KR20200070935A - KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof - Google Patents

KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof Download PDF

Info

Publication number
KR20200070935A
KR20200070935A KR1020180158644A KR20180158644A KR20200070935A KR 20200070935 A KR20200070935 A KR 20200070935A KR 1020180158644 A KR1020180158644 A KR 1020180158644A KR 20180158644 A KR20180158644 A KR 20180158644A KR 20200070935 A KR20200070935 A KR 20200070935A
Authority
KR
South Korea
Prior art keywords
melon
primer
honey
dna
artificial sequence
Prior art date
Application number
KR1020180158644A
Other languages
Korean (ko)
Other versions
KR102144673B1 (en
Inventor
권석윤
신아영
김용민
구남진
문아람
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020180158644A priority Critical patent/KR102144673B1/en
Publication of KR20200070935A publication Critical patent/KR20200070935A/en
Application granted granted Critical
Publication of KR102144673B1 publication Critical patent/KR102144673B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a primer set for SNP-based KASP for differentiation of a Korean melon cultivar and an F1 seed purity test, and a use thereof. 23 SNP markers of the present invention are distributed over 12 chromosomes of Korean melon, and are able to quickly and accurately differentiate the Korean melon cultivar, thereby being applied for the cultivation of the Korean melon cultivar.

Description

참외의 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도{KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof}A primer set for SNP-based KASP for the identification of melon varieties and the purity of F1 seeds and its use{KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof}

본 발명은 참외 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도에 관한 것입니다.The present invention relates to a primer set for SNP-based KASP for the identification of melon varieties and the purity of F 1 seeds and its use.

참외(Cucumis melo var. makuwa)는 박과에 속하는 덩굴식물로 분류학적으로 멜론(Cucumis melo)의 한 변종이다. 박과 작물의 국내 종자 시장은 320억 정도로 전체 채소 종자시장의 약 20%를 차지하고 있으며, 그 중 참외는 박과 작물 중 수박에 이어 2번째로 종자시장 규모가 크고 매년 시장 규모와 재배 면적이 다소 증가하는 추세에 있다.melon(Cucumis melo var. makuwa) Is a vine plant belonging to the fruit family.Cucumis melo). The domestic seed market of gourds and crops is about 32 billion, accounting for about 20% of the total vegetable seed market. It is on an increasing trend.

현재 유통 중인 참외는 거의 모두 양친의 교배를 통하여 생산된 일대 잡종 품종들이다. 일대 잡종(F1) 품종에서는 생산된 종자에 대하여 순도검정을 실시하게 되는데, 이는 의도하는 양친간 교배의 성립여부, 즉 이형성(heterozygosity)을 검정하고 그 정도를 순도(%)로서 표시하는 품질관리 행위를 말한다. 이와 관련하여 순도가 떨어지는 원인으로는 수정시 타화분의 오염과 모본의 자식, 다른 종자의 단순 혼입 등이 있을 수 있다. 이 중에서 모본의 자식 개체 발생의 경우 빈도가 가장 높은 것으로 알려져 있다. 따라서 모든 종자회사는 F1 종자의 순도검정을 위한 자체 검정 시스템을 기본적으로 유지하고 있다. 이는 해당 교배종 품종의 기본 유전적 특성을 유지시키는 품질관리 차원으로서 뿐만 아니라, 고품질 농산물의 재배 생산을 위하여 필수적인 고순도 종자를 확보하기 위한 기술적 수단이며, 종자의 품질 저하에서 초래되는 재배농민의 소득저하와 민원발생 요인을 원천적으로 방지하는 효과 등 매우 중요한 의미를 갖는 과정이다.Almost all melons in circulation are large-scale hybrids produced through mating. In one-hybrid (F 1 ) varieties, a purity test is performed on the produced seeds. This is a quality control that tests whether the intended mating of the parents is established, that is, heterozygosity and displays the degree as purity (%). Refers to the act. In this regard, the reasons for poor purity may include contamination of other pollen during fertilization, offspring of the parent, and simple mixing of other seeds. Among them, it is known that the frequency of occurrence of child cases of the parent is the highest. Therefore, all seed companies basically maintain their own verification system for the purity test of F 1 seeds. This is not only a quality control dimension that maintains the basic genetic characteristics of the hybrid species, but also a technical means to secure high-purity seeds essential for the cultivation and production of high-quality agricultural products. This is a process that has a very important meaning, such as the effect of fundamentally preventing the causes of complaints.

참외는 국내에서는 경제적, 상업적으로 중요한 작물이며, 수출 품종 육성의 중요성도 눈에 띄게 대두되고 있다. 참외는 세대가 짧고 타 작물에 비해 고정이 잘되어 계통 개발에 걸리는 시간이 매우 짧기 때문에, 개발된 품종 및 계통의 보호를 위해서는 품종 보호를 위한 분자표지 개발이 필수적이다.Melon is an economically and commercially important crop in Korea, and the importance of cultivating export varieties is also rising. Since the melon has a short generation and a good fixation time compared to other crops, it takes very short time to develop a lineage. Therefore, it is essential to develop a molecular label to protect the developed variety and lineage.

한편, 한국등록특허 제1516190호에는 '참외 계통 또는 품종의 구별을 위한 SSR 프라이머 세트 및 이들의 용도'가 개시되어 있고, 한국등록특허 제1447112호에는 '재배종 참외 품종으로부터 한국 재래종 계통인 곶감참외 품종을 선별하기 위한 바이오 마커 및 이의 용도'가 개시되어 있으나, 본 발명의 참외 품종 구별 및 F1 종자 순도검정을 위한 SNP 기반 KASP용 프라이머 세트 및 이의 용도에 대해서는 기재된 바가 없다.On the other hand, Korean Registered Patent No. 1516190 discloses'SSR primer sets for differentiation of melon strains or varieties and their use.' Biomarkers for screening and uses thereof' have been disclosed, but there has been no description of the primer set for SNP-based KASP and its use for discrimination of melon varieties and F 1 seed purity of the present invention.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 한국 재래종 계통인 곶감참외를 참조 유전체로 하여 다양한 참외(Cucumis melo var. makuwa) 품종의 유전체 분석을 통해 참외 12개 염색체에서 참외 품종을 구별할 수 있는 23개의 참외 특이적 SNP(single nucleotide polymorphism) 마커를 선별한 후 상기 마커를 증폭시키기 위한 KASP용 프라이머 세트를 제작하고 유전형 분석을 수행하여 17개 참외 품종을 구별할 수 있음을 확인함으로써, 본 발명을 완성하였다.The present invention was derived by the above-described needs, and the present inventors used a variety of melons ( Cuccumis) by using Korean native species of dried persimmon melon as a reference dielectric. melo var. makuwa ) After selecting 23 melon-specific SNP (single nucleotide polymorphism) markers capable of distinguishing melon varieties from 12 chromosomes through genome analysis of varieties, a primer set for KASP to amplify the markers was prepared and genotyped By performing the analysis and confirming that 17 melon varieties can be distinguished, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서 서열번호 1부터 시작하여 인접한 3개의 올리고뉴클레오티드가 하나의 프라이머 세트인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 및 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트를 제공한다.In order to solve the above problems, the present invention includes 23 oligonucleotide primer sets characterized in that three adjacent oligonucleotides are one primer set starting from SEQ ID NO: 1 in the oligonucleotides represented by SEQ ID NOs: 1 to 69. , Melon ( Cucumis melo var. makuwa) provides a primer set for KASP (kompetiive allele specific PCR) for distinguishing breeds and F 1 seed purity of black.

또한, 본 발명은 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트를 제공한다.In addition, the present invention is the primer set; And it provides a kit for KASP for the melon variety discrimination and F 1 seed purity test comprising a reagent for performing an amplification reaction.

또한, 본 발명은 참외 시료에서 게놈 DNA를 분리하는 단계; 상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및 상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 및 F1 종자 순도검정 방법을 제공한다.In addition, the present invention comprises the steps of isolating genomic DNA from a melon sample; Using the isolated genomic DNA as a template, and performing KASP using the primer set of the present invention; And analyzing the amplification products of the KASP; provides a method for discriminating melon varieties and determining the purity of F 1 seeds.

본 발명의 KASP용 프라이머 세트는 다양한 참외 품종을 구별할 수 있고 참외의 전체 유전체 수준에서 F1 종자 순도검정이 가능하므로, 참외의 품종 개발, 품종 보호 및 종자 생산에 효율적인 바이오 마커로 유용하게 활용될 수 있을 것이다.The primer set for KASP of the present invention can distinguish various melon varieties, and since F 1 seed purity can be tested at the whole genome level of melon, it can be usefully utilized as an effective biomarker for varieties development, varietal protection, and seed production. Will be able to.

도 1은 참외의 12개 염색체상에 존재하는 SNP를 나타낸 것으로, 최종 선발된 23개의 SNP 부분은 파란색으로 표시하였다.1 shows SNPs present on 12 chromosomes of a melon, and the 23 finally selected SNPs are indicated in blue.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서 서열번호 1부터 시작하여 인접한 3개의 올리고뉴클레오티드가 하나의 프라이머 세트인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 및 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트를 제공한다.In order to achieve the object of the present invention, the present invention provides 23 oligonucleotide primer sets characterized in that three adjacent oligonucleotides are one primer set starting from SEQ ID NO: 1 in the oligonucleotides shown in SEQ ID NOS: 1 to 69. Containing, Melon ( Cucumis melo var. makuwa) provides a primer set for KASP (kompetiive allele specific PCR) for distinguishing breeds and F 1 seed purity of black.

본 발명의 상기 참외 품종은 오복꿀 참외, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외일 수 있으나, 이에 제한되지 않는다.The melon varieties of the present invention are bokbok honey melon, bokbok honey plus melon, oyster honey melon, honey love melon, native honey melon, rich honey melon, wangju honey melon, gold ladle melon, jackpot honey melon, gold melon, manata Honey melon, Dae Jang Geum Plus melon, Bokbok honey melon, Yellow honey melon, Golden axe melon, melon melon, or super gold melon, but are not limited thereto.

본 발명의 용어 "KASP(kompetitive allele specific PCR)"는 PCR(polymerase chain reaction) 기반의 분석 방법 중 하나로, 상동의(homogenous) 그리고 형광(fluorescence) 기반의 유전형 분석 기술이다. KASP는 대립형질(allele)-특이적 올리고 연장(extension) 및 신호생성을 위한 형광공명에너지전이(fluorescence resonance energy transfer)를 기반으로 하는 기술이다.The term "KASP (kompetitive allele specific PCR)" of the present invention is one of PCR (polymerase chain reaction) based analysis methods, and is a homogenous and fluorescence based genotyping technique. KASP is a technology based on fluorescence resonance energy transfer for allele-specific oligo extension and signal generation.

본 발명의 상기 프라이머 세트는 참외 유전자좌에서 특이적으로 차별화되는 단일염기다형성(single nucleotide polymorphism, SNP) 마커의 염기 타입을 검출하는 프라이머 세트이다.The primer set of the present invention is a primer set that detects the base type of a single nucleotide polymorphism (SNP) marker specifically differentiated from a melon locus.

본 발명의 상기 프라이머 세트는 연속되는 서열번호 3개의 올리고뉴클레오티드가 하나의 프라이머 세트를 이루며, 2개의 정방향 프라이머와 1개의 역방향 프라이머로 구성되어 있다. 구체적으로는 정방향 프라이머의 5' 말단에는 FAM 또는 HEX 형광물질이 부착되어 있고 3' 말단에는 SNP를 나타내는 염기가 결합되어 있으며, 역방향 프라이머는 상기 정방향 프라이머의 SNP 부분의 대립유전자에 동일한 염기쌍으로 이루어져 있다(표 3). In the primer set of the present invention, consecutive oligonucleotides of SEQ ID NO: 3 form one primer set, and are composed of two forward primers and one reverse primer. Specifically, a FAM or HEX fluorescent substance is attached to the 5'end of the forward primer, and a base representing SNP is bound to the 3'end, and the reverse primer is composed of the same base pair in the allele of the SNP portion of the forward primer. Table 3.

본 발명의 프라이머 세트는 바람직하게는 상기 23개의 프라이머 세트로 이루어진 군으로부터 선택되는 1개 이상의 프라이머 세트를 포함할 수 있으나, 상기 23개의 프라이머 세트를 동시에 이용하면 참외 품종을 더욱 효율적으로 구별할 수 있다.The primer set of the present invention may preferably include one or more primer sets selected from the group consisting of the 23 primer sets, but when the 23 primer sets are used simultaneously, melon varieties can be more efficiently distinguished. .

본 발명의 상기 프라이머는 각 프라이머의 서열 길이에 따라 15개 이상, 16개 이상, 17개 이상, 18개 이상, 19개 이상, 20개 이상, 21개 이상, 22개 이상, 23개 이상, 24개 이상, 25개 이상, 26개 이상의 연속 뉴클레오티드의 절편으로 이루어진 올리고뉴클레오티드를 포함할 수 있다. 예를 들면, 서열번호 1의 프라이머(28개 올리고뉴클레오티드)는 서열번호 1의 서열 내의 15개 이상, 20개 이상, 21개 이상, 22개 이상, 23개 이상, 24개 이상, 25개 이상, 26개 이상, 27개 이상의 뉴클레오티드의 절편으로 이루어진 올리고뉴클레오티드를 포함할 수 있다. 또한, 상기 프라이머는 서열번호 1 내지 69의 염기서열의 부가, 결실 또는 치환된 서열도 포함할 수 있다. 서열번호 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64 및 67의 올리고뉴클레오티드 프라이머는 형광물질 FAM이 부착된 정방향 프라이머이고, 서열번호 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65 및 68의 올리고뉴클레오티드 프라이머는 HEX가 부착된 정방향 프라이머이며, 서열번호 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66 및 69의 올리고뉴클레오티드 프라이머는 역방향 프라이머이다.The primer of the present invention is 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 according to the sequence length of each primer Oligonucleotides consisting of segments of at least 25, at least 26, consecutive nucleotides. For example, primers of SEQ ID NO: 1 (28 oligonucleotides) are 15 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, 25 or more in the sequence of SEQ ID NO: 1, It may include an oligonucleotide consisting of a fragment of 26 or more, 27 or more nucleotides. In addition, the primer may also include addition, deletion or substituted sequences of the nucleotide sequences of SEQ ID NOs: 1 to 69. Oligonucleotides of SEQ ID NOs: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64 and 67 The primer is a forward primer to which the fluorescent substance FAM is attached, and SEQ ID NOs: 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, The oligonucleotide primers of 56, 59, 62, 65 and 68 are forward primers to which HEX is attached, and SEQ ID NOs: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, Oligonucleotide primers of 42, 45, 48, 51, 54, 57, 60, 63, 66 and 69 are reverse primers.

본 발명의 일 구현예에 따른 프라이머 세트는, 서열번호 1 내지 69로 표시된 23개의 프라이머 세트를 조합하여 전술한 17개의 참외 품종을 구별할 수 있다. 예를 들어, 하기 표 5의 오복꿀 참외(1)는 서열번호 13, 14 및 15; 서열번호 16, 17 및 18; 서열번호 19, 20 및 21; 서열번호 22, 23 및 24; 서열번호 25, 26 및 27; 서열번호 28, 29 및 30; 서열번호 31, 32 및 33; 서열번호 34, 35 및 36; 서열번호 37, 38 및 39; 서열번호 49, 50 및 51; 서열번호 52, 53 및 54; 서열번호 55, 56 및 57; 서열번호 58, 59 및 60; 서열번호 61, 62 및 63; 및 서열번호 64, 65 및 66의 프라이머 세트를 이용하여 구별할 수 있다. 또한, 오복꿀 참외 이외에, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외도 23개의 프라이머 세트를 조합하여 구별할 수 있다.The primer set according to an embodiment of the present invention can distinguish the 17 melon varieties described above by combining the 23 primer sets represented by SEQ ID NOs: 1 to 69. For example, the five melon honey melon (1) in Table 5 below are SEQ ID NOs: 13, 14 and 15; SEQ ID NOs: 16, 17 and 18; SEQ ID NOs: 19, 20 and 21; SEQ ID NOs: 22, 23 and 24; SEQ ID NOs: 25, 26 and 27; SEQ ID NOs: 28, 29 and 30; SEQ ID NOs: 31, 32 and 33; SEQ ID NOs: 34, 35 and 36; SEQ ID NOs: 37, 38 and 39; SEQ ID NOs: 49, 50 and 51; SEQ ID NOs: 52, 53 and 54; SEQ ID NOs: 55, 56 and 57; SEQ ID NOs: 58, 59 and 60; SEQ ID NOs: 61, 62 and 63; And the primer sets of SEQ ID NOs: 64, 65 and 66. In addition, in addition to Obok Honey Melon, Obok Honey Plus Melon, Omi Honey Melon, Honey Love Melon, Native Honey Melon, Rich Honey Melon, King Honey Melon, Shingeumlagi Melon, Jackpot Honey Melon, Gold Melon, Mana Honey Honey Melon, Dae Jang Geum Plus melon, bokbok honey melon, yellow honey melon, golden ax melon, melon melon or super gold melon can be distinguished by combining 23 primer sets.

본 발명에 있어서, "프라이머"는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로서 작용할 수 있다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 한다. 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity)뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다.In the present invention, "primer" refers to a single-stranded oligonucleotide sequence complementary to a nucleic acid strand to be copied, and may serve as a starting point for synthesis of primer extension products. The length and sequence of the primer should allow the synthesis of the extension product to begin. The specific length and sequence of the primer will depend on the desired DNA or RNA target complexity, as well as the conditions of primer use, such as temperature and ionic strength.

본 발명에 있어서, 프라이머로서 이용된 올리고뉴클레오티드는 또한 뉴클레오티드 유사체(analogue), 예를들면, 포스포로티오에이트(phosphorothioate), 알킬포스포로티오에이트 또는 펩티드 핵산 (peptide nucleic acid)을 포함할 수 있거나 또는 삽입 물질(intercalating agent)을 포함할 수 있다. 또한, 프라이머는 DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다. 본 발명의 프라이머 핵산 서열은 필요한 경우, 분광학적, 광화학적, 생화학적, 면역화학적 또는 화학적 수단에 의해 직접적으로 또는 간접적으로 검출 가능한 표지를 포함할 수 있다. 표지의 예로는, 효소(예를 들어, HRP (horse radish peroxidase), 알칼리 포스파타아제), 방사성 동위원소(예를 들어, 32P), 형광성 분자, 화학그룹(예를 들어, 비오틴) 등이 있다.In the present invention, oligonucleotides used as primers may also include nucleotide analogs, such as phosphorothioate, alkylphosphorothioate or peptide nucleic acid, or And an intercalating agent. In addition, primers can incorporate additional features that do not change the basic properties of the primer, which serves as the starting point for DNA synthesis. The primer nucleic acid sequence of the present invention can include a label that can be detected directly or indirectly by spectroscopic, photochemical, biochemical, immunochemical or chemical means, if necessary. Examples of labels include enzymes (e.g. horse radish peroxidase (HRP), alkaline phosphatase), radioactive isotopes (e.g. 32 P), fluorescent molecules, chemical groups (e.g. biotin), etc. have.

프라이머의 적합한 길이는 사용하고자하는 프라이머의 특성에 의해 결정하지만, 통상적으로 15 내지 30bp의 길이로 사용한다. 프라이머는 주형의 서열과 정확하게 상보적일 필요는 없지만 주형과 혼성복합체(hybrid-complex)를 형성할 수 있을 정도로 상보적이어야만 한다.The suitable length of the primer is determined by the properties of the primer to be used, but is usually used in a length of 15 to 30 bp. The primer need not be exactly complementary to the sequence of the template, but must be complementary enough to form a hybrid-complex with the template.

본 발명은 또한, 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트를 제공한다. 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 및 버퍼를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 dNTPs는 dATP, dCTP, dGTP, dTTP를 포함하며, DNA 폴리머라제는 내열성 DNA 중합효소로서 Taq DNA 폴리머라제, Tth DNA 폴리머라제 등 시판되는 폴리머라제를 이용할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 설명서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, 역전사 완충액 및 PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.The present invention also provides the primer set; And it provides a kit for KASP for the melon variety discrimination and F 1 seed purity test comprising a reagent for performing an amplification reaction. Reagents for performing the amplification reaction may include DNA polymerase, dNTPs, and buffers, but are not limited thereto. The dNTPs include dATP, dCTP, dGTP, and dTTP, and DNA polymerase can be used as a heat-resistant DNA polymerase, commercially available polymerases such as Taq DNA polymerase and Tth DNA polymerase. In addition, the kit of the present invention may further include a user manual describing optimal conditions for performing the reaction. The guide is a printout that explains how to use the kit, for example, how to prepare reverse transcription buffer and PCR buffer, and the reaction conditions presented. The guide includes brochures in the form of brochures or flyers, labels attached to the kit, and descriptions on the surface of the package containing the kit. In addition, the handbook includes information that is disclosed or provided through electronic media, such as the Internet.

본 발명은 또한,The present invention also

참외 시료에서 게놈 DNA를 분리하는 단계;Isolating genomic DNA from the melon sample;

상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 KASP용 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및Using the isolated genomic DNA as a template, and performing KASP using the primer set for KASP of the present invention; And

상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 및 F1 종자 순도검정 방법을 제공한다.Analyzing the amplification products of the KASP; provides a method for discriminating melon varieties and F 1 seed purity.

본 발명의 참외 품종 구별 방법에 있어서, KASP용 프라이머 세트는 전술한 것과 같다.In the method for distinguishing melon varieties of the present invention, the primer set for KASP is as described above.

본 발명의 방법은 참외 시료에서 게놈 DNA를 분리하는 단계를 포함한다. 상기 게놈 DNA를 분리하는 방법은 당업계에 공지된 방법을 이용할 수 있으며, 예를 들면, CTAB 방법을 이용할수도 있고, Wizard prep 키트(Promega 사)를 이용할 수도 있다. 상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 일 실시예에 따른 프라이머 세트를 프라이머로 이용하여 증폭 반응을 수행하여 표적 서열을 증폭할 수 있다. 표적 핵산을 증폭하는 방법은 중합효소연쇄반응(polymerase chain reaction; PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ 복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 이 중에서, PCR이란 중합효소를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.The method of the present invention includes isolating genomic DNA from a melon sample. As the method for separating the genomic DNA, a method known in the art may be used, for example, a CTAB method may be used, or a Wizard prep kit (Promega) may be used. Using the isolated genomic DNA as a template, an amplification reaction may be performed using a primer set according to an embodiment of the present invention as a primer to amplify a target sequence. Methods for amplifying the target nucleic acid include polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, and transcription-based amplification system. amplification system, strand displacement amplification, or any other suitable method for amplifying via Qβ replication enzymes or amplifying nucleic acid molecules known in the art. Among them, PCR is a method of amplifying a target nucleic acid from a primer pair that specifically binds to the target nucleic acid using a polymerase. Such PCR methods are well known in the art, and commercially available kits may be used.

본 발명의 방법에 있어서, 상기 증폭된 서열은 검출가능한 표지 물질로 표지될 수 있다. 일 구현예에서, 상기 표지 물질은 형광, 인광 또는 방사성을 발하는 물질일 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 표지 물질은 FAM, HEX, VIC, JOE, ROX, TAMRA, Cy3 또는 Cy5 등일 수 있다. 표적 서열의 증폭시 프라이머의 5'-말단에 상기 표지 물질을 표지하여 PCR을 수행하면 표적 서열이 검출가능한 형광 표지 물질로 표지될 수 있다. 표적 서열을 증폭하기 위해 이용된 올리고뉴클레오티드 프라이머 세트는 하기 표 3에 기재된 바와 같다.In the method of the present invention, the amplified sequence can be labeled with a detectable labeling substance. In one embodiment, the labeling material may be a material emitting fluorescence, phosphorescence or radioactivity, but is not limited thereto. Preferably, the labeling material may be FAM, HEX, VIC, JOE, ROX, TAMRA, Cy3 or Cy5, and the like. Upon amplification of the target sequence, PCR is performed by labeling the labeling material at the 5'-end of the primer so that the target sequence can be labeled with a detectable fluorescent labeling material. The oligonucleotide primer set used to amplify the target sequence is as described in Table 3 below.

또한, 본 발명의 일 구현예에 따른 방법에 있어서, 상기 KASP의 증폭산물을 분석하는 단계는 유전형 분석을 통해 수행될 수 있다. 구체적으로는, 정방향 프라이머의 5' 말단에 부착되어 있는 형광물질 FAM 또는 HEX와, 3' 말단에 결합된 SNP를 통해 유전형을 구별하여 참외 품종을 구별할 수 있다. 유전형이 동형접합체(homozygous)라면 두 개의 형광(FAM 또는 HEX) 중 한 개의 형광만 검출된 것으로, FAM이 검출되면 유전형 'A', HEX가 검출되면 유전형 'B'로 판단할 수 있다.In addition, in the method according to the embodiment of the present invention, the step of analyzing the amplification product of the KASP may be performed through genotyping. Specifically, the genotype can be distinguished by distinguishing the genotype through the fluorescent material FAM or HEX attached to the 5'end of the forward primer and the SNP bound to the 3'end. If the genotype is homozygous, then only one fluorescence of the two fluorescences (FAM or HEX) is detected, and if FAM is detected, it can be determined as genotype'A', and when HEX is detected, genotype'B'.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

재료 및 방법Materials and methods

1. SNP 1. SNP 마커Marker 정보 Information

참조 유전체를 작성하기 위해 곶감참외를 대상으로 차세대 염기서열 분석(Next Generation Sequencing, NGS) 및 Hi-C 방법으로 유전체 정보를 얻었고 다양한 생물정보 분석 방법을 통해 12개의 염색체로 구성된 참외 게놈 정보를 구축하였다(실험실 보유). 열골참외, 은천참외, 안종참외, 강서참외, 조선참외, 먹참외, 노랑참외, 간치참외, 개루리 참외 및 야생종 참외를 포함한 36개의 다양한 재래종 참외 및 참외 계통의 유전체 분석을 위한 NGS 리드(read)를 생산하였고, 생산된 리드는 퀄리티가 낮은 서열을 제거한 후 BWA(Burrows-Wheeler Alignment tool)를 이용하여 곶감참외 참조서열에 맵핑하였다. 맵핑된 리드들은 SNP 콜링(calling)의 정확도를 높이기 위해 게놈 분석 툴인 GATK(http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit)를 이용하여 이중 마스킹(duplicate masking), 국소적 재정렬(local realignment) 과정을 수행한 후 UnifiedGenotyper를 이용해 SNP(single nucleotide polymorphism)를 예측하고 필터링 과정을 거쳐 526,271개의 SNP를 확보하였으며(표 1), 그 중 분석 가능한 SNP 519개를 선별하여 염색체별로 정리하였다(표 2 및 도 1), 또한, 12개 염색체별로 SNP가 고르게 분포할 있도록 염색체 당 4개의 SNP를 대상으로 분석하였고, 이 중에서 34개의 SNP가 제대로 반응됨을 확인하였다.To prepare the reference genome, genomic information was obtained by Next Generation Sequencing (NGS) and Hi-C method for persimmon melon, and melon genome information composed of 12 chromosomes was constructed through various bioinformation analysis methods. (Laboratory). NGS reads for genomic analysis of 36 different native melons and melon strains, including hot bone melon, Euncheon melon, Anjong melon, Gangseo melon, Chosun melon, Yellow melon, Ganchi melon, Wild species melon, and wild species melon Was produced, and after removing the low-quality sequence, the produced lead was mapped to the reference sequence of persimmon melon using BWA (Burrows-Wheeler Alignment tool). The mapped leads are double masked, localized using the genomic analysis tool GATK (http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit) to increase the accuracy of SNP calling. After performing the local realignment process, UnifiedGenotyper was used to predict SNP (single nucleotide polymorphism) and filtering process to obtain 526,271 SNPs (Table 1). It was summarized (Table 2 and FIG. 1), and 4 SNPs per chromosome were analyzed so that SNPs were evenly distributed by 12 chromosomes, and it was confirmed that 34 SNPs responded properly.

염색체별 SNP의 수Number of SNPs per chromosome 염색체chromosome SNP 수SNP number chr01chr01 30,72230,722 chr02chr02 56,30456,304 chr03chr03 46,34146,341 chr04chr04 39,89539,895 chr05chr05 62,05162,051 chr06chr06 101,010101,010 chr07chr07 67,18967,189 chr08chr08 66,69366,693 chr09chr09 17,18317,183 chr10chr10 11,22411,224 chr11chr11 16,47216,472 chr12chr12 11,18711,187 합계Sum 526,271526,271

염색체별로 선별된 SNP 마커SNP marker selected by chromosome 염색체chromosome 길이 (Kb)Length (Kb) SNP 수SNP number 500 Kb당 평균 SNP 수Average number of SNPs per 500 Kb chr01chr01 30,382.07130,382.071 4949 0.810.81 chr02chr02 22,746.49422,746.494 3939 0.860.86 chr03chr03 21,121.64521,121.645 3636 0.850.85 chr04chr04 29,198.73029,198.730 5050 0.860.86 chr05chr05 27,871.97027,871.970 3939 0.700.70 chr06chr06 34,894.54434,894.544 5555 0.790.79 chr07chr07 23,387.21223,387.212 4242 0.900.90 chr08chr08 32,358.24532,358.245 5555 0.850.85 chr09chr09 19,018.73219,018.732 3434 0.890.89 chr10chr10 19,826.10319,826.103 3636 0.910.91 chr11chr11 26,513.79626,513.796 4848 0.910.91 chr12chr12 20,136.14320,136.143 3636 0.890.89 합계Sum 307,455.685307,455.685 519519 0.840.84

3. SNP 3. SNP 마커Marker 선정 및 상기 SNP 기반 Selection and SNP-based KASPKASP 프라이머primer 제작 making

상기 선별된 34개의 SNP를 기반으로 제작된 KASP(Kompetitive allele specific PCR) 프라이머 세트는 2개의 정방향 프라이머와 1개의 역방향 프라이머로 구성되어 있다. 정방향 프라이머는 5' 말단에 FAM 또는 HEX 형광물질이 부착되어 있고 3' 말단에는 SNP와 같은 염기서열의 차이가 구분되도록 디자인하였다. 그리고 역방향 프라이머는 상기 2개의 정방향 프라이머와 작동하여 PCR 반응이 진행될 수 있도록 디자인하였다(표 3). PCR을 수행하면 2개의 정방향 프라이머의 5' 말단에 각기 다른 형광물질이 붙은 채로 증폭되므로, 형광물질의 파장 차이에 따라 유전형을 분석하였다. 유전형이 동형접합체(homozygous)라면 두 개의 형광(FAM 또는 HEX) 중 한 개의 형광만 검출된 것으로, FAM이 검출되면 유전형 'A', HEX가 검출되면 유전형 'B'로 판단할 수 있다. 참조 유전체(곶감 참외)에 존재하는 SNP는 FAM이 부착된 정방향 프라이머에 의해 검출될 수 있도록 디자인하였다.The KASP (Kompetitive allele specific PCR) primer set prepared based on the selected 34 SNPs is composed of two forward primers and one reverse primer. The forward primer was designed so that the FAM or HEX fluorescent material is attached to the 5'end and the difference in base sequence such as SNP is distinguished at the 3'end. And the reverse primer was designed to work with the two forward primers so that the PCR reaction can proceed (Table 3). When PCR was performed, amplification was carried out with different fluorescent substances attached to the 5'ends of the two forward primers, so genotyping was analyzed according to the wavelength difference of the fluorescent substances. If the genotype is homozygous, then only one fluorescence of the two fluorescences (FAM or HEX) is detected, and if FAM is detected, it can be determined as genotype'A', and when HEX is detected, genotype'B'. The SNP present in the reference genome (persimmon melon) was designed to be detected by the FAM-attached forward primer.

Figure pat00001
Figure pat00001

4. SNP 4. SNP 마커Marker 검출을 위한 For detecting KASPKASP 반응 조건 Reaction conditions

LGC genomics(Laboratory of the Government Chemist Genomics)에서 권고한 방법으로 실시하였고, 실험에 사용한 시약은 KASP 2X master mix 및 KASP Assay mix(LGC genomics)이다. KASP 반응 조건은 하기 표 4와 같다.It was carried out by the method recommended by LGC genomics (Laboratory of the Government Chemist Genomics), and the reagents used in the experiment are KASP 2X master mix and KASP Assay mix (LGC genomics). KASP reaction conditions are shown in Table 4 below.

KASP 조건KASP conditions 단계step 온도(℃)Temperature (℃) 시간time 반복 횟수Repeat count Hot-start activationHot-start activation 9494 15초15 seconds 1One DenatureDenature 9494 20초20 seconds 1010 Annealing/ElongationAnnealing/Elongation 61~55
(사이클 당 0.6℃씩 감소)
61~55
(Reduced by 0.6℃ per cycle)
1분1 min
DenatureDenature 9494 20초20 seconds 26
26
Annealing/ElongationAnnealing/Elongation 5757 1분1 min

실시예Example 1. One. KASPKASP for 프라이머primer 세트를 이용한 참외 품종 구별 Differentiation of melon varieties using sets

17개 참외 품종을 대상으로 상기 34개의 KASP용 프라이머 세트를 이용하여 유전형 분석을 수행하였다. 17개 참외 품종은 다음과 같다; 1. 오복꿀 참외(농우바이오); 2. 오복꿀플러스 참외(농우바이오); 3. 참미소꿀 참외(농우바이오); 4. 꿀사랑 참외(농우바이오); 5. 토종꿀 참외(팜한농); 6. 부자꿀 참외(팜한농); 7. 제왕꿀 참외(팜한농); 8. 신금싸라기 참외(팜한농); 9. 대박꿀 참외(팜한농); 10. 금제 참외(아시아종묘); 11. 마나따벌꿀 참외(아시아종묘); 12. 대장금플러스 참외(아시아종묘); 13. 팔복꿀 참외(현대종묘); 14. 황깔꿀 참외(현대종묘); 15. 황금도끼 참외(현대종묘); 16. 참깔 참외(코레곤); 및 17. 슈퍼금덩어리 참외(제일종묘). 참조 유전체에 존재하는 SNP는 FAM 형광물질이 부착된 정방향 프라이머에 의해 검출될 수 있고, 유전형 A로 나타내었다.Genotyping was performed on the 17 melon varieties using the 34 sets of KASP primers. The 17 melon varieties are; 1. Obok honey melon (Nongwoo Bio); 2. Obok Honey Plus Melon (Nongwoo Bio); 3. Chammi honey melon (Nongwoo Bio); 4. Honey Love Melon (Nongwoo Bio); 5. Native honey melon (Palm Hannong); 6. Rich Honey Melon (Palm Hannong); 7. King Honey Melon (Palm Hannong); 8. Shingeumlagi melon (Palm Hannong); 9. Jackpot honey melon (Palm Hannong); 10. Golden Melon (Asian Seedling); 11. Manata honey melon (Asian seedling); 12. Dae Jang Geum Plus Melon (Asian Seedling); 13. Falbee honey melon (modern seedling); 14. Yellow honey melon (modern seedling); 15. Golden ax melon (modern seedling); 16. Chamkal Melon (Koregon); And 17. Super Gold Loaf Melon (First Seedling). The SNP present in the reference genome can be detected by the FAM fluorescent material-attached forward primer and is designated as genotype A.

그 결과, 예를 들어, '오복꿀 참외'는 C01-sp010886, bgs00289, C09-sp000673, C08-sp000276, C03-sp004954 및 bgs01444 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서 유전형 A를, bgs00659, bgs04958, C09-sp007875, bgs04175, bgs04286, bgs05223, bgs00068, bgs52645 및 bgs02242 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서는 유전형 B를 나타내어 이와 같은 유전형 분석 결과의 조합을 통해 다른 참외 품종으로부터 구별될 수 있었고; '오복꿀플러스 참외'는 C01-sp010886, bgs00289, C09-sp000673, C08-sp000276 및 bgs01444 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서 유전형 A를, bgs00659, bgs04958, C09-sp007875, bgs04286, bgs05223, bgs00068, bgs52645 및 bgs02242 마커 증폭용 프라이머 세트를 이용한 유전형 분석 결과에서는 유전형 B를 나타내어, 이와 같은 유전현 분석 결과의 조합을 통해 다른 참외 품종으로부터 구별될 수 있었다. 다만, 34개의 프라이머 세트 중에서 11개의 프라이머 세트는 유전형 결과가 동형(A 또는 B) 또는 이형(H)으로 명확하게 확인되지 않고, A/H, B/H 유전형, 또는 '-'로 표시되는 결과가 확인되어, 최종적인 참외 품종 구별을 위한 프라이머 세트에는 제외하였다(하기 표 5에서 파란색으로 표시된 마커를 증폭할 수 있는 프라이머 세트).As a result, for example,'Okin honey melon' is genotype A in the genotyping results using primer sets for C01-sp010886, bgs00289, C09-sp000673, C08-sp000276, C03-sp004954 and bgs01444 markers, bgs00659, bgs04958 , C09-sp007875, bgs04175, bgs04286, bgs05223, bgs00068, bgs52645 and bgs02242 The genotyping results using primer sets for marker amplification showed genotype B and could be distinguished from other melon varieties through a combination of these genotyping results; 'Okin Honey Plus Melon' is genotype A from the genotyping results using primer sets for C01-sp010886, bgs00289, C09-sp000673, C08-sp000276 and bgs01444 marker amplification, bgs00659, bgs04958, C09-sp007875, bgs04286, bgs05223, bgs00068 , bgs52645 and bgs02242 genotyping results using the primer set for marker amplification showed genotype B, and thus it could be distinguished from other melon varieties through a combination of these genotyping results. However, among the 34 primer sets, 11 primer sets are not clearly identified as homogeneous (A or B) or heterozygous (H), and A/H, B/H genotype, or'-' Was confirmed, and was excluded from the primer set for the final melon variety discrimination (a primer set capable of amplifying the blue marker in Table 5 below).

Figure pat00002
Figure pat00002

3-F; 참미소꿀 참외의 부본.3-F; It is a copy of the melon and melon.

3-M; 참미소꿀 참외의 모본.3-M; The model of the tuna, honey and melon.

4-F; 꿀사랑 참외의 부본. 4-F; Honey Love Melon's copy.

4-M; 꿀사랑 참외의 모본.4-M; Example of honey love melon.

실시예Example 2. 2. KASPKASP for 프라이머primer 세트를 이용한 참외 F Melon F using a set 1One 종자 순도검정 Seed purity test

상기 KASP용 프라이머 세트를 이용하여 참미소꿀 참외 또는 꿀사랑 참외의 부본 및 모본을 대상으로 유전형 분석을 수행하였다. 그 결과, 상기 표 5에 나타난 바와 같이, 참미소꿀 참외 또는 꿀사랑 참외의 모본 및 부본에서 모두 동형접합(homozygous)하게 검출되었다. 이는 개발된 마커의 유전자위가 품종개발에 쓰이는 고정종(원종 또는 양친)에서 잘 고정되어 있는 위치여서 F1에서 순도검정에 유용한 위치임을 의미한다. 또한, bgs01227, bgs14324, bgs03305, bgs21920, C01-sp011515, bgs00074, bgs00659, bgs04958, bgs05223, bgs05705, bgs07516, bgs08106, bgs02460 또는 bgs02242의 프라이머 세트는 모본 및 부본 간에 다형성을 나타내어 F1 순도검정에 사용할 수 있음을 알 수 있었다. Using the primer set for KASP, genotyping was performed on the copy and parent of the honey melon or honey love melon. As a result, as shown in Table 5, it was detected homozygous (homozygous) in both the parent and the parent of the honey melon or honey love melon. This means that the genetic position of the developed marker is a well-fixed position in a fixed species (a native species or a parent) used for breed development, which means it is a useful site for purity testing in F 1 . In addition, primer sets of bgs01227, bgs14324, bgs03305, bgs21920, C01-sp011515, bgs00074, bgs00659, bgs04958, bgs05223, bgs05705, bgs07516, bgs08106, bgs02460, or bgs02242 exhibit polymorphism between the parent and copy F 1 can be used for purity testing And it was found.

본 발명의 KASP용 프라이머 세트는 참외의 각 염색체별로 존재하는 SNP를 기반으로 개발된 것으로, 전체 유전체 수준으로 유전형을 분석할 수 있어 보다 정확하고 효율적으로 순도검정을 할 수 있을 것으로 사료되었다.The primer set for KASP of the present invention was developed based on SNPs present in each chromosome of a melon, and it was thought that the genotype can be analyzed at the level of the entire genome, thereby making it possible to more accurately and efficiently perform purity testing.

<110> Korea Research Institute of Bioscience and Biotechnology <120> KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof <130> PN18449 <160> 102 <170> KoPatentIn 3.0 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cctttcattt tctatggtct ttgacttc 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 atcctttcat tttctatggt ctttgacttt 30 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 taatgtgatg tcgacacaca cattccaat 29 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aataagaaat gggagtgaga gtaagg 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caataagaaa tgggagtgag agtaaga 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cttcctccat ggtttatttt cgtcacatt 29 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cgcacagatt caaaactcga cact 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcacagattc aaaactcgac acc 23 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgaaaatat ctagtagcga ccgaacaaaa 30 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cggacggtca tgtggaatcc 20 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcggacggt catgtggaat ca 22 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gcctcgagat tacacttttg tgttcaat 28 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agtattatat gtagataata ttctactcat tgg 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agtattatat gtagataata ttctactcat tgt 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 attgatatca gtaagataac gtacgacatt 30 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 actgcacata aactgttatg ggtatag 27 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ataactgcac ataaactgtt atgggtatat 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aatagggaag tagggtggtc ttaacattt 29 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gttattgctg atcgtaagca tcaaac 26 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atgttattgc tgatcgtaag catcaaat 28 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttaaagacat gagtccaaca tcccatgaa 29 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaaatctaaa caagaaagat tcatatcctc 30 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ctgaaatcta aacaagaaag attcatatcc tt 32 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ccaccttcat ctatggtgct tgcta 25 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaatcaactt gttcaaaacc gacacg 26 <210> 26 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaatcaactt gttcaaaacc gacaca 26 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggaaagttc agctcaaaag catcataa 28 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 atggccatga taaaagacca tcagg 25 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 gatggccatg ataaaagacc atcaga 26 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtcatgattg tccagataac cacgtttt 28 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaatcaagct aagcatggtc tgaac 25 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aagaatcaag ctaagcatgg tctgaaa 27 <210> 33 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cggctcctat ttgacacttt atacatgta 29 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gccacgcttg ttggagatga c 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ggccacgctt gttggagatg at 22 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tctccacttc ctccgaaaat aactagttt 29 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ctcgatgtgt tattccactt gc 22 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cctctcgatg tgttattcca cttgt 25 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tggtatgaca gggcagccag ca 22 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cagcacaatt aggattttga tggcc 25 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cagcacaatt aggattttga tggct 25 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgacttggca aactaagtcg ccatt 25 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aagaacctca aaacttttgt atactcaaac 30 <210> 44 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gaaagaacct caaaactttt gtatactcaa at 32 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cgcttatcaa agcttgcctc gacta 25 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 cttatgattg ccaacaatat tcctgt 26 <210> 47 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 cttatgattg ccaacaatat tcctgc 26 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 caaaagctta aattagtggg tgaaggcaa 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gttagttaat cttaaatcgt tggagctca 29 <210> 50 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 agttaatctt aaatcgttgg agctcg 26 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 tagtgtggga acctaatgga ccaataaat 29 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 aatgggttat cttcaacaac tattaaaagc 30 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aaaatgggtt atcttcaaca actattaaaa gt 32 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 gagtacatgc caaacactac aggaaataa 29 <210> 55 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 tccaactcac tcaattgtga cttaca 26 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ccaactcact caattgtgac ttacc 25 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gcctccaagt gttgagacgt acaaa 25 <210> 58 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 aattgatgaa acttataagt gcaagtgg 28 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtaattgatg aaacttataa gtgcaagtga 30 <210> 60 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 cgttgctcta atctccattc acaaatcat 29 <210> 61 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 aattggttta aggtccaagt tataaactg 29 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 caattggttt aaggtccaag ttataaacta 30 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 caccgtctca ttagctcgag agaaa 25 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtccaggtta tttgtaagcc tttgg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 gtccaggtta tttgtaagcc tttgc 25 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tgggtattca taaaacttca cgaaaaccta 30 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acattcaaat agcaaatgac taacagattc 30 <210> 68 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 aatacattca aatagcaaat gactaacaga ttt 33 <210> 69 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cctgtcattg ttgatgatgt ctttggtaa 29 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 gttcaaattc ggttcctaca acttattaaa 30 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 caaattcggt tcctacaact tattaag 27 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 ggatgtcgtt aaggtaattg gtcatgttt 29 <210> 73 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 gagcacatgt caaagcagta gtatct 26 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 agcacatgtc aaagcagtag tatcc 25 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 cgtttaagag tctttgttgg cttagagat 29 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 ccccgattat aacaggttgc acc 23 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 accccgatta taacaggttg caca 24 <210> 78 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 gtcggtggtt attatagttt gtcaggtat 29 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 gatgtctcgt aggaagactc gg 22 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 agatgtctcg taggaagact cga 23 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 tgtgggattt catacagatg cctaatgat 29 <210> 82 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gatgtgtatg ttcatatagg aattgtcg 28 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 atgatgtgta tgttcatata ggaattgtca 30 <210> 84 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tttccataaa gttgctcgat tgcaaggat 29 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 cacacgcgtc atcatcacgt tg 22 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 aatcacacgc gtcatcatca cgttt 25 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 cacatgcaag aaataagtga attccatgta 30 <210> 88 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 cataccatct agttggtgca tctg 24 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 gcataccatc tagttggtgc atcta 25 <210> 90 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 cagaaaacaa aggcctacag ctattgaaa 29 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 aataattttg aaaacggaaa aagcctactg 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 aaaataattt tgaaaacgga aaaagcctac ta 32 <210> 93 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 cgcgtattga ttgggacagt ttttgtatt 29 <210> 94 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acacgattgt ttagatttgg ttaccc 26 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acacgattgt ttagatttgg ttacct 26 <210> 96 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggggtaacg atcatttagt caaatctaaa 30 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 aatcttcata tgtaggctaa acgatcc 27 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 ataaatcttc atatgtaggc taaacgatct 30 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 gtcgaagaac ctgcatgagt tgagat 26 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gcatattaat ttgtatcttg aatttgctcg 30 <210> 101 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 gcatattaat ttgtatcttg aatttgctcc 30 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tacaaattac agcacgcttg gaggaattt 29 <110> Korea Research Institute of Bioscience and Biotechnology <120> KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof <130> PN18449 <160> 102 <170> KoPatentIn 3.0 <210> 1 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cctttcattt tctatggtct ttgacttc 28 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 atcctttcat tttctatggt ctttgacttt 30 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 taatgtgatg tcgacacaca cattccaat 29 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aataagaaat gggagtgaga gtaagg 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caataagaaa tgggagtgag agtaaga 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cttcctccat ggtttatttt cgtcacatt 29 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cgcacagatt caaaactcga cact 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcacagattc aaaactcgac acc 23 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atgaaaatat ctagtagcga ccgaacaaaa 30 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cggacggtca tgtggaatcc 20 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcggacggt catgtggaat ca 22 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gcctcgagat tacacttttg tgttcaat 28 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agtattatat gtagataata ttctactcat tgg 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agtattatat gtagataata ttctactcat tgt 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 attgatatca gtaagataac gtacgacatt 30 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 actgcacata aactgttatg ggtatag 27 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ataactgcac ataaactgtt atgggtatat 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aatagggaag tagggtggtc ttaacattt 29 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gttattgctg atcgtaagca tcaaac 26 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atgttattgc tgatcgtaag catcaaat 28 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttaaagacat gagtccaaca tcccatgaa 29 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaaatctaaa caagaaagat tcatatcctc 30 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ctgaaatcta aacaagaaag attcatatcc tt 32 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ccaccttcat ctatggtgct tgcta 25 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaatcaactt gttcaaaacc gacacg 26 <210> 26 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaatcaactt gttcaaaacc gacaca 26 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggaaagttc agctcaaaag catcataa 28 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 atggccatga taaaagacca tcagg 25 <210> 29 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 gatggccatg ataaaagacc atcaga 26 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtcatgattg tccagataac cacgtttt 28 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaatcaagct aagcatggtc tgaac 25 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aagaatcaag ctaagcatgg tctgaaa 27 <210> 33 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cggctcctat ttgacacttt atacatgta 29 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gccacgcttg ttggagatga c 21 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ggccacgctt gttggagatg at 22 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tctccacttc ctccgaaaat aactagttt 29 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ctcgatgtgt tattccactt gc 22 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cctctcgatg tgttattcca cttgt 25 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tggtatgaca gggcagccag ca 22 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cagcacaatt aggattttga tggcc 25 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cagcacaatt aggattttga tggct 25 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgacttggca aactaagtcg ccatt 25 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aagaacctca aaacttttgt atactcaaac 30 <210> 44 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gaaagaacct caaaactttt gtatactcaa at 32 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cgcttatcaa agcttgcctc gacta 25 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 cttatgattg ccaacaatat tcctgt 26 <210> 47 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 cttatgattg ccaacaatat tcctgc 26 <210> 48 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 caaaagctta aattagtggg tgaaggcaa 29 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gttagttaat cttaaatcgt tggagctca 29 <210> 50 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 agttaatctt aaatcgttgg agctcg 26 <210> 51 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 tagtgtggga acctaatgga ccaataaat 29 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 aatgggttat cttcaacaac tattaaaagc 30 <210> 53 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aaaatgggtt atcttcaaca actattaaaa gt 32 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 gagtacatgc caaacactac aggaaataa 29 <210> 55 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 tccaactcac tcaattgtga cttaca 26 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ccaactcact caattgtgac ttacc 25 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 gcctccaagt gttgagacgt acaaa 25 <210> 58 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 aattgatgaa acttataagt gcaagtgg 28 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtaattgatg aaacttataa gtgcaagtga 30 <210> 60 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 cgttgctcta atctccattc acaaatcat 29 <210> 61 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 aattggttta aggtccaagt tataaactg 29 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 caattggttt aaggtccaag ttataaacta 30 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 caccgtctca ttagctcgag agaaa 25 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtccaggtta tttgtaagcc tttgg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 gtccaggtta tttgtaagcc tttgc 25 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tgggtattca taaaacttca cgaaaaccta 30 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acattcaaat agcaaatgac taacagattc 30 <210> 68 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 aatacattca aatagcaaat gactaacaga ttt 33 <210> 69 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cctgtcattg ttgatgatgt ctttggtaa 29 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 gttcaaattc ggttcctaca acttattaaa 30 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 caaattcggt tcctacaact tattaag 27 <210> 72 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 ggatgtcgtt aaggtaattg gtcatgttt 29 <210> 73 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 gagcacatgt caaagcagta gtatct 26 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 agcacatgtc aaagcagtag tatcc 25 <210> 75 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 cgtttaagag tctttgttgg cttagagat 29 <210> 76 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 ccccgattat aacaggttgc acc 23 <210> 77 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 accccgatta taacaggttg caca 24 <210> 78 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 gtcggtggtt attatagttt gtcaggtat 29 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 gatgtctcgt aggaagactc gg 22 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 agatgtctcg taggaagact cga 23 <210> 81 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 tgtgggattt catacagatg cctaatgat 29 <210> 82 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gatgtgtatg ttcatatagg aattgtcg 28 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 atgatgtgta tgttcatata ggaattgtca 30 <210> 84 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tttccataaa gttgctcgat tgcaaggat 29 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 cacacgcgtc atcatcacgt tg 22 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 aatcacacgc gtcatcatca cgttt 25 <210> 87 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 cacatgcaag aaataagtga attccatgta 30 <210> 88 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 cataccatct agttggtgca tctg 24 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 gcataccatc tagttggtgc atcta 25 <210> 90 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 cagaaaacaa aggcctacag ctattgaaa 29 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 aataattttg aaaacggaaa aagcctactg 30 <210> 92 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 aaaataattt tgaaaacgga aaaagcctac ta 32 <210> 93 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 cgcgtattga ttgggacagt ttttgtatt 29 <210> 94 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acacgattgt ttagatttgg ttaccc 26 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acacgattgt ttagatttgg ttacct 26 <210> 96 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggggtaacg atcatttagt caaatctaaa 30 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 aatcttcata tgtaggctaa acgatcc 27 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 ataaatcttc atatgtaggc taaacgatct 30 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 gtcgaagaac ctgcatgagt tgagat 26 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gcatattaat ttgtatcttg aatttgctcg 30 <210> 101 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 gcatattaat ttgtatcttg aatttgctcc 30 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tacaaattac agcacgcttg gaggaattt 29

Claims (5)

서열번호 1 내지 69로 표시된 올리고뉴클레오티드에서 서열번호 1부터 시작하여 인접한 3개의 올리고뉴클레오티드가 하나의 프라이머 세트인 것을 특징으로 하는 23개의 올리고뉴클레오티드 프라이머 세트를 포함하는, 참외(Cucumis melo var. makuwa) 품종 구별 및 F1 종자 순도검정을 위한 KASP(kompetiive allele specific PCR)용 프라이머 세트.Melon ( Cucumis) containing 23 oligonucleotide primer sets characterized in that three adjacent oligonucleotides are one primer set starting from SEQ ID NO: 1 in the oligonucleotides shown in SEQ ID NOS: 1 to 69 melo var. Primer set for makuwa) varieties distinguished and F 1 seeds KASP (kompetiive allele specific PCR) for pure black. 제1항에 있어서, 상기 참외 품종은 오복꿀 참외, 오복꿀플러스 참외, 참미소꿀 참외, 꿀사랑 참외, 토종꿀 참외, 부자꿀 참외, 제왕꿀 참외, 신금싸라기 참외, 대박꿀 참외, 금제 참외, 마나따벌꿀 참외, 대장금플러스 참외, 팔복꿀 참외, 황깔꿀 참외, 황금도끼 참외, 참깔 참외 또는 슈퍼금덩어리 참외인 것을 특징으로 하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 프라이머 세트.The method of claim 1, wherein the melon varieties are bokbok honey melon, bokbok honey plus melon, oyster honey melon, honey love melon, native honey melon, rich honey melon, wangju honey melon, gold ladle melon, jackpot honey melon, gold melon A primer set for KASP for differentiation of melon varieties and F 1 seed purity testing, characterized by being mana honey melon, Dae Jang Geum plus melon, Bokbok honey melon, Hwangkyeol honey melon, Golden axe melon, melon melon or super gold lump melon. 제1항의 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트.The primer set of claim 1; And a reagent for performing an amplification reaction, a kit for KASP for melon variety discrimination and F 1 seed purity assay. 제3항에 있어서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs 및 버퍼를 포함하는 것을 특징으로 하는 참외 품종 구별 및 F1 종자 순도검정을 위한 KASP용 키트.The kit of claim 3, wherein the reagent for performing the amplification reaction comprises DNA polymerase, dNTPs, and a buffer, and the KASP kit for melon variety discrimination and F 1 seed purity assay. 참외 시료에서 게놈 DNA를 분리하는 단계;
상기 분리된 게놈 DNA를 주형으로 하고, 제1항의 프라이머 세트를 이용하여 KASP를 수행하는 단계; 및
상기 KASP의 증폭산물을 분석하는 단계;를 포함하는, 참외 품종 구별 및 F1 종자 순도검정 방법.
Isolating genomic DNA from the melon sample;
Using the isolated genomic DNA as a template and performing KASP using the primer set of claim 1; And
Analyzing the amplification products of the KASP; containing, melon varieties and F 1 seed purity test method.
KR1020180158644A 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof KR102144673B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Publications (2)

Publication Number Publication Date
KR20200070935A true KR20200070935A (en) 2020-06-18
KR102144673B1 KR102144673B1 (en) 2020-08-14

Family

ID=71142973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158644A KR102144673B1 (en) 2018-12-10 2018-12-10 KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof

Country Status (1)

Country Link
KR (1) KR102144673B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736864A (en) * 2021-09-09 2021-12-03 辽宁省农业科学院 Method for rapidly identifying purity of hybrid seeds of green Chinese onions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060046434A (en) * 2004-10-27 2006-05-17 대한민국(국립종자관리소장) A hybrid purity checking method for f1 seeds of geumssaraki type's oriental melon
KR20140039866A (en) * 2012-09-25 2014-04-02 한국생명공학연구원 Ssr primer sets for discrimination of oriental melon line or cultivar and uses thereof
WO2017186920A1 (en) * 2016-04-28 2017-11-02 Semillas Fito, S.A. Begomovirus-resistant melon plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060046434A (en) * 2004-10-27 2006-05-17 대한민국(국립종자관리소장) A hybrid purity checking method for f1 seeds of geumssaraki type's oriental melon
KR20140039866A (en) * 2012-09-25 2014-04-02 한국생명공학연구원 Ssr primer sets for discrimination of oriental melon line or cultivar and uses thereof
WO2017186920A1 (en) * 2016-04-28 2017-11-02 Semillas Fito, S.A. Begomovirus-resistant melon plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GeneBank:MF536700.1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736864A (en) * 2021-09-09 2021-12-03 辽宁省农业科学院 Method for rapidly identifying purity of hybrid seeds of green Chinese onions
CN113736864B (en) * 2021-09-09 2024-05-17 辽宁省农业科学院 Method for rapidly identifying purity of green Chinese onion hybrid

Also Published As

Publication number Publication date
KR102144673B1 (en) 2020-08-14

Similar Documents

Publication Publication Date Title
KR102077917B1 (en) Genetic maker for parentage and thereof in Olive flounder
US8409806B2 (en) Allelic ladder loci
KR101923647B1 (en) SNP markers for discrimination of Jubilee type or Crimson type watermelon cultivar
KR20180077873A (en) SNP markers for selection of marker-assisted backcross in watermelon
KR101353083B1 (en) SNP markers and methods for highly fetile pig
KR102124652B1 (en) Composition for early predicting or diagnosing anxiety disorder in dog
KR101450792B1 (en) Novel SNP marker for discriminating Black Coat Colour of Pig and use thereof
US20100297633A1 (en) Method of amplifying nucleic acid
KR102235665B1 (en) Single nucleotide polymorphism marker set for marker-assisted backcross breeding in Cucumis melo var. makuwa and thereof
CN107287283B (en) High-throughput detection kit for multiple SNP sites related to children susceptibility diseases and use method thereof
KR102144673B1 (en) KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof
KR101955074B1 (en) Snp markers for discrimination of raphanus sativus
KR101351990B1 (en) Single Nucleotide Polymorphisms for Individual Identification of Hanwoo and Use Thereof
KR102458440B1 (en) Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set
KR102124770B1 (en) Composition for early predicting or diagnosing hip dysplasia in dog
KR101985659B1 (en) Method for identification of Baekwoo breed using single nucleotide polymorphism markers
CN107354203B (en) Primer combination and kit for identifying cured tobacco Bina No. 1, application and detection method
KR102575912B1 (en) Single nucleotide polymorphism marker for discriminating cabbage having low content of sinigrin and uses thereof
KR102237248B1 (en) SNP marker set for individual identification and population genetic analysis of Pinus densiflora and their use
KR102309663B1 (en) Fluidigm based SNP chip for genotype-identifying and classifying Panax ginseng cultivar or resource and uses thereof
KR101955071B1 (en) Snp markers for discrimination of raphanus sativus
US10093988B2 (en) Universal primers and the use thereof for the detection and identification of amphibia/fish species
KR102665741B1 (en) Molecular marker for discriminating bacterial wilt-resistant pepper and uses thereof
KR20240083146A (en) SNP marker set for discriminating DADEUL melon cultivar and its parents and uses thereof
KR101823376B1 (en) SNP marker regulating stearic acid level in the pork and uses thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant