KR102357829B1 - 발광소자 제조방법 - Google Patents

발광소자 제조방법 Download PDF

Info

Publication number
KR102357829B1
KR102357829B1 KR1020150096071A KR20150096071A KR102357829B1 KR 102357829 B1 KR102357829 B1 KR 102357829B1 KR 1020150096071 A KR1020150096071 A KR 1020150096071A KR 20150096071 A KR20150096071 A KR 20150096071A KR 102357829 B1 KR102357829 B1 KR 102357829B1
Authority
KR
South Korea
Prior art keywords
light emitting
substrate
layer
emitting device
forming
Prior art date
Application number
KR1020150096071A
Other languages
English (en)
Other versions
KR20170005680A (ko
Inventor
장정훈
남승근
임정순
최원희
Original Assignee
쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 filed Critical 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority to KR1020150096071A priority Critical patent/KR102357829B1/ko
Publication of KR20170005680A publication Critical patent/KR20170005680A/ko
Application granted granted Critical
Publication of KR102357829B1 publication Critical patent/KR102357829B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 기판을 질화 처리하여 표면층을 형성하는 단계; 상기 표면층상에 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 발광 구조물을 형성하는 단계를 포함하고, 상기 표면층을 형성하는 단계는, 질소 분위기에서 RF 전압을 30W이상 100W이하로 인가하는 발광소자 제조방법을 개시한다.

Description

발광소자 제조방법{MANUFACTURING METHOD OF LIGHT EMITTING DEVICE}
실시 예는 발광소자 제조방법에 관한 것이다.
발광소자(Light Emitting Device, LED)는 전기에너지를 빛 에너지로 변환하는 화합물 반도체 소자로서, 화합물반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
질화물반도체 발광소자는 형광등, 백열등 등 기존의 광원에 비해 저소비 전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 갖고 있다. 따라서, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다.
질화물반도체 발광소자는 기판과 질화물 반도체 간의 격자 부정합을 완화하기 위하여 버퍼층을 형성한다. 그러나, 버퍼층의 결정성 및 표면이 불량한 경우 그 위에 성장하는 질화물 반도체의 결정성 및 표면이 불량해지는 문제가 있다.
실시 예는 결정성이 우수한 발광 소자를 제공한다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 일 실시 예에 따른 발광소자 제조방법은, 기판을 질화 처리하여 표면층을 형성하는 단계; 상기 표면층상에 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 발광 구조물을 형성하는 단계를 포함하고, 상기 표면층을 형성하는 단계는, 질소 분위기에서 RF 전압을 30W이상 100W이하로 인가한다.
상기 표면층을 형성하는 단계에서, 상기 RF 전압을 30W이상 50W이하로 인가할 수 있다.
상기 표면층을 형성하는 단계에서, 상기 RF 전압은 40W이상 50W이하로 인가할 수 있다.
상기 표면층을 형성하는 단계에서, 상기 질화처리 시간은 30초이상 50초이하로 제어할 수 있다.
상기 기판은 Al을 포함할 수 있다.
실시 예에 따르면, 발광소자의 결정성이 우수해지고, 표면 상태가 양호해질 수 있다.
또한, 기판의 휨을 효과적으로 억제할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 발광소자 제조방법의 순서도이고,
도 2는 질화 처리시 RF 파워에 따라 (002)면에서 발광 구조물의 반치폭 변화를 측정한 그래프이고,
도 3은 RF 파워를 125W로 제어한 경우 발광 구조물의 표면 상태를 촬영한 사진이고,
도 4는 RF 파워를 50W로 제어한 경우 발광 구조물의 표면 상태를 촬영한 사진이고,
도 5는 질화 처리시 RF 파워에 따라 (102)면에서 발광 구조물의 반치폭 변화를 측정한 그래프이고,
도 6은 질화 처리시 RF 파워에 따라 기판의 휨(bow) 변화량을 측정한 그래프이고,
도 7은 질화 처리 시간에 따른 발광 구조물의 반치폭 변화를 측정한 그래프이고,
도 8은 질화 처리 시간에 따른 기판의 휨(bow) 변화량을 측정한 그래프이고,
도 9는 질화 처리 시간에 따른 발광소자의 발광효율을 측정한 그래프이고,
도 10은 본 발명의 일 실시 예에 따른 발광소자의 개념도이고,
도 11은 도 10의 변형예이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예를 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명 실시 예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 실시 예의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 실시 예의 권리 범위를 벗어나지 않으면서 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있고, 유사하게 제 1 구성 요소도 제 2 구성 요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명 실시 예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 발광소자 제조방법의 순서도이다.
도 1을 참고하면, 실시 예에 따른 발광소자 제조방법은, 기판을 질화 처리하여 표면층을 형성하는 단계, 표면층상에 버퍼층을 형성하는 단계, 및 버퍼층 상에 발광 구조물을 형성하는 단계를 포함한다.
도 1의 (a)를 참고하면 표면층을 형성하는 단계는, 기판(110)의 일면을 질화 처리(Nitrogen plasma surface treatment)하여 표면층(111)을 형성할 수 있다.
기판(110)은 전도성 기판 또는 절연성 기판을 포함할 수 있다. 기판(110)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼일 수 있다. 기판(110)은 Al을 포함하는 다양한 기판이 선택될 수 있다. 실시 예에서는 사파이어(Al2O3) 기판으로 설명하나 이에 제한되지 않는다.
질화 처리는 기판(110)을 챔버 내에 배치하고 질소 소스(N2)의 유량을 120 내지 150sccm으로 제어한 상태에서 RF 전압을 인가하여 수행할 수 있다. 인가 전압에 의해 질소원자는 기판(110)의 Al과 반응하여 AlN 및/또는 AlON의 조성을 갖는 표면층(111)을 형성할 수 있다. 표면층(111)의 두께는 1.0 Å 내지 10 Å 일 수 있으나 이에 한정하지 않는다. 표면층(111)은 버퍼층(112)의 결정성을 향상시키고, 표면 불량을 방지할 수 있다.
도 1의 (b)를 참고하면 버퍼층을 형성하는 단계는, 표면층(111)상에 AlN 버퍼층(112)을 성장시킬 수 있다. 성장 방법은 질화 처리된 기판(110)을 챔버 내에 배치하고, 아르곤 분위기에서 질소 소스(N2)와 산소 소스(O2)를 공급하면서 전압을 인가하여 수행할 수 있다. 성장시 4000W 내지 6000W의 DC 전압을 인가하고, 아르곤의 유량은 45sccm, 질소의 유량은 120sccm, 산소의 유량은 3sccm으로 제어할 수 있으나 이에 한정하지 않는다.
버퍼층(112) 성장 방법은 특별히 제한되지 않는다. 예시적으로 스퍼터링(Sputtering), E-빔 증착(E-Beam evaporation), 열 증착(Thermal evaporation), 펄스 레이저 증착(Pulsed Laser Deposition), 레이저 분자빔 에피텍시(Laser molecular beam epitaxy)와 같은 PVD 공정, 및 MOCVD, HVPE, ALD, PECVD, LPCVD, APCVD 등의 CVD 공정이 모두 적용될 수 있다.
도 1의 (c)를 참고하면 발광 구조물을 형성하는 단계는, 버퍼층(112) 상에 n형 반도체층, 활성층, 및 p형 반도체층을 포함하는 발광 구조물(190)을 성장시킬 수 있다. 발광 구조물(190)을 성장시키는 방법은 일반적인 에피 공정(epitaxial growth)이 모두 적용될 수 있다. 전술한 PVD, CVD 공정이 모두 적용될 수 있다. 발광 구조물(190)은 결정성이 높은 AlN 버퍼층(112)상에서 성장하므로 결정성이 높아지고 표면 상태가 양호해 질 수 있다.
도 2는 질화 처리시 RF 파워에 따라 (002)면에서 발광 구조물의 반치폭 변화를 측정한 그래프이고, 도 3은 RF 파워를 125W로 제어한 경우 발광 구조물의 표면 상태를 촬영한 사진이고, 도 4는 RF 파워를 50W로 제어한 경우 발광 구조물의 표면 상태를 촬영한 사진이고, 도 5는 질화 처리시 RF 파워에 따라 (102)면에서 발광 구조물의 반치폭 변화를 측정한 그래프이다.
도 2를 참고하면, 질화 처리시 RF 파워를 점차 증가시킨 경우 반치폭(FWHM)이 점차 상승함을 알 수 있다. 따라서, RF 파워가 증가함에 따라 발광 구조물의 결정성은 저하됨을 확인할 수 있다. RF 파워가 125W인 경우 발광 구조물의 결정성은 약 150arcsec로 가장 낮아짐을 확인할 수 있다. 기판의 중앙(C), 가장자리(R), 및 평탄 지점(F)에서 모두 RF 파워가 증가함에 따라 결정성이 저하되는 경향을 보인다. 따라서, 결정성 관점에서 RF 파워는 30W이상 100W이하로 제어하는 것이 유리하다.
도 3을 참고하면 발광 구조물의 표면 역시 불량해졌음을 알 수 있다. 이는 RF 파워가 너무 높아 질화 처리 과정에서 기판의 표면이 손상되었기 때문으로 판단된다. 따라서, 그 위에 성장한 버퍼층의 결정성 및 표면이 불량해져 발광 구조물의 결정성 및 표면에 영향을 미친 것으로 판단된다.
이에 반해 RF 파워를 50W로 제어한 경우, 반치폭이 낮아 발광 구조물의 결정성을 향상된 것을 알 수 있다. 도 4를 참고하면, 발광 구조물의 표면 역시 상대적으로 매끄러운 상태인 것을 알 수 있다.
도 5를 참고하면, 발광 구조물의 (102)면에서의 반치폭은 RF 파워가 높아질수록 증가하다가 100W에서 급격히 높아지는 것을 확인할 수 있다(기판의 센터(c) 기준). 따라서, (102)면에서의 결정성 관점에서 RF 파워는 30W이상 75W이하로 제어하는 것이 유리할 수 있다.
도 6을 참고하면, 질화 처리시 RF 파워가 45W인 지점까지는 기판의 휨이 감소하는 경향을 보이나, 55W 지점에서 기판의 휨(Bow)량이 커지는 것을 알 수 있다. 기판의 휨(Bow)은 일정 높이를 기준으로 그 이상으로 높아지는 지점들의 평균값으로 계산할 수 있다. RF 파워를 30W이상 50W이하로 제어하는 경우 기판의 휨을 78um이하로 제어할 수 있다. 또한, RF 파워는 40W이상 50W이하로 제어하는 경우 기판의 휨을 더 효과적으로 억제할 수 있다.
도 7은 질화 처리 시간에 따른 발광 구조물의 반치폭 변화를 측정한 그래프이고, 도 8은 질화 처리 시간에 따른 기판의 휨(bow) 변화량을 측정한 그래프이고, 도 9는 질화 처리 시간에 따른 발광소자의 발광효율을 측정한 그래프이다.
도 7을 참고하면, (002)면에서 발광구조물은 질화 처리 시간이 길어질수록 반치폭이 작아져 결정성이 높아지는 것을 알 수 있다. 그러나, 도 8과 같이 질화 처리 시간이 길어질수록 기판의 휨 현상은 커지는 것을 알 수 있다. 따라서, 질화 처리 시간을 30초 내지 50초로 제어하는 경우 발광 구조물의 결정성을 높이면서도 기판의 휨을 최소화할 수 있다.
도 9를 참고하면, 발광소자의 발광 효율은 질화 처리 시간에 크게 영향이 없는 것을 알 수 있다. 이는 발광소자의 발광 효율은 (002)면의 결정성보다 (102)면의 결정성이 발광 효율에 크게 기여하기 때문으로 판단된다.
도 10은 본 발명의 일 실시 예에 따른 발광소자의 개념도이고, 도 11은 도 10의 변형예이다.
도 10을 참고하면, 실시 예에 따른 발광소자는 표면층(111)을 갖는 기판(110), 버퍼층(112), 발광 구조물(190)을 포함한다.
기판(110)은 전도성 기판 또는 절연성 기판을 포함할 수 있다. 기판(110)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼일 수 있다. 기판(110)은 Al을 포함하는 다양한 기판이 선택될 수 있다. 실시 예에서는 사파이어(Al2O3) 기판으로 설명하나 이에 제한되지 않는다. 기판(110)은 질화 처리에 의해 AlN 또는 AlON의 표면층(111)을 갖는다. 필요에 따라 기판(110)은 제거될 수 있다.
버퍼층(112)은 기판(110) 상에 구비된 발광 구조물(190)과 기판(110)의 격자 부정합을 완화할 수 있다. 버퍼층(112)은 기판의 표면층(111)에 의해 결정성이 증가하고 표면 결함이 낮아질 수 있다.
버퍼층(112)은 기판(110) 상에 단결정으로 성장할 수 있으며, 단결정으로 성장한 버퍼층(112)은 제1반도체층(130)의 결정성을 향상시킬 수 있다.
기판(110) 상에 구비되는 발광 구조물(190)은 제1반도체층(130), 활성층(140), 및 제2반도체층(160)을 포함한다. 일반적으로 상기와 같은 발광 구조물(190)은 기판(110)을 절단하여 복수 개로 분리될 수 있다.
제1반도체층(130)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체일 수 있으며, 제1반도체층(130)에 제1도펀트가 도핑될 수 있다. 제1반도체층(130)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1반도체층(130)은 n형 반도체층일 수 있다.
활성층(140)은 제1반도체층(130)을 통해서 주입되는 전자(또는 정공)과 제2반도체층(160)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(140)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다. 본 실시 예에서 발광 파장에는 제한이 없다.
활성층(140)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(140)의 구조는 이에 한정하지 않는다.
활성층(140)은 복수 개의 우물층(141) 및 장벽층(142)이 교대로 배치되는 구조를 가질 수 있다. 우물층(141)과 장벽층(142)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 가질 수 있고, 장벽층(142)의 에너지 밴드갭은 우물층(141)의 에너지 밴드갭보다 클 수 있다.
제2반도체층(160)은 활성층(140) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2반도체층(160)에 제2도펀트가 도핑될 수 있다. 제2반도체층(160)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2반도체층(160)은 p형 반도체층일 수 있다.
활성층(140)과 제2반도체층(160) 사이에는 전자 차단층(EBL, 150)이 배치될 수 있다. 전자 차단층(150)은 제1반도체층(130)에서 공급된 전자가 제2반도체층(160)으로 빠져나가는 흐름을 차단하여, 활성층(140) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층(150)의 에너지 밴드갭은 활성층(140) 및/또는 제2반도체층(160)의 에너지 밴드갭보다 클 수 있다.
전자 차단층(150)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.
제1전극(180)은 일부가 노출된 제1반도체층(130)상에 형성될 수 있다. 또한, 제2반도체층(160)상에는 제2전극(170)이 형성될 수 있다. 제1전극(180)과 제2전극(190)은 다양한 금속 및 투명전극이 모두 적용될 수 있다. 제1전극(180)과 제2전극(170)은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi 중에서 선택된 금속 중 어느 하나를 포함할 수 있다. 필요에 따라 오믹 전극층을 더 포함할 수 있다.
도 11을 참고하면, 발광소자는 기판을 제거한 수직형 구조일 수 있다. 따라서, 버퍼층(112)은 광추출층으로 기능할 수 있다. 버퍼층(112)에는 요철 패턴(112a)이 형성될 수 있다. 전술한 바와 같이 버퍼층(112)은 표면층에 의해 결정성이 향상되므로 광 추출 효율이 증가할 수 있다. 도시되지는 않았으나, 제1반도체층(130) 및 제2반도체층(160)과 각각 전기적으로 연결되는 전극패드를 더 포함할 수 있다.
실시 예의 발광 소자는 도광판, 프리즘 시트, 확산 시트 등의 광학 부재를 더 포함하여 이루어져 백라이트 유닛으로 기능할 수 있다. 또한, 실시 예의 발광 소자는 표시 장치, 조명 장치, 지시 장치에 더 적용될 수 있다.
이 때, 표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출한다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치된다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치된다.
그리고, 조명 장치는 기판과 실시 예의 발광 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 더욱이 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다.
이상에서 설명한 본 발명 실시 예는 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 실시 예의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명 실시 예가 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.
110: 기판
111: 표면층
112: 버퍼층
130: 제1반도체층
140: 활성층
150: 장벽층
160: 제2반도체층
190: 발광 구조물

Claims (5)

  1. 기판을 질화 처리하여 표면층을 형성하는 단계;
    상기 표면층상에 버퍼층을 형성하는 단계; 및
    상기 버퍼층 상에 발광 구조물을 형성하는 단계를 포함하고,
    상기 표면층을 형성하는 단계는,
    질소 소스의 유량을 120sccm 내지 150sccm으로 제어한 질소 분위기에서 RF 전압을 30W이상 100W이하로 인가하여 상기 기판에 포함된 Al과 반응하여 AlN 또는 AlON의 조성을 갖는 표면층을 형성하는 발광소자 제조방법.
  2. 제1항에 있어서,
    상기 표면층을 형성하는 단계에서,
    상기 RF 전압을 40W이상 50W이하로 인가하는 발광소자 제조방법.
  3. 제1항에 있어서,
    상기 표면층을 형성하는 단계에서,
    상기 질화 처리하는 시간은 30초이상 50초이하로 제어하는 발광소자 제조방법.
  4. 제1항에 있어서,
    상기 버퍼층을 형성하는 단계는,
    상기 질화 처리된 기판을 챔버 내에 배치하고, 아르곤 분위기에서 질소 소스와 산소 소스를 공급하면서 4000W 내지 6000W의 직류 전압을 인가하고,
    상기 아르곤의 유량은 상기 질소의 유량보다 작고 상기 산소의 유량보다 크게 제어하는 발광소자 제조방법.
  5. 제1항에 있어서,
    상기 표면층은 1.0 Å 내지 10 Å 의 두께로 형성되는 발광소자 제조방법.
KR1020150096071A 2015-07-06 2015-07-06 발광소자 제조방법 KR102357829B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150096071A KR102357829B1 (ko) 2015-07-06 2015-07-06 발광소자 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150096071A KR102357829B1 (ko) 2015-07-06 2015-07-06 발광소자 제조방법

Publications (2)

Publication Number Publication Date
KR20170005680A KR20170005680A (ko) 2017-01-16
KR102357829B1 true KR102357829B1 (ko) 2022-02-04

Family

ID=57993434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150096071A KR102357829B1 (ko) 2015-07-06 2015-07-06 발광소자 제조방법

Country Status (1)

Country Link
KR (1) KR102357829B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074178B1 (ko) 2006-09-26 2011-10-14 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프
JP2015002341A (ja) 2013-06-18 2015-01-05 富士通株式会社 化合物半導体装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189386B2 (ja) * 2005-01-27 2008-12-03 ローム株式会社 窒化物半導体結晶層の成長方法および窒化物半導体発光素子の製法
KR101282774B1 (ko) * 2006-07-26 2013-07-05 엘지이노텍 주식회사 질화물계 발광 소자 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074178B1 (ko) 2006-09-26 2011-10-14 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프
JP2015002341A (ja) 2013-06-18 2015-01-05 富士通株式会社 化合物半導体装置及びその製造方法

Also Published As

Publication number Publication date
KR20170005680A (ko) 2017-01-16

Similar Documents

Publication Publication Date Title
US7910154B2 (en) Nitride-based light emitting devices and methods of manufacturing the same
US10559718B2 (en) Light-emitting device having plural recesses in layers
JP2007184411A (ja) 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
US9525106B2 (en) Semiconductor light emitting device
US11621369B2 (en) Semiconductor device
WO2016002419A1 (ja) 窒化物半導体発光素子
KR101714041B1 (ko) 발광소자 및 그 제조방법
US8481352B2 (en) Method of fabricating light emitting diode chip
TWI390769B (zh) 生產第三族氮化物半導體層的設備,生產第三族氮化物半導體層的方法,生產第三族氮化物半導體發光裝置的方法,該第三族氮化物半導體發光裝置及該燈
US20070269913A1 (en) Method of fabricating light emitting diode
US10333027B2 (en) Light-emitting device and manufacturing method therefor
KR102357829B1 (ko) 발광소자 제조방법
JP4062360B2 (ja) 発光素子
KR101068864B1 (ko) 반도체 발광소자 및 그 제조방법
US10290766B2 (en) Light emitting device
KR102340717B1 (ko) 발광소자 및 그 제조방법
KR102523696B1 (ko) 발광소자 및 그 제조방법
US11424329B2 (en) Semiconductor device including indium, silicon and carbon with varying concentrations
KR102353850B1 (ko) 발광소자
KR102425850B1 (ko) 발광소자
JP3969378B2 (ja) 発光素子
JP5192869B2 (ja) 半導体基板の製造方法
KR100668966B1 (ko) 발광 소자의 제조 방법
KR100608919B1 (ko) 발광 소자 및 이의 제조 방법
KR20030072762A (ko) 반도체 발광 다이오드 및 그의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant