KR102397662B1 - 반도체 발광 소자 - Google Patents

반도체 발광 소자 Download PDF

Info

Publication number
KR102397662B1
KR102397662B1 KR1020177012269A KR20177012269A KR102397662B1 KR 102397662 B1 KR102397662 B1 KR 102397662B1 KR 1020177012269 A KR1020177012269 A KR 1020177012269A KR 20177012269 A KR20177012269 A KR 20177012269A KR 102397662 B1 KR102397662 B1 KR 102397662B1
Authority
KR
South Korea
Prior art keywords
layer
light emitting
composition
quantum well
base
Prior art date
Application number
KR1020177012269A
Other languages
English (en)
Other versions
KR20170080599A (ko
Inventor
유사쿠 후지이
마사카즈 스기야마
매튜 마니시
Original Assignee
스탠리 일렉트릭 컴퍼니, 리미티드
고쿠리츠다이가쿠호우진 도쿄다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠리 일렉트릭 컴퍼니, 리미티드, 고쿠리츠다이가쿠호우진 도쿄다이가쿠 filed Critical 스탠리 일렉트릭 컴퍼니, 리미티드
Publication of KR20170080599A publication Critical patent/KR20170080599A/ko
Application granted granted Critical
Publication of KR102397662B1 publication Critical patent/KR102397662B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Abstract

반도체 발광 소자는: 제1 도전형의 제1 반도체 층; 제1 반도체 층에 형성되고 발광 층을 포함하는 발광 기능 층; 및 발광 기능 층에 형성되고 제1 반도체 층과 반대의 도전형을 갖는 제2 반도체 층을 포함한다. 발광 층은: 제1 반도체 층으로부터 응력 변형을 받는 조성을 가지며 임의의 망사형으로 구획된 복수의 베이스 세그먼트를 가지는 베이스 층; 및 베이스 층에 형성되고 적어도 하나의 양자 우물 층과 적어도 하나의 장벽 층으로 구성된 양자 우물 구조 층을 포함한다. 베이스 층은 AlxGa1-xN (0 ≤ x ≤ 1)의 조성을 가진다. 적어도 하나의 장벽 층은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가지며, 조성 x 및 조성 y는 x > y의 관계를 만족시킨다.

Description

반도체 발광 소자{SEMICONDUCTOR LIGHT-EMITTING ELEMENT}
본 발명은 가령 발광 다이오드(LED)와 같은 반도체 발광 소자에 관한 것이다.
반도체 발광 소자는 일반적으로 성장용 기판 위에 n형 반도체 층, 활성층 및 p형 반도체 층으로 이루어진 반도체 구조 층을 성장하고 n형 반도체 층 및 p형 반도체 층에 각각 전압을 인가하는 n 전극과 p 전극을 형성하여 제조된다.
특허문헌 1에는 적색, 녹색 및 청색 발광 다이오드가 동일한 방향으로 발광하도록 이 순서로 적층된 백색 발광 다이오드가 개시되어 있다. 특허문헌 2에는 전도성 서브-마운트 기판 상에 금속층에 의해 접합된 제1 발광 부와 전도성 서브-마운트 기판의 상부 표면의 한 영역에 형성된 제2 발광 부를 포함하는 백색 발광 소자가 개시되어 있다. 특허문헌 3에는 복수의 InGaN로 이루어진 우물 층을 포함하고, 각 우물 층의 In 조성이 다른 반도체 발광 소자가 개시되어 있다.
[특허문헌]
특허문헌 1 : 일본특허출원공보 특개 2011-249460호
특허문헌 2 : 일본특허출원공보 제2006-339646호
특허문헌 3 : 일본특허출원공보 특개 2004-179493호
반도체 발광 소자는 전극 소자에 주입된 전자와 홀의 결합(재결합)이 그 소자의 활성층에서 발생할 때 발광한다. 활성층에서 방출되는 빛의 파장(즉, 발광 색)은 활성층을 구성하는 반도체 재료의 밴드 갭에 따라 다르다. 예를 들어, 질화물계 반도체를 이용한 발광 소자의 경우 활성층에서 청색광이 방출된다.
예를 들어, 조명 용도 등에서 광원에 연색성이 요구된다. 높은 연색성을 갖는 광원은 자연광에 가까운 광을 발하는 광원의 유형이다. 높은 연색성을 얻기 위해, 광원으로부터 방출된 광은 가시 영역의 거의 전역의 파장을 갖는 것이 바람직하다. 예를 들어, 연색성이 높은 광원으로부터 추출된 광은 백색광으로 관찰된다.
이에 대해, 상기 특허문헌에 기재된 바와 같이, 반도체 발광 소자를 이용하여 백색광을 얻는 다양한 방법이 제안되어 있다. 발광 장치를 제조하는 일 예로, 가령 형광체와 같은 파장 변환 부재는 밀봉 수지(sealing resin)에 혼입되어 해당 밀봉 수지로 소자를 밀봉한다. 예를 들어, 청색광을 방출하는 활성층을 이용한 반도체 발광 소자의 경우, 활성층에서 청색광의 일부는 형광체에 의해 황색광으로 변환되고, 양자가 혼합되어 외부로 방출된다. 따라서, 전체로서 방출된 광은 백색광으로 관찰된다. 또 다른 제안된 기술로, 서로 다른 조성을 갖는 복수의 활성층을 적층함으로써 형광체를 사용하지 않고 발광 파장이 광역화된다.
그러나, 상술한 방법에 의해 발광 장치를 제작하는 경우, 장치에서의 발광 파장의 균일화, 제조 공정의 복잡화 및 발광 강도에 관한 문제가 있다. 가능한 이유로는: 형광체의 혼합 공정의 추가; 형광체의 파장 변환 효율의 경년 변화; 반도체 층의 가공 공정의 추가; 및 반도체 층의 가공에 의한 결정성 저하를 포함한다.
본 발명은 상술한 문제를 감안하여 이루어졌다. 본 발명의 목적은 가령 형광체와 같은 파장 변환 부재를 필요로 하지 않고, 가시 영역의 광범위의 발광 파장 대역(스펙트럼 폭)을 가지며 높은 연색성을 가지고 높은 발광 강도를 가지는 반도체 발광 소자를 제공하는 것이다.
본 발명의 일 태양에 따르면, 반도체 발광 소자는: 제1 도전형의 제1 반도체 층; 제1 반도체 층에 형성되고 발광 층을 포함하는 발광 기능 층; 및 발광 기능 층에 형성되고 제1 반도체 층과 반대의 도전형을 갖는 제2 반도체 층을 포함하며, 상기 발광 층은: 제1 반도체 층으로부터 응력 변형(stress strain)을 받는 조성을 가지며 임의의 망사형(random net shape)으로 구획된 복수의 베이스 세그먼트를 가지는 베이스 층; 및 베이스 층에 형성되고 적어도 하나의 양자 우물 층(quantum well layer)과 적어도 하나의 장벽 층으로 구성된 양자 우물 구조 층을 포함하며, 상기 베이스 층은 AlxGa1-xN (0 ≤ x ≤ 1)의 조성을 가지고, 상기 적어도 하나의 장벽 층은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가지며, 상기 조성 x 및 조성 y는 x > y의 관계를 만족시킨다.
본 발명의 내용 중에 포함되어 있다.
도 1a는 제1 실시예에 따른 반도체 발광 소자의 구조를 나타내는 단면도이고, 도 1b는 발광 층의 베이스 층의 개략적인 평면도이다.
도 2a는 제1 실시예에 따른 반도체 발광 소자의 발광 층의 구조를 나타내는 단면도이고, 도 2b 및 도 2c는 베이스 층과 장벽 층의 예시적인 조성을 나타내는 단면도이다.
도 3a는 제1 실시예의 변형 예 1에 따른 반도체 발광 소자의 발광 층의 구조를 나타내는 단면도이고, 도 3b 및 도 3c는 베이스 층과 장벽 층의 예시적인 조성을 나타내는 단면도이다.
도 4는 제1 실시예의 변형 예 2에 따른 반도체 발광 소자의 구조를 나타내는 단면도이다.
도 5는 제1 실시예의 변형 예 2에 따른 반도체 발광 소자의 스펙트럼을 나타내는 도면이다.
이제 본 발명의 실시예에 대하여 하기에 상세히 설명한다. 본 명세서에서는 동일한 구성요소에 동일한 참조 부호를 붙이고 있다.
제1 실시예
도 1a는 제1 실시예의 반도체 발광 소자(10)(이하, 몇몇의 경우, 간단히 "발광 소자" 또는 "소자"라고 함)의 구조를 나타내는 단면도이다. 반도체 발광 소자(10)의 구조에서 반도체 구조 층(SL)은 탑재 기판(11)(이하, 몇몇의 경우, 간단히 "기판"이라 함) 위에 형성된다. 반도체 구조 층(SL)은 탑재 기판(11) 상에 형성된 n형 반도체 층(12)(즉, 제1 반도체 층), n형 반도체 층(12) 상에 형성된 발광 기능 층(13), 발광 기능 층(13) 상에 형성된 전자 차단 층(14), 및 전자 차단 층(14) 상에 형성된 p형 반도체 층(15)(즉, 제1 반도체 층(12)과 반대의 도전형을 갖는 제2 반도체 층)을 포함한다.
본 실시예에 따르면, 탑재 기판(11)은 예컨대 반도체 구조 층(SL)의 성장에 이용되는 성장용 기판으로 이루어지며, 예컨대 사파이어로 구성된다. 또한, 반도체 구조 층(SL)은 질화물계 반도체로 구성된다. 반도체 발광 소자(10)는 유기 금속 기상 증착법(Metal Organic Chemical Vapor Deposition: MOCVD)을 이용하여 예컨대 사파이어 기판의 C-면을 결정 성장면으로서 사파이어 기판에 반도체 구조 층(SL)을 성장함으로써 제조될 수 있다. 도면에 도시하지 않았지만, 발광 소자(10)는 n형 반도체 층(12) 및 p형 반도체 층(15)에 각각 전압을 인가하는 n 전극과 p 전극을 가진다.
본 실시예는 탑재 기판(11)으로서 성장용 기판 상에 반도체 구조 층(SL)이 형성되는 발광 소자(10)의 구조를 참조로 도시된다. 그러나, 본 실시예는 탑재 기판(11)이 성장용 기판인 구조에 한정되지 않는다. 예를 들면, 반도체 발광 소자(10)는 성장용 기판 상에 반도체 구조 층(SL)을 성장한 후, 반도체 구조 층(SL)을 다른 기판에 접합하며, 성장용 기판을 제거함으로써 획득된 구조를 가질 수 있다. 이 경우, 해당 접합된 다른 기판은 p형 반도체 층(15) 상에 형성된다. 상술한 접합된 기판은 가령 Si, AlN, Mo, W 및 CuW와 같이 방열성이 높은 재료를 사용할 수 있다.
도면에 도시되지 않지만, 탑재 기판(11)과 n형 반도체 층(12) 사이에 버퍼 층(또는 기초 층)이 형성될 수 있다. 버퍼층은 예컨대 성장용 기판 및 반도체 구조 층(SL) 간의 계면 및 반도체 구조 층(SL)의 각 층 간의 계면에 생길 수 있는 변형(strain)의 완화를 목적으로 제공된다. 본 실시예에서, 사파이어 기판(탑재 기판(11)) 위에 버퍼 층으로 GaN 층을 성장 후, n형 반도체 층(12)이 적층된다.
n형 반도체 층(12)은 예를 들어 n형 도펀트(예컨대, Si)를 포함하는 GaN 층으로 구성된다. 전자 차단 층(14)은 예를 들어 AlGaN 층으로 구성된다. p형 반도체 층(15)은 예를 들어 p형 도펀트(예컨대, Mg)를 포함하는 GaN 층으로 구성된다. n형 반도체 층(12)은 다른 도펀트 농도를 갖는 복수의 n형 반도체 층을 포함할 수 있다. 전자 차단 층(14)은 p형 도펀트를 포함할 수 있다. p형 반도체 층(15)은 전자 차단 층(14)과의 계면과 반대측의 주면에 접촉 층(contact layer)을 가질 수 있다.
발광 기능 층(13)은 복수의 발광 층을 가질 수 있다. 그러나, 본 실시예에서는 발광 기능 층(13)이 하나의 발광 층으로 구성된 경우에 대해 설명한다. 따라서, 본 실시예에서는 발광 기능 층(13)으로서의 발광 층(13)에 대해 설명한다. 발광 층(13)은 n형 반도체 층(12) 상에 형성되고, 양자 우물(QW) 구조를 가진다.
발광 층(13)은 n형 반도체 층(12)과 다른 조성을 갖는 베이스 층(BL)을 가진다. 베이스 층(BL)은 n형 반도체 층(12)에서 응력(변형)을 받아 임의의 망사형(random net shape)으로 형성된 홈(GR1)(이하, "제1 홈"이라 함)을 가진다. 즉, 제1 홈(GR1)은 n형 반도체 층(12)과 베이스 층(BL) 사이의 조성 차이에 의해 베이스 층(BL)에 생긴 응력 변형으로 인해 복수의 홈이 결합된 메쉬 형태(mesh shape)로 형성된다. 베이스 층(BL)에 생긴 응력 변형은 n형 반도체 층(12)과 베이스 층(BL) 사이의 격자 상수의 차이로 인한 베이스 층(BL)의 결정 구조의 변형이다.
발광 층(13)는 베이스 층(BL)에 형성된 양자 우물 층(WA) 및 장벽 층(BA)으로 구성된 양자 우물 구조 층(QWL)을 가진다. 양자 우물 층(WA)은 베이스 층(BL)에 형성되고, 장벽 층(BA)은 양자 우물 층(WA)에 형성된다. 베이스 층(BL)은 양자 우물 층(WA)에 대하여 장벽 층으로서 기능한다. 양자 우물 층(WA)은 변형된 양자 우물 층으로서 형성된다.
이제 도 1b를 참조하여 베이스 층(BL)에 대해 설명한다. 도 1b는 베이스 층(BL)의 상부면을 개략적으로 나타낸 도면이다. 베이스 층(BL)은 제1 홈(GR1)에 의해 구획되고, 임의의 크기로 형성된 다수의 미세한 베이스 세그먼트(BS)를 가진다. 베이스 세그먼트(BS) 각각은 베이스 층(BL)이 n형 반도체 층(12)으로부터 응력 변형을 받는 조성을 가지기 때문에 임의의 망사형으로 구획된다.
제1 홈(GR1)은 임의의 서로 다른 길이 및 형상의 홈 부로 구성된다. 제1 홈(GR1)은 베이스 층(BL)의 표면 전체에 망사형(메쉬형)으로 형성된다. 베이스 세그먼트(BS) 각각은 무작위로 구획되고 제1 홈(GR1)에 의해 베이스 층(BL)에 형성되는 한 부분(세그먼트)이다. 게다가, 베이스 세그먼트(BS)의 상부면은 가령 실질적인 원형, 실질적인 타원형 및 다각형과 같은 다양한 형상을 가진다.
제1 홈(GR1)은 예를 들어 V-자형의 단면을 가진다(도 1a). 또한, 도 1b에 나타낸 바와 같이, 제1 홈(GR1)은 선-모양의 하단 부분(BP)를 가진다. 본 실시예에서는 베이스 세그먼트(BS) 각각의 단부가 제1 홈(GR1)의 하단 부분(BP)이다. 베이스 세그먼트(BS) 각각은 하단 부분(BP)에서 다른 베이스 세그먼트(BS)에 인접해있다.
또한, 베이스 층(BL)은 베이스 세그먼트(BS)의 각각에 대응하는 평탄부(FL1)(이하, "제1 평탄부"라 함)를 가진다. 베이스 층(BL)의 표면은 제1 평탄부(FL1) 및 제1 홈(GR1)의 내부 벽면으로 구성된다. 제1 평탄부(FL1) 각각은 제1 홈(GR1)에 의해 베이스 세그먼트(BS)마다 구획된다. 베이스 세그먼트(BS)는 제1 평탄부(FL1)로 이루어진 상부면 및 제1 홈(GR1)의 내부 벽면으로 이루어진 측면을 가진다.
즉, 제1 평탄부(FL1)는 베이스 세그먼트(BS) 각각의 상부면을 구성하고, 제1 홈(GR1)의 내부 벽면은 베이스 세그먼트(BS)의 측면을 구성한다. 따라서, 베이스 세그먼트(BS) 각각은 경사진 측면을 가지며 예컨대 실질적으로 사다리꼴 형상의 단면을 가진다.
발광 층(13)은 그 표면에 제1 홈(GR1)의 형상을 이어받도록(즉, 유지하도록) 형성되고 제1 홈(GR)과 동일한 메쉬 형상을 가지는 홈(GR2)(이하, "제2 홈"이라 함)을 가진다. 구체적으로, 도 1a에 나타난 바와 같이, 양자 우물 층(WA) 및 장벽 층(BA)은 베이스 세그먼트(BS)의 세그먼트 형상을 유지하면서 베이스 층(BL)에 형성된다. 따라서, 양자 우물 층(WA) 및 장벽 층(BA)은 베이스 층(BL)의 제1 홈(GR1)의 각각의 홈 부분에 대응하는 위치에 홈을 가진다. p형 반도체 층(15)과 가장 근접해있는 장벽 층(BA)에 형성된 홈은 제2 홈(GR2)이다.
제2 홈(GR2) 이외의 발광 층(13)의 표면, 즉 장벽 층(BA)의 표면의 부분은 평탄부(FL2)(이하, "제2 평탄부"라고 함)로 형성된다. 제2 평탄부(FL2) 각각은 제1 평탄부(FL1)의 각각에 대응하는 위치와 형상으로 형성된다.
즉, 발광 층(13)은 그 표면에 제2 평탄부(FL2) 및 제2 홈(GR2)을 가진다. 제2 홈(GR2)은 발광 층(13)을 섬-형상(island-shaped)의 복수의 발광 세그먼트(ES)로 구획하도록 형성된다. 발광 세그먼트(ES) 각각은 베이스 세그먼트(BS)의 각각에 대응하도록 형성된다. 즉, 발광 세그먼트(ES) 각각은 발광 층(13)의 표면에서 임의의 망사형으로 구획된다. 발광 세그먼트(ES)의 크기 및 형상은 임의로 변경되고 분포된다.
도 2a는 발광 층(13)의 구조를 나타내는 단면도이다. 도 2는 도 1a의 점선으로 둘러싸인 부분이 확대되는 부분 확대된 단면도를 포함한다. 이제 도 2a를 참조로 발광 층(13)에 대해 더 상세히 설명한다. 발광 층(13)의 베이스 층(BL)은 AlxGa1 - xN (0 ≤ x ≤ 1)의 조성을 가진다. 양자 우물 층(WA)은 InGaN의 조성을 가진다. 장벽 층(BA)은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가진다.
장벽 층(BA)은 베이스 층(BL)보다 작은 Al 조성 y를 가진다. 구체적으로, 장벽 층(BA)의 Al 조성 y는 베이스 층(BL)의 Al 조성 x보다 작다. 즉, 조성 x 및 조성 y는 x > y의 관계를 만족시킨다.
도 2b 및 도 2c는 베이스 층(BL)과 장벽 층(BA)의 조성 예를 나타낸다. 예를 들어, 도 2b에 나타낸 바와 같이, 베이스 층(BL)은 AlN의 조성을 가지며, 장벽 층(BA)은 AlGaN의 구성을 가진다(즉, x = 1 및 0 < y < 1). 또한, 예를 들어, 도 2c에 나타낸 바와 같이, 베이스 층(BL)은 AlN의 조성을 가지며, 장벽 층(BA)은 GaN의 조성을 가진다(즉, x = 1 및 y = 0).
이제, 발광 층(13)에 대해 설명한다. 본 실시예에서, 베이스 층(BL)은 AlN 층으로 구성된다. 베이스 층(BL)의 베이스 세그먼트(BS)(즉, 제1 홈(GR1))는 예컨대 베이스 층(BL)으로서 AlN 층을 상대적으로 저온에서 n형 반도체 층(12)에 성장하여 형성될 수 있다.
더 구체적으로, n형 반도체 층(12)과 다른 결정 조성의 베이스 층(BL)이 n형 반도체 층(12)에 성장되면, 응력(변형)은 베이스 층(BL)에 생성된다. 예를 들어, 베이스 층(BL)은 n형 반도체 층(12)보다 작은 격자 상수를 가진다. 예를 들어, n형 반도체 층(12)으로서 GaN 층에 베이스 층(BL)으로서 AlN 층을 형성하는 경우, AlN 층은 GaN 층에 의해 인장 변형(tensile strain)이 발생한다. 따라서, AlN 층은 성장 동안 인장 응력이 발생한다. GaN 층에 AlN 층을 성장하면, 성장 시작시 또는 성장 동안에 AlN 층에 홈이 생겨 AlN 층은 3차원적으로 성장한다. 따라서, AlN 층은 입체적으로 성장하고, 복수의 미세한 요철이 형성된다. 이런 홈의 형성의 시작점은 제1 홈(GR1)의 하단 부분(BP)이다.
GaN 층에 저온으로 AlN 층을 성장하는 경우, AlN 층의 3 차원 성장이 촉진된다. 따라서, AlN 층의 표면에 다수의 홈 부분이 서로 결합하면서 형성(제1 홈(GR1)이 형성)되며, 이에 따라 AlN 층의 표면은 복수의 세그먼트로 구획된다. 따라서, 복수의 베이스 세그먼트(BS)를 갖는 베이스 층(BL)이 형성될 수 있다. 본 실시예에서는 745℃의 성장 온도에서 베이스 층(BL)으로 AlN 층을 형성한다.
베이스 층(BL)에 양자 우물 층(WA)으로서 InGaN 층을 형성하면, 양자 우물 층(WA)은 변형된 양자 우물 층으로 형성된다. 또한, 양자 우물 층(WA) 내에 In 함량의 임의의 분포가 발생한다. 즉, 양자 우물 층(WA)은 예컨대 제1 평탄부(FL1)의 영역이 제1 홈(GR1)의 영역과 In 조성에서 다르도록 형성된다. 베이스 세그먼트(BS)의 상부면에서 양자 우물 층(WA)의 층 두께는 베이스 세그먼트(BS)의 측면의 층 두께와 다르다. 따라서, 밴드 갭은 양자 우물 층(WA)의 층 내에서 일정하지 않다. 따라서, 발광 층(13)은 미세한 섬-형상의 요철을 가지기 때문에 다양한 색상의 광을 방출한다.
베이스 세그먼트(BS)의 크기가 감소할수록, 양자 우물 층(WA)으로 유입되는 In 량은 증가하고, 발광 파장은 더 긴 파장 측으로 이동한다. 구체적으로, 베이스 층(BL)으로서 AlN 층에 양자 우물 층(WA)으로서 InGaN 층을 형성하는 경우, InGaN 층은 AlN 층에 의해 압축 변형을 받는다. InGaN 층이 압축 변형을 받으면, In은 InGaN 층으로 쉽게 유입된다. 따라서, 높은 Al 조성을 갖는 베이스 층(BL)에 InGaN 층을 형성하여, 높은 In 조성의 InGaN 층이 형성될 수 있다.
따라서, InGaN 층의 밴드 갭, 즉 양자 준위 사이의 에너지는 작아진다. 양자 우물 층(WA)은 더 긴 파장 측의 발광 파장을 갖는 광을 방출한다. 본 실시예에서 발광 층(13)은 청색 영역보다 더 긴 파장 측에서 강도 피크를 갖는 광을 방출한다.
또한, 본 실시예에서, 장벽 층(BA)의 Al 조성 y는 베이스 층(BL)의 Al 조성 x보다 작다. 따라서, 장벽 층(BA)은 베이스 층(BL)보다 작은 밴드 갭을 가지는데, 이는 전자와 홀의 재결합 확률을 증가시키도록 기능한다.
더 구체적으로, 전자는 n형 반도체 층(12)으로부터 그리고 홀은 p형 반도체 층(15)으로부터 발광 층(13)으로 주입된다. 게다가, 전자 쪽이 홀보다 이동하기 쉽다. 상술한 바와 같이, 발광 층(13)에 대하여, n형 반도체 층(12) 측의 층(즉, 베이스 층(BL))보다 p형 반도체 층(15) 측의 층(즉, 장벽 층(BA))의 밴드 갭이 더 작다. 따라서, 전자와 홀 사이의 이동 효율의 차이가 감소되어, 양자의 재결합 확률이 향상된다.
또한, 베이스 층(BL)은 캐리어의 터널 효과의 생성에 기여하는 층 두께를 갖는 것이 바람직하다. 예를 들어, 캐리어의 터널 효과는 베이스 층(BL)의 층 두께를 감소시킴으로써 야기된다. n형 반도체 층(12)보다 큰 밴드 갭을 갖는 베이스 층(BL)은 전자의 양자 우물 층(WA)으로의 이동을 저해한다. 베이스 층(BL)의 층 두께를 조절하고 터널 효과를 야기함으로써 전자의 양자 우물 층(WA)으로의 이동이 촉진되고, 홀과의 재결합 확률(즉, 발광 효율)이 향상된다.
이와 같이, 발광 층(13)로부터 방출된 광은 광역의 발광 파장 범위 및 높은 발광 강도를 가진다. 발광 층(13)은 높은 연색성을 가지도록 구성되고 높은 발광 강도를 갖는 광을 방출한다.
본 실시예에서, 베이스 층(BL)의 베이스 세그먼트(BS)는 제1 평탄부(FL1)을 가진다. 발광 층(13)의 표면은 제1 평탄부(FL2)를 가진다. 발광 층(13) 전체는 바람직한 결정도(level of crystallinity)를 확보한다.
본 실시예에서, 베이스 층(BL)의 표면이 제1 평탄부(FL1) 및 제1 홈(GR1)으로 구성된 경우가 설명되었다. 그러나, 이러한 표면 구성은 상술한 경우에 한정되지 않는다. 예를 들어, 베이스 층(BL)은 베이스 세그먼트(BS) 상부 표면에 곡면 표면부를 가질 수 있다.
또한, 본 발명자들은 발광 층(13)과 같은 발광 층이 아니라 일면이 평면이고 서로 In 조성을 다르게 변화시킨 복수의 양자 우물 층을 갖는 다중 양자 우물 구조를 형성하는 것을 검토했다. 그러나, 형성될 수 있는 In 조성 범위에 한계가 있다. In 조성을 변화시킨 다중 양자 우물 구조의 발광 층을 갖는 발광 소자의 경우, 본 실시예의 발광 소자(10)와 같은 광범위한 파장 대역을 갖는 스펙트럼은 가능하지 않았다. 구체적으로, 광범위에 걸쳐 일정한 파장 및 강도를 갖는 광은 획득되지 않았다.
따라서, 단순히 In 조성의 확대만으로는 높은 연색성의 광을 얻을 수 없었다. In 조성을 광범위에 걸쳐 변화시키기 위해 과잉 In 조성의 큰 양자 우물 층을 형성하면, In의 분리가 두드러지며, In이 석출되어 흑색화되었다. 또한, 발광 층으로 기능하지 않는 부분이 형성되었다. 따라서, In 조성에 기반하여 발광 스펙트럼의 광역화 및 높은 발광 강도의 양립을 도모하는 데는 한계가 있다고 할 수 있다.
또 다른 예시적인 검토에서, 본 발명자들은 이종 재료로 형성되고 다른 밴드 갭을 갖는 발광 층을 적층하여 발광 소자를 제조하였다. 그러나 단순히 이종 재료를 적층하여 발광 층을 생성하는 것은 밴드 갭에 대응하는 피크 파장의 광을 생성할 뿐, 피크 사이의 스펙트럼 강도는 작았다. 혼색의 균형이 불안정하게 되기 때문에 백색광을 얻는 것은 어려웠다. 이종 재료의 발광 층을 형성하는 공정이 추가되었고, 그로 인한 생성물은 바람직한 결정도를 가지지 않았다. 한편, 본 실시예에서, 미세 구조의 양자 우물 층(WA)을 갖는 발광 기능 층(13)을 형성함으로써 쉽고 확실하게 가시 영역의 광범위한 발광 파장 대역(반치폭)을 갖는 광이 용이하고 확실하게 달성되었다.
일실시예로서, 본 발명자들은 다음의 층 두께를 갖는 발광 층(13)을 형성했다. 베이스 층(BL)은 4nm의 층 두께를 가지며, 양자 우물 층(WA)은 3nm의 층 두께를 가지고 있었다. 장벽 층(BA)이 GaN 층으로 구성되는 경우, GaN 층의 층 두께는 7nm였다. 장벽 층(BA)이 AlGaN 층으로 구성되는 경우, AlGaN 층의 층 두께는 4nm였다. 베이스 세그먼트(BS)의 면내(in-plane) 방향의 크기는 수십 nm 내지 수 μm의 크기였다.
Al 조성 y가 증가할수록, 획득된 스펙트럼의 피크는 장 파장측으로 이동한다. 이는 Al 조성 y를 다양한 방식으로 조정함으로써 발광색이 조정될 수 있다는 것을 의미한다. 여기에는 두 가지 원인이 있을 수 있다. 첫째, Al 조성 y가 증가할수록 양자 우물 층(WA)에 생기는 응력 변형이 증가한다. 양자 우물 층(WA)에 생기는 응력 변형이 증가하면, 양자 우물 층(WA)의 내부 전계가 커진다. 따라서, 양자 우물 층(WA)의 밴드는 기울어지며, 실질적인 밴드 갭은 작아진다. 제2 원인은 장벽 층(BA)에 대한 In의 확산 정도의 차이이다. 장벽 층(BA)의 Al 조성 y가 작을수록, 양자 우물 층(WA)에서 장벽 층(BA)으로의 In 확산이 쉬워진다. 따라서, 양자 우물 층(WA)의 실질적인 In 함량은 감소한다.
본 실시예에서, 양자 우물 층(WA) 및 장벽 층(BA)이 각각 1층으로 형성되는 경우가 설명되었다. 그러나, 양자 우물 층(WA) 및 장벽 층(BA)의 수는 상술한 경우로 한정되지 않는다. 예를 들어, 복수의 양자 우물 층(WA) 및 복수의 장벽 층(BA)이 형성될 수 있다. 즉, 양자 우물 구조 층(QWL)은 적어도 하나의 양자 우물 층(WA) 및 적어도 하나의 장벽 층(BA)을 가져야 한다. 더 상세하게, 발광 층(13)은 베이스 층(BL)에서 적어도 하나의 양자 우물 층(WA) 및 적어도 하나의 장벽 층(BA)이 각각 교대로 적층되는 구조를 가져야 한다.
[변형된 예 1]
도 3a는 제1 실시예의 변형된 예 1에 따른 반도체 발광 소자(30)의 구조를 나타내는 단면도이다. 발광 소자(30)는 발광 기능 층(33)(발광 층)의 구조를 제외하고 발광 소자(10)와 동일한 구성을 가진다. 발광 층(33)의 구조에서 베이스 층(BL)에 복수(본 변형된 예에서는 2개)의 양자 우물 층(WA1 및 WA2) 및 복수(본 변형된 예에서는 2개)의 장벽 층(BA1 및 BA2)이 교대로 적층된다. 즉, 발광 층(33)은 다중 양자 우물(MQW) 구조의 양자 우물 구조 층(QWL)을 가진다. 본 변형된 예에서, 양자 우물 층(WA1 및 WA2)은 동일한 조성, 예컨대 InGaN 조성을 가진다.
본 변형된 예에서, 장벽 층(BA1 및 BA2)은 p형 반도체 층(15)에 가까워질수록 Al 조성이 작아지도록 구성된다. 더 구체적으로, 장벽 층(BA1)은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가지며, 장벽 층(BA2)은 AlzGa1 - zN (0 ≤ z ≤ 1)의 조성을 가진다. 조성 y 및 z는 y > z의 관계를 만족시키며, 베이스 층(BL)의 Al 조성 x는 x > y > z의 관계를 만족시킨다.
베이스 층(BL) 및 장벽 층(BA1 및 BA2)의 조성의 예는 도 3b 및 3c에 나타난다. 예를 들어, 도 3b에 나타난 바와 같이, 베이스 층(BL)은 AlN 층이며, 장벽 층(BA1)은 AlGaN 층이다. 또한, 장벽 층(BA2)은 장벽 층(BA1)보다 작은 Al 조성 z를 갖는 AlGaN 층(즉, x = 1, 0 < y < 1, 0 < z < 1, y > z)이다. 예를 들어, 도 3c에 나타난 바와 같이, 베이스 층(BL)은 AlN 층이며, 장벽 층(BA1)은 AlGaN 층이며, 장벽 층(BA2)는 GaN 층이다(상세하게, x = 1, 0 < y < 1, z = 0). 본 변형된 예에서, 장벽 층(BA1 및 BA2)의 층 두께는 4nm로 했다.
장벽 층(BA1 및 BA2)은 p형 반도체 층(15)에 가까워질 때 Al 조성이 작아지도록 구성되어야 한다. 예컨대 조성 x, y 및 z가 x = y > z 또는 x > y = z의 관계를 충족하는 동일한 Al 조성을 갖는 복수의 장벽 층이 포함될 수 있다.
본 변형된 예에서, 베이스 층(BL) 및 장벽 층(BA1 및 BA2)은 n형 반도체 층(12)에서 p형 반도체 층(15)으로의 방향으로 Al 조성이 점차 감소하도록 형성된다. 이와 같이 베이스 층(BL) 및 장벽 층(BA1 및 BA2)을 구성하면, 홀을 발광 층(33)으로 주입하는 효율이 높은 자유도(degree of freedom)로 조정될 수 있다.
p형 반도체 층(15)을 향한 Al 조성을 감소시킴으로써 발광 색감이 용이하게 설계될 수 있다. 이것은 양자 우물 층(WA1 및 WA2)이 상부 및 하부 측의 장벽 층 모두로부터 응력 변형을 받아서 응력 변형의 정도가 장벽 층의 각각의 Al 조성에 영향을 미치기 때문이다. 예를 들어, 각 층이 상이한 Al 조성을 가지는 경우, 양자 우물 층은 상부 장벽 층에 비해 하부 장벽 층의 Al 조성이 더 크도록 형성되며, 또 하나의 양자 우물 층은 하부 장벽 층에 비해 상부 장벽 층의 Al 조성이 더 크도록 형성된다. 이 경우, 각각의 양자 우물 층에 가해지는 총 응력 변형의 크기가 판단될 수 있어서, 발광 파장의 설계가 곤란하게 된다. 이에 반대로, 본 변형된 예의 경우와 같이, p형 반도체 층(15)을 향한 Al 조성을 감소시킴으로써, 다중 양자 우물의 각각의 양자 우물 층으로부터 p형 반도체 층(15)으로 발광되는 파장이 짧아질 수 있다. 따라서, 간단하고 용이하게 설계 가능한 구조가 달성될 수 있다. 또한, 다중 양자 우물 구조는 발광 효율을 더 향상시킨다. 따라서, 높은 연색성 및 높은 발광 강도의 양립이 실현된다.
[변형된 예 2]
도 4는 제1 실시예의 변형된 예 2에 따른 반도체 발광 소자(50)의 구조를 나타내는 단면도이다. 발광 소자(50)는 발광 기능 층(53)의 구성을 제외하고 발광 소자(10)와 동일한 구성을 가진다. 발광 기능 층(53)은 n형 반도체 층(12)과 발광 소자(10)의 발광 층(13)(제1 발광 층) 사이에 적어도 하나의 양자 우물 층(WB) 및 복수의 장벽 층(BB)이 각각 교대로 적층되는 발광 층(53A)(제2 발광 층)을 가진다.
본 변형된 예에 따르면, 발광 층(53A)은 n형 반도체 층(12) 상에 균일하게 평평한 양자 우물 층(WB)이 2개의 장벽 층(BB)에 의해 둘러싸인 구조를 가진다. p형 반도체 층(15)에 가장 가까운 장벽 층(BB)에, 발광 층(13)(베이스 층(BL))이 형성된다. 양자 우물 층(WB)은 예컨대 양자 우물 층(WA)과 동일한 조성, 예컨대 InGaN의 조성을 가진다. 장벽 층(BB) 각각은 n형 반도체 층(12)과 동일한 조성, 예컨대 GaN의 조성을 가진다.
본 변형된 예에 따르면, 제1 실시예에 따른 발광 소자(10)에서 양자 우물 구조의 발광 층(53A)은 발광 층(13)의 n형 반도체 층(12) 측에 추가된다. 제1 실시예에 비해, 순청색 영역에서 발광 파장 피크를 갖는 광이 추가로 방출된다. 본 실시예에 따른 구성은 예컨대 청색 영역의 광 강도를 증가시키는데 이점적이다.
도 5는 반도체 발광 소자(50)에서 장벽 층(BA)을 GaN 층으로 형성한 경우와 AlN 층으로 형성한 경우의 발광 기능 층(53)에서의 스펙트럼 곡선을 나타낸다. 장벽 층(BA)이 AlN 층으로 이루어진 구성은 조성 x 및 y가 x = y = 1을 만족하는 구성과 동일하다. 장벽 층(BA)을 GaN 층으로 형성한 경우의 스펙트럼 곡선은 곡선 C1이다. 장벽 층(BA)을 AlN 층으로 형성한 경우의 스펙트럼 곡선은 곡선 C2이다.
도 5에 나타낸 바와 같이, 장벽 층(BA)의 Al 조성이 증가하면, 획득된 광의 스펙트럼 강도의 피크는 장파장 측으로 이동된다. 두 곡선의 피크 파장은 청색 영역으로부터 이동되며, 발광 파장 대역은 광대역이다. 대략 420nm의 피크 PK는 발광 층(53A)으로부터 방출된 광에 의한 것이다. 피크 PK의 위치는 두 곡선에서 동일하다. 곡선 C1의 경우, 장파장 영역의 피크의 위치는 청색 영역의 피크 PK의 위치로부터 멀다(떨어져있다). 이런 두 피크는 곡선 C2에서 비교적 가깝다. 상술한 바와 같이, 장벽 층(BA)의 Al 조성을 조정함으로써 방출된 광의 색감은 조정될 수 있음이 확인된다.
본 실시예에서는 발광 기능 층(13, 33 및 53)과 p형 반도체 층(15) 사이에 전자 차단 층(14)을 형성하는 경우가 설명되었다. 그러나, 본 실시예는 전자 차단 층(14)을 제공하는 경우에 한정되지 않는다. 예를 들어, p형 반도체 층(15)은 발광 기능 층(13) 위에 형성될 수 있다. 또한, 전자 차단 층(14)은 n형 반도체 층(12) 및 p형 반도체 층(15)보다 큰 밴드 갭을 가진다. 따라서, 전자는 발광 기능 층(13)을 통해 p형 반도체 층(15) 측에 오버플로우(overflowing)하는 것이 억제될 수 있다. 따라서, 대-전류 구동시 및 고온 동작시에는 전자 차단 층(14)을 배치하는 것이 바람직하다.
또한, 제1 실시예와 변형된 예 1 및 예 2는 서로 결합이 가능하다. 예를 들어, 발광 층(53A)은 발광 기능 층(33)의 아래에 형성될 수 있다. 또한, 발광 층들(13 및 33)이 적층될 수 있다.
본 실시예 및 그 변형 예에서, 발광 기능 층(13)은 베이스 층(BL) 및 베이스 층(BL)에 형성되는 양자 우물 구조 층(QWL)을 가지며, 베이스 층(BL)은 n형 반도체 층(12)으로부터 응력 변형을 받는 조성을 가지고 임의의 망사형으로 구획된 복수의 베이스 세그먼트(BS)를 가지며, 양자 우물 구조 층(QWL)은 적어도 하나의 양자 우물 층(WA) 및 적어도 하나의 장벽 층(WB)으로 구성된다. 또한, 발광 층(13)은 발광 층(13)을 임의의 망사형으로 형성된 섬-형상의 복수의 발광 세그먼트(ES)로 구획하는 제2 홈(GR2)을 가진다.
베이스 층(BL)은 AlxGa1 - xN (0 ≤ x ≤ 1)의 조성을 가진다. 적어도 하나의 장벽 층(BA)은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가지며, 조성 x 및 조성 y는 x > y의 부등식을 만족한다. 따라서, 가시 파장 영역의 광범위에 걸쳐 높은 발광 강도를 갖는 광을 방출할 수 있는 발광 소자를 제공하는 것이 가능하다.
본 실시예에서, 제1 도전형은 n형의 도전형이고, 제2 도전형이 n형과 반대인 p형의 도전형이다. 그러나, 제1 도전형이 p형이고 제2 도전형이 n형일 수 있다.
10, 30, 50 반도체 발광 소자
12 n형 반도체 층(제1 반도체 층)
13, 33, 53 발광 기능 층(발광 층)
53A 발광 층
14 전자 차단 층
15 p형 반도체 층 (제2 반도체 층)
BL 베이스 층
WA, WA1, WA2 양자 우물 층
BA, BA1, BA2 장벽 층
GR1, GR2 제1 홈 및 제2 홈

Claims (6)

  1. 제1 도전형의 제1 반도체 층;
    제1 반도체 층에 형성되고 발광 층을 포함하는 발광 기능 층; 및
    발광 기능 층에 형성되고 제1 반도체 층과 반대의 도전형을 갖는 제2 반도체 층을 포함하는 반도체 발광 소자로서,
    상기 발광 층은: 제1 반도체 층으로부터 응력 변형(stress strain)을 받는 조성을 가지며 임의의 망사형으로 구획된 복수의 베이스 세그먼트를 가지는 베이스 층; 및 베이스 층에 형성되고 적어도 하나의 양자 우물 층(quantum well layer)과 적어도 하나의 장벽 층으로 구성된 양자 우물 구조 층을 포함하며,
    상기 베이스 층은 AlxGa1 - xN (0 ≤ x ≤ 1)의 조성을 가지고, 상기 적어도 하나의 장벽 층은 AlyGa1 - yN (0 ≤ y < 1)의 조성을 가지며, 상기 조성 x 및 조성 y는 x > y의 관계를 만족시키는 반도체 발광 소자.
  2. 제 1 항에 있어서,
    상기 제1 반도체 층은 GaN의 조성을 가지며, 상기 적어도 하나의 양자 우물 층은 InGaN의 조성을 가지는 반도체 발광 소자.
  3. 제 1 항에 있어서,
    상기 양자 우물 구조 층은 다중 양자 우물 구조를 가지며,
    상기 다중 양자 우물 구조의 각각의 장벽 층은 제2 반도체 층에 가까워짐에 따라 Al 조성이 감소하도록 형성되는 반도체 발광 소자.
  4. 제 1 항에 있어서,
    상기 베이스 층은 캐리어의 터널 효과(tunnel effect)를 야기하는 층 두께를 가지는 반도체 발광 소자.
  5. 제 1 항에 있어서,
    상기 베이스 층은 AlN의 조성을 가지며, 상기 적어도 하나의 장벽 층 중 제2 반도체 층에 가장 근접하게 위치하는 장벽 층은 GaN의 조성을 가지는 반도체 발광 소자.
  6. 제 1 항에 있어서,
    상기 발광 기능 층은 제1 반도체 층과 발광 층 사이에, 적어도 하나의 양자 우물 층 및 복수의 장벽 층으로 구성된 양자 우물 구조를 가지는 반도체 발광 소자.
KR1020177012269A 2014-11-07 2015-10-22 반도체 발광 소자 KR102397662B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014226940A JP6433248B2 (ja) 2014-11-07 2014-11-07 半導体発光素子
JPJP-P-2014-226940 2014-11-07
PCT/JP2015/079808 WO2016072278A1 (ja) 2014-11-07 2015-10-22 半導体発光素子

Publications (2)

Publication Number Publication Date
KR20170080599A KR20170080599A (ko) 2017-07-10
KR102397662B1 true KR102397662B1 (ko) 2022-05-13

Family

ID=55909005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177012269A KR102397662B1 (ko) 2014-11-07 2015-10-22 반도체 발광 소자

Country Status (6)

Country Link
US (1) US10062805B2 (ko)
EP (1) EP3217440B1 (ko)
JP (1) JP6433248B2 (ko)
KR (1) KR102397662B1 (ko)
CN (1) CN107078188B (ko)
WO (1) WO2016072278A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433246B2 (ja) 2014-11-07 2018-12-05 スタンレー電気株式会社 半導体発光素子
KR102569461B1 (ko) * 2015-11-30 2023-09-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 이를 포함하는 조명장치
US10541514B2 (en) * 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
JP2017220586A (ja) * 2016-06-08 2017-12-14 国立大学法人 東京大学 半導体発光素子
CN113964246A (zh) * 2021-09-28 2022-01-21 厦门士兰明镓化合物半导体有限公司 发光二极管的外延结构及其制造方法
CN114038954A (zh) * 2021-09-28 2022-02-11 厦门士兰明镓化合物半导体有限公司 发光二极管的外延结构及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244042A1 (en) 2009-03-30 2010-09-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element and manufacturing method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608330B1 (en) 1998-09-21 2003-08-19 Nichia Corporation Light emitting device
JP4047150B2 (ja) 2002-11-28 2008-02-13 ローム株式会社 半導体発光素子
JP2005093682A (ja) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd GaN系半導体発光素子及びその製造方法
TWI247439B (en) 2004-12-17 2006-01-11 Genesis Photonics Inc Light-emitting diode device
KR100691177B1 (ko) 2005-05-31 2007-03-09 삼성전기주식회사 백색 발광소자
JP4984119B2 (ja) * 2006-08-28 2012-07-25 スタンレー電気株式会社 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法
JP2008071805A (ja) 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan 複数種の蛍光体を2種類以上の半導体発光素子上に塗布した多波長発光装置。
JP2010510661A (ja) 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 複数の抽出器による高い光抽出効率の発光ダイオード(led)
KR100809229B1 (ko) 2006-11-20 2008-03-05 삼성전기주식회사 질화물 반도체 발광 소자 및 제조방법
TWI321366B (en) * 2007-02-09 2010-03-01 Huga Optotech Inc Epi-structure with uneven multi-quantum well and the method thereof
JP5050574B2 (ja) 2007-03-05 2012-10-17 住友電気工業株式会社 Iii族窒化物系半導体発光素子
KR101164026B1 (ko) * 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
TWI381547B (zh) 2007-11-14 2013-01-01 Advanced Optoelectronic Tech 三族氮化合物半導體發光二極體及其製造方法
KR101521259B1 (ko) 2008-12-23 2015-05-18 삼성전자주식회사 질화물 반도체 발광소자 및 그 제조방법
WO2010095531A1 (ja) 2009-02-18 2010-08-26 独立行政法人産業技術総合研究所 半導体発光ダイオード
JP4881491B2 (ja) 2009-09-01 2012-02-22 株式会社東芝 半導体発光素子
JP2011249460A (ja) 2010-05-25 2011-12-08 Meijo University 白色発光ダイオード
US8969890B2 (en) * 2010-11-04 2015-03-03 Koninklijke Philips N.V. Solid state light emitting devices based on crystallographically relaxed structures
JP2012169383A (ja) * 2011-02-11 2012-09-06 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子およびその製造方法
KR101804408B1 (ko) * 2011-09-05 2017-12-04 엘지이노텍 주식회사 발광소자
KR101827973B1 (ko) * 2011-09-06 2018-02-13 엘지이노텍 주식회사 발광소자
CN104094419A (zh) 2012-01-31 2014-10-08 索泰克公司 具有电荷载流子的改进分布的光敏器件及其形成方法
KR20130106690A (ko) 2012-03-20 2013-09-30 삼성전자주식회사 백색 발광 다이오드
US9401453B2 (en) 2012-05-24 2016-07-26 The University Of Hong Kong White nanoLED without requiring color conversion
US9024292B2 (en) 2012-06-02 2015-05-05 Xiaohang Li Monolithic semiconductor light emitting devices and methods of making the same
US9318600B2 (en) 2013-04-16 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device and method for manufacturing same
KR102188493B1 (ko) * 2014-04-25 2020-12-09 삼성전자주식회사 질화물 단결정 성장방법 및 질화물 반도체 소자 제조방법
KR102212561B1 (ko) 2014-08-11 2021-02-08 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자 패키지
JP6457784B2 (ja) * 2014-11-07 2019-01-23 スタンレー電気株式会社 半導体発光素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244042A1 (en) 2009-03-30 2010-09-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
KR20170080599A (ko) 2017-07-10
EP3217440B1 (en) 2020-03-11
US20180033911A1 (en) 2018-02-01
WO2016072278A1 (ja) 2016-05-12
EP3217440A4 (en) 2018-06-13
CN107078188A (zh) 2017-08-18
EP3217440A1 (en) 2017-09-13
CN107078188B (zh) 2019-07-16
JP6433248B2 (ja) 2018-12-05
JP2016092287A (ja) 2016-05-23
US10062805B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
KR102397660B1 (ko) 반도체 발광 소자
KR102397662B1 (ko) 반도체 발광 소자
KR102397663B1 (ko) 반도체 발광 소자
KR102397661B1 (ko) 반도체 발광 소자
KR102440798B1 (ko) 반도체 발광 소자
JP2017220586A (ja) 半導体発光素子
JP6885675B2 (ja) 半導体発光素子
US10186634B2 (en) Semiconductor light-emitting element
US9991420B2 (en) Semiconductor light-emitting element
JP2017126684A (ja) 半導体発光素子

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant