KR102144673B1 - KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof - Google Patents

KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof Download PDF

Info

Publication number
KR102144673B1
KR102144673B1 KR1020180158644A KR20180158644A KR102144673B1 KR 102144673 B1 KR102144673 B1 KR 102144673B1 KR 1020180158644 A KR1020180158644 A KR 1020180158644A KR 20180158644 A KR20180158644 A KR 20180158644A KR 102144673 B1 KR102144673 B1 KR 102144673B1
Authority
KR
South Korea
Prior art keywords
melon
primer
dna
honey
artificial sequence
Prior art date
Application number
KR1020180158644A
Other languages
Korean (ko)
Other versions
KR20200070935A (en
Inventor
권석윤
신아영
김용민
구남진
문아람
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020180158644A priority Critical patent/KR102144673B1/en
Publication of KR20200070935A publication Critical patent/KR20200070935A/en
Application granted granted Critical
Publication of KR102144673B1 publication Critical patent/KR102144673B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 참외 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도에 관한 것으로, 본 발명의 23개 SNP 마커는 참외의 12개 염색체 전체에 분포하며, 신속·정확하게 참외 품종을 구별할 수 있으므로, 참외의 품종 육성에 활용될 수 있을 것이다.The present invention relates to a primer set for SNP-based KASP and its use for distinguishing melon varieties and testing the purity of F 1 seeds, and the 23 SNP markers of the present invention are distributed over all 12 chromosomes of melon, and quickly and accurately Since it can be distinguished, it will be able to be used for cultivation of melon varieties.

Figure R1020180158644
Figure R1020180158644

Description

참외의 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도{KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof}SNP-based KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof for differentiation of melon varieties and F1 seed purity testing

본 발명은 참외 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도에 관한 것입니다.The present invention relates to a primer set for SNP-based KASP and its use for distinguishing melon varieties and testing the purity of F 1 seeds.

참외(Cucumis melo var. makuwa)는 박과에 속하는 덩굴식물로 분류학적으로 멜론(Cucumis melo)의 한 변종이다. 박과 작물의 국내 종자 시장은 320억 정도로 전체 채소 종자시장의 약 20%를 차지하고 있으며, 그 중 참외는 박과 작물 중 수박에 이어 2번째로 종자시장 규모가 크고 매년 시장 규모와 재배 면적이 다소 증가하는 추세에 있다.Melon ( cucumis melo var. makuwa ) is a vine plant belonging to the cucurbit family, and taxonomically, melon ( Cucumis melo ). The domestic seed market for gourd crops is about 32 billion won, accounting for about 20% of the total vegetable seed market, of which melon is the second largest seed market after watermelon among gourds, and the market size and cultivation area are somewhat larger every year. It is on an increasing trend.

현재 유통 중인 참외는 거의 모두 양친의 교배를 통하여 생산된 일대 잡종 품종들이다. 일대 잡종(F1) 품종에서는 생산된 종자에 대하여 순도검정을 실시하게 되는데, 이는 의도하는 양친간 교배의 성립여부, 즉 이형성(heterozygosity)을 검정하고 그 정도를 순도(%)로서 표시하는 품질관리 행위를 말한다. 이와 관련하여 순도가 떨어지는 원인으로는 수정시 타화분의 오염과 모본의 자식, 다른 종자의 단순 혼입 등이 있을 수 있다. 이 중에서 모본의 자식 개체 발생의 경우 빈도가 가장 높은 것으로 알려져 있다. 따라서 모든 종자회사는 F1 종자의 순도검정을 위한 자체 검정 시스템을 기본적으로 유지하고 있다. 이는 해당 교배종 품종의 기본 유전적 특성을 유지시키는 품질관리 차원으로서 뿐만 아니라, 고품질 농산물의 재배 생산을 위하여 필수적인 고순도 종자를 확보하기 위한 기술적 수단이며, 종자의 품질 저하에서 초래되는 재배농민의 소득저하와 민원발생 요인을 원천적으로 방지하는 효과 등 매우 중요한 의미를 갖는 과정이다.Almost all of the melons currently in circulation are hybrid varieties produced through mating between parents. In one major hybrid (F 1 ) cultivar, a purity test is performed on the produced seeds, which is a quality control that tests whether the intended parental crossing, that is, heterozygosity, is expressed as purity (%). Speak of an act. In this regard, there may be contamination of other pollen during fertilization, children of the parent, and simple mixing of other seeds. Among them, it is known that the frequency of occurrence of the parental child individuals is the highest. Therefore, all seed companies basically maintain their own test system for the purity test of F 1 seeds. This is not only a quality control dimension that maintains the basic genetic characteristics of the hybrid variety, but also a technological means to secure high-purity seeds essential for the cultivation and production of high-quality agricultural products. It is a process that has a very important meaning, such as the effect of preventing civil complaints from occurring.

참외는 국내에서는 경제적, 상업적으로 중요한 작물이며, 수출 품종 육성의 중요성도 눈에 띄게 대두되고 있다. 참외는 세대가 짧고 타 작물에 비해 고정이 잘되어 계통 개발에 걸리는 시간이 매우 짧기 때문에, 개발된 품종 및 계통의 보호를 위해서는 품종 보호를 위한 분자표지 개발이 필수적이다.Melons are economically and commercially important crops in Korea, and the importance of fostering export varieties is also remarkably emerging. Since melon has a short generation and is well fixed compared to other crops, the time it takes to develop a line is very short, so for the protection of the developed variety and line, it is essential to develop a molecular marker for the protection of the variety.

한편, 한국등록특허 제1516190호에는 '참외 계통 또는 품종의 구별을 위한 SSR 프라이머 세트 및 이들의 용도'가 개시되어 있고, 한국등록특허 제1447112호에는 '재배종 참외 품종으로부터 한국 재래종 계통인 곶감참외 품종을 선별하기 위한 바이오 마커 및 이의 용도'가 개시되어 있으나, 본 발명의 참외 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도에 대해서는 기재된 바가 없다.On the other hand, Korean Patent No. 1516190 discloses'SSR primer sets for distinguishing melon strains or varieties and their uses', and Korean Patent No. 1447112 discloses'Dried persimmon melon varieties, which are Korean native species from cultivated melon varieties. A biomarker for screening and its use is disclosed, but there is no description of the primer set for SNP-based KASP and its use for the identification of melon varieties and F 1 seed purity assay of the present invention.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 한국 재래종 계통인 곶감참외를 참조 유전체로 하여 다양한 참외(Cucumis melo var. makuwa) 품종의 유전체 분석을 통해 참외 12개 염색체에서 참외 품종을 구별할 수 있는 23개의 참외 특이적 SNP(single nucleotide polymorphism) 마커를 선별한 후 상기 마커를 증폭시키기 위한 KASP용 프라이머 세트를 제작하고 유전형 분석을 수행하여 17개 참외 품종을 구별할 수 있음을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above requirements, and the inventors of the present invention refer to the Korean native species Dried persimmon melon as a reference genome, and various melon ( Cucumis melo var. makuwa ) After selecting 23 melon-specific single nucleotide polymorphism (SNP) markers that can distinguish melon cultivar from 12 chromosomes of melon through genome analysis, a primer set for KASP to amplify the marker was prepared and genotyped. By performing an analysis and confirming that 17 melon varieties can be distinguished, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서 서열번호 1부터 시작하여 인접한 3개의 올리고뉴클레오티드가 하나의 프라이머 세트인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 및 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트를 제공한다.In order to solve the above problems, the present invention comprises a set of 23 oligonucleotide primers, characterized in that three adjacent oligonucleotides starting from SEQ ID NO: 1 in the oligonucleotides represented by SEQ ID NOs: 1 to 69 are one primer set. , Melon ( Cucumis melo var. makuwa) provides a primer set for KASP (kompetiive allele specific PCR) for distinguishing breeds and F 1 seed purity of black.

또한, 본 발명은 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트를 제공한다.In addition, the present invention is the primer set; And it provides a kit for KASP for distinguishing melon varieties and assaying the purity of F 1 seeds including reagents for performing an amplification reaction.

또한, 본 발명은 참외 시료에서 게놈 DNA를 분리하는 단계; 상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및 상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 및 F1 종자 순도검정 방법을 제공한다.In addition, the present invention comprises the steps of separating genomic DNA from a melon sample; Using the isolated genomic DNA as a template and performing KASP using the primer set of the present invention; And analyzing the amplification product of the KASP; containing, it provides a method for distinguishing melon varieties and assaying the purity of F 1 seeds.

본 발명의 KASP용 프라이머 세트는 다양한 참외 품종을 구별할 수 있고 참외의 전체 유전체 수준에서 F1 종자 순도검정이 가능하므로, 참외의 품종 개발, 품종 보호 및 종자 생산에 효율적인 바이오 마커로 유용하게 활용될 수 있을 것이다.The primer set for KASP of the present invention can distinguish various melon varieties and can test the purity of F 1 seeds at the whole genome level of melon, so it will be usefully utilized as an efficient biomarker for the development of melon varieties, variety protection and seed production. I will be able to.

도 1은 참외의 12개 염색체상에 존재하는 SNP를 나타낸 것으로, 최종 선발된 23개의 SNP 부분은 파란색으로 표시하였다.1 shows SNPs present on 12 chromosomes of melon, and the 23 SNPs finally selected are indicated in blue.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서 서열번호 1부터 시작하여 인접한 3개의 올리고뉴클레오티드가 하나의 프라이머 세트인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 및 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트를 제공한다.In order to achieve the object of the present invention, the present invention provides a set of 23 oligonucleotide primers, characterized in that three adjacent oligonucleotides starting from SEQ ID NO: 1 in the oligonucleotides represented by SEQ ID NOs: 1 to 69 are one primer set. Containing, melon ( Cucumis melo var. makuwa) provides a primer set for KASP (kompetiive allele specific PCR) for distinguishing breeds and F 1 seed purity of black.

본 발명의 상기 참외 품종은 오복꿀 참외, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외일 수 있으나, 이에 제한되지 않는다.The melon varieties of the present invention are five bok honey melon, five bok honey plus melon, champignon honey melon, honey love melon, native honey melon, rich honey melon, king honey melon, new gold melon, daebak honey melon, gold melon, manata It may be honey melon, Daejanggeum plus melon, eight bok honey melon, yellow honey melon, gold ax melon, chimney melon or super gold lump melon, but is not limited thereto.

본 발명의 용어 "KASP(kompetitive allele specific PCR)"는 PCR(polymerase chain reaction) 기반의 분석 방법 중 하나로, 상동의(homogenous) 그리고 형광(fluorescence) 기반의 유전형 분석 기술이다. KASP는 대립형질(allele)-특이적 올리고 연장(extension) 및 신호생성을 위한 형광공명에너지전이(fluorescence resonance energy transfer)를 기반으로 하는 기술이다.The term "kompetitive allele specific PCR (KASP)" of the present invention is one of a polymerase chain reaction (PCR)-based analysis method, and is a homogenous and fluorescence-based genotyping analysis technique. KASP is a technology based on fluorescence resonance energy transfer for allele-specific oligo extension and signal generation.

본 발명의 상기 프라이머 세트는 참외 유전자좌에서 특이적으로 차별화되는 단일염기다형성(single nucleotide polymorphism, SNP) 마커의 염기 타입을 검출하는 프라이머 세트이다.The primer set of the present invention is a primer set that detects the base type of a single nucleotide polymorphism (SNP) marker that is specifically differentiated in a melon locus.

본 발명의 상기 프라이머 세트는 연속되는 서열번호 3개의 올리고뉴클레오티드가 하나의 프라이머 세트를 이루며, 2개의 정방향 프라이머와 1개의 역방향 프라이머로 구성되어 있다. 구체적으로는 정방향 프라이머의 5' 말단에는 FAM 또는 HEX 형광물질이 부착되어 있고 3' 말단에는 SNP를 나타내는 염기가 결합되어 있으며, 역방향 프라이머는 상기 정방향 프라이머의 SNP 부분의 대립유전자에 동일한 염기쌍으로 이루어져 있다(표 3). In the primer set of the present invention, three consecutive oligonucleotides of SEQ ID NOs form one primer set, and consist of two forward primers and one reverse primer. Specifically, a FAM or HEX fluorescent substance is attached to the 5'end of the forward primer, and a base representing SNP is bonded to the 3'end, and the reverse primer consists of the same base pair to the allele of the SNP portion of the forward primer. (Table 3).

본 발명의 프라이머 세트는 바람직하게는 상기 23개의 프라이머 세트로 이루어진 군으로부터 선택되는 1개 이상의 프라이머 세트를 포함할 수 있으나, 상기 23개의 프라이머 세트를 동시에 이용하면 참외 품종을 더욱 효율적으로 구별할 수 있다.The primer set of the present invention may preferably include one or more primer sets selected from the group consisting of the 23 primer sets, but when the 23 primer sets are used at the same time, melon varieties can be more efficiently distinguished. .

본 발명의 상기 프라이머는 각 프라이머의 서열 길이에 따라 15개 이상, 16개 이상, 17개 이상, 18개 이상, 19개 이상, 20개 이상, 21개 이상, 22개 이상, 23개 이상, 24개 이상, 25개 이상, 26개 이상의 연속 뉴클레오티드의 절편으로 이루어진 올리고뉴클레오티드를 포함할 수 있다. 예를 들면, 서열번호 1의 프라이머(28개 올리고뉴클레오티드)는 서열번호 1의 서열 내의 15개 이상, 20개 이상, 21개 이상, 22개 이상, 23개 이상, 24개 이상, 25개 이상, 26개 이상, 27개 이상의 뉴클레오티드의 절편으로 이루어진 올리고뉴클레오티드를 포함할 수 있다. 또한, 상기 프라이머는 서열번호 1 내지 69의 염기서열의 부가, 결실 또는 치환된 서열도 포함할 수 있다. 서열번호 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64 및 67의 올리고뉴클레오티드 프라이머는 형광물질 FAM이 부착된 정방향 프라이머이고, 서열번호 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65 및 68의 올리고뉴클레오티드 프라이머는 HEX가 부착된 정방향 프라이머이며, 서열번호 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66 및 69의 올리고뉴클레오티드 프라이머는 역방향 프라이머이다.The primers of the present invention are 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, depending on the sequence length of each primer. It may include an oligonucleotide consisting of segments of at least two, at least 25, or at least 26 contiguous nucleotides. For example, the primers of SEQ ID NO: 1 (28 oligonucleotides) are 15 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, 25 or more in the sequence of SEQ ID NO: 1, It may include an oligonucleotide consisting of fragments of 26 or more and 27 or more nucleotides. In addition, the primer may include an addition, deletion or substitution of the nucleotide sequences of SEQ ID NOs: 1 to 69. Oligonucleotides of SEQ ID NOs: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64 and 67 The primer is a forward primer to which a fluorescent substance FAM is attached, and SEQ ID NOs: 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, The oligonucleotide primers of 56, 59, 62, 65 and 68 are HEX-attached forward primers, and SEQ ID NOs: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, Oligonucleotide primers of 42, 45, 48, 51, 54, 57, 60, 63, 66 and 69 are reverse primers.

본 발명의 일 구현예에 따른 프라이머 세트는, 서열번호 1 내지 69로 표시된 23개의 프라이머 세트를 조합하여 전술한 17개의 참외 품종을 구별할 수 있다. 예를 들어, 하기 표 5의 오복꿀 참외(1)는 서열번호 13, 14 및 15; 서열번호 16, 17 및 18; 서열번호 19, 20 및 21; 서열번호 22, 23 및 24; 서열번호 25, 26 및 27; 서열번호 28, 29 및 30; 서열번호 31, 32 및 33; 서열번호 34, 35 및 36; 서열번호 37, 38 및 39; 서열번호 49, 50 및 51; 서열번호 52, 53 및 54; 서열번호 55, 56 및 57; 서열번호 58, 59 및 60; 서열번호 61, 62 및 63; 및 서열번호 64, 65 및 66의 프라이머 세트를 이용하여 구별할 수 있다. 또한, 오복꿀 참외 이외에, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외도 23개의 프라이머 세트를 조합하여 구별할 수 있다.In the primer set according to an embodiment of the present invention, the aforementioned 17 melon varieties may be distinguished by combining 23 primer sets represented by SEQ ID NOs: 1 to 69. For example, the ohbok honey melon (1) of Table 5 below is SEQ ID NO: 13, 14 and 15; SEQ ID NOs: 16, 17 and 18; SEQ ID NOs: 19, 20 and 21; SEQ ID NOs: 22, 23 and 24; SEQ ID NOs: 25, 26 and 27; SEQ ID NOs: 28, 29 and 30; SEQ ID NOs: 31, 32 and 33; SEQ ID NOs: 34, 35 and 36; SEQ ID NOs: 37, 38 and 39; SEQ ID NOs: 49, 50 and 51; SEQ ID NOs: 52, 53 and 54; SEQ ID NOs: 55, 56 and 57; SEQ ID NOs: 58, 59 and 60; SEQ ID NOs: 61, 62 and 63; And it can be distinguished by using the primer sets of SEQ ID NOs: 64, 65 and 66. In addition, in addition to Obok Honey Melon, Obok Honey Plus Melon, Chamsiso Honey Melon, Honey Love Melon, Native Honey Melon, Rich Honey Melon, King Honey Melon, Shingeum Salagi Melon, Daebak Honey Melon, Gold Melon, Manata Honey Melon, Daejanggeum Plus melon, eight bok honey melon, yellow honey melon, golden ax melon, melon or super gold melon can also be distinguished by combining 23 primer sets.

본 발명에 있어서, "프라이머"는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로서 작용할 수 있다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 한다. 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity)뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다.In the present invention, "primer" refers to a single-stranded oligonucleotide sequence that is complementary to a nucleic acid strand to be copied, and can serve as an initiating point for the synthesis of a primer extension product. The length and sequence of the primers should allow starting the synthesis of the extension product. The specific length and sequence of the primers will depend on the conditions of use of the primer, such as temperature and ionic strength, as well as the complexity of the DNA or RNA target required.

본 발명에 있어서, 프라이머로서 이용된 올리고뉴클레오티드는 또한 뉴클레오티드 유사체(analogue), 예를들면, 포스포로티오에이트(phosphorothioate), 알킬포스포로티오에이트 또는 펩티드 핵산 (peptide nucleic acid)을 포함할 수 있거나 또는 삽입 물질(intercalating agent)을 포함할 수 있다. 또한, 프라이머는 DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다. 본 발명의 프라이머 핵산 서열은 필요한 경우, 분광학적, 광화학적, 생화학적, 면역화학적 또는 화학적 수단에 의해 직접적으로 또는 간접적으로 검출 가능한 표지를 포함할 수 있다. 표지의 예로는, 효소(예를 들어, HRP (horse radish peroxidase), 알칼리 포스파타아제), 방사성 동위원소(예를 들어, 32P), 형광성 분자, 화학그룹(예를 들어, 비오틴) 등이 있다.In the present invention, the oligonucleotide used as a primer may also comprise a nucleotide analogue, for example, phosphorothioate, alkylphosphorothioate or peptide nucleic acid, or It may include an intercalating agent. In addition, the primers can incorporate additional features that do not change the basic properties of the primers serving as the starting point for DNA synthesis. If necessary, the primer nucleic acid sequence of the present invention may include a label detectable directly or indirectly by spectroscopic, photochemical, biochemical, immunochemical or chemical means. Examples of labels include enzymes (eg, horse radish peroxidase (HRP), alkaline phosphatase), radioactive isotopes (eg, 32 P), fluorescent molecules, chemical groups (eg, biotin), and the like. have.

프라이머의 적합한 길이는 사용하고자하는 프라이머의 특성에 의해 결정하지만, 통상적으로 15 내지 30bp의 길이로 사용한다. 프라이머는 주형의 서열과 정확하게 상보적일 필요는 없지만 주형과 혼성복합체(hybrid-complex)를 형성할 수 있을 정도로 상보적이어야만 한다.The suitable length of the primer is determined by the characteristics of the primer to be used, but is usually used in a length of 15 to 30 bp. The primer does not have to be exactly complementary to the sequence of the template, but must be complementary enough to form a hybrid-complex with the template.

본 발명은 또한, 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트를 제공한다. 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 및 버퍼를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 dNTPs는 dATP, dCTP, dGTP, dTTP를 포함하며, DNA 폴리머라제는 내열성 DNA 중합효소로서 Taq DNA 폴리머라제, Tth DNA 폴리머라제 등 시판되는 폴리머라제를 이용할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 설명서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, 역전사 완충액 및 PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.The present invention also, the primer set; And it provides a kit for KASP for distinguishing melon varieties and assaying the purity of F 1 seeds including reagents for performing an amplification reaction. Reagents for performing the amplification reaction may include DNA polymerase, dNTPs, and buffers, but are not limited thereto. The dNTPs include dATP, dCTP, dGTP, and dTTP, and the DNA polymerase may be a commercially available polymerase such as Taq DNA polymerase or Tth DNA polymerase as a heat-resistant DNA polymerase. In addition, the kit of the present invention may further include a user's manual describing the optimum reaction performance conditions. The guide is a handout explaining how to use the kit, e.g., how to prepare reverse transcription and PCR buffers, and the reaction conditions presented. The guide includes a brochure in the form of a brochure or flyer, a label affixed to the kit, and a description on the surface of the package containing the kit. In addition, the guide includes information disclosed or provided through electronic media such as the Internet.

본 발명은 또한,The present invention also,

참외 시료에서 게놈 DNA를 분리하는 단계;Separating genomic DNA from the melon sample;

상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 KASP용 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및Using the isolated genomic DNA as a template and performing KASP using the primer set for KASP of the present invention; And

상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 및 F1 종자 순도검정 방법을 제공한다.Analyzing the amplification product of the KASP; containing, it provides a method for distinguishing melon varieties and assaying the purity of F 1 seeds.

본 발명의 참외 품종 구별 방법에 있어서, KASP용 프라이머 세트는 전술한 것과 같다.In the method for distinguishing melon varieties of the present invention, the primer set for KASP is the same as described above.

본 발명의 방법은 참외 시료에서 게놈 DNA를 분리하는 단계를 포함한다. 상기 게놈 DNA를 분리하는 방법은 당업계에 공지된 방법을 이용할 수 있으며, 예를 들면, CTAB 방법을 이용할수도 있고, Wizard prep 키트(Promega 사)를 이용할 수도 있다. 상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 일 실시예에 따른 프라이머 세트를 프라이머로 이용하여 증폭 반응을 수행하여 표적 서열을 증폭할 수 있다. 표적 핵산을 증폭하는 방법은 중합효소연쇄반응(polymerase chain reaction; PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ 복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 이 중에서, PCR이란 중합효소를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.The method of the present invention includes the step of isolating genomic DNA from a melon sample. As a method of separating the genomic DNA, a method known in the art may be used. For example, the CTAB method may be used, or the Wizard prep kit (Promega) may be used. Using the isolated genomic DNA as a template and using the primer set according to an embodiment of the present invention as a primer, an amplification reaction may be performed to amplify a target sequence. Methods for amplifying target nucleic acids include polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, and transcription-based amplification system. amplification system), strand displacement amplification, or amplification via Qβ replicase or any other suitable method for amplifying nucleic acid molecules known in the art. Among them, PCR is a method of amplifying a target nucleic acid from a pair of primers that specifically bind to a target nucleic acid using a polymerase. Such PCR methods are well known in the art, and commercially available kits may be used.

본 발명의 방법에 있어서, 상기 증폭된 서열은 검출가능한 표지 물질로 표지될 수 있다. 일 구현예에서, 상기 표지 물질은 형광, 인광 또는 방사성을 발하는 물질일 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 표지 물질은 FAM, HEX, VIC, JOE, ROX, TAMRA, Cy3 또는 Cy5 등일 수 있다. 표적 서열의 증폭시 프라이머의 5'-말단에 상기 표지 물질을 표지하여 PCR을 수행하면 표적 서열이 검출가능한 형광 표지 물질로 표지될 수 있다. 표적 서열을 증폭하기 위해 이용된 올리고뉴클레오티드 프라이머 세트는 하기 표 3에 기재된 바와 같다.In the method of the present invention, the amplified sequence may be labeled with a detectable labeling material. In one embodiment, the labeling material may be a material that emits fluorescence, phosphorescence, or radioactivity, but is not limited thereto. Preferably, the labeling material may be FAM, HEX, VIC, JOE, ROX, TAMRA, Cy3 or Cy5. When amplifying the target sequence, PCR is performed by labeling the labeling material at the 5'-end of the primer, so that the target sequence can be labeled with a detectable fluorescent labeling material. The set of oligonucleotide primers used to amplify the target sequence is as described in Table 3 below.

또한, 본 발명의 일 구현예에 따른 방법에 있어서, 상기 KASP의 증폭산물을 분석하는 단계는 유전형 분석을 통해 수행될 수 있다. 구체적으로는, 정방향 프라이머의 5' 말단에 부착되어 있는 형광물질 FAM 또는 HEX와, 3' 말단에 결합된 SNP를 통해 유전형을 구별하여 참외 품종을 구별할 수 있다. 유전형이 동형접합체(homozygous)라면 두 개의 형광(FAM 또는 HEX) 중 한 개의 형광만 검출된 것으로, FAM이 검출되면 유전형 'A', HEX가 검출되면 유전형 'B'로 판단할 수 있다.In addition, in the method according to an embodiment of the present invention, the step of analyzing the amplification product of KASP may be performed through genotyping. Specifically, the genotype can be distinguished through the fluorescent substance FAM or HEX attached to the 5'end of the forward primer and the SNP bonded to the 3'end to distinguish the melon variety. If the genotype is homozygous, only one of the two fluorescence (FAM or HEX) is detected. If FAM is detected, it can be determined as genotype'A', and if HEX is detected, it can be determined as genotype'B'.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

재료 및 방법Materials and methods

1. SNP 1.SNP 마커Marker 정보 Information

참조 유전체를 작성하기 위해 곶감참외를 대상으로 차세대 염기서열 분석(Next Generation Sequencing, NGS) 및 Hi-C 방법으로 유전체 정보를 얻었고 다양한 생물정보 분석 방법을 통해 12개의 염색체로 구성된 참외 게놈 정보를 구축하였다(실험실 보유). 열골참외, 은천참외, 안종참외, 강서참외, 조선참외, 먹참외, 노랑참외, 간치참외, 개루리 참외 및 야생종 참외를 포함한 36개의 다양한 재래종 참외 및 참외 계통의 유전체 분석을 위한 NGS 리드(read)를 생산하였고, 생산된 리드는 퀄리티가 낮은 서열을 제거한 후 BWA(Burrows-Wheeler Alignment tool)를 이용하여 곶감참외 참조서열에 맵핑하였다. 맵핑된 리드들은 SNP 콜링(calling)의 정확도를 높이기 위해 게놈 분석 툴인 GATK(http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit)를 이용하여 이중 마스킹(duplicate masking), 국소적 재정렬(local realignment) 과정을 수행한 후 UnifiedGenotyper를 이용해 SNP(single nucleotide polymorphism)를 예측하고 필터링 과정을 거쳐 526,271개의 SNP를 확보하였으며(표 1), 그 중 분석 가능한 SNP 519개를 선별하여 염색체별로 정리하였다(표 2 및 도 1), 또한, 12개 염색체별로 SNP가 고르게 분포할 있도록 염색체 당 4개의 SNP를 대상으로 분석하였고, 이 중에서 34개의 SNP가 제대로 반응됨을 확인하였다.To create a reference genome, genome information was obtained from dried persimmon melon by Next Generation Sequencing (NGS) and Hi-C method, and information on the melon genome consisting of 12 chromosomes was constructed through various bioinformation analysis methods. (Laboratory). NGS read for genome analysis of 36 different native melon and melon strains, including Yeolgol melon, Euncheon melon, Anjong melon, Gangseo melon, Chosun melon, Mook melon, Yellow melon, Ganchi melon, Gaeruri melon, and wild melon. Was produced, and the produced reads were mapped to the dried persimmon melon reference sequence using the BWA (Burrows-Wheeler Alignment tool) after removing the sequence of low quality. The mapped reads are double masked and localized using GATK (http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit), a genome analysis tool, to increase the accuracy of SNP calling. After performing the local realignment process, SNP (single nucleotide polymorphism) was predicted using the Unified Genotyper, and 526,271 SNPs were obtained through the filtering process (Table 1). Among them, 519 SNPs that can be analyzed were selected for each chromosome. In addition, 4 SNPs per chromosome were analyzed for even distribution of SNPs by 12 chromosomes (Table 2 and FIG. 1), and it was confirmed that 34 SNPs were properly reacted.

염색체별 SNP의 수Number of SNPs per chromosome 염색체chromosome SNP 수SNP number chr01chr01 30,72230,722 chr02chr02 56,30456,304 chr03chr03 46,34146,341 chr04chr04 39,89539,895 chr05chr05 62,05162,051 chr06chr06 101,010101,010 chr07chr07 67,18967,189 chr08chr08 66,69366,693 chr09chr09 17,18317,183 chr10chr10 11,22411,224 chr11chr11 16,47216,472 chr12chr12 11,18711,187 합계Sum 526,271526,271

염색체별로 선별된 SNP 마커SNP markers selected for each chromosome 염색체chromosome 길이 (Kb)Length (Kb) SNP 수SNP number 500 Kb당 평균 SNP 수Average number of SNPs per 500 Kb chr01chr01 30,382.07130,382.071 4949 0.810.81 chr02chr02 22,746.49422,746.494 3939 0.860.86 chr03chr03 21,121.64521,121.645 3636 0.850.85 chr04chr04 29,198.73029,198.730 5050 0.860.86 chr05chr05 27,871.97027,871.970 3939 0.700.70 chr06chr06 34,894.54434,894.544 5555 0.790.79 chr07chr07 23,387.21223,387.212 4242 0.900.90 chr08chr08 32,358.24532,358.245 5555 0.850.85 chr09chr09 19,018.73219,018.732 3434 0.890.89 chr10chr10 19,826.10319,826.103 3636 0.910.91 chr11chr11 26,513.79626,513.796 4848 0.910.91 chr12chr12 20,136.14320,136.143 3636 0.890.89 합계Sum 307,455.685307,455.685 519519 0.840.84

3. SNP 3. SNP 마커Marker 선정 및 상기 SNP 기반 Selection and SNP based KASPKASP 프라이머primer 제작 making

상기 선별된 34개의 SNP를 기반으로 제작된 KASP(Kompetitive allele specific PCR) 프라이머 세트는 2개의 정방향 프라이머와 1개의 역방향 프라이머로 구성되어 있다. 정방향 프라이머는 5' 말단에 FAM 또는 HEX 형광물질이 부착되어 있고 3' 말단에는 SNP와 같은 염기서열의 차이가 구분되도록 디자인하였다. 그리고 역방향 프라이머는 상기 2개의 정방향 프라이머와 작동하여 PCR 반응이 진행될 수 있도록 디자인하였다(표 3). PCR을 수행하면 2개의 정방향 프라이머의 5' 말단에 각기 다른 형광물질이 붙은 채로 증폭되므로, 형광물질의 파장 차이에 따라 유전형을 분석하였다. 유전형이 동형접합체(homozygous)라면 두 개의 형광(FAM 또는 HEX) 중 한 개의 형광만 검출된 것으로, FAM이 검출되면 유전형 'A', HEX가 검출되면 유전형 'B'로 판단할 수 있다. 참조 유전체(곶감 참외)에 존재하는 SNP는 FAM이 부착된 정방향 프라이머에 의해 검출될 수 있도록 디자인하였다.The KASP (Kompetitive allele specific PCR) primer set constructed based on the selected 34 SNPs consists of two forward primers and one reverse primer. The forward primer was designed so that a FAM or HEX fluorescent substance was attached to the 5'end and the difference in base sequence such as SNP was distinguished at the 3'end. And the reverse primer was designed to work with the two forward primers to allow the PCR reaction to proceed (Table 3). When PCR was performed, amplification was performed with different fluorescent substances attached to the 5'ends of the two forward primers. Therefore, genotype was analyzed according to the difference in wavelength of the fluorescent substances. If the genotype is homozygous, only one of the two fluorescence (FAM or HEX) is detected. If FAM is detected, it can be determined as genotype'A', and if HEX is detected, it can be determined as genotype'B'. SNPs present in the reference genome (dried persimmon melon) were designed to be detected by the FAM-attached forward primer.

Figure 112018123796618-pat00001
Figure 112018123796618-pat00001

4. SNP 4. SNP 마커Marker 검출을 위한 For detection KASPKASP 반응 조건 Reaction conditions

LGC genomics(Laboratory of the Government Chemist Genomics)에서 권고한 방법으로 실시하였고, 실험에 사용한 시약은 KASP 2X master mix 및 KASP Assay mix(LGC genomics)이다. KASP 반응 조건은 하기 표 4와 같다.It was carried out by the method recommended by LGC genomics (Laboratory of the Government Chemist Genomics), and the reagents used in the experiment were KASP 2X master mix and KASP Assay mix (LGC genomics). KASP reaction conditions are shown in Table 4 below.

KASP 조건KASP conditions 단계step 온도(℃)Temperature(℃) 시간time 반복 횟수Number of repetitions Hot-start activationHot-start activation 9494 15초15 seconds 1One DenatureDenature 9494 20초20 seconds 1010 Annealing/ElongationAnnealing/Elongation 61~55
(사이클 당 0.6℃씩 감소)
61~55
(Decrease by 0.6℃ per cycle)
1분1 min
DenatureDenature 9494 20초20 seconds 26
26
Annealing/ElongationAnnealing/Elongation 5757 1분1 min

실시예Example 1. One. KASPKASP for 프라이머primer 세트를 이용한 참외 품종 구별 Distinguish melon varieties using a set

17개 참외 품종을 대상으로 상기 34개의 KASP용 프라이머 세트를 이용하여 유전형 분석을 수행하였다. 17개 참외 품종은 다음과 같다; 1. 오복꿀 참외(농우바이오); 2. 오복꿀플러스 참외(농우바이오); 3. 참미소꿀 참외(농우바이오); 4. 꿀사랑 참외(농우바이오); 5. 토종꿀 참외(팜한농); 6. 부자꿀 참외(팜한농); 7. 제왕꿀 참외(팜한농); 8. 신금싸라기 참외(팜한농); 9. 대박꿀 참외(팜한농); 10. 금제 참외(아시아종묘); 11. 마나따벌꿀 참외(아시아종묘); 12. 대장금플러스 참외(아시아종묘); 13. 팔복꿀 참외(현대종묘); 14. 황깔꿀 참외(현대종묘); 15. 황금도끼 참외(현대종묘); 16. 참깔 참외(코레곤); 및 17. 슈퍼금덩어리 참외(제일종묘). 참조 유전체에 존재하는 SNP는 FAM 형광물질이 부착된 정방향 프라이머에 의해 검출될 수 있고, 유전형 A로 나타내었다.Genotyping was performed on 17 melon varieties using the 34 KASP primer sets. The 17 melon varieties are as follows; 1. Obok Honey Melon (Nongwoo Bio); 2. Obok Honey Plus Melon (Nongwoo Bio); 3. True smile honey melon (Nongwoo Bio); 4. Honey love melon (Nongwoo Bio); 5. Native honey melon (Pam Hannong); 6. Rich honey melon (Pam Hannong); 7. King Honey Melon (Pam Hannong); 8. Shingeum Salagi Melon (Pam Hannong); 9. Daebak Honey Melon (Palm Hannong); 10. Golden melon (Asian seedlings); 11. Manata honey melon (Asian seedlings); 12. Daejanggeum Plus melon (Asian seedlings); 13. The Beatitude Honey Melon (Hyundai Jongmyo); 14. Hwangkal Honey Melon (Hyundai Jongmyo); 15. Golden Ax Melon (Hyundai Jongmyo); 16. Chamkal melon (Koregon); And 17. Super gold chunk melon (Cheiljongmyo). SNPs present in the reference genome can be detected by a forward primer attached with a FAM fluorescent substance, and are represented by genotype A.

그 결과, 예를 들어, '오복꿀 참외'는 C01-sp010886, bgs00289, C09-sp000673, C08-sp000276, C03-sp004954 및 bgs01444 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서 유전형 A를, bgs00659, bgs04958, C09-sp007875, bgs04175, bgs04286, bgs05223, bgs00068, bgs52645 및 bgs02242 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서는 유전형 B를 나타내어 이와 같은 유전형 분석 결과의 조합을 통해 다른 참외 품종으로부터 구별될 수 있었고; '오복꿀플러스 참외'는 C01-sp010886, bgs00289, C09-sp000673, C08-sp000276 및 bgs01444 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서 유전형 A를, bgs00659, bgs04958, C09-sp007875, bgs04286, bgs05223, bgs00068, bgs52645 및 bgs02242 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서는 유전형 B를 나타내어, 이와 같은 유전현 분석 결과의 조합을 통해 다른 참외 품종으로부터 구별될 수 있었다. 다만, 34개의 프라이머 세트 중에서 11개의 프라이머 세트는 유전형 결과가 동형(A 또는 B) 또는 이형(H)으로 명확하게 확인되지 않고, A/H, B/H 유전형, 또는 '-'로 표시되는 결과가 확인되어, 최종적인 참외 품종 구별을 위한 프라이머 세트에는 제외하였다(하기 표 5에서 파란색으로 표시된 마커를 증폭할 수 있는 프라이머 세트).As a result, for example,'Obok Honey Melon' is genotype A, bgs00659, bgs04958 in genotyping analysis results using primer sets for amplifying markers C01-sp010886, bgs00289, C09-sp000673, C08-sp000276, C03-sp004954 and bgs01444. , C09-sp007875, bgs04175, bgs04286, bgs05223, bgs00068, bgs52645 and bgs02242 In the result of genotyping using primer sets for marker amplification, genotype B was shown, and the combination of such genotyping results could be distinguished from other melon varieties; 'Obok Honey Plus Melon' is genotype A, bgs00659, bgs04958, C09-sp007875, bgs04286, bgs05223, bgs00068 in the results of genotyping analysis using primer sets for amplifying markers C01-sp010886, bgs00289, C09-sp000673, C08-sp000276 and bgs01444. , bgs52645 and bgs02242 In the result of genotyping using a primer set for amplifying markers, genotype B was indicated, and it could be distinguished from other melon varieties through the combination of the results of the gene expression analysis. However, among the 34 primer sets, the genotyping result of 11 primer sets is not clearly identified as isotype (A or B) or heterotype (H), and results indicated by A/H, B/H genotype, or'-' Was confirmed, and was excluded from the primer set for finally distinguishing the melon variety (primer set capable of amplifying the marker indicated in blue in Table 5 below).

Figure 112018123796618-pat00002
Figure 112018123796618-pat00002

3-F; 참미소꿀 참외의 부본.3-F; A copy of the true smile honey melon.

3-M; 참미소꿀 참외의 모본.3-M; A model of true smile honey melon.

4-F; 꿀사랑 참외의 부본. 4-F; A copy of honey love melon.

4-M; 꿀사랑 참외의 모본.4-M; An example of honey love melon.

실시예Example 2. 2. KASPKASP for 프라이머primer 세트를 이용한 참외 F Melon F with set 1One 종자 순도검정 Seed purity test

상기 KASP용 프라이머 세트를 이용하여 참미소꿀 참외 또는 꿀사랑 참외의 부본 및 모본을 대상으로 유전형 분석을 수행하였다. 그 결과, 상기 표 5에 나타난 바와 같이, 참미소꿀 참외 또는 꿀사랑 참외의 모본 및 부본에서 모두 동형접합(homozygous)하게 검출되었다. 이는 개발된 마커의 유전자위가 품종개발에 쓰이는 고정종(원종 또는 양친)에서 잘 고정되어 있는 위치여서 F1에서 순도검정에 유용한 위치임을 의미한다. 또한, bgs01227, bgs14324, bgs03305, bgs21920, C01-sp011515, bgs00074, bgs00659, bgs04958, bgs05223, bgs05705, bgs07516, bgs08106, bgs02460 또는 bgs02242의 프라이머 세트는 모본 및 부본 간에 다형성을 나타내어 F1 순도검정에 사용할 수 있음을 알 수 있었다. Genotyping analysis was performed on the copies and mothers of the true smile honey melon or honey love melon using the above primer set for KASP. As a result, as shown in Table 5, it was detected as homozygous in both the parent and the counterpart of the true miso honey melon or honey love melon. This means that the locus of the developed marker is a well-fixed position in the fixed species (original or parent) used for breed development, so it is a useful position for purity testing in F 1 . In addition, primer sets of bgs01227, bgs14324, bgs03305, bgs21920, C01-sp011515, bgs00074, bgs00659, bgs04958, bgs05223, bgs05705, bgs07516, bgs08106, bgs02460 or bgs02242 can be used for F 1 purity testing because they exhibit polymorphism between the master and the counterpart. And it was found.

본 발명의 KASP용 프라이머 세트는 참외의 각 염색체별로 존재하는 SNP를 기반으로 개발된 것으로, 전체 유전체 수준으로 유전형을 분석할 수 있어 보다 정확하고 효율적으로 순도검정을 할 수 있을 것으로 사료되었다.The primer set for KASP of the present invention was developed based on the SNPs that exist for each chromosome of melon, and it was thought that the genotype could be analyzed at the level of the whole genome, so that the purity test could be performed more accurately and efficiently.

<110> Korea Research Institute of Bioscience and Biotechnology <120> KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof <130> PN18449 <160> 102 <170> KoPatentIn 3.0 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cctttcattt tctatggtct ttgacttc 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 atcctttcat tttctatggt ctttgacttt 30 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 taatgtgatg tcgacacaca cattccaat 29 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aataagaaat gggagtgaga gtaagg 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caataagaaa tgggagtgag agtaaga 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cttcctccat ggtttatttt cgtcacatt 29 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cgcacagatt caaaactcga cact 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcacagattc aaaactcgac acc 23 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgaaaatat ctagtagcga ccgaacaaaa 30 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cggacggtca tgtggaatcc 20 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcggacggt catgtggaat ca 22 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gcctcgagat tacacttttg tgttcaat 28 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agtattatat gtagataata ttctactcat tgg 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agtattatat gtagataata ttctactcat tgt 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 attgatatca gtaagataac gtacgacatt 30 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 actgcacata aactgttatg ggtatag 27 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ataactgcac ataaactgtt atgggtatat 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aatagggaag tagggtggtc ttaacattt 29 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gttattgctg atcgtaagca tcaaac 26 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atgttattgc tgatcgtaag catcaaat 28 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttaaagacat gagtccaaca tcccatgaa 29 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaaatctaaa caagaaagat tcatatcctc 30 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ctgaaatcta aacaagaaag attcatatcc tt 32 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ccaccttcat ctatggtgct tgcta 25 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaatcaactt gttcaaaacc gacacg 26 <210> 26 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaatcaactt gttcaaaacc gacaca 26 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggaaagttc agctcaaaag catcataa 28 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 atggccatga taaaagacca tcagg 25 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 gatggccatg ataaaagacc atcaga 26 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtcatgattg tccagataac cacgtttt 28 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaatcaagct aagcatggtc tgaac 25 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aagaatcaag ctaagcatgg tctgaaa 27 <210> 33 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cggctcctat ttgacacttt atacatgta 29 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gccacgcttg ttggagatga c 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ggccacgctt gttggagatg at 22 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tctccacttc ctccgaaaat aactagttt 29 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ctcgatgtgt tattccactt gc 22 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cctctcgatg tgttattcca cttgt 25 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tggtatgaca gggcagccag ca 22 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cagcacaatt aggattttga tggcc 25 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cagcacaatt aggattttga tggct 25 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgacttggca aactaagtcg ccatt 25 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aagaacctca aaacttttgt atactcaaac 30 <210> 44 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gaaagaacct caaaactttt gtatactcaa at 32 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cgcttatcaa agcttgcctc gacta 25 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 cttatgattg ccaacaatat tcctgt 26 <210> 47 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 cttatgattg ccaacaatat tcctgc 26 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 caaaagctta aattagtggg tgaaggcaa 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gttagttaat cttaaatcgt tggagctca 29 <210> 50 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 agttaatctt aaatcgttgg agctcg 26 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 tagtgtggga acctaatgga ccaataaat 29 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 aatgggttat cttcaacaac tattaaaagc 30 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aaaatgggtt atcttcaaca actattaaaa gt 32 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 gagtacatgc caaacactac aggaaataa 29 <210> 55 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 tccaactcac tcaattgtga cttaca 26 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ccaactcact caattgtgac ttacc 25 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gcctccaagt gttgagacgt acaaa 25 <210> 58 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 aattgatgaa acttataagt gcaagtgg 28 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtaattgatg aaacttataa gtgcaagtga 30 <210> 60 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 cgttgctcta atctccattc acaaatcat 29 <210> 61 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 aattggttta aggtccaagt tataaactg 29 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 caattggttt aaggtccaag ttataaacta 30 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 caccgtctca ttagctcgag agaaa 25 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtccaggtta tttgtaagcc tttgg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 gtccaggtta tttgtaagcc tttgc 25 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tgggtattca taaaacttca cgaaaaccta 30 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acattcaaat agcaaatgac taacagattc 30 <210> 68 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 aatacattca aatagcaaat gactaacaga ttt 33 <210> 69 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cctgtcattg ttgatgatgt ctttggtaa 29 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 gttcaaattc ggttcctaca acttattaaa 30 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 caaattcggt tcctacaact tattaag 27 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 ggatgtcgtt aaggtaattg gtcatgttt 29 <210> 73 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 gagcacatgt caaagcagta gtatct 26 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 agcacatgtc aaagcagtag tatcc 25 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 cgtttaagag tctttgttgg cttagagat 29 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 ccccgattat aacaggttgc acc 23 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 accccgatta taacaggttg caca 24 <210> 78 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 gtcggtggtt attatagttt gtcaggtat 29 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 gatgtctcgt aggaagactc gg 22 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 agatgtctcg taggaagact cga 23 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 tgtgggattt catacagatg cctaatgat 29 <210> 82 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gatgtgtatg ttcatatagg aattgtcg 28 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 atgatgtgta tgttcatata ggaattgtca 30 <210> 84 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tttccataaa gttgctcgat tgcaaggat 29 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 cacacgcgtc atcatcacgt tg 22 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 aatcacacgc gtcatcatca cgttt 25 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 cacatgcaag aaataagtga attccatgta 30 <210> 88 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 cataccatct agttggtgca tctg 24 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 gcataccatc tagttggtgc atcta 25 <210> 90 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 cagaaaacaa aggcctacag ctattgaaa 29 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 aataattttg aaaacggaaa aagcctactg 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 aaaataattt tgaaaacgga aaaagcctac ta 32 <210> 93 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 cgcgtattga ttgggacagt ttttgtatt 29 <210> 94 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acacgattgt ttagatttgg ttaccc 26 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acacgattgt ttagatttgg ttacct 26 <210> 96 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggggtaacg atcatttagt caaatctaaa 30 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 aatcttcata tgtaggctaa acgatcc 27 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 ataaatcttc atatgtaggc taaacgatct 30 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 gtcgaagaac ctgcatgagt tgagat 26 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gcatattaat ttgtatcttg aatttgctcg 30 <210> 101 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 gcatattaat ttgtatcttg aatttgctcc 30 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tacaaattac agcacgcttg gaggaattt 29 <110> Korea Research Institute of Bioscience and Biotechnology <120> KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof <130> PN18449 <160> 102 <170> KoPatentIn 3.0 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cctttcattt tctatggtct ttgacttc 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 atcctttcat tttctatggt ctttgacttt 30 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 taatgtgatg tcgacacaca cattccaat 29 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aataagaaat gggagtgaga gtaagg 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caataagaaa tgggagtgag agtaaga 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cttcctccat ggtttatttt cgtcacatt 29 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cgcacagatt caaaactcga cact 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcacagattc aaaactcgac acc 23 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgaaaatat ctagtagcga ccgaacaaaa 30 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cggacggtca tgtggaatcc 20 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcggacggt catgtggaat ca 22 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gcctcgagat tacacttttg tgttcaat 28 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agtattatat gtagataata ttctactcat tgg 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agtattatat gtagataata ttctactcat tgt 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 attgatatca gtaagataac gtacgacatt 30 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 actgcacata aactgttatg ggtatag 27 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ataactgcac ataaactgtt atgggtatat 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aatagggaag tagggtggtc ttaacattt 29 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gttattgctg atcgtaagca tcaaac 26 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atgttattgc tgatcgtaag catcaaat 28 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttaaagacat gagtccaaca tcccatgaa 29 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaaatctaaa caagaaagat tcatatcctc 30 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ctgaaatcta aacaagaaag attcatatcc tt 32 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ccaccttcat ctatggtgct tgcta 25 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaatcaactt gttcaaaacc gacacg 26 <210> 26 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaatcaactt gttcaaaacc gacaca 26 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggaaagttc agctcaaaag catcataa 28 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 atggccatga taaaagacca tcagg 25 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 gatggccatg ataaaagacc atcaga 26 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtcatgattg tccagataac cacgtttt 28 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaatcaagct aagcatggtc tgaac 25 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aagaatcaag ctaagcatgg tctgaaa 27 <210> 33 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cggctcctat ttgacacttt atacatgta 29 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gccacgcttg ttggagatga c 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ggccacgctt gttggagatg at 22 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tctccacttc ctccgaaaat aactagttt 29 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ctcgatgtgt tattccactt gc 22 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cctctcgatg tgttattcca cttgt 25 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tggtatgaca gggcagccag ca 22 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cagcacaatt aggattttga tggcc 25 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cagcacaatt aggattttga tggct 25 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgacttggca aactaagtcg ccatt 25 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aagaacctca aaacttttgt atactcaaac 30 <210> 44 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gaaagaacct caaaactttt gtatactcaa at 32 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cgcttatcaa agcttgcctc gacta 25 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 cttatgattg ccaacaatat tcctgt 26 <210> 47 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 cttatgattg ccaacaatat tcctgc 26 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 caaaagctta aattagtggg tgaaggcaa 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gttagttaat cttaaatcgt tggagctca 29 <210> 50 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 agttaatctt aaatcgttgg agctcg 26 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 tagtgtggga acctaatgga ccaataaat 29 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 aatgggttat cttcaacaac tattaaaagc 30 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aaaatgggtt atcttcaaca actattaaaa gt 32 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 gagtacatgc caaacactac aggaaataa 29 <210> 55 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 tccaactcac tcaattgtga cttaca 26 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ccaactcact caattgtgac ttacc 25 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gcctccaagt gttgagacgt acaaa 25 <210> 58 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 aattgatgaa acttataagt gcaagtgg 28 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtaattgatg aaacttataa gtgcaagtga 30 <210> 60 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 cgttgctcta atctccattc acaaatcat 29 <210> 61 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 aattggttta aggtccaagt tataaactg 29 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 caattggttt aaggtccaag ttataaacta 30 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 caccgtctca ttagctcgag agaaa 25 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtccaggtta tttgtaagcc tttgg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 gtccaggtta tttgtaagcc tttgc 25 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tgggtattca taaaacttca cgaaaaccta 30 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acattcaaat agcaaatgac taacagattc 30 <210> 68 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 aatacattca aatagcaaat gactaacaga ttt 33 <210> 69 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cctgtcattg ttgatgatgt ctttggtaa 29 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 gttcaaattc ggttcctaca acttattaaa 30 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 caaattcggt tcctacaact tattaag 27 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 ggatgtcgtt aaggtaattg gtcatgttt 29 <210> 73 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 gagcacatgt caaagcagta gtatct 26 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 agcacatgtc aaagcagtag tatcc 25 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 cgtttaagag tctttgttgg cttagagat 29 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 ccccgattat aacaggttgc acc 23 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 accccgatta taacaggttg caca 24 <210> 78 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 gtcggtggtt attatagttt gtcaggtat 29 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 gatgtctcgt aggaagactc gg 22 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 agatgtctcg taggaagact cga 23 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 tgtgggattt catacagatg cctaatgat 29 <210> 82 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gatgtgtatg ttcatatagg aattgtcg 28 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 atgatgtgta tgttcatata ggaattgtca 30 <210> 84 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tttccataaa gttgctcgat tgcaaggat 29 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 cacacgcgtc atcatcacgt tg 22 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 aatcacacgc gtcatcatca cgttt 25 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 cacatgcaag aaataagtga attccatgta 30 <210> 88 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 cataccatct agttggtgca tctg 24 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 gcataccatc tagttggtgc atcta 25 <210> 90 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 cagaaaacaa aggcctacag ctattgaaa 29 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 aataattttg aaaacggaaa aagcctactg 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 aaaataattt tgaaaacgga aaaagcctac ta 32 <210> 93 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 cgcgtattga ttgggacagt ttttgtatt 29 <210> 94 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acacgattgt ttagatttgg ttaccc 26 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acacgattgt ttagatttgg ttacct 26 <210> 96 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggggtaacg atcatttagt caaatctaaa 30 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 aatcttcata tgtaggctaa acgatcc 27 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 ataaatcttc atatgtaggc taaacgatct 30 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 gtcgaagaac ctgcatgagt tgagat 26 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gcatattaat ttgtatcttg aatttgctcg 30 <210> 101 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 gcatattaat ttgtatcttg aatttgctcc 30 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tacaaattac agcacgcttg gaggaattt 29

Claims (5)

서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서, n이 동일한 값을 갖는 서열번호 3n, 서열번호 3n-1, 및 서열번호 3n-2의 올리고뉴클레오티드가 하나의 프라이머 세트(n은 1 내지 23의 자연수)인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 또는 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트.In the oligonucleotides represented by SEQ ID NOs: 1 to 69, the oligonucleotides of SEQ ID NO: 3n, SEQ ID NO: 3n-1, and SEQ ID NO: 3n-2 in which n has the same value are one primer set (n is a natural number of 1 to 23) Including a set of 23 oligonucleotide primers, characterized in that in, melon ( Cucumis melo var. makuwa ) cultivar distinction or KASP (kompetiive allele specific PCR) primer set for F 1 seed purity assay. 제1항에 있어서, 상기 참외 품종은 오복꿀 참외, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외인 것을 특징으로 하는 참외 품종 구별 또는 F1 종자 순도검정을 위한 KASP용 프라이머 세트.The method of claim 1, wherein the melon varieties are Obok honey melon, Obok honey plus melon, Jummi honey melon, honey love melon, native honey melon, rich honey melon, king honey melon, Shingeumsalagi melon, Daebak honey melon, gold melon , Manata honey melon, Daejanggeum plus melon, eight bok honey melon, yellow honey melon, golden ax melon, melon variety distinction or F 1 seed purity test for the KASP primer set. 제1항의 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 또는 F1 종자 순도검정을 위한 KASP용 키트.The primer set of claim 1; And KASP kit for distinguishing melon varieties or F 1 seed purity assay comprising a reagent for performing an amplification reaction. 제3항에 있어서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs 및 버퍼를 포함하는 것을 특징으로 하는 참외 품종 구별 또는 F1 종자 순도검정을 위한 KASP용 키트.According to claim 3, the reagents for performing the amplification reaction is a DNA polymerase, dNTPs, and melons cultivars or distinguish F 1 seed kit for KASP for pure black comprising the buffer to. 참외 시료에서 게놈 DNA를 분리하는 단계;
상기 분리된 게놈 DNA를 주형으로 하고, 제1항의 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및
상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 또는 F1 종자 순도검정 방법.
Separating genomic DNA from the melon sample;
Using the isolated genomic DNA as a template, performing KASP using the primer set of claim 1; And
Analyzing the amplification product of the KASP; containing, melon variety distinction or F 1 seed purity assay method.
KR1020180158644A 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof KR102144673B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Publications (2)

Publication Number Publication Date
KR20200070935A KR20200070935A (en) 2020-06-18
KR102144673B1 true KR102144673B1 (en) 2020-08-14

Family

ID=71142973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Country Status (1)

Country Link
KR (1) KR102144673B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736864B (en) * 2021-09-09 2024-05-17 辽宁省农业科学院 Method for rapidly identifying purity of green Chinese onion hybrid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186920A1 (en) 2016-04-28 2017-11-02 Semillas Fito, S.A. Begomovirus-resistant melon plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652501B1 (en) * 2004-10-27 2006-12-01 대한민국 1 a hybrid purity checking method for f1 seeds of geumssaraki type's oriental melon
KR101516190B1 (en) * 2012-09-25 2015-05-04 한국생명공학연구원 SSR primer sets for discrimination of oriental melon line or cultivar and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186920A1 (en) 2016-04-28 2017-11-02 Semillas Fito, S.A. Begomovirus-resistant melon plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GeneBank:MF536700.1

Also Published As

Publication number Publication date
KR20200070935A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
KR102077917B1 (en) Genetic maker for parentage and thereof in Olive flounder
KR102198566B1 (en) Tetra primers ARMS-PCR molecular marker for discriminating cultivars of sweet potato and uses thereof
KR102121570B1 (en) KASP primer set based on SNP for discriminating or classifying Panax ginseng cultivar or resource and uses thereof
US20100297633A1 (en) Method of amplifying nucleic acid
KR102235665B1 (en) Single nucleotide polymorphism marker set for marker-assisted backcross breeding in Cucumis melo var. makuwa and thereof
KR102144673B1 (en) KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof
CN107287283B (en) High-throughput detection kit for multiple SNP sites related to children susceptibility diseases and use method thereof
KR101955074B1 (en) Snp markers for discrimination of raphanus sativus
KR102458440B1 (en) Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set
KR20130061797A (en) Single nucleotide polymorphisms for individual identification of hanwoo and use thereof
KR101930710B1 (en) SNP primer set for cultivar and origin identification of rice, method for cultivar and origin identification of rice using the same
KR101779030B1 (en) Molecular marker for selecting plant with enhanced zinc content and uses thereof
KR102309663B1 (en) Fluidigm based SNP chip for genotype-identifying and classifying Panax ginseng cultivar or resource and uses thereof
KR102575912B1 (en) Single nucleotide polymorphism marker for discriminating cabbage having low content of sinigrin and uses thereof
KR20240083146A (en) SNP marker set for discriminating DADEUL melon cultivar and its parents and uses thereof
KR102604100B1 (en) Marker derived from complete sequencing of chloroplast genome of Dioscorea genus, primer set for discrimination of Dioscorea genus and uses thereof
KR102237248B1 (en) SNP marker set for individual identification and population genetic analysis of Pinus densiflora and their use
KR102672578B1 (en) SNP marker composition for discriminating Cyperaceae plant &#39;Carex nervata&#39; and uses thereof
KR102380784B1 (en) Molecular marker for discriminating genetic resources of Peucedanum japonicum and uses thereof
KR102672563B1 (en) SNP marker composition for discriminating Cyperaceae plant &#39;Carex brevispicula&#39; and uses thereof
KR102418879B1 (en) KASP primer set derived on mitochondira for classifying Panax ginseng cultivar and genotype and uses thereof
KR102672571B1 (en) SNP marker composition for discriminating Cyperaceae plant &#39;Carex polyschoena&#39; and uses thereof
KR102672572B1 (en) SNP marker composition for discriminating Cyperaceae plant &#39;Carex alopecuroides&#39; and uses thereof
JP6962593B2 (en) How to identify Koshihikari
US10093988B2 (en) Universal primers and the use thereof for the detection and identification of amphibia/fish species

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant