KR102393054B1 - High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof - Google Patents

High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof Download PDF

Info

Publication number
KR102393054B1
KR102393054B1 KR1020200170627A KR20200170627A KR102393054B1 KR 102393054 B1 KR102393054 B1 KR 102393054B1 KR 1020200170627 A KR1020200170627 A KR 1020200170627A KR 20200170627 A KR20200170627 A KR 20200170627A KR 102393054 B1 KR102393054 B1 KR 102393054B1
Authority
KR
South Korea
Prior art keywords
primer
dna
artificial sequence
environmental
stress
Prior art date
Application number
KR1020200170627A
Other languages
Korean (ko)
Inventor
유수철
이정우
Original Assignee
한경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한경대학교 산학협력단 filed Critical 한경대학교 산학협력단
Priority to KR1020200170627A priority Critical patent/KR102393054B1/en
Application granted granted Critical
Publication of KR102393054B1 publication Critical patent/KR102393054B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a high-efficiency molecular marker set for discriminating a genotype related to environmental and biotic stress resistance in rice, and a use of the same, and more particularly, to a marker composition for discriminating a genotype of a gene related to environmental and biotic stress resistance in rice, and a method for discriminating the genotype of the gene related to the environmental and biological stress resistance in rice using the same, the marker composition comprising 23 oligonucleotide primer sets in which in oligonucleotides represented by SEQ ID NOs: 91 to 182, the oligonucleotides of SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1, and SEQ ID NO: 4n+2, in which n has the same value, (n is a natural number from 23 to 45), are one primer set.

Description

벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전형 판별을 위한 고효율 분자마커 세트 및 이의 용도{High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof}High efficiency molecular marker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof

본 발명은 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전형 판별을 위한 고효율 분자마커 세트 및 이의 용도에 관한 것으로, 구체적으로는, 플루이다임(Fluidigm) 기반의 총 23개의 올리고뉴클레오티드 프라이머 세트를 이용하여 벼 자원의 염(salt) 스트레스, 건조(drought) 스트레스, 인산 결핍 스트레스, 침수(submergence) 스트레스, 저산소 스트레스, 벼멸구(brown plant hopper) 및 목도열병에 대한 저항성 관련 유전형을 판별하는 방법에 관한 것이다.The present invention relates to a set of high-efficiency molecular markers for genotyping related to environmental and biological stress resistance of rice resources and their use, specifically, using a total of 23 oligonucleotide primer sets based on Fluidigm. A method for determining the resistance-related genotypes of rice resources to salt stress, dry stress, phosphate deficiency stress, submergence stress, hypoxic stress, brown plant hopper and swamp fever.

한반도 온난화 심화에 따른 식량작물의 재배지역이 변하고 있으며, 다양한 환경 및 생물적 스트레스가 빈번히 발생하고 있어 이에 대한 신속한 대응이 요구되고 있다. 과거 40년간('1975~'2015) 한반도의 월별 기온 상승률이 점차 높아지고 있으며, 2/3/10/11월 평균기온 상승은 약 0.37℃/10년으로 작물생육에 악영향을 미치고 있으며, 병해충의 발생량도 증가하고 있는 실정이다. 이러한 기후변화에 신속대응하기 위해서 유전적 배경이 다양한 육종소재 집단의 구축이 필요하며, 육종 시스템의 효율성 증대를 위한 High-throughput SNP 분석 시스템 구축이 요구되고 있다.The growing regions of food crops are changing due to the deepening of global warming on the Korean Peninsula, and various environmental and biological stresses frequently occur, requiring prompt response. Over the past 40 years ('1975~'2015), the monthly temperature increase rate on the Korean Peninsula has been gradually increasing, and the average temperature increase in February 3/10/November is about 0.37℃/10 years, which adversely affects crop growth. is also increasing. In order to respond quickly to such climate change, it is necessary to establish a breeding material group with various genetic backgrounds, and a high-throughput SNP analysis system to increase the efficiency of the breeding system is required.

최근, 육종기술의 발달과 더불어 2개 이상의 유전자 집적된 계통수가 증가되고 있으며, 생물검정(bio-assay)에 의한 표현형 중심의 선발은 한계에 봉착하였다. 따라서, 유전자 특이적인 분자마커를 이용한 표적 형질 함유 계통을 신속하고 정확하게 선발할 수 있는 방법이 필요한 실정이다.Recently, with the development of breeding technology, the number of phylogenetic lines with two or more genes is increasing, and phenotype-based selection by bio-assay has reached a limit. Therefore, there is a need for a method capable of rapidly and accurately selecting a lineage containing a target trait using a gene-specific molecular marker.

한편, 한국공개특허 제2014-0056432호에는 '벼의 비생물성 스트레스 노출 분석용 키트 및 분석 방법'이 개시되어 있고, 한국공개특허 제2019-0049567호에는 '벼의 아종 감별용 SNP 마커 세트 및 이의 용도'가 개시되어 있으나, 본 발명의 '벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전형 판별을 위한 고효율 분자마커 세트 및 이의 용도'에 대해서는 기재된 바가 없다.On the other hand, Korean Patent Application Laid-Open No. 2014-0056432 discloses 'kit and analysis method for abiotic stress exposure analysis of rice', and Korean Patent Publication No. 2019-0049567 discloses 'SNP marker set for subspecies discrimination of rice and Although the 'use thereof' is disclosed, there is no description of 'a set of high-efficiency molecular markers and their use for genotyping related to environmental and biological stress resistance of rice resources' of the present invention.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 벼 육종의 효율을 증가시키기 위해 주요 환경 스트레스 및 생물적 스트레스 저항성 관련 유전형을 판별할 수 있는 고효율 분자마커 분석시스템을 개발하고자, 국제쌀연구소(IRRI)의 3,000 품종 데이터베이스(http://snp-seek.irri.org/), 기존 연구 문헌 및 염기서열 분석(sequencing) 결과를 활용하여 환경 및 생물적 스트레스 저항성 관련 유전자 또는 QTL (Quantitative trait locus)의 SNP (single nucleotide polymorphism) 또는 InDel (Insertion/Deletion) 변이를 탐색하여, 확인된 변이를 유전자 또는 QTL 특이적 마커 개발에 사용하였다. 총 23개의 KASP (kompetiive allele specific PCR) 마커를 개발하여 플루이다임(Fluidigm) 마커로 전환하였으며, 전환된 Fluidigm 마커들을 이용하여 국내 외 172개 벼 품종에 대하여 유전형 분석(genotyping)을 수행하여 각 품종들의 환경 및 생물적 스트레스 저항성 관련 유전자형의 프로파일을 작성함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present inventors wanted to develop a high-efficiency molecular marker analysis system that can discriminate genotypes related to resistance to major environmental stresses and biological stresses in order to increase the efficiency of rice breeding, Using the IRRI's 3,000 cultivar database (http://snp-seek.irri.org/), existing research literature, and sequencing results, environmental and biological stress resistance-related genes or QTL (Quantitative trait) locus) or SNP (single nucleotide polymorphism) or InDel (Insertion/Deletion) mutations were searched for, and the identified mutations were used to develop gene or QTL-specific markers. A total of 23 KASP (kompetiive allele specific PCR) markers were developed and converted into Fluidigm markers. Genotyping was performed on 172 domestic and foreign rice varieties using the converted Fluidigm markers to perform genotyping for each variety. By creating a profile of their environmental and biological stress resistance-related genotypes, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 서열번호 91 내지 182로 표시된 올리고뉴클레오티드에서, n이 동일한 값을 갖는 서열번호 4n-1, 서열번호 4n, 서열번호 4n+1 및 서열번호 4n+2의 올리고뉴클레오티드가 하나의 프라이머 세트(n은 23 내지 45의 자연수)인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별을 위한 마커 조성물을 제공한다.In order to solve the above problems, the present invention provides an oligo of SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1, and SEQ ID NO: 4n+2 in which n has the same value in the oligonucleotides shown in SEQ ID NOs: 91 to 182 Provides a marker composition for genotyping environmental and biological stress resistance-related genes of rice resources, comprising 23 oligonucleotide primer sets, characterized in that the nucleotide is one primer set (n is a natural number from 23 to 45) do.

또한, 본 발명은 상기 23개의 올리고뉴클레오티드 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별용 키트를 제공한다.In addition, the present invention provides a set of 23 oligonucleotide primers; And it provides a kit for genotyping genes related to environmental and biological stress resistance of rice resources, including reagents for performing an amplification reaction.

또한, 본 발명은 벼 자원의 시료에서 게놈 DNA를 분리하는 단계; 상기 분리된 게놈 DNA를 주형으로 하고, 상기 23개의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및 상기 증폭 단계의 산물의 유전형을 결정하는 단계;를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별방법을 제공한다.In addition, the present invention comprises the steps of isolating genomic DNA from a sample of rice resources; amplifying a target sequence by using the isolated genomic DNA as a template and performing an amplification reaction using the 23 oligonucleotide primer sets; and determining the genotype of the product of the amplification step.

본 발명의 23개 분자마커가 적용된 플루이다임(Fluidigm) 기반 DNA 칩을 이용하면 다양한 벼 품종과 유전자원 등의 환경 및 생물적 스트레스 저항성 관련 유전형을 대규모로 빠르게 분석할 수 있으므로, 분석에 소요되는 비용과 시간을 최소화할 뿐 아니라 많은 벼 자원들에 대한 체계적인 관리가 가능할 수 있어, 벼 신품종 육종의 효율 증진, 품종 보호 및 종자 순도 유지에 유용하게 활용될 수 있을 것이다.By using the Fluidigm-based DNA chip to which 23 molecular markers of the present invention are applied, genotypes related to environmental and biological stress resistance such as various rice varieties and genetic resources can be quickly analyzed on a large scale, so As it can minimize cost and time and enable systematic management of many rice resources, it will be usefully used to improve the efficiency of breeding new rice varieties, protect varieties, and maintain seed purity.

도 1은 Saltol QTL 부근에 존재하는 후보 SNP의 위치(A) 및 개발한 KASP 마커를 이용한 벼 품종(IR64, IR64-Saltol, Pokkali, FL478)의 유전형 검정 결과(B)이다. 노란색으로 표시되어 있는 대립유전자 1 type가 donor 유형을 의미하며, 파란색으로 표시되어 있는 대립유전자 2 type가 non-donor 유형을 의미한다.
도 2는 DTY QTL 부위에서 개발된 KASP 마커의 위치를 보여주는 것으로, (A)는 DTY2.2 관련, 그리고 (B)는 DTY4.1 관련 KASP 마커의 위치를 나타낸다.
도 3은 DTY QTL 부위에서 개발된 KASP 마커를 이용한 벼 품종(IR64, IR64_DTY2.2+4.1, Adday sel, Dasan)의 유전형 검정 결과로, (A)는 DTY2.2 관련 KASP 마커, (B)는 DTY4.1 관련 KASP 마커의 검정 결과이다. 노란색으로 표시되어 있는 대립유전자 1 type가 donor 유형을 의미하며, 파란색으로 표시되어 있는 대립유전자 2 type가 non-donor 유형을 의미한다.
도 4는 Dasan 품종의 유전적 배경에 Pup1이 도입된 세대인 BC3F2 분리집단을 이용하여 Pup1 QTL의 K20 또는 K29 유전자를 표적화한 마커의 검정 결과로, 겔 기반 마커 (K20-2_Co-dominant, K29-1_Co-dominant)와 KASP 마커 (Pup1_K20-2, Pup1_K29-1)를 이용한 유전형 분석 결과를 비교한 것이다.
도 5는 Pup1 QTL 위치에 존재하는 K46-1 대립유전자를 탐지하는 KASP 마커를 보여주는 것으로, K46-1의 두가지 SNP 부위에서 Kasalath 유형과 Glaberrima 유형을 구분하는 KASP 마커를 유용 공여체 집단(다양한 유전인자를 함유하고 있는 94개의 외국품종이며, 표 3에 제시된 1 내지 94번 품종)에 적용하여 분석한 결과 No call을 포함한 3가지 유형으로 유전형이 구분되는 것을 확인한 결과를 보여준다.
도 6은 Sub1A 유전자의 SNP에 근거한 겔 기반 마커(A) 및 KASP 마커(B)의 유전형 분석 결과를 비교한 것으로, 대조군 품종(IR64, FR13A, BR11, M202, Nipponbare, IR49830, Komboka, S_mashuri, Swarna)을 이용하여 마커를 검정하였다.
도 7은 Sub1A 유전자의 SNP에 근거한 겔 기반 마커(Sub1_GnS2) 및 KASP 마커(Sub1_AEX1)를 유용 공여체 집단(다양한 유전인자를 함유하고 있는 24개의 외국품종이며, 표 3의 1 내지 21번 품종과 IR64, IR64-Sub1, KOMBOKA 품종)을 이용하여 유전형을 분석한 결과이다.
도 8은 AG1 유전자의 혐기발아와 관련된 SNP 위치(A) 및 개발된 KASP 마커의 검정 결과(B)이다. 노란색으로 표시되어 있는 대립유전자 1 type이 donor 유형을 의미하며, 파란색으로 표시되어 있는 대립유전자 2 type이 non-donor 유형을 의미한다. 초록색은 1 type과 2 type이 동시에 존재하는 이형접합체를 의미한다.
도 9는 Bph3 유전자의 CDS 부위의 서열 변이를 이용하여 개발된 KASP 마커(A) 및 대조군 품종(KANTO PL7, IR72, PTB 18, Suweon 397, 화영, 일미, 새일미, 삼광, 일품)을 이용한 마커 검정 결과(B)이다.
도 10은 Pb1 유전자의 CDS 부위와 대조군 품종의 Pb1 유사 유전자 서열 변이를 이용한 겔 기반 마커 및 KASP 마커에 관한 것으로, 도 10A는 Pb1과 대조군 품종의 Pb1 유사 유전자 염기서열 변이 및 마커 디자인 정보를 보여주는 것이고, 도 10B는 겔 기반 마커의 유전형 분석 결과이며, 도 10C는 Pb1과 유사 유전자(Os11g38580)의 CDS 염기서열 변이를 이용한 KASP 마커 디자인 정보를 보여주는 것이고, 도 10D는 KASP 마커의 유전형 분석 결과이다.
도 11은 본 발명의 플루이다임(Fluidigm) 기반 23개 프라이머 세트를 이용한 벼 172개 품종의 스트레스 저항성 관련 유전형 확인 결과이다. 빨간색은 저항성 유형을, 녹색은 감수성 유형을 나타낸다.
도 12는 본 발명의 플루이다임(Fluidigm) 기반 23개 프라이머 세트를 이용하여 분석한 172개의 벼 품종의 스트레스 저항성 관련 유전형 결과를 토대로 계통 분류를 수행한 결과로, 좌측 도면은 23개 프라이머 세트 모두를 이용한 분석 결과이고, 우측 도면은 염해 저항성(Saltol QTL) 관련 5개의 프라이머 세트를 이용한 분석 결과이다.
1 is a genotyping result of a rice variety (IR64, IR64-Saltol, Pokkali, FL478) using the position (A) of the candidate SNP present in the vicinity of Saltol QTL and the developed KASP marker (B). Allele 1 type indicated in yellow indicates donor type, and allele 2 type indicated in blue indicates non-donor type.
Figure 2 shows the location of the developed KASP marker in the DTY QTL region, (A) is DTY2.2- related, (B) shows the location of the DTY4.1- related KASP marker.
3 is a genotyping result of rice varieties (IR64, IR64_DTY2.2+4.1, Adday sel, Dasan) using KASP markers developed in the DTY QTL region, (A) is DTY2.2- related KASP marker, (B) is These are the assay results of DTY4.1- related KASP markers. Allele 1 type indicated in yellow indicates donor type, and allele 2 type indicated in blue indicates non-donor type.
4 is a test result of a marker targeting the K20 or K29 gene of Pup1 QTL using the BC 3 F 2 isolate, which is the generation in which Pup1 is introduced in the genetic background of Dasan variety, a gel-based marker (K20-2_Co-dominant) , K29-1_Co-dominant) and KASP markers (Pup1_K20-2, Pup1_K29-1) were compared to the results of genotyping.
Figure 5 shows the KASP marker for detecting the K46-1 allele present at the Pup1 QTL position. The KASP marker that distinguishes the Kasalath type and the Glaberrima type at two SNP sites of K46-1 is useful donor population (various genetic factors It contains 94 foreign varieties, and as a result of analysis by applying to varieties 1 to 94 shown in Table 3), it shows the results confirming that the genotypes are classified into three types including No call.
6 is a comparison of the genotyping results of the gel-based marker (A) and the KASP marker (B) based on the SNP of the Sub1A gene, and control cultivars (IR64, FR13A, BR11, M202, Nipponbare, IR49830, Komboka, S_mashuri, Swarna) ) was used to test the marker.
7 is a gel-based marker (Sub1_GnS2) and a KASP marker (Sub1_AEX1) based on the SNP of the Sub1A gene from a useful donor population (24 foreign varieties containing various genetic factors, and varieties 1 to 21 and IR64 in Table 3; This is the result of genotype analysis using IR64-Sub1, KOMBOKA variety).
8 is a SNP position (A) related to anaerobic germination of the AG1 gene and the test result of the developed KASP marker (B). Allele 1 type indicated in yellow indicates donor type, and allele 2 type indicated in blue indicates non-donor type. Green indicates a heterozygote in which type 1 and type 2 exist simultaneously.
9 is a marker using a KASP marker (A) and control varieties (KANTO PL7, IR72, PTB 18, Suweon 397, Hwayoung, Ilmi, Saeilmi, Samkwang, Ilpoom) developed using sequence variation of the CDS region of the Bph3 gene. This is the test result (B).
10 is a gel-based marker and a KASP marker using the CDS region of the Pb1 gene and the Pb1 -like gene sequence variation of the control strain, and FIG. 10A shows the Pb1 -like gene sequence variation and marker design information of Pb1 and the control strain. , FIG. 10B is a genotyping result of a gel-based marker, FIG. 10C is a KASP marker design information using CDS sequence mutation of a Pb1 and similar gene ( Os11g38580 ), and FIG. 10D is a genotyping result of a KASP marker.
11 is a genotype confirmation result related to stress resistance of 172 rice varieties using the 23 primer sets based on Fluidigm of the present invention. Red indicates the resistant type, and green indicates the susceptible type.
12 is a result of phylogenetic classification based on the stress resistance-related genotyping results of 172 rice varieties analyzed using the Fluidigm-based 23 primer sets of the present invention. is the analysis result using , and the figure on the right shows the analysis result using 5 primer sets related to salt damage resistance ( Saltol QTL).

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 서열번호 91 내지 182로 표시된 올리고뉴클레오티드에서, n이 동일한 값을 갖는 서열번호 4n-1, 서열번호 4n, 서열번호 4n+1 및 서열번호 4n+2의 올리고뉴클레오티드가 하나의 프라이머 세트(n은 23 내지 45의 자연수)인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별을 위한 마커 조성물을 제공한다.In order to achieve the object of the present invention, the present invention provides SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1, and SEQ ID NO: 4n, wherein n has the same value in the oligonucleotides shown in SEQ ID NOs: 91 to 182 For genotyping of environmental and biological stress resistance-related genes of rice resources, including 23 oligonucleotide primer sets, characterized in that +2 oligonucleotide is one primer set (n is a natural number from 23 to 45) A marker composition is provided.

본 발명의 마커 조성물에 있어서, 상기 프라이머 세트는 벼 자원에서 환경 및 생물적 스트레스 저항성 연관 유전자 또는 QTL (Quantitative trait locus)에서 확인된 단일염기다형성(single nucleotide polymorphism, SNP) 염기 타입을 검출하는 프라이머 세트로(표 2 참고), 상기 환경 스트레스는 염(salt), 건조(drought), 인산 결핍, 침수(submergence) 및 저산소 스트레스이고, 상기 생물적 스트레스는 벼멸구(brown plant hopper) 및 목도열병일 수 있다.In the marker composition of the present invention, the primer set is a primer set for detecting a single nucleotide polymorphism (SNP) base type identified in a gene or QTL (Quantitative trait locus) associated with environmental and biological stress resistance in rice resources. As (see Table 2), the environmental stress is salt, dry (drought), phosphoric acid deficiency, submergence and hypoxic stress, and the biotic stress may be brown plant hopper and swamp fever. .

또한, 본 발명의 올리고뉴클레오티드 프라이머 세트는 연속되는 서열번호 4개의 올리고뉴클레오티드가 하나의 프라이머 세트를 이루며, 4개의 올리고뉴클레오티드 프라이머는 각각 ASP(SNPtype assay allele specific primer)1, ASP2, LSP(SNPtype assay locus specific primer) 및 STA(SNPtype assay specific target amplification primer)를 나타낸다. STA와 LSP는 SNP 위치 염기를 포함하는 목표 염기서열 증폭을 위해 사용되는 프라이머 세트이고, LSP와 ASP는 SNP 위치 염기를 확인하기 위해 사용되는 프라이머 세트이며, ASP1 및 ASP2는 SNP 위치 염기에서 나타난 다형성에 대해 각각의 대립형질에 특이적인 올리고뉴클레오티드 프라이머로, 각 ASP의 3' 말단 최종 염기가 SNP 위치 염기를 나타낸다.In addition, in the oligonucleotide primer set of the present invention, four consecutive oligonucleotides of SEQ ID NO: 4 form one primer set, and the four oligonucleotide primers are ASP (SNPtype assay allele specific primer)1, ASP2, and LSP (SNPtype assay locus), respectively. specific primer) and STA (SNPtype assay specific target amplification primer). STA and LSP are primer sets used for amplifying a target nucleotide sequence containing SNP locus bases, LSP and ASP are primer sets used to identify SNP locus nucleotides, and ASP1 and ASP2 are polymorphisms shown in SNP locus bases. As an oligonucleotide primer specific for each allele for each ASP, the 3' terminal end base of each ASP represents the SNP position base.

본 발명의 일 구현 예에 있어서, n이 동일한 값을 갖는 서열번호 4n-1, 서열번호 4n, 서열번호 4n+1 및 서열번호 4n+2의 올리고뉴클레오티드는 순서대로 ASP1, ASP2, LSP 및 STA 프라이머에 대응된다.In one embodiment of the present invention, the oligonucleotides of SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1 and SEQ ID NO: 4n+2 having the same value of n are ASP1, ASP2, LSP and STA primers in that order corresponds to

또한, 본 발명의 프라이머는 상기 서열번호 91 내지 182의 염기서열의 부가, 결실 또는 치환된 서열도 포함할 수 있다.In addition, the primer of the present invention may also include an addition, deletion or substituted sequence of the nucleotide sequence of SEQ ID NOs: 91 to 182.

본 발명에 있어서, "프라이머"는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로서 작용할 수 있다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 한다. 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity)뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다.In the present invention, "primer" refers to a single-stranded oligonucleotide sequence complementary to a nucleic acid strand to be copied, and can serve as a starting point for synthesis of a primer extension product. The length and sequence of the primers should allow synthesis of the extension product to begin. The specific length and sequence of the primer will depend on the conditions of use of the primer, such as temperature and ionic strength, as well as the complexity of the DNA or RNA target required.

본 발명에 있어서, 프라이머로서 이용된 올리고뉴클레오티드는 또한 뉴클레오티드 유사체(analogue), 예를들면, 포스포로티오에이트(phosphorothioate), 알킬포스포로티오에이트 또는 펩티드 핵산 (peptide nucleic acid)을 포함할 수 있거나 또는 삽입 물질(intercalating agent)을 포함할 수 있다. 또한, 프라이머는 DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다. 본 발명의 프라이머 핵산 서열은 필요한 경우, 분광학적, 광화학적, 생화학적, 면역화학적 또는 화학적 수단에 의해 직접적으로 또는 간접적으로 검출 가능한 표지를 포함할 수 있다. 표지의 예로는, 효소(예를 들어, HRP (horse radish peroxidase), 알칼리 포스파타아제), 방사성 동위원소(예를 들어, 32P), 형광성 분자, 화학그룹(예를 들어, 비오틴) 등이 있다. 프라이머의 적합한 길이는 사용하고자하는 프라이머의 특성에 의해 결정하지만, 통상적으로 15 내지 30bp의 길이로 사용한다. 프라이머는 주형의 서열과 정확하게 상보적일 필요는 없지만 주형과 혼성복합체(hybrid-complex)를 형성할 수 있을 정도로 상보적이어야만 한다.In the present invention, the oligonucleotide used as a primer may also contain a nucleotide analogue, for example, a phosphorothioate, an alkylphosphorothioate or a peptide nucleic acid or An intercalating agent may be included. In addition, the primer may incorporate additional features that do not change the basic properties of the primer to serve as the starting point of DNA synthesis. If necessary, the primer nucleic acid sequence of the present invention may include a label detectable directly or indirectly by spectroscopic, photochemical, biochemical, immunochemical or chemical means. Examples of labels include enzymes (eg, horse radish peroxidase (HRP), alkaline phosphatase), radioactive isotopes (eg, 32 P), fluorescent molecules, chemical groups (eg, biotin), and the like. there is. The appropriate length of the primer is determined by the characteristics of the primer to be used, but is usually used in a length of 15 to 30 bp. The primer need not be exactly complementary to the sequence of the template, but must be complementary enough to form a hybrid-complex with the template.

본 발명의 마커 조성물에 있어서, 상기 벼는 국내 외 벼 품종, 유전자원, 육종 계통 또는 수집자원 등일 수 있다.In the marker composition of the present invention, the rice may be domestic or foreign rice varieties, genetic resources, breeding lines, or collection resources.

본 발명은 또한, 본 발명의 상기 23개의 올리고뉴클레오티드 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별용 키트를 제공한다.The present invention also provides a set of 23 oligonucleotide primers of the present invention; And it provides a kit for genotyping genes related to environmental and biological stress resistance of rice resources, including reagents for performing an amplification reaction.

본 발명에 따른 키트에 있어서, 상기 23개의 올리고뉴클레오티드 프라이머 세트는 서열번호 91 내지 182로 표시된 올리고뉴클레오티드에서, n이 동일한 값을 갖는 서열번호 4n-1, 서열번호 4n, 서열번호 4n+1 및 서열번호 4n+2의 올리고뉴클레오티드가 하나의 프라이머 세트(n은 23 내지 45의 자연수)인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 의미한다.In the kit according to the present invention, the 23 oligonucleotide primer sets are SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1, and sequences in which n has the same value in the oligonucleotides shown in SEQ ID NOs: 91 to 182 It means a set of 23 oligonucleotide primers, characterized in that the oligonucleotide of number 4n+2 is one primer set (n is a natural number from 23 to 45).

상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 및 버퍼를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 dNTPs는 dATP, dCTP, dGTP, dTTP를 포함하며, DNA 폴리머라제는 내열성 DNA 중합효소로서 Taq DNA 폴리머라제, Tth DNA 폴리머라제 등 시판되는 폴리머라제를 이용할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 설명서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, 역전사 완충액 및 PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.Reagents for performing the amplification reaction may include, but are not limited to, DNA polymerase, dNTPs, and buffers. The dNTPs include dATP, dCTP, dGTP, and dTTP, and the DNA polymerase may use a commercially available polymerase such as Taq DNA polymerase or Tth DNA polymerase as a heat-resistant DNA polymerase. In addition, the kit of the present invention may further include a user's manual describing optimal conditions for performing the reaction. The handbook is a printout explaining how to use the kit, eg, how to prepare reverse transcription buffer and PCR buffer, and suggested reaction conditions. Instructions include a brochure in the form of a pamphlet or leaflet, a label affixed to the kit, and instructions on the surface of the package containing the kit. In addition, the guide includes information published or provided through electronic media such as the Internet.

본 발명의 키트에 있어서, 상기 환경 스트레스는 염(salt), 건조(drought), 인산 결핍, 침수(submergence) 및 저산소 스트레스이고, 상기 생물적 스트레스는 벼멸구(brown plant hopper) 및 목도열병일 수 있다.In the kit of the present invention, the environmental stress is salt, dry (drought), phosphoric acid deficiency, submergence and hypoxic stress, and the biological stress may be brown plant hopper and throat disease. .

또한, 본 발명의 키트는 바람직하게는 플루이다임(Fluidigm) 기반 DNA 칩 형태일 수 있으나, 이에 제한되지 않는다.In addition, the kit of the present invention may preferably be in the form of a Fluidigm-based DNA chip, but is not limited thereto.

본 발명은 또한,The present invention also

벼 자원의 시료에서 게놈 DNA를 분리하는 단계;isolating genomic DNA from a sample of rice resources;

상기 분리된 게놈 DNA를 주형으로 하고, 본 발명에 따른 상기 23개의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및amplifying a target sequence by using the isolated genomic DNA as a template and performing an amplification reaction using the 23 oligonucleotide primer sets according to the present invention; and

상기 증폭 단계의 산물의 유전형을 결정하는 단계;를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별방법을 제공한다.Determining the genotype of the product of the amplification step; provides a method for determining the genotype of a gene associated with environmental and biological stress resistance of rice resources, including.

본 발명의 유전형 판별방법은 벼 자원의 시료에서 게놈 DNA를 분리하는 단계를 포함한다. 상기 벼 자원의 시료는 벼 종자, 식물체의 잎, 줄기, 뿌리, 또는 이삭 등의 부위일 수 있으나, 이에 제한되지 않는다. 또한, 상기 게놈 DNA를 분리하는 방법은 당업계에 공지된 방법을 이용할 수 있으며, 예를 들면, CTAB (Cetyl trimethylammonium bromide) 방법을 이용할수도 있고, Wizard® Prep 키트(Promega 사)를 이용할 수도 있다. 상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 일 실시예에 따른 23개의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭할 수 있다. 표적 핵산 서열을 증폭하는 방법은 중합효소연쇄반응(polymerase chain reaction; PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ 복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 이 중에서, PCR이란 중합효소를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져 있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.The genotyping method of the present invention includes isolating genomic DNA from a sample of rice resources. The sample of the rice resource may be a part such as a rice seed, a leaf, a stem, a root, or an ear of a plant, but is not limited thereto. In addition, the method for isolating the genomic DNA may use a method known in the art, for example, CTAB (Cetyl trimethylammonium bromide) method may be used, or Wizard ® Prep kit (Promega) may be used. The target sequence may be amplified by using the isolated genomic DNA as a template and performing an amplification reaction using the 23 oligonucleotide primer sets according to an embodiment of the present invention. Methods for amplifying the target nucleic acid sequence include polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, and transcription-based amplification system. based amplification system), strand displacement amplification, or amplification via Qβ replicase, or any other suitable method for amplifying nucleic acid molecules known in the art. Among them, PCR is a method of amplifying a target nucleic acid from a primer pair that specifically binds to the target nucleic acid using a polymerase. Such PCR methods are well known in the art, and commercially available kits may be used.

또한, 본 발명에 따른 유전형 판별방법에 있어서, 상기 증폭 단계의 산물의 유전형을 결정하는 방법은 당업계에 알려진 다양한 방법에 의하여 이루어질 수 있다. 이에 한정되는 것은 아니나, 예를 들면, DNA 칩, 모세관 전기영동 등을 통해 수행될 수 있다. 모세관 전기영동은 예를 들면, ABI Sequencer를 이용할 수 있다. 또한, 디데옥시법에 의한 직접적인 핵산의 뉴클레오티드 서열의 결정을 통하여 이루어지거나, SNP (single nucleotide polymorphism) 부위의 서열을 포함하는 프로브 또는 그에 상보적인 프로브를 상기 DNA와 혼성화시키고 그로부터 얻어지는 혼성화 정도를 측정함으로써 다형성 부위의 뉴클레오티드 서열을 결정하는 방법 등이 이용될 수 있으나, 이에 제한되지는 않는다.In addition, in the method for determining the genotype according to the present invention, the method for determining the genotype of the product of the amplification step may be performed by various methods known in the art. Although not limited thereto, for example, it may be performed through a DNA chip, capillary electrophoresis, or the like. Capillary electrophoresis may use, for example, the ABI Sequencer. In addition, it is made through the determination of the nucleotide sequence of the nucleic acid directly by the dideoxy method, or by hybridizing a probe containing a sequence of a single nucleotide polymorphism (SNP) site or a probe complementary thereto with the DNA and measuring the degree of hybridization obtained therefrom. A method for determining the nucleotide sequence of the polymorphic site may be used, but is not limited thereto.

본 발명의 일 구현 예에 있어서, 상기 증폭 단계 산물의 유전형 결정 방법은, 검출용 표지물질을 결합한 프라이머를 사용하여 표적 서열의 증폭시 프라이머의 5'-말단에 표지된 물질을 검출하여 분석하는 것일 수 있다. 상기 검출용 표지물질은 이에 한정하지 않으나, FAM, VIC, TET, JOE, HEX, CY3, CY5, ROX, RED610, TEXAS RED, RED670, TYE563, BIOTIN, DIGOXIGENIN 및 NED 등이 사용될 수 있다.In one embodiment of the present invention, the method for determining the genotype of the product of the amplification step is to detect and analyze a material labeled at the 5'-end of the primer when amplifying the target sequence using a primer bound with a label for detection. can The detection label material is not limited thereto, but FAM, VIC, TET, JOE, HEX, CY3, CY5, ROX, RED610, TEXAS RED, RED670, TYE563, BIOTIN, DIGOXIGENIN and NED may be used.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.

실시예 1. 환경 및 생물적 스트레스 저항성 마커 개발Example 1. Development of environmental and biological stress resistance markers

본 발명에서 개발한 환경 또는 생물적 스트레스 저항성 관련 유전자 혹은 QTL의 다형성(SNP 또는 InDel) 변이 염기의 탐색은 국제쌀연구소의 3,000 품종 데이터베이스(http://snp-seek.irri.org/), 연구문헌 및 서열분석(sequencing) 결과를 활용하여 수행되었으며, 이를 통해 확인된 변이를 기반으로 각 유전자 또는 QTL 특이적 마커(KASP/Gel-based marker)를 개발하였다.The search for polymorphic (SNP or InDel) mutant bases of environmental or biological stress resistance-related genes or QTL developed in the present invention is conducted using the International Rice Research Institute's 3,000 varieties database (http://snp-seek.irri.org/), research This was performed using the literature and sequencing results, and each gene or QTL-specific marker (KASP/Gel-based marker) was developed based on the mutations identified through this.

1-1. 염해 스트레스 저항성 연관 마커 개발1-1. Development of markers related to salt stress resistance

염해 저항성 연관 Saltol QTL에 대한 문헌(Nutan et al. 2016 Functional & Integrative Genomics 17:69-83; Flatten et al. 2018 PloS one 14(1):e0210529)을 바탕으로 SNP 마커 후보군을 선정하고 해당 SNP 변이를 확인할 수 있는 KASP 마커를 디자인하였다(도 1A). 개발한 5건 (Saltol_SKC_1.2, Saltol_SKC_1.3, Saltol_SNP_3, Saltol_SNP_8, Saltol_SNP_9)의 KASP 마커를 대조군 품종(control variety; IR64, IR64-Saltol, Pokkali, FL478)으로 검정한 결과 모든 마커가 동일하게 IR64-Saltol 품종에서 대립유전자 1 type (Saltol type)을 나타내었다. 하지만, Saltol QTL을 포함하고 있는 품종인 Pokkali는 마커마다 다른 대립유전자 유형을 나타내었고 FL478은 모두 대립유전자 2 type (non-Saltol type)을 나타내었다(도 1B). 이는 IR64-Saltol과 FL478에 포함된 Saltol QTL 부위가 다를 수 있음을 의미하였다.Based on the literature on Saltol QTL associated with salt resistance (Nutan et al. 2016 Functional & Integrative Genomics 17:69-83; Flatten et al. 2018 PloS one 14(1):e0210529), SNP marker candidates were selected and the corresponding SNP mutation A KASP marker capable of confirming was designed (FIG. 1A). As a result of testing the KASP markers of the five developed cases (Saltol_SKC_1.2, Saltol_SKC_1.3, Saltol_SNP_3, Saltol_SNP_8, Saltol_SNP_9) with the control variety (IR64, IR64-Saltol, Pokkali, FL478), all markers were identically IR64- Allele 1 type ( Saltol type) was shown in the Saltol variety. However, Pokkali, a cultivar containing Saltol QTL, showed different allele types for each marker, and FL478 showed allele 2 type (non -Saltol type) (FIG. 1B). This means that IR64-Saltol and Saltol QTL sites included in FL478 may be different.

1-2. 건조 스트레스 저항성 연관 마커 개발1-2. Development of markers associated with drying stress resistance

내건성 연관 DTY QTL에 대한 문헌 (Swamy et al. 2013 PloS one 8(5): e62795)을 바탕으로 SNP 마커 후보군을 선정하고 이를 기반으로 KASP 마커를 디자인하였다(도 2). DTY2.2에 대한 마커 5건 (DTY2.2-KP-SNP1, DTY2.2-KP-SNP2, DTY2.2-KP-SNP3, DTY2.2-KP-SNP4, DTY2.2-KP-SNP5)과 DTY4.1에 대한 마커 3건 (DTY4.1-KP-SNP1, DTY4.1-KP-SNP2, DTY4.1-KP-SNP3)의 KASP 마커를 대조군 품종(IR64, IR64_DTY2.2+4.1, Adday sel, Dasan)으로 검정한 결과 모든 마커가 동일하게 DTY QTL 중 DTY2.2DTY4.1이 포함된 품종인 IR64-DTY2.2+4.1과 Addaysel에서 대립유전자 type 1 (DTY type)을 나타내는 것을 확인하였다(도 3).SNP marker candidates were selected based on the literature on dryness-associated DTY QTL (Swamy et al. 2013 PloS one 8(5): e62795), and based on this, a KASP marker was designed ( FIG. 2 ). 5 markers for DTY2.2 (DTY2.2-KP-SNP1, DTY2.2-KP-SNP2, DTY2.2-KP-SNP3, DTY2.2-KP-SNP4, DTY2.2-KP-SNP5) and The KASP markers of 3 markers for DTY4.1 (DTY4.1-KP-SNP1, DTY4.1-KP-SNP2, DTY4.1-KP-SNP3) were compared to control varieties (IR64, IR64_DTY2.2+4.1, Adday sel) , Dasan), it was confirmed that all markers exhibited allele type 1 ( DTY type) in IR64-DTY2.2+4.1 and Addaysel, which are varieties containing DTY2.2 and DTY4.1 among DTY QTL. (Fig. 3).

1-3. 저인산 스트레스 저항성 연관 마커 개발1-3. Development of markers associated with hypophosphatemia stress resistance

저인산 스트레스 내성과 연관된 Pup1 QTL에 대해 문헌 (Chin et al. 2010 Theor Appl Genet. 120(6):1073-86; Gamuyao et al. 2012 Nature 488(7412):535-9; Tanaka et al. 2014 Theor Appl Genet. 127:1387-1398; Neelam et al. 2017 Frontiers in plant science, 8:509)을 바탕으로 SNP 후보를 확인한 후, 겔 기반 마커 (K20-2_Co-dominant, K29-1_Co-dominant)와 KASP 마커 (Pup1_K20-2, Pup1_K29-1)를 개발하였다. 개발한 4건의 마커를 대조군 품종 및 유용 공여체 집단을 이용하여 마커 검정을 수행하였다. KASP 마커 2건 (Pup1_K20-2, Pup1_K29-1)은 Dasan 품종의 유전적 배경에 Pup1이 도입된 세대인 BC3F2 분리집단을 사용하여 검정하였다.For Pup1 QTLs associated with hypophosphatemic stress tolerance, see Chin et al. 2010 Theor Appl Genet. 120(6):1073-86; Gamuyao et al. 2012 Nature 488(7412):535-9; Tanaka et al. 2014 After identifying SNP candidates based on Theor Appl Genet. 127:1387-1398; Neelam et al. 2017 Frontiers in plant science, 8:509), gel-based markers (K20-2_Co-dominant, K29-1_Co-dominant) and KASP markers (Pup1_K20-2, Pup1_K29-1) were developed. The four developed markers were tested for markers using a control cultivar and a useful donor population. Two KASP markers (Pup1_K20-2, Pup1_K29-1) were tested using the BC 3 F 2 isolate, the generation in which Pup1 was introduced into the genetic background of Dasan cultivar.

그 결과, Pup1 QTL의 K20 유전자를 표적한 마커인 K20-2_Co-dominant와 Pup1_K20-2는 각각 겔(gel) 기반 분석 결과 및 KASP 분석에서 둘 다 동일하게 분리하는 유전형 양상을 보여주었다(도 4). 그러나, Pup1 QTL의 K29 유전자를 표적한 마커 중 겔 기반 마커인 K29-1_Co-dominant는 밴드의 크기 차이가 크지 않아 유전형 판단에 어려움이 있음을 알 수 있었으며, KASP 마커인 Pup1_K29-1은 대부분 대립유전자 2 type를 나타내었고, 일부 라인에서 이형성(heterotype)을 보여주었다(도 4).As a result, K20-2_Co-dominant and Pup1_K20-2, which are markers targeting the K20 gene of Pup1 QTL, showed the same genotyping pattern in gel-based analysis and KASP analysis, respectively (FIG. 4) . However, it was found that among the markers targeting the K29 gene of Pup1 QTL, the gel-based marker K29-1_Co-dominant did not have a large difference in band size, making it difficult to determine the genotype, and the KASP marker Pup1_K29-1 was mostly allele 2 types were shown, and some lines showed heterotype ( FIG. 4 ).

또한, Pup1 QTL 위치에 존재하는 K46-1 유전자를 표적한 2건의 마커 (Pup1_K46-KC/T, Pup1_K46-3G/C)를 개발하고 상기 유용공여체 집단을 이용하여 마커 검정을 수행한 결과, Kasalath 유형, Glaberrima 유형과 No allele type (No call)으로 구분되는 것을 확인하였다(도 5).In addition, as a result of developing two markers (Pup1_K46-KC/T, Pup1_K46-3G/C) targeting the K46-1 gene present at the Pup1 QTL position, and performing a marker assay using the useful donor population, the results of the Kasalath type , it was confirmed that it was divided into Glaberrima type and No allele type (No call) (FIG. 5).

1-4. 침수 저항성 연관 마커 개발1-4. Development of markers associated with immersion resistance

침수 저항성 연관 Sub1A 유전자의 종래 겔 기반 마커 (AEX1: Neeraja et al. 2007 Theor Appl Genet. 115:767-776, GnS2: Septiningsih et al. 2009 Ann Bot. 103:151-160)를 KASP 마커로 전환하여 디자인하였다. 2건 (Sub1_AEX1, Sub1_GnS2)의 개발된 KASP 마커를 대조군 품종(IR64, FR13A, BR11, M202, Nipponbare, IR49830, Komboka, S_mashuri, Swarna) 및 교배후대 분리집단을 이용하여 검정한 결과, 종래 겔 기반 마커와 개발한 KASP 마커 간 유전형 분석 결과에 일치성을 확인하였다(도 6 및 도 7).A conventional gel-based marker of the sub1A gene associated with immersion resistance (AEX1: Neeraja et al. 2007 Theor Appl Genet. 115:767-776, GnS2: Septiningsih et al. 2009 Ann Bot. 103:151-160) was converted into a KASP marker to designed. As a result of testing the developed KASP markers in two cases (Sub1_AEX1, Sub1_GnS2) using a control cultivar (IR64, FR13A, BR11, M202, Nipponbare, IR49830, Komboka, S_mashuri, Swarna) and a progeny isolate, a conventional gel-based marker Consistency was confirmed in the genotyping results between the developed KASP markers ( FIGS. 6 and 7 ).

1-5. 혐기발아 내성 연관 마커 개발1-5. Development of markers related to anaerobic germination resistance

혐기발아 내성 연관 AG1 유전자에 대한 문헌 (Kretzschmar et al. 2015 1:15124)에서 보고된 혐기발아 연관 InDel 다형성과 그 주변 부위를 탐색하여 KASP 마커를 개발하였다(도 8A). 개발한 5건 (AG1_InDel, AG1_P1, AG1_N, AG1_SNP2, AG1_SNP3)의 KASP 마커에 대해 대조군 품종(Khao Hlan On (KHO), IR64-AG1, Hopum, Dasan, Nipponbare)를 이용하여 마커 검정을 수행하였다. 그 결과, AG1 유전자를 포함하는 InDel를 가지고 있는 품종인 KHO, IR64-AG1, Hopum 및 Nipponbare는 3건의 KASP 마커 (AG1_InDel, AG1_P1, AG1_N)에 대해 대립유전자 1 type (donor type)을 나타내었고, AG1_SNP2 마커는 마커 검정에 이용된 품종들에 대해 모두 대립유전자 2 type (non-donor type)을 나타내었으며, AG1_SNP3 마커는 3건 (AG1_InDel, AG1_P1, AG1_N)의 마커와 다르게 IR64 및 Dasan 뿐만아니라 IR64-AG1 품종까지 대립유전자 2 type로 나타났다(도 8B).A KASP marker was developed by exploring the anaerobic germination-associated InDel polymorphism and its surrounding regions reported in the literature (Kretzschmar et al. 2015 1:15124) on the anaerobic germination resistance-associated AG1 gene (FIG. 8A). For the KASP markers of the five developed cases (AG1_InDel, AG1_P1, AG1_N, AG1_SNP2, AG1_SNP3), a marker assay was performed using a control variety (Khao Hlan On (KHO), IR64-AG1, Hopum, Dasan, Nipponbare). As a result, KHO, IR64-AG1, Hopum and Nipponbare, which are cultivars with InDel containing the AG1 gene, exhibited allele 1 type (donor type) for three KASP markers (AG1_InDel, AG1_P1, AG1_N), and AG1_SNP2 The markers showed allele 2 type (non-donor type) for all the cultivars used in the marker assay, and the AG1_SNP3 marker was different from the 3 markers (AG1_InDel, AG1_P1, AG1_N), IR64 and Dasan as well as IR64-AG1 The allele 2 type was shown up to the cultivar (FIG. 8B).

1-6. 벼멸구 저항성 연관 마커 개발1-6. Development of markers associated with rice locust resistance

벼멸구 저항성 유전자 Bph3는 3개의 유전자 (LecRK1, LecRK2, LecRK3)가 관여하고 있으며, 3개의 유전자가 모두 존재할 때 저항성이 가장 큰 것으로 보고되어 있으므로 각 유전자 특이적 KASP 마커를 10건 이상 디자인하여(도 9A), 그 중 각 유전자별 1건씩 총 3건 (BPH3_RK1-1, BPH3_RK2-8, BPH3_RK3-11)의 KASP 마커를 검정하였다. 그 결과, 3건의 마커 모두 KANTO PL7 및 IR72 품종에서 대립유전자 1 type (donor type)을 나타내었고, PTB 18, Suweon 397, 화영, 일미, 새일미, 삼광 및 일품 품종에서는 모두 대립유전자 2 type (non-donor type)을 나타내었다(도 9B).Three genes ( LecRK1 , LecRK2 , LecRK3 ) are involved in Bph3 resistance gene, and it is reported that resistance is greatest when all three genes are present. ), and among them, KASP markers were tested for a total of 3 cases (BPH3_RK1-1, BPH3_RK2-8, BPH3_RK3-11), one for each gene. As a result, all three markers showed allele 1 type (donor type) in KANTO PL7 and IR72 varieties, and PTB 18, Suweon 397, Hwayoung, Ilmi, Saeilmi, Samkwang, and Ilpoom varieties all showed allele 2 type (non-type). -donor type) was shown (FIG. 9B).

1-7. 목도열병 저항성 연관 마커 개발1-7. Development of markers associated with thrush resistance

목도열병 저항성 유전자 Pb1를 가지고 있는 St No.1 라인은 P5와 Pb1이 중복(duplication)되어 있으며, Pb1을 가지고 있지 않은 품종은 Pb1 유사 유전자 4개를 가지고 있으며, CDS 부분의 염기서열이 상이하므로 이를 기반으로 겔 기반 STS 마커와 KASP 마커를 제작하였다(도 10A). 겔 기반 STS 마커를 화영, 일미, 새일미 및 일품 품종에 적용하여 검정한 결과 Pb1 대립유전자형을 가지는 화영 및 새일미 품종은 502 bp가 증폭되고, 일품, 일미 유형은 474 bp가 증폭되어 공우성(codominant) 마커의 형태를 보였다(도 10B). 반면, KASP 마커 검정 결과 대립유전자 1 type(Pb1 대립유전자형)과 대립유전자 2 type이 뚜렷이 분리되어졌고, 대조군 품종을 유전형 분석한 결과 화영, 새일미, 삼광벼 품종은 Pb1 대립유전자형을 보였고, 일미, 일품, DP-2 들은 대립유전자 2 type을 가진 것으로 확인되었다(도 10D).The St No.1 line with the Mok blast resistance gene Pb1 has duplicates of P5 and Pb1, and the cultivar without Pb1 has 4 Pb1-like genes. Based on the gel-based STS marker and KASP marker was prepared (Fig. 10A). As a result of testing by applying the gel-based STS marker to the Hwayeong, Ilmi, Saeilmi and Ilpom varieties, 502 bp was amplified in the Hwayeong and Saeilmi varieties with the Pb1 allele, and 474 bp was amplified in the Ilpom and Ilmi types, resulting in co-dominance ( codominant) markers (FIG. 10B). On the other hand, as a result of KASP marker test, allele 1 type ( Pb1 allele type) and allele 2 type were clearly separated. As a result of genotyping analysis of control cultivars, Hwayoung, Saeilmi, and Samgwangbyo cultivars showed Pb1 allele, Ilmi, Ilpoom, DP-2 was confirmed to have allele 2 type (Fig. 10D).

상기 실시예 1-1. 내지 1-6.에서 개발된 환경 및 생물적 스트레스 저항성 관련 분자마커는 염해 저항성 관련 (Saltol QTL) 5건, 내건성 관련 (DTY2.2 QTL, DTY4.1 QTL) 8건, 저인산 스트레스 저항성 관련 (Pup1 QTL) 4건, 침수 저항성 관련 (Sub1A 유전자) 2건, 혐기 발아 내성 관련 (AG1 유전자) 5건, 벼멸구 저항성 관련 (Bph3 유전자) 3건, 목도열병 저항성 관련 (Pb1 유전자) 1건으로 총 28개로, 하기 표 1과 같다.The Example 1-1. Molecular markers related to environmental and biological stress resistance developed in 1-6 were salt-related ( Saltol QTL) 5 cases, dry tolerance-related ( DTY2.2 QTL, DTY4.1 QTL) 8 cases, hypophosphate stress resistance related ( Pup1 QTL) 4 cases, submergence resistance ( Sub1A gene) 2 cases, anaerobic germination resistance ( AG1 gene) 5 cases, rice mites resistance ( Bph3 gene) 3 cases, swamp fever resistance ( Pb1 gene) 1 case, total of 28 cases , as shown in Table 1 below.

Figure 112020133019069-pat00001
Figure 112020133019069-pat00001

실시예 2. 플루이다임(Fluidigm) 마커를 이용한 벼 자원의 스트레스 저항성 관련 유전형 분석Example 2. Stress resistance-related genotyping analysis of rice resources using a Fluidigm marker

개발된 KASP 마커 28건 중 23건의 마커를 선정하여 동일한 SNP를 탐색하는 플루이다임(Fluidigm) 마커로 전환하였으며(표 2), 전환된 Fluidigm 마커는 96 x 24 dynamic array에 적용하여 벼 172개 품종(표 3)에 대한 환경 및 생물적 스트레스 저항성 유전자 또는 QTL의 동정(screening)에 활용하였다(도 11). 그 결과를 이용하여 벼 품종의 스트레스 저항성 관련 프로파일을 작성하였다.23 of the 28 developed KASP markers were selected and converted to a Fluidigm marker that searches for the same SNP (Table 2). The converted Fluidigm marker was applied to a 96 x 24 dynamic array and 172 rice varieties (Table 3) was used for the identification (screening) of environmental and biological stress resistance gene or QTL (Fig. 11). Using the results, a stress-resistance-related profile of rice varieties was prepared.

Figure 112020133019069-pat00002
Figure 112020133019069-pat00002

Figure 112020133019069-pat00003
Figure 112020133019069-pat00003

도 11의 결과를 기반으로 172개의 국내 외 품종에 대한 유전형 프로파일링을 수행하며 neighbor joining tree로 분석한 결과, 대부분 국내 품종들과 국외 품종들이 집단으로 나누어지는 것을 볼 수 있었다(도 12). 그 중, 염해 저항성(Saltol QTL)에 대한 5건의 마커는 대부분의 국내 품종에서 탐지되지 않았고, 국외 품종에서 다수 탐지되었고, 이는 다수의 국내 품종들이 염해 저항성 다형성 변이를 가지고 있지 않다는 것을 의미하였다.Based on the results of FIG. 11, genotype profiling of 172 domestic and foreign varieties was performed and as a result of analysis using a neighbor joining tree, it was found that most domestic and foreign varieties were divided into groups (FIG. 12). Among them, 5 markers for salt resistance ( Saltol QTL) were not detected in most domestic cultivars, but were detected in many foreign cultivars, meaning that many domestic cultivars did not have polymorphic mutations in salt resistance.

<110> Hankyong Industry Academic Cooperation Center <120> High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof <130> PN20390 <160> 182 <170> KoPatentIn 3.0 <210> 1 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gttcaacaaa taggacttca tatttatgga a 31 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 caacaaatag gacttcatat ttatggac 28 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgcagacact tgtagcatta gatttcatt 29 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ataaacaaca agtgtgagaa aaccct 26 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctataaacaa caagtgtgag aaaaccca 28 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gaactcattt ctctcctatg tgtttcgtt 29 <210> 7 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tttggtaaga catgaatgaa catcag 26 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cttttggtaa gacatgaatg aacatcaa 28 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ccactgcact acattttctt tcaactgaa 29 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ttccaggaac atcataaatt ttgctatt 28 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tccaggaaca tcataaattt tgctatc 27 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gggcatcctg agacaaatgt tttccat 27 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gacacggtgg agaggtcgac 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gacacggtgg agaggtcgag 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 actcgaggca ctccggtgag at 22 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 caatcgctga tgaagctgtc gac 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 caatcgctga tgaagctgtc gat 23 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ctgccgactg cattatccct acttt 25 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gctgatttca ttgaattttg ttgc 24 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ggctgctgat ttcattgaat tttgttgt 28 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gttcatacta cgtgaaaacg aacttcacaa 30 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gccaccgtgt gggagatgga a 21 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ccaccgtgtg ggagatggag 20 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 tggccatggc ggcggcgaa 19 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gttctgtttg actttgactt cg 22 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gctgttctgt ttgactttga cttcc 25 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ccaatgtatt tttttgcctt tttgtttcaa 30 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gacactagaa tcaacagtaa tcctgat 27 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 acactagaat caacagtaat cctgac 26 <210> 30 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcatatttgt ttcactgctg atgactcta 29 <210> 31 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gattttctta gttgcagtat tttctgattc a 31 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 ttcttagttg cagtattttc tgattcg 27 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 gatgccaaaa cacaatgcat ataaaggaaa 30 <210> 34 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gagtttttga gctggtaaat tttggaatta tt 32 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtttttgagc tggtaaattt tggaattatg 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 cacttgaaat ttgaatgacg tggagtacta 30 <210> 37 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 gcgccggaga tgagcgact 19 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cgccggagat gagcgacg 18 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 ctctcccctc cgccgcgta 19 <210> 40 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 gatggagtgt tcggagtgta gaa 23 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 gatggagtgt tcggagtgta gaa 23 <210> 42 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 gatgttgagt ggataaggga acttgatat 29 <210> 43 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 cacttccaac cagtcggtgt ca 22 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 acttccaacc agtcggtgtc g 21 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cactcgccgg cgtctcccat 20 <210> 46 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 agagctctga tctatgagta catgc 25 <210> 47 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 aaagagctct gatctatgag tacatgt 27 <210> 48 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 gccaaaagaa tatctatcra gtgaaccatt 30 <210> 49 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 caacgttagt acaggtagta gcag 24 <210> 50 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 caacgttagt acaggtagta gcac 24 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 gtccaaatta tcgtataacc attggggaa 29 <210> 52 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 agaagcagag cggctgcgg 19 <210> 53 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 caagaagcag agcggctgcg a 21 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cttcccaccc gccgatcttt ctt 23 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gtccgagcag cactccagc 19 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 cgtccgagca gcactccagt 20 <210> 57 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gtccggcgac gcgcgcata 19 <210> 58 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 taatttcttc gttttgttct cgatgtttc 29 <210> 59 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 aatttcttcg ttttgttctc gatgtttt 28 <210> 60 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 gaaggattac ttatatgaca cctagccttg gcttcgtctt cacctgaacg aaa 53 <210> 61 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 acgttacaat ggtttgagta tatgg 25 <210> 62 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 gtctacgtta caatggtttg agtatatga 29 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 ttgtaagggt aagggtggga cctat 25 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gagacggaga agacggagaa g 21 <210> 65 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 ggagacggag aagacggaga aa 22 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 ccatcaccgc caagaagtca tctta 25 <210> 67 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 ggattgcaat aaattattgt caagttttac aa 32 <210> 68 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 gcaataaatt attgtcaagt tttacag 27 <210> 69 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 ggatacagtg tttgaaatat ggaaatgtta 30 <210> 70 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 cggctcaagg tagaaactga agta 24 <210> 71 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ggctcaaggt agaaactgaa gtg 23 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 cagctcttca tcccttaact tctcaatta 29 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 atagccatga agaggcagga cc 22 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 gatagccatg aagaggcagg act 23 <210> 75 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 gaagaacatc acattgggct ccactt 26 <210> 76 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 gaactgtcgc ctgtaaactg gaatt 25 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 aactgtcgcc tgtaaactgg aatc 24 <210> 78 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 aaagaagctc cctttatcaa atgggaatat 30 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 acataacaag attaccatct cgttgag 27 <210> 80 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 atacataaca agattaccat ctcgttgaa 29 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 gactattcca atggccgatt tcaactaaa 29 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gggaatccag agattcaccg a 21 <210> 83 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 gggaatccag agattcaccg c 21 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tgtcgccgga gtctgccctt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 cccgattcat cttcatgaag 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 tctgaactcc tcccatctgg 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 atcaccgctc ctttttcctt 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 tttggagaca tgctattaca 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 ccccatcttt tcgttttgaa 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 tttggagaca tgctattaca 20 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 acattttctt tcaactgaag aattgctctt 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 gcattctttt ggtaagacat gaatgaacat ca 32 <210> 93 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 gcattctttt ggtaagacat gaatgaacat ca 32 <210> 94 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 gtctcttttt tcccactgca ct 22 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 gcatcctgag acaaatgttt tccatg 26 <210> 96 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 agaggcagtg tgacctttcc a 21 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 agaggcagtg tgacctttcc a 21 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 gcaggtacac taagtgggca 20 <210> 99 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 actccggtga gatggtgc 18 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 acgtagagca cgacgacgg 19 <210> 101 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 acgtagagca cgacgacgg 19 <210> 102 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 gcggtcaact cgaggc 16 <210> 103 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 ctataaacaa caagtgtgag aaaaccca 28 <210> 104 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 ccagagaact catttctctc ctatgtgt 28 <210> 105 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 ccagagaact catttctctc ctatgtgt 28 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 ccctaacatg gcttcctaat tcc 23 <210> 107 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 aagttcaaca aataggactt catatttatg gac 33 <210> 108 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 acgtcgacgc agacacttgt a 21 <210> 109 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 acgtcgacgc agacacttgt a 21 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 110 ggcactcgtg gcacatatat atta 24 <210> 111 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 gctgttctgt ttgactttga cttcc 25 <210> 112 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 accaatgtat ttttttgcct ttttgtttca aact 34 <210> 113 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 accaatgtat ttttttgcct ttttgtttca aact 34 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 cttcgagaaa gagacagacg tg 22 <210> 115 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 tgacactaga atcaacagta atcctgac 28 <210> 116 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 gcatatttgt ttcactgctg atgactct 28 <210> 117 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 gcatatttgt ttcactgctg atgactct 28 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 cagattaact gctttgaaac tgacac 26 <210> 119 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 gccaaaacac aatgcatata aaggaaac 28 <210> 120 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 gtcatgaact catgattttc ttagttgcag t 31 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 gtcatgaact catgattttc ttagttgcag t 31 <210> 122 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 122 catgtgctta aaaattactg atgcca 26 <210> 123 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 cttgaaattt gaatgacgtg gagtactac 29 <210> 124 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 124 tctttttgta taaagtttga gtttttgagc tggt 34 <210> 125 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 125 tctttttgta taaagtttga gtttttgagc tggt 34 <210> 126 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tccatcatct tccaatttcc caaat 25 <210> 127 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 atcgctgatg aagctgtcga t 21 <210> 128 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 128 tgggaaggct gccgact 17 <210> 129 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 129 tgggaaggct gccgact 17 <210> 130 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 ccttgccaat gccccaa 17 <210> 131 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 131 catactacgt gaaaacgaac ttcacaaa 28 <210> 132 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 agggctgctg atttcattga attttgt 27 <210> 133 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 133 agggctgctg atttcattga attttgt 27 <210> 134 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 134 tctggtcata ttctgtccga ctaat 25 <210> 135 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 tggcggcggc gaac 14 <210> 136 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 136 cgacagcctg ttcgcgt 17 <210> 137 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 137 cgacagcctg ttcgcgt 17 <210> 138 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 cgctgagctt ggccat 16 <210> 139 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 139 gggattgcaa taaattattg tcaagtttta cag 33 <210> 140 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 140 gatacagtgt ttgaaatatg gaaatgttaa tcttattttt 40 <210> 141 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 141 gatacagtgt ttgaaatatg gaaatgttaa tcttattttt 40 <210> 142 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 ggccttcctg caagcata 18 <210> 143 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 143 ccgccaagaa gtcatcttat tcctt 25 <210> 144 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 catgcgattc aaaggggcct ta 22 <210> 145 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 catgcgattc aaaggggcct ta 22 <210> 146 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 146 gcttgtcatc gatgccatca c 21 <210> 147 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 gtctacgtta caatggtttg agtatatgg 29 <210> 148 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 tgtaagggta ttggaattct tgttctactt gt 32 <210> 149 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 149 tgtaagggta ttggaattct tgttctactt gt 32 <210> 150 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 150 accctacgtc tacgttacaa tgg 23 <210> 151 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 gcagagcggc tgcga 15 <210> 152 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 152 cggacaaact tcccacccg 19 <210> 153 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 cggacaaact tcccacccg 19 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 ccgttgtcgt tgagcaagaa 20 <210> 155 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 155 ccgagcagca ctccagc 17 <210> 156 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 gtcgacgtcg acgacgga 18 <210> 157 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 gtcgacgtcg acgacgga 18 <210> 158 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 158 ctgtccatca cgtcgtcc 18 <210> 159 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 tccaaccagt cggagtca 18 <210> 160 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 gtaaacggcg aaacactcg 19 <210> 161 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 161 gtaaacggcg aaacactcg 19 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 taaccacgag gaaaccaagc 20 <210> 163 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 gataagggaa cttgatattc aggtgc 26 <210> 164 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 164 aaacttacat ctgatggagt gttcgga 27 <210> 165 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 aaacttacat ctgatggagt gttcgga 27 <210> 166 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 gctatcaaga aggaagatgt tgagt 25 <210> 167 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 167 gccatgaaga ggcaggacc 19 <210> 168 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 gccatgaaga ggcaggact 19 <210> 169 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 attgggctcc actttggcac 20 <210> 170 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 170 aagtcgccag agggtgat 18 <210> 171 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 agctcccttt atcaaatggg aatatga 27 <210> 172 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 gctcccttta tcaaatggga atatgg 26 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 173 ttggtgctcc taggcacctt 20 <210> 174 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 cgtgttcaat aaaccctcaa acact 25 <210> 175 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 175 caatggccga tttcaactaa aagc 24 <210> 176 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 176 ccaatggccg atttcaacta aaagt 25 <210> 177 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 gcatctggat acataacaag attaccatct cg 32 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 tcctcgccac agactattcc 20 <210> 179 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 179 gggaatccag agattcaccg a 21 <210> 180 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 gggaatccag agattcaccg c 21 <210> 181 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 ccaccagagg tgtcgccg 18 <210> 182 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 182 catcgacctc tacctgtact ct 22 <110> Hankyong Industry Academic Cooperation Center <120> High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof <130> PN20390 <160> 182 <170> KoPatentIn 3.0 <210> 1 <211 > 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gttcaacaaa taggacttca tatttatgga a 31 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 caacaaatag gacttcatat ttatggac 28 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgcagacact tgtagcatta gatttcatt 29 <210> 4 <211> 26 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ataaacaaca agtgtgagaa aaccct 26 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctataaacaa caagtgtgag aaaaccca 28 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gaactcattt ctctcctatg tgtttcgtt 29 <210> 7 <211> 26 <212> DNA < 213> Artificial Sequence <220> <223> p rimer <400> 7 tttggtaaga catgaatgaa catcag 26 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cttttggtaa gacatgaatg aacatcaa 28 <210> 9 <211> 29 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ccactgcact acattttctt tcaactgaa 29 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ttccaggaac atcataaatt ttgctatt 28 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tccaggaaca tcataaattt tgctatc 27 <210> 12 <211> 27 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 12 gggcatcctg agacaaatgt tttccat 27 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gacacggtgg agaggtcgac 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gacacggtgg agaggtcgag 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220 > <223> primer <400> 15 actcgaggca ctccggtgag at 22 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 16 caatcgctga tgaagctgtc gac 23 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 caatcgctga tgaagctgtc gat 23 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ctgccgactg cattatccct acttt 25 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 19 gctgatttca ttgaattttg ttgc 24 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ggctgctgat ttcattgaat tttgttgt 28 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gttcatacta cgtgaaaacg aacttcacaa 30 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 22 gccaccgtgt gggagatgga a 21 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ccaccgtgtg ggagatggag 20 <210> 24 <211> 19 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 24 tggccatggc ggcggcgaa 19 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence e <220> <223> primer <400> 25 gttctgttttg actttgactt cg 22 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gctgttctgt ttgactttga cttcc 25 <210 > 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ccaatgtatt tttttgcctt tttgtttcaa 30 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gacactagaa tcaacagtaa tcctgat 27 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 acactagaat caacagtaat cctgac 26 <210> 30 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcatatttgt ttcactgctg atgactcta 29 <210> 31 <211> 31 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 31 gattttctta gttgcagtat tttctgattc a 31 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 ttcttagttg cagtattttc tgattcg 27 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 gatgccaaaa cacaatgcat ataaaggaaa 30 <210> 34 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gagtttttga gctggtaaat tttggaatta tt 32 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gttttttgagc tggtaaattt tggaattatg 30 <210 > 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 cacttgaaat ttgaatgacg tggagtacta 30 <210> 37 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 gcgccggaga tgagcgact 19 <210> 38 <211> 18 <212> DNA <213> A rtificial Sequence <220> <223> primer <400> 38 cgccggagat gagcgacg 18 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 ctctcccctc cgccgcgta 19 <210> 40 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 gatggagtgt tcggagtgta gaa 23 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> < 223> primer <400> 41 gatggagtgt tcggagtgta gaa 23 <210> 42 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 gatgttgagt ggataaggga acttgatat 29 <210> 43 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 cacttccaac cagtcggtgt ca 22 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer < 400> 44 acttccaacc agtcggtgtc g 21 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cactcgccgg cgtctcccat 20 <210> 46 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 agagctctga tctatgagta catgc 25 <210> 47 <211> 27 <212> DNA <213> Artificial S equence <220> <223> primer <400> 47 aaagagctct gatctatgag tacatgt 27 <210> 48 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 gccaaaagaa tatctatcra gtgaaccatt 30 <210 > 49 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 caacgttagt acaggtagta gcag 24 <210> 50 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 caacgttagt acaggtagta gcac 24 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 gtccaaatta tcgtataacc attggggaa 29 <210> 52 <211 > 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 agaagcagag cggctgcgg 19 <210> 53 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer < 400> 53 caagaagcag agcggctgcg a 21 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cttcccaccc gccgatcttt ctt 23 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gtccgagcag cactccagc 19 <210> 56 <211> 20 <212> DNA <213> Artifi cial Sequence <220> <223> primer <400> 56 cgtccgagca gcactccagt 20 <210> 57 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gtccggcgac gcgcgcata 19 <210> 58 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 taatttcttc gttttgttct cgatgtttc 29 <210> 59 <211> 28 <212> DNA <213> Artificial Sequence <220> < 223> primer <400> 59 aatttcttcg ttttgttctc gatgtttt 28 <210> 60 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 gaaggattac ttatatgaca cctagccttg gcttcgtctt cacctgaacg aaa 53 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 acgttacaat ggtttgagta tatgg 25 <210> 62 <211> 29 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 62 gtctacgtta caatggtttg agtatatga 29 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 ttgtaagggt aagggtggga cctat 25 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gagacggaga agacggagaa g 2 1 <210> 65 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 ggagacggag aagacggaga aa 22 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 ccatcaccgc caagaagtca tctta 25 <210> 67 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 ggattgcaat aaattattgt caagttttac aa 32 <210 > 68 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 gcaataaatt attgtcaagt tttacag 27 <210> 69 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 ggatacagtg tttgaaatat ggaaatgtta 30 <210> 70 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 cggctcaagg tagaaactga agta 24 <210> 71 <211 > 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ggctcaaggt agaaactgaa gtg 23 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 cagctcttca tcccttaact tctcaatta 29 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 atagccatga agaggcagga cc 22 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 gatagccatg aagaggcagg act 23 <210> 75 <211> 26 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 75 gaagaacatc acattgggct ccactt 26 <210> 76 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 gaactgtcgc ctgtaaactg gaatt 25 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 aactgtcgcc tgtaaactgg aatc 24 <210> 78 <211> 30 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 78 aaagaagctc cctttatcaa atgggaatat 30 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 acataacaag attaccatct cgttgag 27 <210> 80 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 atacataaca agattaccat ctcgttgaa 29 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 81 gactattcca atggccgatt tcaactaaa 29 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gggaatccag agattcaccg a 21 <210> 83 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 gggaatccag agattcaccg c 21 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tgtcgccgga gtctgccctt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 85 cccgattcat cttcatgaag 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 tctgaactcc tcccatctgg 20 <210> 87 <211> 20 <212 > DNA <213> Artificial Sequence <220> <223> primer <400> 87 atcaccgctc ctttttcctt 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 tttggagaca tgctattaca 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 ccccatcttt tcgttttgaa 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 tttggagaca tgctattaca 20 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 acattttctt tcaactgaag aattgctctt 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 gcattctttt ggtaagacat gaatgaacat ca 32 < 210> 93 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 gcattctttt ggtaagacat gaatgaacat ca 32 <210> 94 <211> 22 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 94 gtctcttttt tcccactgca ct 22 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 gcatcctgag acaaatgttt tccatg 26 <210> 96 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 agaggcagtg tgacctttcc a 21 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 97 agaggcagtg tgacctttcc a 21 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 gcaggtacac taagtgggca 20 <210> 99 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 actccggtga gatggtgc 18 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 acgtagagca cgacgacgg 19 <210> 101 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 acgtagagca cgacgacgg 19 <210> 102 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 gcggtcaact cgaggc 16 <210> 103 <211> 28 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 103 ctataaacaa caagtgtgag aaaaccca 28 <210> 104 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 ccagagaact catttctctc ctatgtgt 28 <210> 105 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 ccagagaact catttctctc ctatgtgt 28 <210> 106 <211> 23 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 106 ccctaacatg gcttcctaat tcc 23 <210> 107 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 aagttcaaca aataggactt catatttatg gac 33 <210> 108 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 acgtcgacgc agacacttgt a 21 <210> 109 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 acgtcgacgc agacacttgt a 21 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 110 ggcactcgtg gcacatatat atta 24 <210> 111 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 gctgttctgt ttgactttga cttcc 25 <210> 112 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 accaatgtat ttttttgcct ttttgtttca aact 34 <210> 113 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 accaatgtat ttttttgcct ttttgtttca aact 34 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 cttcgagaaa gagacagacg tg 22 <210> 115 <211> 28 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 115 tgacactaga atcaacagta atcctgac 28 <210> 116 < 211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 gcatatttgt ttcactgctg atgactct 28 <210> 117 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 gcatatttgt ttcactgctg atgactct 28 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 cagattaact gcttttgaaac tgacac 26 <210> 119 <211> 28 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 gccaaaacac aatgcatata aaggaaac 28 <210> 120 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 gtcatgaact catgattttc ttagttgcag t 31 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 gtcatgaact catgattttc ttagttgcag t 31 <210> 122 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 122 catgtgctta aaaattactg atgcca 26 <210> 123 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 cttgaaattt gaatgacgtg gagtactac 29 <210> 124 <211> 34 <212> DNA <213> Artificial Sequence <220> < 223> primer <400> 124 tctttttgta taaagttttga gtttttgagc tggt 34 <210> 125 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 125 tctttttgta taaagtttga gtttttgagc 126 gttttgagc 211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tccatcatct tccaatttcc caaat 25 <210> 127 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 atcgctgatg aagctgtcga t 21 <210> 128 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 128 tgggaaggct gccgact 17 <210> 129 <211> 17 <212 > DNA <213> Artificial Sequence <220> <223> primer <400> 129 tgggaaggct gccgact 17 <210> 130 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 ccttgccaat gccccaa 17 <210> 131 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 131 catactacgt gaaaacgaac ttcacaaa 28 <210> 132 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 agggctgctg atttcattga attttgt 27 <210> 133 <211> 27 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 133 agggctgctg atttcattga attttgt 27 <210> 134 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 134 tctggtcata ttctgtccga ctaat 25 <210> 135 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 tggcggcggc gaac 14 <210> 136 <211> 17 <212> DNA <213> Artificial Sequence <220 > <223> primer <400> 136 cgacagcctg ttcgcgt 17 <210> 137 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 137 cgacagcctg ttcgcgt 17 <210> 138 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 cgctgagctt ggccat 16 <210> 139 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 139 gggattgcaa taaattattg tcaagtttta cag 33 <210> 140 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 140 gatacagtgt ttgaaatatg gaaatgttaa tcttattttt 40 <210> 141 <211> 40 <212 > DNA <213> Artificial Sequence <220> <223> primer <400> 141 gatacagtgt ttgaaatatg gaaatgttaa tcttatttt t 40 <210> 142 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 ggccttcctg caagcata 18 <210> 143 <211> 25 <212> DNA <213> Artificial Sequence <220 > <223> primer <400> 143 ccgccaagaa gtcatcttat tcctt 25 <210> 144 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 catgcgattc aaaggggcct ta 22 <210> 145 < 211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 catgcgattc aaaggggcct ta 22 <210> 146 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 146 gcttgtcatc gatgccatca c 21 <210> 147 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 gtctacgtta caatggtttg agtatatgg 29 <210> 148 <211> 32 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 tgtaagggta ttggaattct tgttctactt gt 32 <210> 149 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 149 tgtaagggta ttggaattct tgttctactt gt 32 <210> 150 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 150 accctacgtc tacgttacaa tgg 23 <210> 151 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 gcagagcggc tgcga 15 <210> 152 <211> 19 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 152 cggacaaact tcccacccg 19 <210> 153 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 cggacaaact tcccacccg 19 < 210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 ccgttgtcgt tgagcaagaa 20 <210> 155 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 155 ccgagcagca ctccagc 17 <210> 156 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 gtcgacgtcg acgacgga 18 <210> 157 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 gtcgacgtcg acgacgga 18 <210> 158 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 158 ctgtccatca cgtcgtcc 18 <210> 159 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 tccaaccagt cggagtca 18 <2 10> 160 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 gtaaacggcg aaacactcg 19 <210> 161 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 161 gtaaacggcg aaacactcg 19 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 taaccacgag gaaaccaagc 20 <210> 163 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 gataagggaa cttgatattc aggtgc 26 <210> 164 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 164 aaacttacat ctgatggagt gttcgga 27 <210> 165 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 aaacttacat ctgatggagt gttcgga 27 <210> 166 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 gctatcaaga aggaagatgt tgagt 25 <210> 167 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 167 gccatgaaga ggcaggacc 19 <210> 168 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 gccatgaaga ggcaggact 19 <210> 169 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 attgggctcc actttggcac 20 <210> 170 <211> 18 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 170 aagtcgccag agggtgat 18 <210> 171 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 agctcccttt atcaaatggg aatatga 27 <210> 172 < 211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 gctcccttta tcaaatggga atatgg 26 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 173 ttggtgctcc taggcacctt 20 <210> 174 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 cgtgttcaat aaaccctcaa acact 25 <210> 175 <211> 24 <212 > DNA <213> Artificial Sequence <220> <223> primer <400> 175 caatggccga tttcaactaa aagc 24 <210> 176 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 176 ccaatggccg atttcaacta aaagt 25 <210> 177 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 gcatctggat acataacaag attaccatct cg 32 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 tcctcgccac agactattcc 20 <210> 179 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 179 gggaatccag agattcaccg a 21 <210> 180 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 gggaatccag agattcaccg c 21 < 210> 181 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 ccaccagagg tgtcgccg 18 <210> 182 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer<400> 182 catcgacctc tacctgtact ct 22

Claims (6)

서열번호 91 내지 182로 표시된 올리고뉴클레오티드에서, n이 동일한 값을 갖는 서열번호 4n-1, 서열번호 4n, 서열번호 4n+1 및 서열번호 4n+2의 올리고뉴클레오티드가 하나의 프라이머 세트(n은 23 내지 45의 자연수)인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별을 위한 마커 조성물로서,
상기 환경 스트레스는 염(salt), 건조(drought), 인산 결핍, 침수(submergence) 및 저산소 스트레스이고, 상기 생물적 스트레스는 벼멸구(brown plant hopper) 및 목도열병인 것을 특징으로 하는 마커 조성물.
In the oligonucleotides shown in SEQ ID NOs: 91 to 182, the oligonucleotides of SEQ ID NO: 4n-1, SEQ ID NO: 4n, SEQ ID NO: 4n+1, and SEQ ID NO: 4n+2 having the same value of n are one primer set (n is 23 to 45), comprising a set of 23 oligonucleotide primers, characterized in that, as a marker composition for genotyping of environmental and biological stress resistance-related genes of rice resources,
The environmental stress is salt, dry (drought), phosphoric acid deficiency, submergence (submergence) and hypoxic stress, the biological stress is a marker composition, characterized in that brown plant hopper (brown plant hopper) and throat fever.
삭제delete 제1항의 23개의 올리고뉴클레오티드 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별용 키트로서,
상기 환경 스트레스는 염(salt), 건조(drought), 인산 결핍, 침수(submergence) 및 저산소 스트레스이고, 상기 생물적 스트레스는 벼멸구(brown plant hopper) 및 목도열병인 것을 특징으로 하는 키트.
The set of 23 oligonucleotide primers of claim 1; As a kit for genotyping genes related to environmental and biological stress resistance of rice resources, comprising a reagent for performing an amplification reaction,
The environmental stress is salt, dry (drought), phosphoric acid deficiency, submergence (submergence) and hypoxic stress, the biotic stress is brown plant hopper (brown plant hopper) and a kit, characterized in that the throat fever.
제3항에 있어서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs 및 버퍼를 포함하는 것을 특징으로 하는 키트.The kit according to claim 3, wherein the reagent for performing the amplification reaction comprises DNA polymerase, dNTPs and a buffer. 삭제delete 벼 자원의 시료에서 게놈 DNA를 분리하는 단계;
상기 분리된 게놈 DNA를 주형으로 하고, 제1항의 23개의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
상기 증폭 단계의 산물의 유전형을 결정하는 단계;를 포함하는, 벼 자원의 환경 및 생물적 스트레스 저항성 관련 유전자의 유전형 판별방법으로서,
상기 환경 스트레스는 염(salt), 건조(drought), 인산 결핍, 침수(submergence) 및 저산소 스트레스이고, 상기 생물적 스트레스는 벼멸구(brown plant hopper) 및 목도열병인 것을 특징으로 하는 판별방법.
isolating genomic DNA from a sample of rice resources;
using the isolated genomic DNA as a template and performing an amplification reaction using the 23 oligonucleotide primer set of claim 1 to amplify a target sequence; and
Determining the genotype of the product of the amplification step; A method for determining the genotype of a gene related to environmental and biological stress resistance of rice resources, comprising:
The environmental stress is salt, dry (drought), phosphoric acid deficiency, submergence (submergence) and hypoxic stress, and the biological stress is brown plant hopper (brown plant hopper) and neck swab.
KR1020200170627A 2020-12-08 2020-12-08 High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof KR102393054B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200170627A KR102393054B1 (en) 2020-12-08 2020-12-08 High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200170627A KR102393054B1 (en) 2020-12-08 2020-12-08 High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof

Publications (1)

Publication Number Publication Date
KR102393054B1 true KR102393054B1 (en) 2022-05-02

Family

ID=81593370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200170627A KR102393054B1 (en) 2020-12-08 2020-12-08 High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof

Country Status (1)

Country Link
KR (1) KR102393054B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056432A (en) * 2012-10-25 2014-05-12 서강대학교산학협력단 Kit for analysing exposure to abiotic stress in oryza sativa l. and method for analysing the same
KR20160050174A (en) * 2014-10-28 2016-05-11 강원대학교산학협력단 OsGIRL1 gene from rice for increasing environmental stress tolerance in plant and uses thereof
KR102130550B1 (en) * 2019-09-30 2020-07-06 충남대학교 산학협력단 CYP90D2 gene derived from rice controlling plant seed size, low temperature germinability and tolerance to abiotic stresses and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056432A (en) * 2012-10-25 2014-05-12 서강대학교산학협력단 Kit for analysing exposure to abiotic stress in oryza sativa l. and method for analysing the same
KR20160050174A (en) * 2014-10-28 2016-05-11 강원대학교산학협력단 OsGIRL1 gene from rice for increasing environmental stress tolerance in plant and uses thereof
KR102130550B1 (en) * 2019-09-30 2020-07-06 충남대학교 산학협력단 CYP90D2 gene derived from rice controlling plant seed size, low temperature germinability and tolerance to abiotic stresses and uses thereof

Similar Documents

Publication Publication Date Title
KR101923647B1 (en) SNP markers for discrimination of Jubilee type or Crimson type watermelon cultivar
KR101883117B1 (en) SNP marker for selecting tomato cultivars resistant to tomato Bacterial wilt and use thereof
KR102198566B1 (en) Tetra primers ARMS-PCR molecular marker for discriminating cultivars of sweet potato and uses thereof
US20130137097A1 (en) High throughput single nucleotide polymorphism assay
Bagge et al. Functional markers in wheat: technical and economic aspects
KR102121570B1 (en) KASP primer set based on SNP for discriminating or classifying Panax ginseng cultivar or resource and uses thereof
KR102063646B1 (en) SNP marker set for discrimination of subspecies in rice and uses thereof
CN117683927A (en) Functional KASP molecular marker of rice blast resistance gene and application thereof
KR102393054B1 (en) High efficiency molecular maker set for discriminating genotype related to environmental and biotic stress resistance in rice and uses thereof
KR101780936B1 (en) Single nucleotide polymorphism probe for high-throughput genotype analysis of Brassica rapa and use thereof
KR102144673B1 (en) KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof
KR101779030B1 (en) Molecular marker for selecting plant with enhanced zinc content and uses thereof
KR102335934B1 (en) SNP marker set for scanning genotypic composition in each chromosome of Perilla and uses thereof
CN116590453B (en) SNP molecular marker related to dwarf trait of lotus plant and application thereof
KR102418879B1 (en) KASP primer set derived on mitochondira for classifying Panax ginseng cultivar and genotype and uses thereof
CN116622877B (en) SNP molecular marker related to lotus rhizome internode shape and application thereof
KR102505574B1 (en) Molecular marker for discriminating genotype of ESP2 gene regulating amylose content in rice and uses thereof
KR102309663B1 (en) Fluidigm based SNP chip for genotype-identifying and classifying Panax ginseng cultivar or resource and uses thereof
CN113308566B (en) Primer and application of InDel molecular marker related to soybean main stem node number
CN114606341B (en) dCAPS molecular marker of aegilops sieboldii based on genome resequencing SNP and application
Singh et al. Molecular markers in plants
KR102665741B1 (en) Molecular marker for discriminating bacterial wilt-resistant pepper and uses thereof
KR102237248B1 (en) SNP marker set for individual identification and population genetic analysis of Pinus densiflora and their use
KR101883847B1 (en) Primer set for detecting self-incompatibility haplotype of radish
KR20240098237A (en) Tetra primers ARMS-PCR molecular marker for discriminating rice cultivars resistant to Bakanae disease and uses thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant