3850336A4 (en) * 2018-09-14 2022-02-09 Illumina, Inc. FLOW CELLS AND ASSOCIATED METHODS
KR20220030917A (ko) * 2019-07-08 2022-03-11 일루미나, 인코포레이티드 광 검출 디바이스 상의 광학 결합 구조체와의 도파관 통합
US11211301B2 (en) * 2020-02-11 2021-12-28 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of manufacture
US11327228B2 (en) * 2020-07-09 2022-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Photonic device and fabrication method thereof
TW202231156A (zh) * 2021-01-15 2022-08-01 美商伊路米納有限公司 實現感測器頂側打線接合
TWI751893B (zh) * 2021-01-21 2022-01-01 晶相光電股份有限公司 影像感測裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084407A1 (en) * 2012-09-25 2014-03-27 Aptina Imaging Corporation Imaging systems with circuit element in carrier wafer
US20160181226A1 (en) 2014-12-22 2016-06-23 Google Inc. Stacked semiconductor chip rgbz sensor
JP2017183388A (ja) 2016-03-29 2017-10-05 ソニー株式会社 固体撮像装置

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390677B (de) 1986-10-10 1990-06-11 Avl Verbrennungskraft Messtech Sensorelement zur bestimmung von stoffkonzentrationen
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
CA2174140C (en) 1993-10-28 2004-04-06 Kenneth L. Beattie Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US5672881A (en) 1994-09-14 1997-09-30 Glyko, Inc. Charge-coupled device imaging apparatus
WO1998008077A1 (de) 1996-08-16 1998-02-26 Novartis Ag Optische detektionsvorrichtung
US5854684A (en) 1996-09-26 1998-12-29 Sarnoff Corporation Massively parallel detection
US5872623A (en) 1996-09-26 1999-02-16 Sarnoff Corporation Massively parallel detection
US6111248A (en) 1996-10-01 2000-08-29 Texas Instruments Incorporated Self-contained optical sensor system
US6458547B1 (en) 1996-12-12 2002-10-01 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US6083763A (en) 1996-12-31 2000-07-04 Genometrix Inc. Multiplexed molecular analysis apparatus and method
US6122042A (en) 1997-02-07 2000-09-19 Wunderman; Irwin Devices and methods for optically identifying characteristics of material objects
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6235471B1 (en) 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
US5942775A (en) 1997-04-30 1999-08-24 Lucent Technologies Inc. Photosensing device with improved spectral response and low thermal leakage
US5894351A (en) 1997-05-13 1999-04-13 Colvin, Jr.; Arthur E. Fluorescence sensing device
US6117643A (en) 1997-11-25 2000-09-12 Ut Battelle, Llc Bioluminescent bioreporter integrated circuit
US6197503B1 (en) 1997-11-26 2001-03-06 Ut-Battelle, Llc Integrated circuit biochip microsystem containing lens
US6686150B1 (en) 1998-01-27 2004-02-03 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
US6485905B2 (en) 1998-02-02 2002-11-26 Signature Bioscience, Inc. Bio-assay device
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
AU2740000A (en) 1999-01-25 2000-08-07 Lockheed Martin Energy Research Corporation Multifunctional and multispectral biosensor devices and methods of use
AU3005400A (en) 1999-02-23 2000-09-14 Ljl Biosystems, Inc. Frequency-domain light detection device
US20030108867A1 (en) 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6784982B1 (en) 1999-11-04 2004-08-31 Regents Of The University Of Minnesota Direct mapping of DNA chips to detector arrays
US6867851B2 (en) 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
CN1409818A (zh) 1999-11-19 2003-04-09 乔宾伊冯公司 小型光谱荧光计
US6323944B1 (en) 1999-11-19 2001-11-27 Jobin Yvon, Inc. Compact spectrofluorometer
TW463525B (en) 2000-06-01 2001-11-11 Ind Tech Res Inst Organic electroluminescent device and the manufacturing method of the same
JP4030710B2 (ja) 2000-08-07 2008-01-09 富士フイルム株式会社 画像読取装置
DE60034562T2 (de) 2000-08-25 2008-01-17 Stmicroelectronics S.R.L., Agrate Brianza Ein System zur automatischen Bildanalyse von DNA Mikroarrays
DE10146902A1 (de) 2000-09-25 2002-09-19 Sensovation Ag Bildsensor, Vorrichtung und Verfahren für optische Messungen
US6403970B1 (en) 2000-12-05 2002-06-11 Industrial Technology Research Institute Matrix biochip sensing system
US6844563B2 (en) 2001-05-22 2005-01-18 Matsushita Electric Industrial Co., Ltd. Fluorescence detecting device with integrated circuit and photodiode, and detection method
US6653083B2 (en) * 2001-05-22 2003-11-25 Matsushita Electric Industrial Co., Ltd. Fluorescence detecting device, method for producing the same, and fluorescence detecting method employing the same
US7075104B2 (en) 2001-09-12 2006-07-11 Reveo, Inc. Microchannel plates and biochip arrays, and methods of making same
US6982519B2 (en) 2001-09-18 2006-01-03 Ut-Battelle Llc Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates
TWI293363B (en) 2001-12-11 2008-02-11 Sensors For Med & Science Inc High performance fluorescent optical sensor
US20030136921A1 (en) 2002-01-23 2003-07-24 Reel Richard T Methods for fluorescence detection that minimizes undesirable background fluorescence
US7524459B2 (en) 2002-01-24 2009-04-28 California Institute Of Technology In Pasadena Optoelectronic and microfluidic integration for miniaturized spectroscopic devices
WO2003072825A1 (en) 2002-02-27 2003-09-04 Celltek Co., Ltd Apparatus for automatically analyzing genetic and protein materials using photodiodes
US7604981B1 (en) 2002-03-08 2009-10-20 The Board Of Trustees Of The Leland Stanford Junior University Excitable target marker detection
US7179654B2 (en) 2002-03-18 2007-02-20 Agilent Technologies, Inc. Biochemical assay with programmable array detection
US6946286B2 (en) 2002-05-09 2005-09-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for detecting DNA hybridization
JP3641619B2 (ja) 2002-05-14 2005-04-27 株式会社日立製作所 生体試料検査装置
US7005264B2 (en) 2002-05-20 2006-02-28 Intel Corporation Method and apparatus for nucleic acid sequencing and identification
US6867420B2 (en) 2002-06-03 2005-03-15 The Regents Of The University Of California Solid-state detector and optical system for microchip analyzers
US6975251B2 (en) 2002-06-20 2005-12-13 Dakota Technologies, Inc. System for digitizing transient signals with waveform accumulator
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
WO2004054001A2 (en) 2002-12-09 2004-06-24 Quantum Semiconductor Llc Cmos image sensor
TW594006B (en) 2003-07-04 2004-06-21 Veutron Corp Biosensor with multi-channel A/D conversion and a method thereof
US7170605B2 (en) 2003-08-25 2007-01-30 Evan Francis Cromwell Active sensor and method for optical illumination and detection
US7221455B2 (en) 2004-01-20 2007-05-22 The Regents Of The Unversity Of California Integrated, fluorescence-detecting microanalytical system
WO2005069737A2 (en) 2004-01-27 2005-08-04 Ramot At Tel Aviv University Ltd. Method and system for detecting analytes
US7489401B2 (en) 2004-03-01 2009-02-10 National Institute Of Advanced Industrial Science And Technology Device for detecting emission light of micro-object
US7258731B2 (en) 2004-07-27 2007-08-21 Ut Battelle, Llc Composite, nanostructured, super-hydrophobic material
FR2876185B1 (fr) 2004-10-01 2008-01-11 Centre Nat Rech Scient Cnrse Detection des emissions de fluorescence induite par un laser
US7585664B2 (en) 2004-10-14 2009-09-08 The Hong Kong University Of Science And Technology Integrated circuit optical detector for biological detection
CA2584186A1 (en) 2004-10-18 2006-08-31 Macquarie University Fluorescence detection
US7280201B2 (en) 2004-12-17 2007-10-09 Avago Technologies General Ip Pte Ltd Sensor having integrated light detector and/or light source
JP4806197B2 (ja) 2005-01-17 2011-11-02 パナソニック株式会社 固体撮像装置
JP4701739B2 (ja) 2005-02-17 2011-06-15 パナソニック株式会社 蛍光測定装置
US7308292B2 (en) 2005-04-15 2007-12-11 Sensors For Medicine And Science, Inc. Optical-based sensing devices
US7738086B2 (en) 2005-05-09 2010-06-15 The Trustees Of Columbia University In The City Of New York Active CMOS biosensor chip for fluorescent-based detection
US7466409B2 (en) 2005-06-08 2008-12-16 California Institute Of Technology Method and apparatus for CMOS imagers and spectroscopy
US7566853B2 (en) 2005-08-12 2009-07-28 Tessera, Inc. Image sensor employing a plurality of photodetector arrays and/or rear-illuminated architecture
US7433552B2 (en) 2005-12-22 2008-10-07 Palo Alto Research Center Incorporated Obtaining analyte information
US7547904B2 (en) 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
EP1826554A1 (en) 2006-02-23 2007-08-29 STMicroelectronics (Research & Development) Limited Improved fluorescence biosensor
US7629591B2 (en) 2006-03-02 2009-12-08 Chemimage Corporation System and method for structured illumination and collection for improved optical confocality of raman fiber array spectral translator imaging and interactive raman probing
JP2009531704A (ja) 2006-03-28 2009-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光検出器のアレイ及びサンプルサイトのアレイを具備する集積化装置
WO2007119067A1 (en) 2006-04-19 2007-10-25 It-Is International Ltd Reaction monitoring
US7463353B2 (en) 2006-05-31 2008-12-09 Uchicago Argonne, Llc Modular, micro-scale, optical array and biodetection system
US8637436B2 (en) 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
US9133504B2 (en) 2006-06-05 2015-09-15 California Institute Of Technology Real time microarrays
US8815162B2 (en) 2006-06-08 2014-08-26 Koninklijke Philips N.V. Microelectronic sensor device for DNA detection
WO2007144797A1 (en) 2006-06-15 2007-12-21 Koninklijke Philips Electronics N.V. Integrated biosensing device having photo detector
BRPI0714970A2 (pt) 2006-07-20 2013-05-07 Koninkl Philips Electronics Nv sistema de detecÇço para detectar luminescÊncia de pelo menos uma amostra quando excitada atravÉs de radiaÇço de excitaÇço incidente, e, mÉtodo para detectar luminescÊncia de pelo menos uma amostra.
US7638182B2 (en) 2006-07-28 2009-12-29 Ut-Battelle, Llc Method for producing microchannels in drawn material
US8048626B2 (en) 2006-07-28 2011-11-01 California Institute Of Technology Multiplex Q-PCR arrays
US7781781B2 (en) * 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
US7502123B2 (en) 2007-02-05 2009-03-10 Palo Alto Research Center Incorporated Obtaining information from optical cavity output light
EP2115433A1 (en) 2007-02-08 2009-11-11 Koninklijke Philips Electronics N.V. Biosensor with evanescent waveguide and integrated sensor
KR100825808B1 (ko) 2007-02-26 2008-04-29 삼성전자주식회사 후면 조명 구조의 이미지 센서 및 그 이미지 센서 제조방법
US7811810B2 (en) 2007-10-25 2010-10-12 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
US7767441B2 (en) 2007-10-25 2010-08-03 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
JP4544335B2 (ja) 2008-04-15 2010-09-15 ソニー株式会社 反応処理装置
US7782237B2 (en) 2008-06-13 2010-08-24 The Board Of Trustees Of The Leland Stanford Junior University Semiconductor sensor circuit arrangement
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
EP3629011B1 (en) 2008-09-16 2023-11-01 Pacific Biosciences Of California, Inc. Integrated optical device
KR101045206B1 (ko) 2008-10-31 2011-06-30 삼성전자주식회사 여기광 흡수 도파로가 삽입된 집적된 바이오칩 및 그 제조방법
KR101065077B1 (ko) 2008-11-05 2011-09-15 삼성전자주식회사 시료 검출용 기판, 이를 채용한 바이오칩, 시료 검출용 기판의 제조방법 및 바이오 물질 검출장치
KR101065078B1 (ko) 2008-11-05 2011-09-15 삼성전자주식회사 바이오칩용 기판 및 그 제조 방법
US20100122904A1 (en) 2008-11-17 2010-05-20 Board Of Regents, The University Of Texas System Incorporating cmos integrated circuits in the design of affinity-based biosensor systems
JP5438980B2 (ja) * 2009-01-23 2014-03-12 ラピスセミコンダクタ株式会社 半導体装置の製造方法
WO2010088761A1 (en) 2009-02-06 2010-08-12 Maziyar Khorasani Method and apparatus for manipulating and detecting analytes
US8921280B2 (en) * 2009-02-11 2014-12-30 Samsung Electronics Co., Ltd. Integrated bio-chip and method of fabricating the integrated bio-chip
KR101059565B1 (ko) 2009-02-11 2011-08-26 어플라이드 프레시젼, 인코포레이티드 밝은 기준점 표지를 갖는 마이크로어레이 및 그로부터 광 데이터를 수집하는 방법
JP2010273757A (ja) * 2009-05-27 2010-12-09 Zycube:Kk イメージセンサ応用装置
JP4987928B2 (ja) * 2009-09-24 2012-08-01 株式会社東芝 半導体装置の製造方法
JP5442394B2 (ja) 2009-10-29 2014-03-12 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
AU2011217862B9 (en) 2010-02-19 2014-07-10 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US9096899B2 (en) 2010-10-27 2015-08-04 Illumina, Inc. Microdevices and biosensor cartridges for biological or chemical analysis and systems and methods for the same
US20120193744A1 (en) * 2011-01-31 2012-08-02 Swarnal Borthakur Imagers with buried metal trenches and though-silicon vias
JP2012204402A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 固体撮像装置及びその製造方法
US8497536B2 (en) 2011-09-16 2013-07-30 Omnivision Technologies, Inc. Dual-facing camera assembly
US9373732B2 (en) 2012-02-07 2016-06-21 Semiconductor Components Industries, Llc Image sensors with reflective optical cavity pixels
US8906320B1 (en) * 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
US8766387B2 (en) * 2012-05-18 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Vertically integrated image sensor chips and methods for forming the same
US9372308B1 (en) * 2012-06-17 2016-06-21 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices and methods for production
US8871549B2 (en) * 2013-02-14 2014-10-28 International Business Machines Corporation Biological and chemical sensors
RU2527699C1 (ru) 2013-02-20 2014-09-10 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Московский физико-технический институт (государственный университет) Биологический сенсор и способ создания биологического сенсора
US9159852B2 (en) * 2013-03-15 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor device and method
CN104249991B (zh) * 2013-06-26 2016-08-10 中芯国际集成电路制造(上海)有限公司 Mems器件及其制作方法
US9635228B2 (en) * 2013-08-27 2017-04-25 Semiconductor Components Industries, Llc Image sensors with interconnects in cover layer
SG10201804913YA (en) * 2013-12-10 2018-07-30 Illumina Inc Biosensors for biological or chemical analysis and methods of manufacturing the same
US9776856B2 (en) * 2013-12-20 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Vacuum sealed MEMS and CMOS package
US9799697B2 (en) 2014-04-25 2017-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Back side illuminated image sensor with deep trench isolation structures and self-aligned color filters
US10326030B2 (en) 2014-04-25 2019-06-18 Personal Genomics, Inc. Optical sensor and manufacturing method thereof
US9324755B2 (en) * 2014-05-05 2016-04-26 Semiconductor Components Industries, Llc Image sensors with reduced stack height
CA3186999A1 (en) * 2014-06-05 2015-12-10 Illumina, Inc Systems and methods including a rotary valve for at least one of sample preparation or sample analysis
US9748301B2 (en) * 2015-01-09 2017-08-29 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
US10147757B2 (en) * 2015-02-02 2018-12-04 Synaptics Incorporated Image sensor structures for fingerprint sensing
JP6682556B2 (ja) * 2015-04-22 2020-04-15 シェンゼン・ジェノリビジョン・テクノロジー・カンパニー・リミテッド バイオセンサ
TWI571626B (zh) * 2015-07-15 2017-02-21 力晶科技股份有限公司 具有奈米腔的集成生物感測器及其製作方法
KR102653044B1 (ko) * 2015-09-01 2024-04-01 소니그룹주식회사 적층체
US9875989B2 (en) * 2016-01-12 2018-01-23 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure
KR102473664B1 (ko) * 2016-01-19 2022-12-02 삼성전자주식회사 Tsv 구조체를 가진 다중 적층 소자
JP2017175047A (ja) * 2016-03-25 2017-09-28 ソニー株式会社 半導体装置、固体撮像素子、撮像装置、および電子機器
KR102515965B1 (ko) * 2016-04-29 2023-03-31 에스케이하이닉스 주식회사 Tsv 구조체를 갖는 적층형 이미지 센서
US10388684B2 (en) * 2016-10-04 2019-08-20 Semiconductor Components Industries, Llc Image sensor packages formed using temporary protection layers and related methods
US11101313B2 (en) * 2017-04-04 2021-08-24 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic apparatus
EP3410485B1 (en) * 2017-05-30 2022-08-03 ams AG Backside illuminated image sensor
CN107265391A (zh) 2017-06-29 2017-10-20 华进半导体封装先导技术研发中心有限公司 Mems晶圆级封装结构及其工艺
EP3685426A4 (en) * 2017-09-19 2021-06-09 MGI Tech Co., Ltd. MANUFACTURING OF SEQUENCING FLOW CELLS AT THE SLICE LEVEL
NL2020625B1 (en) * 2017-12-22 2019-07-02 Illumina Inc Two-filter light detection devices and methods of manufacturing same
CN108155198B (zh) * 2017-12-22 2021-04-02 成都先锋材料有限公司 一种cmos影像传感封装结构及其制作方法
NL2020612B1 (en) * 2017-12-22 2019-07-02 Illumina Inc Light detection devices with protective liner and methods of manufacturing same
NL2020615B1 (en) * 2017-12-26 2019-07-02 Illumina Inc Image sensor structure
US10861829B2 (en) * 2017-12-26 2020-12-08 Illumina, Inc. Sensor system
TWI698638B (zh) * 2017-12-28 2020-07-11 美商伊路米納有限公司 具有降低的螢光範圍雜訊的檢測器以及用於降低螢光範圍雜訊的方法
RU2769537C1 (ru) * 2018-11-26 2022-04-01 Иллумина, Инк. Система проточных кювет и связанный с ней способ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084407A1 (en) * 2012-09-25 2014-03-27 Aptina Imaging Corporation Imaging systems with circuit element in carrier wafer
US20160181226A1 (en) 2014-12-22 2016-06-23 Google Inc. Stacked semiconductor chip rgbz sensor
JP2017183388A (ja) 2016-03-29 2017-10-05 ソニー株式会社 固体撮像装置

Also Published As

Publication number Publication date
US20240014179A1 (en) 2024-01-11
CN113394240A (zh) 2021-09-14
KR20210037760A (ko) 2021-04-06
SG11201911587TA (en) 2020-01-30
EP3711095C0 (en) 2024-03-06
AU2021204323B2 (en) 2023-08-24
EP3711095A1 (en) 2020-09-23
IL271047B (en) 2022-04-01
TWI711815B (zh) 2020-12-01
AU2017444624B2 (en) 2021-07-22
US20210050329A1 (en) 2021-02-18
EP3711095B1 (en) 2024-03-06
CN111095558B (zh) 2021-06-18
CA3066347A1 (en) 2019-07-04
CR20190592A (es) 2020-02-26
WO2019132857A1 (en) 2019-07-04
CO2019014448A2 (es) 2020-04-01
US11784161B2 (en) 2023-10-10
JP6849829B2 (ja) 2021-03-31
JP2020532095A (ja) 2020-11-05
TW201928333A (zh) 2019-07-16
CN111095558A (zh) 2020-05-01
MY194772A (en) 2022-12-15
RU2739341C1 (ru) 2020-12-23
US20200066684A1 (en) 2020-02-27
PE20201178A1 (es) 2020-11-03
US10861829B2 (en) 2020-12-08
AU2017444624A1 (en) 2019-12-19
KR102237313B1 (ko) 2021-04-07
ZA201907987B (en) 2021-04-28
EP3711095A4 (en) 2021-01-06
KR20200015531A (ko) 2020-02-12
IL271047A (en) 2020-01-30
PH12019502895A1 (en) 2020-12-07
MX2019015838A (es) 2020-08-03
NZ759579A (en) 2021-08-27
BR112019026811A2 (pt) 2020-06-30
CA3066347C (en) 2021-01-19
AU2021204323A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
KR102466365B1 (ko) 센서 시스템
KR102521299B1 (ko) 이미지 센서 구조체
NZ759579B2 (en) Sensor system
US12009352B2 (en) Fabricating wafers with electrical contacts on a surface parallel to an active surface
US20220216191A1 (en) Fabricating wafers with electrical contacts on a surface parallel to an active surface
BR112019026811B1 (pt) Sistema de sensores
TW202231156A (zh) 實現感測器頂側打線接合

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant