KR102330140B1 - 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 - Google Patents
건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 Download PDFInfo
- Publication number
- KR102330140B1 KR102330140B1 KR1020217020558A KR20217020558A KR102330140B1 KR 102330140 B1 KR102330140 B1 KR 102330140B1 KR 1020217020558 A KR1020217020558 A KR 1020217020558A KR 20217020558 A KR20217020558 A KR 20217020558A KR 102330140 B1 KR102330140 B1 KR 102330140B1
- Authority
- KR
- South Korea
- Prior art keywords
- collagen
- implant
- composition
- dry
- injectable
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0003—Not used, see subgroups
- A61C8/0004—Consolidating natural teeth
- A61C8/0006—Periodontal tissue or bone regeneration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
- A61L2/0029—Radiation
- A61L2/0035—Gamma radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
- A61L2/0029—Radiation
- A61L2/0041—X-rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0015—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/362—Skin, e.g. dermal papillae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3625—Vascular tissue, e.g. heart valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3683—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
- A61L27/3691—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/28—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
- A61M5/284—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle comprising means for injection of two or more media, e.g. by mixing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
- C08L89/04—Products derived from waste materials, e.g. horn, hoof or hair
- C08L89/06—Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/21—Pharmaceuticals, e.g. medicaments, artificial body parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/12—Materials or treatment for tissue regeneration for dental implants or prostheses
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Anesthesiology (AREA)
- Dentistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Developmental Biology & Embryology (AREA)
- Hematology (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Dental Preparations (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Dental Prosthetics (AREA)
Abstract
본 발명은 하기에 관한 것이다:
- 크기가 50 내지 200 ㎛ 인 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자 및 0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 단편의 혼합물로 본질적으로 이루어진 건조 임플란트 조성물로서, 콜라겐에 대한 히드록시아파타이트의 w/w 비가 1.8 내지 4.5 인 건조 임플란트 조성물;
- 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출가능한 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형을 제조하기 위한, 건조 임플란트 조성물의 용도
- 재수화 및 멸균수 또는 멸균 등장성 생리 식염수와 25-45 w/w % 의 상기 건조 임플란트 조성물의 균일한 혼합에 의해 수득가능한, 60 N 이하의 힘으로 테이퍼링 시스템 및 8 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형;
- 재수화 및 멸균수 또는 멸균 등장성 생리 식염수 중 25-45 w/w % 의 상기 정의된 20 건조 임플란트 조성물의 균일한 혼합을 포함하는, 상기 주사가능한 수성 임플란트 제형의 제조 방법;
- 하기를 포함하는, 구강 조직 재생에서 사용하기 위한 상기 주사가능한 수성 임플란트 제형을 제조하기 위한 키트:
- 상기 정의된 건조 임플란트 2 조성물, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 함유하는 혼합 장치가 구비된 시린지
- 적절한 양의 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너.
- 크기가 50 내지 200 ㎛ 인 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자 및 0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 단편의 혼합물로 본질적으로 이루어진 건조 임플란트 조성물로서, 콜라겐에 대한 히드록시아파타이트의 w/w 비가 1.8 내지 4.5 인 건조 임플란트 조성물;
- 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출가능한 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형을 제조하기 위한, 건조 임플란트 조성물의 용도
- 재수화 및 멸균수 또는 멸균 등장성 생리 식염수와 25-45 w/w % 의 상기 건조 임플란트 조성물의 균일한 혼합에 의해 수득가능한, 60 N 이하의 힘으로 테이퍼링 시스템 및 8 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형;
- 재수화 및 멸균수 또는 멸균 등장성 생리 식염수 중 25-45 w/w % 의 상기 정의된 20 건조 임플란트 조성물의 균일한 혼합을 포함하는, 상기 주사가능한 수성 임플란트 제형의 제조 방법;
- 하기를 포함하는, 구강 조직 재생에서 사용하기 위한 상기 주사가능한 수성 임플란트 제형을 제조하기 위한 키트:
- 상기 정의된 건조 임플란트 2 조성물, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 함유하는 혼합 장치가 구비된 시린지
- 적절한 양의 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너.
Description
본 발명은 테이퍼링 시스템 및 가우지 18 캐뉼라를 통해 치주 포켓에 주사되기 쉬운, 조직 재생, 특히 구강 조직 재생, 특히 치조골, 뿌리 백악질 또는 치주 인대 (periodontal ligament (PDL)) 의 재생에서 사용하기 위한 신규한 주사가능한 수성 임플란트 제형을 제조하기 위한 신규한 건조 임플란트 조성물,뿐 아니라 상기 건조 임플란트 조성물을 사용하여 제조된 신규한 주사가능한 수성 임플란트 제형, 상기 신규한 주사가능한 수성 임플란트 제형을 제조하기 위한 방법 및 키트에 관한 것이다.
박테리아 축적, 바이오막 형성 및 치은구의 감염을 촉진하여 잇몸 염증 또는 치은염을 형성하는 불량한 구강 위생, 담배 흡연, 당뇨, 비만, 유전적 성향, 나이 및 사회 경제적 상태와 같은 치주 질환에 대한 다수의 위험 인자가 존재한다. 치료하지 않고 두는 경우, 염증은 치아 뿌리를 따라 진행되어 PDL 및 주변 치조골의 파괴를 야기하고, 이는 치주염으로 지칭된다. 치주 질환이 진행됨에 따라, 치아 및 연조직 사이에 포켓이 생기고, 치아가 이의 안정성을 잃고, 떨어질 수 있을 때까지 계속해서 자란다. 치주 질환의 임상적 징후는 연조직의 염증, (조직-) 프로빙에서의 출혈 (가능하게는 화농과 동반됨), 및 치조골의 방사선 손실이다. 치과의사는 치주 포켓의 깊이, 즉 연조직 또는 골 및 치아 사이의 깊이를 측정하기 위한 프로브를 사용하여 치주 질환의 존재 및 정도를 결정할 수 있고, 이는 임상적 (치아) 부착의 손실로 지칭된다.
유도 조직 재생 (GTR) 은 치주 구조의 손실을 치료하기 위해 널리 사용된 수술 절차이다. 이러한 절차에서, 치주과의사는 연조직의 절개에 의해 병든 뿌리 및 주변의 골에 접근하여 플랩 (flap) 을 만든다. 다음 단계는 병든 조직이 제거되고, 뿌리 표면이 스케일링되고 다듬어지는 적합한 수공구, 초음파 또는 레이저 장치에 의한 병든 골, 연조직 및 뿌리 표면의 괴사조직제거이다. 괴사조직제거 후, 보다 큰 골 결함은 골 재생 물질로 채워진다. EP-B1-1676592 에 기재되고, Geistlich Pharma AG 로부터 시판되는 유도 조직 재생 배리어, 예컨대 Geistlich Bio-Gide® 는 보다 깊은 골 결함에서 골 재생 물질 위에 놓여진다. 치주과의사는 적절한 봉합선으로 플랩을 닫는다. 이후, 잇몸, 상피 부착, 골 및 치아 사이의 골 및 치주 부착은 재형성된다. 이러한 절차는 효과적이지만, 잇몸의 절개는 환자에 불편함, 고통, 붓기, 잇몸 퇴축, 민감한 치아, 긴 치유 시간 및 재감염 가능성 증가를 야기한다.
다수의 천연 및 합성 물질 및 조성물이 골 결함 부위에서 골 재생 물질로서 사용되어 왔다.
치주 골 결함에서 골 성장을 촉진하는 잘 알려진 천연의 골전도성 골 대체 물질은 Geistlich Bio-Oss® (Geistlich Pharma AG 로부터 시판됨) 이다. 상기 물질은 US 특허 No. 5,167,961 및 5,417,975 에 기재된 방법에 의해 천연 골로부터 제조되고, 이는 천연 골의 섬유 구조 및 나노결정질 구조의 보존을 가능하게 하여, 재흡수되지 않거나 매우 느리게 재흡수되는 탁월한 골전도성 매트릭스를 유도한다.
잇몸의 절개와 관련된 상기 언급된 단점을 감소시키기 위해, 주사가능한 임플란트 제형에 대한 요구가 존재한다.
치주 포켓으로 주사할 때 환자가 쉽게 수용하고, 시린지를 사용하여 편리한 수동 주사를 위해, 상기 주사가능한 수성 임플란트 제형은 바람직하게는 60 N 이하의 힘으로, 가우지 18 (0.838 ㎜ 내부 직경) 캐뉼라 또는 니들보다 직경이 크지 않은 캐뉼라를 통해 압출가능해야 한다.
최적의 구강 조직 재생을 위해, 특히 치조골, 뿌리 백악질 또는 치주 인대 재생을 위해, 바람직한 것은 주입된 임플란트 제형이 상기 재생이 발생하는 천연 생체 내 환경과 유사한 콜라겐 및 히드록시아파타이트의 매트릭스를 제공하는 것이다.
천연 골로부터 유래한 히드록시아파타이트는 합성 (비-생물학적) 히드록시아파타이트 또는 세라믹보다 재생이 발생하는 천연 생체 내 환경에 더 가깝다.
천연 골로부터 유래된 히드록시아파타이트를 분쇄함으로써 수득되는 입자는 합성 히드록시아파타이트 또는 세라믹을 분쇄하여 수득된 둥근 입자보다 더 불규칙하고 종방향 형상을 갖는다: 이들은 따라서 가우지 18 캐뉼라의 막힘의 높은 위험을 보인다. 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자의 왼쪽의 주사 전자 현미경 (SEM) 및 합성 베타-TCP 입자의 오른쪽 SEM 을 나타내는 도 5 참조. 합성 히드록시아파타이트 또는 세라믹 입자를 함유하는 제형의 캐뉼라를 통한 압출 결과는 따라서 단지 천연 골로부터 유래된 히드록시아파타이트 입자를 함유하는 유사 제형의 압출을 부분적으로만 예측한다.
인간 천연 골의 한 가지 중요한 특징은 히드록시아파타이트 결정의 매우 작은 크기 (나노-크기) 및 모폴로지이고, 이는 인간 골 미네랄의 경우: 육각 공간 그룹 P63/m, 약 30 내지 50 nm 길이 (c 축: [0,0,1]) 및 14 내지 25 nm 길이 (a 및 b 축: [1,0,0] 및 [0,1,0]) 이다. [Weiner, S. et al., 1992, FASEB, 6:879-885] 참조. 재생이 발생하는 천연 환경에 더 가까워지도록, 따라서 바람직한 것은 바람직하게는 인간 천연 골과 유사한 결정의 모폴로지 및 크기를 갖는, 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자를 사용하는 것이다.
US2012/0107401 은 스타틴을 포함하는 치료제, 세라믹, 예컨대 합성 히드록시아파타이트 및 베타-TCP 또는 천연 골로부터 유래된 히드록시아파타이트, 인간 또는 동물원으로부터 유래된 가용성 콜라겐 또는 불용성 콜라겐일 수 있는 콜라겐의 0.1-2 ㎜ 미네랄 입자의 혼합물을 포함하는 유동성 이식가능한 골전도성 매트릭스를 기재한다. 이러한 유동성 이식가능한 골전도성 매트릭스는 표적 조직 부위에 주사, 스프레이 또는 주입될 수 있는 퍼티 (putty) 또는 겔로서 적합한 것으로 교시된다. 세라믹 대 콜라겐의 w/w 비는 0.15 내지 22.5 (청구항 4) 또는 1.5 내지 11.5 (청구항 5) 인 것으로 교시되고, 개시된 세라믹 대 콜라겐의 단지 고유 비는 5 및 4.83 이다 (청구항 2 및 [0089], [0090]).
US 특허 No. 7,322,825 는 크기 50 내지 400 ㎛ 의 미세결정질 히드록시아파타이트의 미분된 골 입자 및 직경 1 ㎜ 미만의 "유리 콜라겐" 입자의 혼합물인 조성물의 치주 포켓으로의 주사에 의해 치주 질환을 치료하는 방법을 개시하고, 상기 "유리 콜라겐" 입자는 피브릴 콜라겐 및 임의로 생리학적으로 상용가능한 증점제 함유 비가교결합된 콜라겐 소 피브릴 또는 겔인 것으로 교시된다. 상기 혼합물은 단지 열 적용, 예를 들어 마이크로웨이브 방사를 통한 부가적인 에너지 주입 후 18 가우지 (0.838 ㎜ 내부 직경) 니들을 통과하기 위해 충분히 낮은 점도를 갖는다. 상기 특허에 따르면, 가교결합된 콜라겐, 예컨대 Avitene 또는 Collastat 은 18-가우지 니들을 통과하기에 충분히 작은 조각으로 절단될 수 없다. 구체적으로 기재된 조성물의 경우, 히드록시아파타이트 대 콜라겐의 w/w 비는 0.5 내지 1.5 이다.
US 특허 No. 7'322'825 의 치주 질환의 치료 방법은 널리 사용되지 않았다. "유리 콜라겐" 과 같은 비-가교결합된 콜라겐은 구강 조직 재생, 특히 치조골, 뿌리 백악질 또는 치주 인대의 재생에 바람직한 천연 생체 내 환경과 거리가 멀다.
US 특허 No. 5'352'715 는 약학적으로 허용가능한 유체 담체 중 칼슘 포스페이트 세라믹 입자 및 콜라겐을 포함하는 연질 및 경질 조직 복구 및 증강을 위한 주사가능한 세라믹 제형을 개시하고, 여기서 칼슘 포스페이트 세라믹 입자는 크기가 50 내지 250 ㎛ 이고, 콜라겐에 대한 포스페이트 세라믹 입자의 w/w 비는 1/19 내지 1/1, 바람직하게는 1/4 내지 1/2 이다. 상기 특허의 교시에 따라, 칼슘 포스페이트 세라믹 입자는 바람직하게는 비-생물학적 (합성) 기원의 소결된 세라믹 입자이고, 콜라겐은 실질적으로 가교결합이 없고, 즉 텔로펩티드가 없고, 바람직한 콜라겐은 정제된 아텔로펩티드 재구성 콜라겐이다. 상기 주사가능한 세라믹 제형은 20 가우지 (0.603 ㎜ 내부 직경) 니들을 통과할 수 있다.
텔로펩티드 결여 콜라겐 및 합성 칼슘 포스페이트 입자의 조합은 재생이 발생하는 천연 생체 내 환경과 거리가 멀다.
EP-0270254-A2 는 실질적으로 가교결합이 없는 2-40 중량% 의 재구성 섬유상 아텔로펩티드 콜라겐 및 60-98 중량% 의 크기 범위 100-2000 ㎛ 의 히드록시아파타이트와 같은 트리칼슘 포스페이트 (수분 제외) 를 함유하는 혼합물을 포함하는 건조 임플란트 조성물을 개시하고, 아텔로펩티드 콜라겐에 대한 트리칼슘 포스페이트의 질량 비는 이에 따라 1.5 내지 49 이다. 상기 건조 임플란트 조성물은 감마 방사선 처리되어 생물학적 및 핸들링 특성 모두를 개선한다.
텔로펩티드 결여 콜라겐 및 합성 트리칼슘 포스페이트 입자의 조합은 재생이 발생하는 천연 생체 내 환경과 거리가 멀다.
콜라겐을 함유하는 주사가능한 수성 임플란트 제형은 감마- 또는 X-선- 조사에 의해 멸균될 수 없다. 멸균 주사가능한 수성 임플란트 조성물의 장기간 (6 개월 초과) 에 걸친 안정성은 언제나 쉽게 이용가능하지 않은 제조 및 저장의 극적인 무균 조건을 요구할 수 있다. 따라서, 바람직한 것은 장기간에 걸쳐 안정한 건조 임플란트 조성물을 제공하고, 재수화에 의해 주사가능한 수성 임플란트 제형을 제공하는 것이다.
본 발명의 문제점 또는 목적은 구강 조직 재생, 특히 치조골, 뿌리 백악질 또는 PDL 의 재생에서 사용하기 위한 주사가능한 건조 임플란트 제형을 제조하기 위해 사용될 수 있는 건조 임플란트 조성물을 발견하는 것이고, 상기 주사가능한 수성 임플란트 제형은 테이퍼링 시스템 및 가우지 18 캐뉼라를 통해 압출가능하고, 선행 기술의 임플란트 제형의 단점을 갖지 않는다.
제조 방법, 성분 및 자연 가교결합된 섬유질 콜라겐 및 천연 골로부터 유도된 나노결정질 히드록시아파타이트 입자를 포함하는 건조 임플란트 조성물의 300 개 초과의 프로토타입에서 성분의 비율을 변경하고, 가우지 18 캐뉼라를 사용하는 압출 시험 (실시예 9 에 기재됨) 으로의 건조 임플란트 조성물의 균일한 혼합 및 재수화에 의해 수득된 제형을 제공함으로써, 본 발명자들은 예기치 않게 재수화되고 균일하게 혼합된 수성 임플란트 제형의 테이퍼링 시스템 및 가우지 18 캐뉼라를 통한 압출성을 제공하는 상기 건조 임플란트 조성물의 특징을 발견하였고, 후자는 재생이 발생하는 천연 환경과 유사한 매트릭스를 제공한다.
상기 목적은 첨부된 청구범위에 정의된 바와 같이 본 발명에 의해 달성된다.
본 발명은 하기에 관한 것이다:
- 크기가 50 내지 200 ㎛ 인 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자 및 0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 단편의 혼합물로 본질적으로 이루어진 건조 임플란트 조성물로서, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비가 1.8 내지 4.5 인 건조 임플란트 조성물.
- 재수화 및 25-45 w/w % 의 상기 건조 임플란트 조성물과 약학적으로 허용가능한 수성 비히클의 균일한 혼합에 의해, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출가능한 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형을 제조하기 위한, 건조 임플란트 조성물의 용도, 및
- 재수화되고 멸균수 또는 멸균 등장성 생리 식염수와 균일하게 혼합된 25-45 w/w % 의 상기 건조 임플란트 조성물을 포함하는, 60 N 이하의 힘으로, 테이퍼링 시스템 및 18 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형.
용어 "본질적으로 ... 의 혼합물로 이루어진" 은 매우 높은 비율, 통상적으로 적어도 99 중량% 의 건조 임플란트가 언급된 혼합물 및 최대 6% 의 미네랄 염, 예를 들어 소듐 클로라이드로 이루어지고, 다른 성분, 통상적으로 최대 1 중량% 의 건조 임플란트는 주사가능한 수성 임플란트 제형의 압출 거동에 유의하게 영향을 미치지 않고 천연 공급원으로부터 유도된다는 것을 의미한다. 상기 성분은 지방, 술페이트화 애쉬, 글루코사민, 갈락토사민 및 매우 소량의 잔류 단백질 일부, 예컨대 페리오스틴, 데코린 및 루미칸 또는 유사 단백질일 수 있다. 다른 성분은 임의의 합성 중합체, 특히 임의의 폴리에틸렌 옥시드, 임의의 폴리프로필렌 옥시드, 또는 임의의 합성 윤활제를 포함하지 않는다. 다른 성분은 임의의 스타틴 또는 임의의 인공 히드록시아파타이트 (즉, 비-생물학적 기원의 히드록시아파타이트) 를 포함하지 않는다.
"천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자" 는 천연 골의 나노결정질 구조의 보존을 가능하게 하는 방법에 의해 천연 골로부터 유래된 입자이다. 이와 같은 방법은 천연 골의 미네랄 부분의 재결정화가 존재하지 않도록 충분히 낮은 온도, 통상적으로 700℃ 이하의 온도에서 수행되어야 한다.
적합한 상기 방법은 US 특허 No. 5,167,961 또는 5,417,975 에 개시된다: 이는 암모니아로 가열함으로써 탈지된 골의 유기물을 분해하는 것, 60℃ 미만의 온도에서 흐르는 물로 세척에 의해 가용화된 분해 생성물을 추출하는 것 및 250℃ 내지 600℃ 의 온도에서 공기 중 골 미네랄을 처리하여, 예컨대 천연 골의 나노결정질 구조 및 소실 구조의 보존을 가능하게 하여 매우 낮은 유기 불순물 또는 단백질 함량을 갖는 나노결정질 히드록시아파타이트를 제공하는 것을 수반한다. 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자는 상기 나노결정질 히드록시아파타이트의 체질 및 분쇄에 의해 수득될 수 있다.
천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자는 또한 유리하게 Geistlich Bio-Oss® Small Granules (Geistlich Pharma AG, CH-6110, Switzerland 로부터 입수가능함) 의 분쇄 및 체질에 의해 수득될 수 있다.
본 발명의 조성물로의 혼입에 적합한 "천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자" 는 크기가 50 내지 200 ㎛ 이다.
실제로, 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자가 200 ㎛ 초과의 크기를 갖는 경우, 재수화 및 균일한 혼합에 의해 수득된 임플란트 제형은 가우지 18 (0.838 ㎜ 내부 직경) 의 시린지 캐뉼라를 막는 경향이 있고, 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자가 50 ㎛ 미만의 크기를 갖는 경우, 이러한 작은 입자에 의해 야기된 염증의 증가된 위험이 존재한다.
따라서, 50 내지 200 ㎛ 의 범위 크기가 중요하다.
바람직하게는, 이러한 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자는 크기가 100 내지 180 ㎛ 이다. 염증 또는 막힘의 위험은 이때 최소화된다.
용어 "자연적으로 가교결합된 섬유질 콜라겐 물질" 은 이의 텔로펩티드 구조 및 대부분의 이의 자연 가교결합을 보유하는 것을 허용하는 방법에 의해 천연 조직 물질로부터 유래된 섬유질 콜라겐 물질을 의미한다. 상기 자연적으로 가교결합된 섬유질 콜라겐 물질은 임의의 효소 처리, 임의의 화학적 가교결합 또는 임의의 물리적 가교결합 (예를 들어, DeHydroThermal 처리 DHT, UV 조사 등 ..) 에 적용되지 않은 불용성 콜라겐 물질이다. 실제로, 임의의 후자 처리는 유의하게 텔로펩티드 구조 및/또는 천연 조직 물질에 존재하는 자연 가교결합을 변경할 수 있다.
자연적으로 가교결합된 섬유질 콜라겐 물질은 적합하게 50 내지 100 w/w % 콜라겐 및 0 내지 50 w/w % 엘라스틴, 바람직하게는 70 내지 95 w/w % 및 5 내지 30 % w/w 엘라스틴 (가수분해 및 RP-HPLC 를 수반하는 알려진 방법의 변경에 따른 데스모신/요오데스모신 결정에 의해 측정됨) 을 함유하는 천연 기원의 조직으로부터 유래된다 (예를 들어 [Guida E. et al. 1990 Development and validation of a high performance chromatography method for the determination of desmosines in tissues in Journal of Chromatography or Rodriguqe P 2008 Quantification of Mouse Lung Elastin During Prenatal Development in The Open Respiratory Medicine Journal] 참조). 상기 조직의 예는 척추동물, 특히 포유동물 (예를 들어, 돼지, 소, 말, 양, 염소, 라핀) 복막 또는 심막 멤브레인, 플라센타 (placenta) 멤브레인, 소장 점막하 (SIS) 및 진피를 포함한다. 상기 조직은 바람직하게는 돼지, 소 또는 말이다. 흥미로운 조직은 돼지, 소 또는 말 복막 및 진피이다.
바람직하게는, 자연적으로 가교결합된 섬유질 콜라겐 물질은 돼지 진피 및 돼지 복막 또는 심막 멤브레인으로 이루어진 군으로부터 선택된다.
통상적으로, 콜라겐은 대부분 콜라겐 유형 I, 콜라겐 유형 III 또는 이의 혼합물이다. 콜라겐은 또한 소정량의 특히 콜라겐 유형 II, 유형 IV, 유형 VI 또는 유형 VIII 또는 이들 또는 임의의 콜라겐 유형의 임의의 조합을 포함할 수 있다.
통상적으로, 자연적으로 가교결합된 섬유질 콜라겐 물질은 50 내지 100 w/w % 콜라겐 및 0 내지 50 w/w % 엘라스틴, 바람직하게는 70 내지 95 w/w % 및 5 내지 30 % w/w 엘라스틴을 함유한다.
적합한 천연 조직으로부터 유래된 자연적으로 가교결합된 섬유질 콜라겐 물질은, 알칼리 처리, 산 처리 및 유기 용매에 의한 처리 이후 0.5 ㎜ 체를 통과하는 단편으로 가는 (mincing) 것을 포함하는 EP-B1-1676592 의 "실시예" 에 기재된 것과 유사한 방법으로 제조된 돼지, 소 또는 말 복막 또는 심막으로부터의 콜라겐 멤브레인이다.
또 다른 적합한 천연 조직으로부터 유래된 자연적으로 가교결합된 섬유질 콜라겐 물질은 0.5 ㎜ 체를 통과하는 단편으로 갈린 Geistlich Bio-Gide® (Geistlich Pharma AG 로부터 시판됨) 이다.
또 다른 적합한 천연 조직으로부터 유래된 자연적으로 가교결합된 섬유질 콜라겐 물질은 알칼리 처리, 산 처리, 동결-건조, 유기 용매에 의한 세정 이후 0.5 ㎜ 체를 통과하는 단편으로 가는 것을 포함하는, EP-B1-2654816 의 실시예 7 에 기재된 것과 유사한 방법으로 제조된 돼지 진피이다.
자연적으로 가교결합된 섬유질 콜라겐 물질이 원형 이색성 분광법에 의해 나타난 바와 같이 삼중 나선성을 나타내는 성숙한 콜라겐 섬유를 포함한다는 것이 흥미롭다. 상기 섬유는 실제로 구강 조직 재생 세포, 특히 PDL 인대 재생을 위한 세포 및 골의 재생을 위한 세포에 의한 콜로니화를 선호하는 스캐폴드를 형성한다.
자연적으로 가교결합된 섬유질 콜라겐 물질은 0.5 ㎜ 체를 통과하는 단편으로 존재해야 한다. 상기 단편은 일반적으로 원심분리 밀 및 콜라겐 단편의 체질을 수반하는 절차에 의해 자연적으로 가교결합된 섬유질 콜라겐을 밀링함으로써 수득된다.
0.5 ㎜ 체를 통과하는 단편으로 존재하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 특징은 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 캐뉼라를 통한 압출에 중요하다. 실제로, 다수의 프로토타입에 대해 수행된 실험에 의해 나타난 바와 같이, 자연적으로 가교결합된 물질의 보다 큰 단편, 예를 들어 0.6 또는 0.7 ㎜ 체를 통과하는 단편이 건조 임플란트 조성물에서 사용되는 경우, 가우지 18 캐뉼라를 막는 건조 임플란트 조성물의 재수화 및 균일한 혼합에 의해 수득된 임플란트 제형의 실질적인 위험이 존재한다.
나노결정질 히드록시아파타이트 대 콜라겐의 w/w 비는 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 캐뉼라를 통한 압출에 대한 또 다른 중요한 파라미터이다.
실제로, 다수의 프로토타입에 대해 수행된 실험에 의해 나타난 바와 같이, 나노결정질 히드록시아파타이트 대 콜라겐의 w/w 비가 1.8 미만이거나 4.5 초과인 경우, 재수화 및 균일한 혼합에 의해 수득된 임플란트 제형은 쉽게 주사가능하지 않고, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 캐뉼라를 통한 압출에 요구된 힘은 매우 높다. 이는 예상치 못한 결과로, 간단한 설명으로 보이지 않는다. 압출에 요구된 힘은 1.8 에서 1.5 로 급격히 증가하지만, 단지 4.5 에서 6 으로 적당히 증가한다. 그러나, 다수의 프로토타입에 대해 수행된 실험에 의해 나타난 바와 같이, 비가 4.5 초과, 예를 들어 5 인 경우, 임플란트 제형의 압출에 요구된 힘의 재현성은 불충분하다. 시판 임플란트 제품에 요구된 높은 재현성은 콜라겐에 대한 나노결정질 히드록시아파타이트의 비가 1.8 내지 4.5 인 경우만 달성된다.
1.8 내지 4.5 의 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비의 범위가 이에 따라 중요하다.
바람직하게는, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 2.5 내지 4.2 이다. 상기 범위 내에서 압출에 요구된 힘은 통상적으로 더 적다.
가장 바람직하게는 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 2.5 내지 4.0 이다. 작은 힘에 의한 압출 결과의 가장 높은 재현성이 실제로 상기 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비를 갖는 주사가능한 수성 임플란트 제형에 대해 확인되었다.
주사가능한 수성 임플란트 제형의 압출성을 향상시키기 위해, 적합한 것은 건조 임플란트 조성물이 멸균을 위한 통상적인 방사선 용량, 전형적으로 27-33 kGy 를 사용하여, 감마- 또는 X-선 조사에 의해 멸균되는 것이다. 이와 같은 처리는 실제로 자연적으로 가교결합된 섬유질 콜라겐의 특정한 결합을 분해하고, 이에 따라 유동성 및 압출성에 유리하다.
용어 "주사가능한 수성 임플란트 제형" 은 재수화 및 25-45 w/w % 의 건조 임플란트 조성물과 약학적으로 허용가능한 수성 비히클의 균일한 혼합에 의해 제조된 임플란트 제형을 지칭하고, 이는 구강 조직 재생을 위해 인간 또는 동물 바디, 특히 치주 포켓에 유리하게 주사될 수 있고, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출가능하다.
통상적으로, 주사가능한 수성 임플란트 제형은 60 N 이하의 힘으로, 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출가능하다.
일반적으로, 약학적으로 허용가능한 수성 비히클은 멸균수, 멸균 등장성 생리식염수, 혈액 또는 이의 부분이고, 통상적으로 환자 자신의 혈액이다.
주사가능한 수성 임플란트 제형은 바람직하게는 재수화 및 25-45 w/w % 의 건조 임플란트 조성물, 보다 바람직하게는 30-40 w/w % 의 건조 임플란트 조성물의 멸균수, 멸균 등장성 생리식염수 또는 혈액과의 균일한 혼합에 의해 수득된다. 상기 양의 건조 임플란트 조성물을 사용하는 경우, 주사가능한 수성 임플란트 제형은 60 N 이하의 힘으로, 테이퍼링 시스템 및 18 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 시린지로부터 압출가능한 신규한 제형이다.
주사가능한 수성 임플란트 제형이 재수화 및 30-40 w/w % 의 상기 정의된 건조 임플란트 조성물과 멸균수 또는 멸균 등장성 생리 식염수의 균일한 혼합에 의해 수득되는 경우, 테이퍼링 시스템 및 18 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 주사가능한 수성 임플란트 제형을 압출하는데 필요한 힘은 40 N 미만, 바람직하게는 20 N 미만이다.
주사가능한 수성 임플란트 제형이 재수화 및 30-40 w/w % 의 상기 정의된 건조 임플란트 조성물과 혈액의 균일한 혼합에 의해 수득되는 경우, 약학적으로 허용가능한 비히클 중 30-40 w/w % 의 건조 임플란트 조성물을 함유하는 주사가능한 수성 임플란트 제형을 압출하는데 필요한 힘은 45 N 미만, 바람직하게는 25 N 미만이다.
본 발명에서 사용된 건조 임플란트 조성물은 하기 단계를 포함하는 방법에 의해 제조될 수 있다:
(a) 50 내지 200 ㎛ 의 크기를 갖는 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자를 제공하는 단계,
(b) 알칼리 처리, 산 처리 및 유기 용매에 의한 처리를 포함하는 방법에 의해 밀링된 자연적으로 가교결합된 섬유질 콜라겐 물질을 제조하고, 0.5 ㎜ 체를 통과하는 단편으로 가는 단계,
(c) (b) 에서 수득된 밀링된 자연적으로 가교결합된 섬유질 콜라겐을 수용액에 첨가하고, 격렬하게 혼합하여 콜라겐 슬러리를 수득하고, (a) 에서 준비된 50 내지 200 ㎛ 의 크기를 갖는 나노결정질 히드록시아파타이트 입자를 첨가하고, 격렬하게 혼합하고, pH 를 4.2 내지 7.5 에서 유지하는 단계,
(d) (c) 에서 수득된 콜라겐 및 나노결정질 히드록시아파타이트 입자를 함유하는 혼합된 조성물을 건조하는 단계 및
(e) 감마- 또는 X-선 조사에 의해 (d) 에서 수득된 건조 임플란트 조성물을 멸균하는 단계.
천연 골로부터 유래된 세라믹의 나노결정질 히드록시아파타이트 입자는 상기 기재된 바와 같은, 천연 골의 나노결정질 구조의 보존을 가능하게 하는 방법에 의해 천연 골로부터 유래된 입자이다.
상기 방법에 의해 수득된 고순도 골 미네랄은 예컨대 요구된 크기를 갖기 위해 분쇄 및 체질될 수 있다.
대안적으로, 요구된 크기를 갖는 천연 골로부터 유래된 세라믹의 입자는 분쇄 및 체질 단계를 사용하여 Geistlich Bio-Oss® (Geistlich Pharma AG 로부터 시판됨) 로부터 제조될 수 있다.
단계 (b) 의 밀링된 자연적으로 가교결합된 섬유질 콜라겐은 EP-B1-2654815 의 실시예 7 에 기재된 것과 유사한 방법으로 제조될 수 있고, 이는 물 중 돼지, 소, 말, 염소 또는 라핀 가죽을 0.5 내지 30 ㎜ 의 조각으로 분쇄하고, 알코올 또는 케톤과 같은 수용성 용매를 사용하여 물을 제거하고, 클로린화 탄화수소, 예컨대 디클로로에탄 또는 메틸렌 클로라이드 또는 비-클로린화 탄화수소, 예컨대 헥산 또는 톨루엔을 사용하여 탈지하고, 콜라겐을 12.0 초과의 pH 에서 강한 무기 염기 및 0 내지 1 의 pH 에서 강한 무기 산으로 처리하고, 유기 용매, 예컨대 알코올, 에테르, 케톤 및 클로린화 탄화수소에 의해 수득된 스폰지의 건조 콜라겐 섬유를 동결-건조하고, 세정하고, 진공 하에서 용매를 제거하고, 추가로 원심분리 밀 및 콜라겐 단편의 체질을 수반하는 절차에 의해 0.5 ㎜ 체를 통과하는 단편으로 세정된 콜라겐 스펀지를 가는 것을 포함한다.
단계 (b) 의 밀링된 자연적으로 가교결합된 섬유질 콜라겐은 또한 EP-B1-1676592 에 기재된 것과 유사한 방법으로 제조될 수 있고, 이는 돼지, 소, 말 복막 또는 심근 멤브레인의 기계적 처리에 의한 플레쉬 (flesh) 및 그리즈로부터의 분리, 물로의 세척, 1-5% 소듐 히드록시드 용액으로의 처리, 물로의 세척, 0.2-0.8% 염산으로의 산성화, pH 3.5 까지 물로의 세척, NaHCO3 용액으로의 중화, 수용성 용매, 예컨대 알코올 또는 케톤으로의 탈수, 탄화수소, 예컨대 헥산으로의 탈지, 및 추가로 원심분리 밀 및 콜라겐 단편의 체질을 수반하는 절차에 의해 0.5 ㎜ 체를 통과하는 단편으로 세정된 콜라겐 멤브레인을 가는 것을 포함한다.
단계 (c) 에서, 단계 (b) 에서 제조된 밀링된 자연적으로 가교결합된 섬유질 콜라겐은 수용액에 첨가되고, 격렬하게 혼합되어 예컨대 콜라겐 슬러리를 수득한 후, 단계 (a) 에서 준비된 50 내지 200 ㎛ 크기를 갖는 나노결정질 히드록시아파타이트 입자를 첨가하고, 콜라겐 슬러리와 격렬하게 혼합된다.
통상적으로, 단계 (c) 에서 측정된 pH 는 4.2 내지 7.5, 바람직하게는 4.5 내지 7.5 이다.
단계 (d) 는 일반적으로 바람직하게는 감압 하에서 동결-건조 또는 공기 건조에 의해 (c) 에서 수득된 콜라겐 및 나노결정질 히드록시아파타이트 입자를 함유하는 혼합된 조성물의 건조를 포함한다.
단계 (b) 에서 수득된 건조 임플란트 조성물의 물 함량은 일반적으로 Karl Fischer 적정에 의해 측정된 3-7 % 이다.
임의로 단계 (d) 이후 일반적으로 멸균용 통상적인 방사선 용량, 전형적으로 27-33 kGy 를 사용하여, 감마- 또는 X-선 조사에 의한 멸균의 단계 (e) 가 이어진다.
본 발명은 추가로 60 N 이하의 힘으로, 테이퍼링 시스템 및 18 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 신규한 주사가능한 수성 임플란트 제형에 관한 것으로서, 이는 재수화되고, 멸균수 또는 멸균 등장성 생리 식염수와 균일하게 혼합된 25-45 w/w % 의 상기 건조 임플란트 조성물을 포함한다.
주사가능한 수성 임플란트 제형이 재수화되고, 멸균수 또는 멸균 등장성 생리 식염수와 균일하게 혼합된 30-40 w/w % 의 상기 건조 임플란트 조성물을 포함하는 경우, 테이퍼링 시스템 및 18 가우지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 주사가능한 수성 임플란트 제형을 압출하기에 필요한 힘은 40 N 미만, 흔히 20 N 미만이다.
골 형성 세포는 본 발명의 주사가능한 수성 임플란트 제형에서 시험관 내에서 성장할 수 있는 것으로 관찰되었다. 이는 이식시 재생이 발생하는 천연 생체 내 환경과 매우 유사한 매트릭스를 제공하는 주사가능한 수성 임플란트 제형의 높은 생체적합성을 보여준다.
또한, 본 발명은 상기 주사가능한 수성 임플란트 제형의 제조 방법에 관한 것으로서, 이는 재수화 및 25-45 w/w %, 각각 30-40 w/w % 의 상기 정의된 건조 임플란트 조성물과 멸균수 또는 멸균 등장성 생리 식염수의 균일한 혼합을 포함한다.
재수화된 물질의 균일한 혼합은 낮은 힘으로의 시린지로부터의 압출에 필수적이다.
재수화 및 건조 임플란트 조성물과 멸균수 또는 멸균 등장성 생리 식염수의 균일한 혼합을 혼합 장치가 구비된 시린지에서 수행하는 것이 유리하다.
적절한 상기 시린지는 도 1 에 나타난 Medmix 시린지 혼합 시스템 (MEDMIX, SP 003-00M-02 /B, 카탈로그 넘버 507211) 이다.
본 발명은 추가로 주사가능한 임플란트 제형을 함유하는 레디-투-유즈 시린지에 관한 것이다.
이와 같은 레디-투-유즈 시린지는 상기 정의된 건조 임플란트 제형을 제조하고, 재수화하고, 25-45 w/w % 의 상기 정의된 건조 임플란트 조성물과 멸균수 또는 멸균 등장성 생리 식염수를 균일하게 혼합하고, 시린지에 주사가능한 수성 임플란트 제형을 도입함으로써 매우 엄격한 멸균 조건 하에서 주사 오래 전 준비될 수 있다.
이와 같은 레디-투-유즈 시린지는 또한 재수화 및 건조 임플란트 조성물과 멸균수, 멸균 등장성 생리 식염수 또는 혈액의 균일한 혼합에 의해 상기 건조 임플란트 조성물을 함유하는 혼합 장치가 구비된 시린지로부터 주사 직전 준비될 수 있다.
본 발명은 또한 하기를 포함하는 구강 조직 재생에서 사용하기 위한 상기 주사가능한 수성 임플란트 제형을 제조하기 위한 키트에 관한 것이다:
- 테이퍼링 시스템 및 가우지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라, 상기 정의된 건조 임플란트 조성물을 함유하는 혼합 장치가 구비된 시린지
- 적절한 양의 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너.
바람직하게는, 적절한 양의 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너는 캐뉼라를 갖는 시린지이다. 따라서, 액체는 유리하게 건조 임플란트 조성물을 함유하는 혼합 장치가 구비된 시린지로 도입될 수 있다.
본 발명은 추가로 상기 주사가능한 임플란트 제형을 구강에 이식함으로써 치조골, 뿌리 백악질 또는 PDL 의 재생을 촉진하는 방법에 관한 것이다.
본 발명은 하기와 같은 동반되는 도면 및 본 발명의 바람직한 구현예의 예시적인 예를 참조로 보다 상세하게 기재될 것이다:
도 1 은 Medmix 시린지 혼합 시스템 (MEDMIX, SP 003-00M-02 /B, 카탈로그 넘버 507211) 를 나타내고, (1) 은 건조 바이오물질을 함유하는 시린지이고, (2) 는 임의의 루어 캐뉼라와 상용가능한 오픈 보어 루어 배출구를 갖는 시린지 캡이고, (3) 은 혼합 방법 중 시린지를 닫기 위한 오픈 보어 캡이고, (4) 는 플런저 (plunger) 가 제거되면 플렉시블한 혼합기인 혼합 장치이고, (5) 는 시린지에서 물질을 혼합하기 위해 제거될 수 있고, 물질을 밀어 내기 위해 이후 리셋될 수 있는 플런저이다.
도 2 는 Medmix 시린지 혼합 시스템에 부착되는 작동 지침에 설명된 Medmix 혼합 절차의 사본이다.
도 3A 및 3B 는 실시예에서 건조 임플란트 조성물 2 및 4 의 재수화 및 등장성 식염수 (곡선 (1) 및 (3) 또는 신선한 인간 혈액 (곡선 (2) 및 (4), 각각과의 균일한 혼합에 의해 수득된 주사가능한 수성 임플란트 제형의 돌출 곡선을 나타낸다.
도 4 는 건조 임플란트 조성물 4 (실시예 6 에서 제조됨) 의 재수화 및 인간 혈액과의 균일한 혼합에 의해 수득된 주사가능한 수성 임플란트 제형 4 의 561 nm 레이저 일루미네이션에 의한 여기를 갖는 CV1000 공초점 방사 디스크 현미경을 사용하는 현미경 이미지이다: 성장 MC3T3 CytoLight Red 세포는 밝게 시각화된다.
도 5 는 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자의 주사 전자 마이크로그래프 (SEM) (좌측) 및 합성 베타-TCP 입자의 SEM (우측) 을 나타낸다.
도 1 은 Medmix 시린지 혼합 시스템 (MEDMIX, SP 003-00M-02 /B, 카탈로그 넘버 507211) 를 나타내고, (1) 은 건조 바이오물질을 함유하는 시린지이고, (2) 는 임의의 루어 캐뉼라와 상용가능한 오픈 보어 루어 배출구를 갖는 시린지 캡이고, (3) 은 혼합 방법 중 시린지를 닫기 위한 오픈 보어 캡이고, (4) 는 플런저 (plunger) 가 제거되면 플렉시블한 혼합기인 혼합 장치이고, (5) 는 시린지에서 물질을 혼합하기 위해 제거될 수 있고, 물질을 밀어 내기 위해 이후 리셋될 수 있는 플런저이다.
도 2 는 Medmix 시린지 혼합 시스템에 부착되는 작동 지침에 설명된 Medmix 혼합 절차의 사본이다.
도 3A 및 3B 는 실시예에서 건조 임플란트 조성물 2 및 4 의 재수화 및 등장성 식염수 (곡선 (1) 및 (3) 또는 신선한 인간 혈액 (곡선 (2) 및 (4), 각각과의 균일한 혼합에 의해 수득된 주사가능한 수성 임플란트 제형의 돌출 곡선을 나타낸다.
도 4 는 건조 임플란트 조성물 4 (실시예 6 에서 제조됨) 의 재수화 및 인간 혈액과의 균일한 혼합에 의해 수득된 주사가능한 수성 임플란트 제형 4 의 561 nm 레이저 일루미네이션에 의한 여기를 갖는 CV1000 공초점 방사 디스크 현미경을 사용하는 현미경 이미지이다: 성장 MC3T3 CytoLight Red 세포는 밝게 시각화된다.
도 5 는 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자의 주사 전자 마이크로그래프 (SEM) (좌측) 및 합성 베타-TCP 입자의 SEM (우측) 을 나타낸다.
하기 실시예는 본 발명을 제한하지 않으면서 이를 예시한다.
실시예 1 원료의 제조
1) 크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 미세 입자의 제조
US-A-5417975 의 실시예 1 내지 4 에 기재된 것과 같이, 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를, 각각 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 의 부가적인 체질 단계를 사용하여, 피질 또는 해면골로부터 제조하였다.
대안적으로, 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를, Bio-Oss® 작은 과립 (Geistlich Pharma AG, CH-6110, Switzerland 로부터 시판됨) 의 분쇄, 피스톨을 사용하는 조심스러운 임팩테이션 (impactation) 및 각각 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 의 부가적인 체질 단계로 제조하였다.
크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 상기 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 사용될 때까지 유리 바틀에 보관하였다.
2) 콜라겐 A 의 제조
돼지 가죽을 고기 분쇄기에서 1 내지 20 ㎜ 의 조각으로 분쇄하였다. 알코올 또는 케톤과 같은 수용성 용매를 사용하여 물을 제거하였다. 클로린화 탄화수소, 예컨대 디클로로에탄 또는 메틸렌 클로라이드 또는 비-클로린화 탄화수소, 예컨대 헥산 또는 톨루엔을 사용하여 콜라겐 섬유를 탈지하였다. 용매를 제거한 후, 콜라겐을 6 내지 24 시간 동안 12 초과의 pH 에서 강한 무기 염기로 처리하고, 1 내지 12 시간 동안 0 내지 1 의 pH 에서 강한 무기 산으로 처리하였다. 물로 헹굼으로써 과량의 산을 제거하고, 무기 염과 같은 스웰링 레귤레이터의 존재 하에서 콜라겐 섬유의 0.5 내지 2 % 균일한 현탁액으로 현탁액을 균일화하였다. 동결-건조에 의해 현탁액을 건조하고, 수득된 스펀지의 건조 콜라겐 섬유를 상이한 유기 용매, 예컨대 알코올, 에테르, 케톤 및 클로린화 탄화수소로 연속 세정하고, 용매는 1 % 미만의 용매 잔류물로 진공 하에서 증발시켰다.
1 × 1 cm 조각의 세정된 콜라겐 스펀지를 가위를 사용하여 손으로 절단하였다. 먼저 0.5 내지 4.0 ㎜ 의 체를 포함하는 절단 밀, 이후 트라페조이드 (trapezoid) 홀을 포함하는 0.5 ㎜ 체를 갖는 원심분리 밀 (Retsch, ZM200) 을 사용하여 절단된 조각을 추가로 갈았다. 가위로 절단된 조각을 대안적으로 원심분리 밀을 이용하여 직접 밀링하였다.
0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 단편으로 이루어진 콜라겐 A 를 이에 따라 수득하였다.
3) 콜라겐 B 의 제조
어린 돼지로부터의 복막 멤브레인을 기계적 수단에 의해 플레쉬 및 그리즈를 제거하고, 흐르는 물 하에서 세척하고, 12 시간 동안 2% NaOH 용액으로 처리하였다. 이후, 멤브레인을 흐르는 물 하에서 세척하고, 0.5% HCl 로 산성화하였다. 물질을 전체 두께를 통해 산성화시킨 후 (약 15 min), 3.5 의 pH 가 수득될 때까지 물질을 세척하였다. 이후, 물질을 7% 생리 식염수로 수축시키고, 1% NaHCO3 용액으로 중화시키고, 흐르는 물 하에서 세척하였다. 이후, 물질을 아세톤으로 탈수시키고, n-헥산으로 탈지시켰다.
물질을 에탄올 에테르를 사용하여 건조시켰고, 절단 밀 (예를 들어, Fritsch 사제 Pulverisette 25: www.fritsch.de./produkte/mahlen/schneidmuehlen/pulverisette-25 참조 또는 Retsch 사제 SM300: www.retsch.de/de/produkte/zerkleinern/schneidmuehlen.htlm 참조) 을 이용하여 밀링하고, 이는 0.5 내지 1.0 ㎜ 의 트라페조이달 체를 포함한다.
절단된 콜라겐 섬유 세그먼트를 트라페조이드 홀을 포함하는 0.5 ㎜ 체를 갖는 원심분리 밀 (Retsch, ZM200) 을 사용하여 추가로 갈았다.
0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 단편으로 이루어진 콜라겐 B 를 이에 따라 수득하였다.
실시예 2 나노결정질 히드록시아파타이트 입자 및 콜라겐을 함유하는 혼합된 조성물의 건조 및 멸균
나노결정질 히드록시아파타이트 입자 및 콜라겐을 함유하는 혼합 조성물 (하기 실시예 3 내지 8 에 기재된 것과 같이 수득됨) 을 동결-건조 또는 공기 건조 (압력 하에서) 에 의해 건조시키고, 감마-선 또는 X-선 조사에 의해 멸균하였다.
1) 동결-건조
50ml 시린지로부터, 후면부터 1ml 시클릭 올레핀 공중합체 (COC) 시린지에 매스를 채웠다. 대략 0.5ml 부피를 1ml 시린지 당 채웠다. 4℃ 에서 냉장고에 5 시간 동안 양쪽에서 밀폐하여 시린지를 보관하였다. 이후, 시린지를 양쪽에서 개방하고 동결건조기의 금속 플레이트 위에 놓고, 각각의 시린지는 금속판과 접촉하는 큰 표면을 갖는 것과 같이 누운 상태이다. 이후, 하기 동결건조 프로그램을 개시하였다:
1. -40℃ 로 7 시간 내에 동결
2. -40℃ 에서 4 시간 유지
3. 20 시간 동안 -10℃ 및 850μbar 에서 1차 건조
4. 6 시간 동안 +20℃ 및 100μbar 에서 2차 건조
대안적으로, 점성 콜라겐- 나노결정질 히드록시아파타이트 매스는 시린지에서 동결-건조되지 않고, 직경이 25 ㎜ 미만이고, 깊이가 10 ㎜ 미만인 작은 스테인리스 스틸 형태 또는 스테인리스 스틸 플레이트에서 동결-건조되었다. 동결 건조 후 건조 수득된 물질을 1.5 ㎜ 내지 10 ㎜ 이하 체를 갖는 원심분리 밀 (Retsch, ZM200) 을 사용하여 크기가 0.1 내지 2 ㎜ 인 입자로 크러싱하였다. 밀에 의한 크러싱은 재구성된 말단 생성물에서 보다 작은 나노결정질 히드록시아파타이트 입자를 유도하였다.
대안적으로, 점성 콜라겐- 나노결정질 히드록시아파타이트의 크러싱을 위해, 매스를 시린지의 표준 루어 배출구 바깥으로 압출하고, 스테인리스 스틸 플레이트 상에서 직선으로 형성하였다. 이후, 물질은 그대로 동결 건조되었다.
2) 공기 건조
점성 콜라겐- 나노결정질 히드록시아파타이트 매스 (예를 들어 직선으로 형성됨) 를 24 시간 동안 30℃ 및 10 mbar 에서 진공 오븐에서 공기에 의해 대안적으로 건조시켰다.
건조된 직선을 손으로 5 내지 10 ㎜ 길이 스틱으로 부셨다.
과립화된 물질 또는 작은 스틱을 이후 오픈 보어 루어 및 오픈 보어 캡을 갖는 시린지 캡 (MEDMIX, CP 000-76M/D, 카탈로그 넘버 506964) 을 갖는 3 ml 시린지 혼합 시스템 (MEDMIX, SP 003-00M-02/B, 카탈로그 넘버 507211) 에 채웠다.
3) 멸균
동결건조 또는 공기 건조 (감압 하에서) 에 의해 수득된 건조 임플란트 조성물을 27-33 kGy 로의 감마-선 또는 X-선 조사에 의해 시린지에서 멸균하였다.
멸균 직후 건조 생성물 중 물 함량은 3-7 % (Karl Fisher 적정에 의해 측정됨) 였다.
실시예 3 크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하는 건조 임플란트 조성물 1 의 제조
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
스파츌라로 비커에서 물 및 염산 (2M) 을 혼합하였다. 실시예 1 에서 수득된 밀링된 콜라겐 A 를 첨가하고, 모든 콜라겐을 웨팅 (wet) 하기 위해 액체로 조심스럽게 밀었다. 비커를 스크류 리드로 폐쇄하고, 2500 rpm 으로 4 분 동안 Speedmixer (CosSearch GmbH, Speedmixer DAC400.1FVZ) 로 물- 콜라겐 슬러리를 균일하게 혼합하였다. 콜라겐 슬러리를 혼합 절차 동안 약간 가열하였다. 이후, 콜라겐 슬러리를 4℃ 에서 냉장고에서 30 분 동안 냉각시켰다.
콜라겐 슬러리를 2500 rpm 로 2 분 동안 Speedmixer 에 의해 다시 혼합하였다. 이후, 크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 콜라겐 슬러리를 갖는 비커에 첨가하고, 매스를 2000 rpm 으로 2 분 동안 Speedmixer 에 의해 혼합하였다. 수득된 pH 는 약 4.5 였다.
상기 실험에서 사용된 물질 양은 하기 표에 명시된다:
콜라겐-나노결정질 히드록시아파타이트 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하고, 실시예 9 에서 기재된 바와 같이 수행된 탈염수로의 재수화 후 4.5 의 pH 를 제공하는 건조 임플란트 조성물 1 을 이에 따라 수득하였다.
실시예 4 크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 B (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하는 건조 임플란트 조성물 2 의 제조
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
실시예 1 에서 수득된 밀링된 콜라겐 B 를 모든 콜라겐을 웨팅하기 위해 탈염수로 조심스럽게 밀었다. 비커를 스크류 리드로 폐쇄하고, 물- 콜라겐 슬러리를 2500 rpm 으로 1 분 동안 Speedmixer 에 의해 균일하게 혼합하였다. 이후, 콜라겐 슬러리를 4 시간 동안 수조에서 70℃ 이하로 가열하였다. 이후, 콜라겐 슬러리를 주변 온도 또는 냉장고 또는 수조에서 30 분 동안 냉각시켰다.
콜라겐 슬러리를 2500 rpm 으로 2 분 동안 Speedmixer 에 의해 다시 혼합하였다. 이후, 크기가 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 콜라겐 슬러리를 갖는 비커에 첨가하고, 2000 rpm 으로 2 분 동안 Speedmixer 에 의해 매스를 혼합하였다. 수득된 pH 는 6.2 였다.
상기 실험에서 사용된 물질 양은 하기 표에 명시된다:
콜라겐-나노결정질 히드록시아파타이트 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 B (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하고, 실시예 9 에서 기재된 바와 같이 수행된 탈염수로의 재수화 후 6.2 의 pH 를 제공하는 건조 임플란트 조성물 2 를 이에 따라 수득하였다.
실시예 5 크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 1 부의 콜라겐 B 에 대한 2 부의 콜라겐 A 의 혼합물 (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 (w/w) 비는 2.67 임) 을 함유하는 건조 임플란트 조성물 3 의 제조
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
스파츌라로 비커에서 물 및 염산 (2M) 을 혼합하였다. 실시예 1 에서 수득된 밀링된 콜라겐 B 를 모든 콜라겐을 웨팅하기 위해 액체로 조심스럽게 밀었다. 비커를 스크류 리드로 폐쇄하고, 물- 콜라겐 슬러리를 2500 rpm 으로 2 분 동안 Speedmixer 에 의해 균일하게 혼합하여 0.9 내지 1 의 pH 를 수득하였다. 이후, 콜라겐 슬러리를 20 분 동안 수조에서 70℃ 이하로 가열하였다. 이후, 콜라겐 슬러리를 25℃ 에서 수조에서 30 분 동안 냉각시켰다.
실시예 1 에서 수득된 밀링된 콜라겐 A 를 첨가하고, 모든 콜라겐을 웨팅하기 위해 콜라겐 슬러리로 조심스럽게 밀었다. 이후, 슬러리를 2500 rpm 로 4 분 동안 Speedmixer 에 의해 혼합하였다.
마지막으로, 크기가 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 콜라겐 슬러리를 갖는 비커에 첨가하고, 2000 rpm 으로 2 분 동안 Speedmixer 에 의해 매스를 혼합하였다. 수득된 pH 는 약 4.5 였다.
상기 실험에서 사용된 물질 양은 하기 표에 명시된다:
나노결정질 히드록시아파타이트-콜라겐 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 1 부의 콜라겐 B 에 대한 2 부의 콜라겐 A 의 혼합물 (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 (w/w) 비는 2.67 임) 을 함유하고, 실시예 9 에서 기재된 바와 같이 수행된 탈염수로의 재수화 후 4.5 의 pH 를 제공하는 건조 임플란트 조성물 3 을 이에 따라 수득하였다.
실시예 6 크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 1 부의 콜라겐 B 에 대한 2 부의 콜라겐 A 의 혼합물 (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 2.67 임) 을 함유하는 건조 임플란트 조성물 4 의 제조.
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
실시예 1 에서 수득된 밀링된 콜라겐 B 를 모든 콜라겐을 웨팅하기 위해 탈염수로 조심스럽게 밀었다. 비커를 스크류 리드로 폐쇄하고, 물- 콜라겐 슬러리를 2500 rpm 으로 1 분 동안 Speedmixer 에 의해 균일하게 혼합하였다. 이후, 콜라겐 슬러리를 20 min 동안 수조에서 70℃ 이하로 가열하였다. 이후, 콜라겐 슬러리를 25℃ 에서 수조에서 30 분 동안 냉각시켰다.
실시예 1 에서 수득된 밀링된 콜라겐 A 를 첨가하고, 모든 콜라겐을 웨팅하기 위해 콜라겐 슬러리로 조심스럽게 밀었다. 이후, 슬러리를 2500 rpm 으로 4 분 동안 Speedmixer 에 의해 혼합하였다.
마지막으로, 크기가 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 콜라겐 슬러리를 갖는 비커에 첨가하고, 매스를 2000 rpm 으로 2 분 동안 Speedmixer 에 의해 혼합하였다. 수득된 pH 는 6.0 이었다.
상기 실험에서 사용된 물질 양은 하기 표에 명시된다:
나노결정질 히드록시아파타이트-콜라겐 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 1 부의 콜라겐 B 에 대한 2 부의 콜라겐 A 의 혼합물 (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 2.67 임) 을 함유하고, 실시예 9 에서 기재된 바와 같이 수행된 탈염수로의 재수화 후 6.0 의 pH 를 제공하는 건조 임플란트 조성물 4 를 이에 따라 수득하였다.
실시예 7 크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하는 건조 임플란트 조성물 5 의 제조
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
밀링된 콜라겐 A 를 모든 콜라겐을 웨팅하기 위해 탈염수로 조심스럽게 밀었다. 크기가 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 첨가하고, 비커를 스크류 리드로 폐쇄하였다. 물- 콜라겐- 나노결정질 히드록시아파타이트 슬러리를 1 분 동안 Vortex 혼합기로 및 1 분 동안 스쿱으로 균일하게 혼합하였다.
수득된 pH 는 6.1 이었다.
사용된 물질 양은 하기 표에 기재된다:
나노결정질 히드록시아파타이트-콜라겐 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 를 함유하고, 실시예 9 에 기재된 바와 같이 수행된 탈염수로의 재수화 후 6.1 의 pH 를 제공하는 건조 임플란트 조성물 5 를 이에 따라 수득하였다.
실시예 8 크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (이때, 콜라겐 A 에 대한 나노결정질 히드록시아파타이트의 (w/w) 비는 2.0 임) 를 함유하는 건조 임플란트 조성물 6 의 제조
콜라겐-나노결정질 히드록시아파타이트 조성물의 제조
밀링된 콜라겐 A 를 모든 콜라겐을 웨팅하기 위해 탈염수로 조심스럽게 밀었다. 크기가 125 내지 180 ㎛ 인 실시예 1 에서 제조된 나노결정질 히드록시아파타이트 골 미네랄 미세 입자를 첨가하고, 비커를 스크류 리드로 폐쇄하였다. 물- 콜라겐- 나노결정질 히드록시아파타이트 슬러리를 1 분 동안 Vortex 혼합기로 및 1 분 동안 스쿱으로 균일하게 혼합하였다.
수득된 pH 는 5.8 이었다.
사용된 물질 양은 하기 표에 기재된다:
나노결정질 히드록시아파타이트-콜라겐 조성물의 건조
동결-건조 또는 공기 건조 (감압 하에서) 에 의한 건조 및 멸균을 실시예 2 에 기재된 바와 같이 수행하였다.
크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A (이때, 콜라겐에 대한 나노결정질 히드록시아파타이트의 (w/w) 비는 2.0 임) 를 함유하고, 실시예 9 에서 기재된 바와 같이 수행된 탈염수로의 재수화 후 5.8 의 pH 를 제공하는 건조 임플란트 조성물 6 을 이에 따라 수득하였다.
실시예 9 시린지에서의 건조 임플란트 조성물의 재수화에 의한 주사가능한 수성 임플란트 제형을 함유하는 레디-투-유즈 시린지의 제조.
1) 건조 임플란트 조성물의 재수화 및 균일한 혼합에 의해 수득된 주사가능한 수성 임플란트 제형을 함유하는 레디 투 유즈 시린지의 제조
a) 3-방향 스톱콕 (stopcock) 밸브 루어-락 (Luer-Lok) 어댑터 및 1ml 시린지 사용
2) 1 ml 생성물 시린지 중 건조, 멸균 나노결정질 히드록시아파타이트-콜라겐 조성물을, 3-방향 스톱콕 밸브 루어 (루어-록) 어댑터 (BD Connecta, 3-방향 스톱콕, 카탈로그 넘버 394600), Vaclok 시린지 (Qosina, Vaclok 시린지, 카탈로그 넘버 C1097) 및 일반 단일 용도 보충 시린지 1ml (루어-록) 를 사용하여 재수화하였다.
콜라겐을 재수화하기 위한 액체는 탈염수, 등장성 생리 식염수, 150 mM 소듐 포스페이트 완충액 (탈염수 중 NaH2PO4 를 용해시키고, 소듐 히드록시드로 pH 를 조정함으로써 제조됨) 을 함유하는 pH 7.4 의 PBS 용액, 또는 혈액이었다.
시린지 중 건조 바이오물질 (실시예 3 내지 8 중 하나에서 수득된 건조 임플란트 조성물) 의 중량은 알려져 있거나 측정되었다. 소정량의 재수화 액체를 보충 시린지에 채워, 예컨대 38 중량% 건조 바이오물질을 함유하는 주사가능한 페이스트를 수득하였다.
이후, 생성물 시린지를 3-방향 스톱콕 밸브에 연결하고, 3-방향 스톱콕 밸브의 180°대응부를 폐쇄 캡으로 폐쇄하였다. 3-방향 스톱콕 밸브의 3 번째 위치 (생성물 시린지로부터 90°) 에서, 60 ml Vaclok 시린지를 시스템에 연결하였다. Vaclok 시린지의 플런저를 당기고 50 ml 부피에서 고정시켜 생성물 시린지로부터 공기를 배출시켰다. 이후, 3-방향 밸브를 180°회전시켜, 생성물 시린지 내를 진공으로 유지한 반면, Vaclok 시린지를 액체로 채워진 보충 시린지로 대체하였다. 이후, 3-방향 밸브를 180°회전시켰다. 진공으로 인해, 액체는 생성물 시린지로 자동으로 흘러 갔고, 생성물을 웨팅시켰다. 생성물 시린지로의 완전한 액체 이동을 보장하기 위해, 생성물 시린지의 플런저를 회수하였다. 물질이 생성물 시린지로부터 보충 시린지로 밀어 넣어지고 다시 뒤로 오기 전 재수화를 가능하게 하기 위해 물질을 30 초 동안 휴지시키고, 이러한 순서를 40 회 반복하여 균일하게 혼합된 물질을 얻었다. 혼합 절차 후, 3-방향 스톱콕 밸브를 어플리케이터로 대체하였고, 이는 테이퍼링 시스템 및 무딘 말단 18 가우지 (내부 직경 0.838 ㎜) 25.4 ㎜ 길이 캐뉼라이다.
각각의 건조 임플란트 조성물 1 내지 6 의 탈염수와의 균일한 혼합 및 재수화에 의해 수득된 재구성된 주사가능한 수성 임플란트 제형은 동결건조 전 측정된 pH 주변의 pH, 즉 약 각각 4.5, 6.2, 4.5, 6.0, 6.1 및 5.8 을 가졌다.
b) 3 ml Medmix 시린지 혼합 시스템 사용
대안적으로, 건조된 물질의 입자를 도 1 에 나타난, 오픈 보어 루어 및 오픈 보어 캡 (MEDMIX, CP 000-76M/D, 카탈로그 넘버 506964) 을 갖는 시린지 캡을 갖는 Medmix 시린지 혼합 시스템 (MEDMIX, SP 003-00M-02/B, 카탈로그 넘버 507211) 에서, 탈염수, 등장성 생리 식염수, 150 mM 소듐 포스페이트 완충액을 함유하는 pH 7.4 의 PBS 용액 또는 혈액으로 재수화하고, 여기서 (1) 은 건조 바이오물질을 함유하는 시린지이고, (2) 는 임의의 루어 캐뉼라와 상용가능한 오픈 보어 루어 배출구를 갖는 시린지 캡이고, (3) 은 혼합 방법 중 시린지를 닫기 위한 오픈 보어 캡이고, (4) 는 플런저가 제거되면 플렉시블한 혼합기인 혼합 장치이고, (5) 는 시린지에서 물질을 혼합하기 위해 제거될 수 있고, 물질을 밀어 내기 위해 이후 리셋될 수 있는 플런저이다.
도 2 에 설명된 Medmix 혼합 절차가 이어졌다. 최적의 결과를 얻기 위해, 단계 4 후, 플런저를 3 회 밀어, 물질을 웨팅하기 위해 액체를 물질로 밀고, 60 초 동안 혼합 단계 (단계 6) 을 수행한다. 모든 공기는 단계 8 에서 제거된다.
3) 압출 시험
수득된 재구성된 주사가능한 수성 임플란트 제형의 압출성을 장력 및 압력 시험 장치 (Zwick & Roell, BT1-FR2.5TS.D14) 로 시험하였다. 상기 제조된 레디 투 유즈 제조 시린지를 시린지 홀딩에 수직으로 놓고 플런저를 기계로부터 아래로 가압한 한편, 테이퍼링 시스템 및 무딘 말단 18 가우지 (내부 직경 0.838 ㎜) 25.4㎜ 길이 캐뉼라 (Nordson EFD, Precision Tip 18GA 1", 카탈로그 넘버 7018110) 를 포함하는 어플리케이터를 통해 시린지 밖으로 생성물을 가압하는 힘을 하기 프로그램으로 측정하였다:
o 저항력 (Force till resistance): 0.1 N
o 저항 속도 (Speed till resistance): 100 ㎜/min
o 시험 속도: 1 ㎜/s, 위치 제어됨
o 시험의 종료: 힘 제한, 150 N
o 힘 센서: 200 N
탈염수, 등장성 생리 식염수 또는 PBS 용액과의 균일한 혼합 및 재수화에 의해 수득된 모든 시험된 주사가능한 임플란트 제형, 특히 건조 임플란트 조성물 1 내지 6 으로부터 제조된 주사가능한 임플란트 제형의 경우, 측정된 힘은 40 N 이하이다.
혈액과의 균일한 혼합 및 재수화에 의해 수득된 모든 시험된 주사가능한 임플란트 제형, 특히 건조 임플란트 조성물 1 내지 6 으로부터 제조된 주사가능한 임플란트 제형의 경우, 측정된 힘은 45 N 이하이다.
건조 임플란트 조성물 1, 2, 3, 5 및 6 으로부터 제조된, 탈염수, 등장성 생리 식염수 또는 PBS 용액과의 균일한 혼합 및 재수화에 의해 수득된 주사가능한 임플란트 제형의 경우, 측정된 힘은 20 N 이하이다.
건조 임플란트 조성물 1 (크기가 100 내지 150 ㎛ 또는 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 A 를 함유함, 이때 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 및 건조 임플란트 조성물 2 (크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 B 를 함유함, 이때 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 로부터 제조된, 혈액과의 균일한 혼합 및 재수화에 의해 수득된 주사가능한 임플란트 제형의 경우, 측정된 힘은 25 N 이하이다.
등장성 식염수 또는 신선한 인간 혈액과의 건조 임플란트 조성물 2 및 4 의 균일한 혼합 및 재수화에 의해 수득된 주사가능한 임플란트 제형의 돌출 곡선을 나타내는 도 3A 및 3B 를 각각 참조한다.
- 도 3A 에서, (1) 및 (2) 는 각각 등장성 식염수 및 신선한 인간 혈액으로 재수화된 건조 임플란트 조성물 2 (크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 콜라겐 B 를 함유하고, 이때 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 4.0 임) 의 돌출 곡선이다.
- 도 3B 에서, (3) 및 (4) 는 각각 등장성 식염수 및 신선한 인간 혈액으로 재수화된 건조 임플란트 조성물 4 (크기가 125 내지 180 ㎛ 인 나노결정질 히드록시아파타이트 입자 및 1 부의 콜라겐 B 에 대한 2 부의 콜라겐 A 의 혼합물을 함유하고, 이때 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 2.67 임) 의 돌출 곡선이다.
실시예 10 생체적합성: 본 발명의 주사가능한 수성 임플란트 제형에서 세포주를 형성하는 2 개의 골의 성장에 대한 시험관 내 시험
하기로부터의 세포를:
- MC3T3 CytoLight Red, Cytolight Red 렌티바이러스 (Essen Bioscience) 를 사용하여 세포질에서 적색 형광 단백질을 발현하도록 형질도입된 마우스 칼바리아 (ATCC CRL-2593) 로부터 유래한 프로스테오블라스트 세포주, 또는
- MG63 (인간 골육종으로부터 유래한 세포주)
하기와 같이 본 발명의 주사가능한 수성 임플란트 제형을 콜로니화하기 위한 이의 능력에 대해 시험하였다.
이들 세포를 공급사가 권장하는 조건 하에서 배양하였다, 즉 MC3T3 Cytolight Red 세포의 경우: 10% 소 태아 혈청 (FBS, Lubio), 1% 페니실린-스트렙토마이신 (GIBCO) 및 0.5 μg/ml 퓨로마이신 (Sigma) 이 보충된 αMEM (GIBCO) 에서 배양 및 MG63 세포의 경우: 10% FBS (Lubio), 1% 페니실린-스트렙토마이신 (GIBCO) 이 보충된 DMEM (GIBCO) 에서 배양. 이들 세포의 층을 다중벽 플레이트의 웰에 도입하고, 인간 혈액 또는 등장성 생리 식염수와의 건조 임플란트 조성물 1 내지 4 (실시예 3 내지 6 에서 제조됨) 의 균일한 혼합 및 재수화에 의해 수득된 주사가능한 임플란트 제형 1 내지 4 를 함유하는 3 ml Medmix 시린지를 사용하여 각각의 웰 중 셀의 층의 상부 위에 약 1 ml 의 바이오물질을 첨가하였다. 세포를 8 일 동안 배양하였다.
이들 실험은 각각의 주사가능한 임플란트 제형 1 내지 4 에 대해 각각의 MC3T3 CytoLight Red 및 M63 세포주에 의한 바이오물질의 콜로니화를 보였다.
도 4 참조, 이는 인간 혈액과의 건조 임플란트 조성물 4 (실시예 6 에서 제조됨) 의 균일한 혼합 및 재수화에 의해 수득된 주사가능한 수성 임플란트 제형 4 의 561 nm 레이저 일루미네이션에 의한 여기를 갖는 CV1000 공초점 방사 디스크 현미경 (Yokogawa) 을 사용하는 현미경 이미지이다: 성장 MC3T3 CytoLight Red 세포는 밝게 시각화됨.
이들 실험은 골 형성 세포가 본 발명의 주사가능한 수성 임플란트 제형에서 시험관 내에서 자랄 수 있음을 보여준다. 이는 이식시 재생이 일어나는 천연 생체 내 환경과 매우 유사한 매트릭스를 제공하는 주사가능한 수성 임플란트 제형의 높은 생체적합성을 입증한다.
Claims (13)
- 60 N 이하의 힘으로, 테이퍼링 시스템 및 18 게이지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형으로서, 크기가 50 내지 200 ㎛ 인 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자 및 0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 단편의 혼합물을 포함하는 25-45 w/w % 의 건조 임플란트 조성물 (여기서 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 1.8 내지 4.5 임)을 포함하고, 멸균수 또는 멸균 등장성 생리 식염수로 균일하게 혼합되고 재수화되는 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 40 N 이하의 힘으로, 테이퍼링 시스템 및 18 게이지 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라를 통해 압출될 수 있는 구강 조직 재생에서 사용하기 위한 주사가능한 수성 임플란트 제형으로서, 크기가 50 내지 200 ㎛ 인 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자 및 0.5 ㎜ 체를 통과하는 자연적으로 가교결합된 섬유질 콜라겐 물질의 단편의 혼합물을 포함하는 30-40 w/w % 의 건조 임플란트 조성물 (여기서 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비는 1.8 내지 4.5 임)을 포함하고, 멸균수 또는 멸균 등장성 생리 식염수로 균일하게 혼합되고 재수화되는 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비가 2.5 내지 4.2 인 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 콜라겐에 대한 나노결정질 히드록시아파타이트의 w/w 비가 2.0 내지 4.0 인 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 나노결정질 히드록시아파타이트 입자가 100 내지 180 ㎛ 의 크기를 갖는 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 건조 임플란트 조성물이 감마- 또는 X-선 조사에 의해 멸균된 주사가능한 수성 임플란트 제형.
- 제 1 항에 있어서, 건조 임플란트 조성물에서 자연적으로 가교결합된 섬유질 콜라겐 물질은 돼지 진피 및 돼지 복막 또는 심막 멤브레인으로 이루어진 군으로부터 선택되는 주사가능한 수성 임플란트 제형.
- 제 1 항 내지 제 7 항 중 어느 한 항에 따른 주사가능한 수성 임플란트 제형을 함유하는 레디 투 유즈 (ready to use) 시린지.
- 멸균수 또는 멸균 등장성 생리 식염수에서 제 1 항의 25-45 w/w % 의 건조 임플란트 조성물을 균일하게 혼합하고 재수화하는 단계를 포함하는, 제 1 항에 따른 주사가능한 수성 임플란트 제형의 제조 방법.
- 제 9 항에 있어서, 25-45 w/w % 의 건조 임플란트 조성물을 균일하게 혼합하고 재수화하는 단계는 혼합 장치가 구비된 시린지에서 수행되는 주사가능한 수성 임플란트 제형의 제조 방법.
- 제 9 항 또는 제 10 항에 있어서, 건조 임플란트 조성물이 하기 단계를 포함하는 방법에 의해 제조된 주사가능한 수성 임플란트 제형의 제조 방법:
(a) 50 내지 200 ㎛ 의 크기를 갖는 천연 골로부터 유래된 나노결정질 히드록시아파타이트 입자를 제공하는 단계,
(b) 알칼리 처리, 산 처리 및 유기 용매에 의한 처리를 포함하는 방법에 의해 밀링된 자연적으로 가교결합된 섬유질 콜라겐 물질을 제조하고, 0.5 ㎜ 체를 통과하는 단편으로 가는(mincing) 단계,
(c) (b) 에서 수득된 밀링된 자연적으로 가교결합된 섬유질 콜라겐 믹싱을 수용액에 첨가하고, 격렬하게 혼합하여 콜라겐 슬러리를 수득하고, (a) 에서 제조된 50 내지 200 ㎛ 의 크기를 갖는 나노결정질 히드록시아파타이트 입자를 첨가하고, 격렬하게 혼합하고, pH 를 4.2 내지 7.5 에서 유지하는 단계,
(d) (c) 에서 수득된 콜라겐 및 나노결정질 히드록시아파타이트 입자를 함유하는 혼합된 조성물을 건조하는 단계 및
(e) 감마- 또는 X-선 조사에 의해 (d) 에서 수득된 건조 임플란트 조성물을 멸균하는 단계. - 하기를 포함하는, 제 1 항 내지 제 7 항 중 어느 한 항에 따른 주사가능한 수성 임플란트 제형을 제조하기 위한 키트:
- 테이퍼링 시스템 및 게이지 18 (0.838 ㎜ 내부 직경) 25.4 ㎜ 길이 캐뉼라, 제 1 항 내지 제 7 항 중 어느 한 항의 건조 임플란트 조성물을 함유하는 혼합 장치가 구비된 시린지
- 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너. - 제 12 항에 있어서, 멸균수 또는 멸균 등장성 용액이 채워진 컨테이너가 캐뉼라를 갖는 시린지인 키트.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17207341 | 2017-12-14 | ||
EP17207341.3 | 2017-12-14 | ||
KR1020207020100A KR102274968B1 (ko) | 2017-12-14 | 2018-12-14 | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 |
PCT/EP2018/085018 WO2019115792A1 (en) | 2017-12-14 | 2018-12-14 | Dried implant composition and injectable aqueous implant formulation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020100A Division KR102274968B1 (ko) | 2017-12-14 | 2018-12-14 | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210086725A KR20210086725A (ko) | 2021-07-08 |
KR102330140B1 true KR102330140B1 (ko) | 2021-11-23 |
Family
ID=60781545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020100A KR102274968B1 (ko) | 2017-12-14 | 2018-12-14 | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 |
KR1020217020558A KR102330140B1 (ko) | 2017-12-14 | 2018-12-14 | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020100A KR102274968B1 (ko) | 2017-12-14 | 2018-12-14 | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 |
Country Status (14)
Country | Link |
---|---|
US (2) | US10695461B2 (ko) |
EP (2) | EP3713615B1 (ko) |
JP (2) | JP7538037B2 (ko) |
KR (2) | KR102274968B1 (ko) |
CN (2) | CN111511415B (ko) |
AU (1) | AU2018383017B2 (ko) |
BR (1) | BR112020011536B1 (ko) |
CA (1) | CA3083685C (ko) |
ES (2) | ES2897211T3 (ko) |
IL (1) | IL275206B2 (ko) |
MX (1) | MX2020006214A (ko) |
SG (1) | SG11202004786QA (ko) |
TW (1) | TWI806941B (ko) |
WO (2) | WO2019115792A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT3544643T (pt) | 2017-12-14 | 2020-07-27 | Geistlich Pharma Ag | Material de substituição óssea |
ES2939266T3 (es) | 2019-06-14 | 2023-04-20 | Geistlich Pharma Ag | Matriz de colágeno o mezcla granulada de material sustituto de hueso |
TWI837382B (zh) | 2019-06-14 | 2024-04-01 | 瑞士商蓋茲特利製藥公司 | 含抗壞血酸的可注射水性植入調配物 |
MX2022006528A (es) * | 2019-12-04 | 2022-11-10 | Datum Dental Ltd | Un dispositivo de colageno-hidroxiapatita para tratamiento periodontal no quirurgico. |
CN115252898B (zh) * | 2022-08-19 | 2023-08-18 | 江苏西宏生物医药有限公司 | 一种长效微粒ⅰ型与ⅴ型胶原蛋白复合植入剂 |
WO2024145375A1 (en) * | 2022-12-28 | 2024-07-04 | Orabio, Inc. | Compositions and methods for treating periodontal disease |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030026770A1 (en) | 2001-07-25 | 2003-02-06 | Szymaitis Dennis W. | Periodontal regeneration composition and method of using same |
US20070026030A1 (en) | 2005-07-27 | 2007-02-01 | Berkeley Advanced Biomaterials, Inc. | Method of preparing rheological materials for bone and cartilage repair |
US20120107401A1 (en) | 2010-10-27 | 2012-05-03 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising statins and methods of using the same |
US20160106674A1 (en) | 2013-05-15 | 2016-04-21 | Euroresearch S.R.L. | Collagen powder, composition and use |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4865602A (en) | 1986-11-06 | 1989-09-12 | Collagen Corporation | Gamma irradiation of collagen/mineral mixtures |
GB8813033D0 (en) | 1988-06-02 | 1988-07-06 | Geistlich Soehne Ag | Chemical compound |
EP1120439B1 (en) * | 1992-02-28 | 2004-06-16 | Cohesion Technologies, Inc. | Injectable ceramic compositions and methods for their preparation and use |
GB9400163D0 (en) | 1994-01-06 | 1994-03-02 | Geistlich Soehne Ag | Membrane |
US20020025921A1 (en) * | 1999-07-26 | 2002-02-28 | Petito George D. | Composition and method for growing, protecting, and healing tissues and cells |
US7582309B2 (en) * | 2002-11-15 | 2009-09-01 | Etex Corporation | Cohesive demineralized bone compositions |
CN101564553B (zh) * | 2009-06-05 | 2012-08-29 | 陕西瑞盛生物科技有限公司 | 人源化活性煅烧骨的制备方法 |
WO2011126294A2 (ko) * | 2010-04-06 | 2011-10-13 | 동국대학교 산학협력단 | 콜라겐 하이드로겔 제조용 멀티 시린지 |
CN103313733A (zh) * | 2010-11-15 | 2013-09-18 | 捷迈整形外科生物材料有限公司 | 骨空隙填充剂 |
KR101599245B1 (ko) | 2010-12-22 | 2016-03-03 | 가이스틀리히 파마 아게 | 골 대체 물질 |
DE102011008604A1 (de) | 2011-01-14 | 2012-07-19 | Tutogen Medical Gmbh | Herstellung eines Transplantats aus tierischer Dermis mit Natriumsulfidlösung |
EP2826495A1 (en) * | 2013-07-19 | 2015-01-21 | Geistlich Pharma AG | Biomimetic collagen-hydroxyapatite composite material |
CN104274861A (zh) * | 2014-07-25 | 2015-01-14 | 上海国睿生命科技有限公司 | 一种牙髓牙本质再生的可注射组织工程构建方法 |
EP3175869A1 (en) | 2015-12-04 | 2017-06-07 | Geistlich Pharma AG | Resorbable crosslinked formstable membrane |
CN105311681B (zh) | 2015-12-07 | 2018-12-25 | 杭州华迈医疗器械有限公司 | 一种可注射的骨修复用复合材料及其制备方法 |
CN105816919B (zh) * | 2016-05-23 | 2019-06-11 | 烟台正海生物科技股份有限公司 | 一种含有天然纳米羟基磷灰石的复合材料及其制备方法 |
-
2018
- 2018-12-14 CN CN201880080519.1A patent/CN111511415B/zh active Active
- 2018-12-14 MX MX2020006214A patent/MX2020006214A/es unknown
- 2018-12-14 WO PCT/EP2018/085018 patent/WO2019115792A1/en active Search and Examination
- 2018-12-14 KR KR1020207020100A patent/KR102274968B1/ko active IP Right Grant
- 2018-12-14 TW TW107145330A patent/TWI806941B/zh active
- 2018-12-14 ES ES18819108T patent/ES2897211T3/es active Active
- 2018-12-14 KR KR1020217020558A patent/KR102330140B1/ko active IP Right Grant
- 2018-12-14 IL IL275206A patent/IL275206B2/en unknown
- 2018-12-14 WO PCT/EP2018/085025 patent/WO2019115795A1/en active Search and Examination
- 2018-12-14 SG SG11202004786QA patent/SG11202004786QA/en unknown
- 2018-12-14 BR BR112020011536-3A patent/BR112020011536B1/pt active IP Right Grant
- 2018-12-14 EP EP18819109.2A patent/EP3713615B1/en active Active
- 2018-12-14 US US16/220,306 patent/US10695461B2/en active Active
- 2018-12-14 CN CN202110505722.2A patent/CN113018513B/zh active Active
- 2018-12-14 EP EP18819108.4A patent/EP3713614B1/en active Active
- 2018-12-14 ES ES18819109T patent/ES2900259T3/es active Active
- 2018-12-14 JP JP2020532554A patent/JP7538037B2/ja active Active
- 2018-12-14 CA CA3083685A patent/CA3083685C/en active Active
- 2018-12-14 AU AU2018383017A patent/AU2018383017B2/en active Active
-
2020
- 2020-06-29 US US16/914,798 patent/US11633519B2/en active Active
-
2022
- 2022-12-02 JP JP2022193672A patent/JP7539957B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030026770A1 (en) | 2001-07-25 | 2003-02-06 | Szymaitis Dennis W. | Periodontal regeneration composition and method of using same |
US20070026030A1 (en) | 2005-07-27 | 2007-02-01 | Berkeley Advanced Biomaterials, Inc. | Method of preparing rheological materials for bone and cartilage repair |
US20120107401A1 (en) | 2010-10-27 | 2012-05-03 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising statins and methods of using the same |
US20160106674A1 (en) | 2013-05-15 | 2016-04-21 | Euroresearch S.R.L. | Collagen powder, composition and use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102330140B1 (ko) | 건조 임플란트 조성물 및 주사가능한 수성 임플란트 제형 | |
KR102618676B1 (ko) | 아스코르브산을 함유하는 주사가능한 수성 임플란트 제형 | |
RU2793772C2 (ru) | Высушенная композиция импланта и инъектируемый водный состав импланта для инъекции |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |