KR102306397B1 - 공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들 - Google Patents

공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들 Download PDF

Info

Publication number
KR102306397B1
KR102306397B1 KR1020140090667A KR20140090667A KR102306397B1 KR 102306397 B1 KR102306397 B1 KR 102306397B1 KR 1020140090667 A KR1020140090667 A KR 1020140090667A KR 20140090667 A KR20140090667 A KR 20140090667A KR 102306397 B1 KR102306397 B1 KR 102306397B1
Authority
KR
South Korea
Prior art keywords
hub
faraday shield
plenum
flow
fluid
Prior art date
Application number
KR1020140090667A
Other languages
English (en)
Other versions
KR20150009941A (ko
Inventor
사라바나프리안 스리라만
존 드루웨리
존 맥체스니
알렉스 패터슨
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20150009941A publication Critical patent/KR20150009941A/ko
Application granted granted Critical
Publication of KR102306397B1 publication Critical patent/KR102306397B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)

Abstract

플라즈마 프로세싱 챔버 및 여기에서 사용되는 페러데이 차폐 시스템이 제공된다. 일 시스템은 페러데이 차폐부를 구성하는 디스크 구조체를 포함하며, 디스크 구조체는 프로세스 측 및 후방 측을 갖는다. 디스크 구조체는 중앙 영역과 주변 영역 간에서 연장된다. 상기 디스크 구조체는 프로세싱 공간 내에서 상주한다. 시스템은 유입 도관으로부터 수용된 공기의 유동을 전달하고 유출 도관으로부터 공기의 유동을 제거하기 위해 내측 플레넘 (plenum) 을 갖는 허브를 포함한다. 허브는 중앙 영역에서 디스크 구조체의 후방 측에 연결된 인터페이스 표면 (interface surface) 을 갖는다. 유체 전달 제어부가 허브의 상기 유입 도관에 연결된다. 유체 전달 제어부는 유동 레이트 조정기를 갖도록 구성된다. 조정되는 공기는 증폭되거나 CDA일 수 있다.

Description

공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들{AIR COOLED FARADAY SHIELD AND METHODS FOR USING THE SAME}
우선권 주장
본원은 2013년 7월 17일자에 출원된 미국 가 특허 번호 61/847,407 "Air Cooled Faraday Shield and Methods for Using the Same"에 대한 우선권을 35 U.S.C. 119§(e) 하에서 주장하며, 이 문헌은 본 명세서에서 그 전체 내용이 참조로서 인용된다.
본 발명은 전반적으로 반도체 제조에 관한 것이며, 특히 플라즈마 에칭 장치에서 사용되는 페러데이 차폐부 (Faraday shield) 를 포함하는 챔버에 관한 것이다.
반도체 제조 시에, 에칭 프로세스들이 통상적으로 반복적으로 수행된다. 본 기술 분야의 당업자에게 잘 알려진 바와 같이, 2 개의 타입의 에칭 프로세스, 즉 습식 에칭 및 건식 에칭이 존재한다. 건식 에칭의 일 타입은 TCP (변압기 결합형 플라즈마) 챔버들과 같은 유도 결합형 플라즈마 에칭 장치를 사용하여서 수행되는 플라즈마 에칭이다.
플라즈마는 다양한 타입들의 라디칼, 양이온 및 음이온을 포함한다. 다양한 라디칼, 음이온 및 양이온의 화학적 반응들은 웨이퍼의 피처들, 표면들 및 재료들을 에칭하는데 사용된다. 에칭 프로세스 동안에, 챔버 코일은 변압기 내의 1 차 코일의 기능과 유사한 기능을 수행하며, 플라즈마는 변압기 내의 2 차 코일의 기능과 유사한 기능을 수행한다.
에칭 프로세스에 의해서 생성되는 반응 산물들은 휘발성 또는 비휘발성일 수 있다. 휘발성 반응 산물은 사용된 반응물 가스와 함께 가스 배기 포트를 통해서 배출된다. 그러나, 비휘발성 반응 산물은 통상적으로 에칭 챔버 내에 잔류한다. 비휘발성 반응 산물은 챔버 벽들 및 유전체 윈도우에 부착될 수 있다. 비휘발성 반응 산물의 유전체 윈도우로의 부착은 에칭 프로세스를 방해한다. 이의 과잉 퇴적은 유전체 윈도우에서 입자들이 벗겨져서 웨이퍼 상으로 퇴적되어서, 에칭 프로세스를 방해하는 것을 낳는다. 몇몇 실시예들에서, 페러데이 차폐부가 챔버 내에서 사용되어서, 페러데이 차폐부는 유전체 윈도우 상으로의 퇴적을 막는다. 이러한 경우에, 퇴적물은 페러데이 차폐부 상에 축적되며 또한 이 역시 시간이 지남에 따라서 입자가 벗겨지거나 박리되는 현상으로 이어질 수 있다. 페러데이 차폐부 자체의 코팅들도 역시 과잉 온도가 확장된 시간에 걸쳐서 페러데이 차폐부에 가해지면 박리될 수 있다.
TCP 챔버들에서, 챔버 및 관련 부품들을 가열하는 전력은 주로 유전체 윈도우 위에서 상주하는 TCP 코일들을 통해서 전달된다. 에칭 프로세스 동안에, 챔버 및 그의 부품들은 다양한 단계들을 반복적으로 경험하며, 이로써 이러한 프로세스들로부터의 열도 역시 유사하게 예를 들어서 고온에서 보다 높은 고온으로, 저온에서 고온으로 또는 고온에서 저온으로와 같이 레벨-사이클링한다. 페러데이 차폐부에 퇴적물을 존재할 때에, 온도 사이클링 (cycling) 자체가 퇴적물이 벗겨지거나 박리되게 할 수 있다. 현재, 이러한 문제를 다루기 위해서, 챔버들은 자주 세정되거나 페러데이 차폐부에 잔류하는 퇴적물 (예를 들어서, 에칭 부산물) 이 벗겨지거나 박리되어서 결국에는 처리되고 있는 웨이퍼에 쌓이게 된다고 결정되는 때에 세정되어야 한다.
이러한 맥락에서 본 발명의 실시예들이 출현하였다.
플라즈마 프로세싱 챔버들은 챔버 내에서 플라즈마를 생성하기 위해서 무선주파수 (RF) 전력을 사용한다. RF 전력은 통상적으로 유전체 (세라믹 또는 석영 윈도우) 를 통해서 도입되며 또한 플라즈마 분위기 내에 담거진 코팅된 (예를 들어서, 아노다이징된) 페러데이 차폐부 (예를 들어서, 접지된 금속 또는 플로팅 유전체) 를 통해서 접속될 수 있다. RF 유도된 열이 플라즈마 프로세싱 동안에 페러데이 차폐부의 온도를 증가시키고 임계치를 넘어서 페러데이 차폐부 온도를 극심하게 증가시킬 수 있으며 이 임계치를 넘게 되면 아노다이징된 코팅 또는 퇴적된 플라즈마 부산물들이 벗겨지고/지거나 박리되기 시작하여서 웨이퍼 상에서의 입자 및/또는 디펙트 문제를 야기한다. 본 명세서에서 구성된 실시예들은 성공적인 동작을 위해서 페러데이 차폐부의 온도를 제어 및/또는 유지하기 위한 방법들 및 구조체들을 제공하며 열적 사이클링 문제들을 최소화시킨다.
일 실시예에서, 페러데이 차폐부와 접속하는 허브로 증가된 레이트 또는 사전설정된 레이트로 공기를 유동시키는 것은 중앙 영역 근처에서 페러데이 차폐부의 온도를 감소시키는 것을 지원한다. 이는 페러데이 차폐부의 온도를 제어하고 동작 동안에 온도의 넓은 사이클 스윙폭 (wide cycle swing) 을 감소시키는 방법 및 시스템을 제공한다.
일 실시예에서, 압축된 건조 공기 (CDA) 가 과잉 열을 제거하여 이를 TCP 코일 인클로저 (enclosure) 내로 배출시키는 중앙 허브 내로 공기를 채널링하는 공기-경로 설정 (directing) 플레넘으로 도움으로 페러데이 차폐부를 냉각시키는 방식을 제공한다. 일 실시예에서, 10 CFM (cubic feet per minute) 와 균등한 CDA 유동 레이트 또는 10 내지 20 PSI (pound per square inch) 범위에서의 유입 압력 또는 그보다 높은 유입 압력이 좁은 공기 플레넘들에서 매우 높은 (super) 대류 유동을 가능하게 한다. 다른 예시적인 파라미터들이 이하에서 기술된다.
일 실례에서, 플레넘들이 페러데이 차폐부의 내부 접촉면으로부터의 최적 혼합 및 열 제거를 위해서 하나 이상의 공기 유입 및 유출 스트림들을 지원하고 페러데이 차폐부의 동작 온도를 감소시키고 열적 사이클링 문제들을 최소화시키는 중앙 공기-전달 허브에 부착된다.
다른 실시예들에서, CDA 대신에, 증가된 유동 레이트를 위한 공기 증폭기를 사용하여서 공기를 사용하거나 액체 기반 냉각을 사용할 수 있다. 또한, 공기 증폭기는 공기 경로를 최적화시키고 균일한 온도 분포를 생성하고 RF 또는 플라즈마 분위기들 내의 내부 페러데이 차폐부 및/또는 컴포넌트들에 대한 넓은 범위의 윈도우 냉각 옵션을 제공하는 다양한 공기-채널링 플레넘 설계들에 맞게 구성될 수 있다.
일 실시예에서, 플라즈마 프로세싱 챔버에서 사용되는 페러데이 차폐 시스템이 제공된다. 이 시스템은 페러데이 차폐부를 구성하는 디스크 구조체를 포함하며, 디스크 구조체는 프로세스 측 및 후방 측을 갖는다. 디스크 구조체는 중앙 영역과 주변 영역 간에서 연장된다. 상기 디스크 구조체는 프로세싱 공간 내에서 상주한다. 시스템은 유입 도관으로부터 수용된 공기의 유동을 전달하고 유출 도관으로부터 공기의 유동을 제거하기 위해 내측 플레넘 (plenum) 을 갖는 허브를 포함한다. 허브는 중앙 영역에서 디스크 구조체의 후방 측에 연결된 인터페이스 표면 (interface surface) 을 갖는다. 유체 전달 제어부가 허브의 상기 유입 도관에 연결된다. 유체 전달 제어부는 유동 레이트 조정기를 갖도록 구성된다. 조정되는 공기는 증폭되거나 CDA일 수 있다. 시스템은 허브의 플레넘으로부터 공기의 유동을 제거하기 위해서 유출 도관에 연결된 유체 제거 제어부를 포함한다. 공기의 유동이 프로세싱 공간으로부터 격리되도록 허브의 플레넘은 허브 내로 그리고 외부로의 루프를 구성한다. 제어기가 공기의 유동의 유동 레이트를 설정하는 유동 레이트 조정기를 관리하기 위해서 제공된다.
다른 실시예에서, 플라즈마 프로세싱 장치가 개시된다. 이 장치는 프로세싱 공간 (volume) 내에 구성된 (defined) 기판 지지부 및 벽들을 갖는 챔버, 및 페러데이 차폐부를 포함한다. 페러데이 차폐부는 프로세스 측 및 후방 측을 갖는 디스크 형상체를 가지며 디스크 형상체는 중앙 영역과 주변 영역 간에서 연장된다. 페러데이 차폐부는 프로세스 측이 기판 지지부를 마주보도록 프로세싱 공간 내에 구성된다. 이 장치는 유입 도관으로부터 수용된 유체의 유동을 전달하고 유출 도관으로부터 유체의 유동을 제거하기 위해 내측 플레넘 (plenum) 을 갖는 허브를 포함한다. 허브는 중앙 영역에서 페러데이 차폐부의 상기 후방 측에 열적으로 접속된 인터페이스 표면 (interface surface) 을 갖는다. 유체 전달 제어부가 허브의 유입 도관에 연결되며, 유체 전달 제어부는 상기 허브의 상기 플레넘을 통한 유체의 유동의 유동 레이트를 설정하기 위한 유동 레이트 조정기를 갖도록 구성된다. 유체 제거 제어부가 허브의 플레넘으로부터 유체의 유동을 제거하기 위해서 유출 도관에 연결된다.
또 다른 실시예에서, 플라즈마 프로세싱 챔버의 프로세스 공간 내에 배치된 페러데이 차폐부의 온도를 제어하는 방법이 개시된다. 이 방법은 페러데이 차폐부의 중앙 영역에서 페러데이 차폐부의 후방 측에 허브를 열적으로 접속시키는 단계를 포함한다. 허브는 공기가 플레넘을 통해서 유통되도록, 공기를 수용하고 공기를 제거하기 위한 플레넘을 갖는다. 이 방법은 허브의 플레넘으로 공기의 유동을 공급하는 단계를 포함한다. 공기의 플레넘 내로 그리고 외부로의 유동은 프로세스 공간 외부에서 유지된다. 이 방법은 플레넘 내로의 공기의 유동 레이트를 조정하는 단계를 포함한다. 이러한 조정은 페러데이 차폐부의 중앙 영역으로의 열적 접속부분 (thermal couple) 에서 허브의 온도 조절을 관리하는 기능을 한다. 이러한 조정은 프로세스 공간 내에서 수행되는 프로세싱 단계들과 상관된다. 일 실시예에서, 공기의 유동 레이트 증가는 페러데이 차폐부의 중앙 영역의 온도를 감소시키며 이로써 페러데이 차폐부를 통하고 중앙 영역을 향하는 열전도를 발생시킨다.
본 발명 및 이의 다른 장점들은 첨부 도면들과 함께 취해지는 다음의 설명을 참조하면 최상으로 이해될 것이다.
도 1은 본 발명의 일 실시예에 따른, 에칭 동작들에서 사용되는 플라즈마 프로세싱 시스템을 예시한다.
도 2a는 본 발명의 일 실시예에 따른, 페러데이 차폐부로부터의 열을 프로세싱 공간 (volume) 외측으로부터 멀어지게 전도시키기 위한 허브 (hub) 와 인터페이스되는 (interfaced) 페러데이 차폐부를 갖는, 플라즈마 프로세싱에서 사용되는 챔버의 일부를 예시한다.
도 2b는 본 발명의 일 실시예에 따른, 허브, 및 페러데이 차폐부 및 선택적으로 유전체 윈도우와 접촉하는 허브의 인터페이스 표면들의 다른 간단화된 실례를 예시한다.
도 2c 내지 도 2e는 본 발명의 일 실시예에 따른, 허브, 및/또는 허브와 페러데이 차폐부의 예시적인 다른 인터페이스들 또는 구성들을 예시한다.
도 2f는 본 발명의 일 실시예에 따른, 페러데이 차폐부의 바디를 통한 페러데이 차폐부의 중앙 영역을 향한 열전도의 그래픽적 표현을 예시한다.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따른, 페러데이 차폐부의 중앙 영역으로의 다른 허브 구성, 인터페이스들, 플레넘들 및 수정 사항들을 예시한다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른, 페러데이 차폐부와의 인터페이스들 이외에, 유전체 윈도우로의 또 다른 허브 구성 및 인터페이스 표면들을 예시한다.
도 5aa 및 도 5ab는 본 발명의 일 실시예에 따른, (허브에 접촉하거나 허브에 근접하여 배치된 때에) 유전체 윈도우의 예시적인 온도 변화 및 공기의 유동 레이트 변화에 기초한 관련 변화를 예시한다.
도 5ba 및 도 5bb는 본 발명의 일 실시예에 따른, 페러데이 차폐부의 예시적인 온도 변화 및 공기의 유동 레이트 변화에 기초한 관련 변화를 예시한다.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른, 페러데이 차폐부로부터 프로세싱 공간 외부로의 열전도를 유발하도록 하는 페러데이 차폐부의 중앙 영역의 공냉을 위한 허브를 갖는 페러데이 차폐부를 사용하는 예시적인 방법 동작들을 예시한다.
반도체 디바이스의 제조 동안에 반도체 기판 및 그 상에 형성된 층들을 에칭하는데 사용되는 장치가 개시된다. 이 장치는 에칭이 수행되는 챔버에 의해서 구성된다. 페러데이 차폐부가 챔버 내에 배치된다. 서로 간의 접촉부가 열적 인터페이스 (thermal interface) 를 제공하도록, 허브가 페러데이 차폐부에 인터페이스하게 (interface) 구성된다. 허브는 유체가 허브를 통해서 증가된 유동 레이트로 전달되도록, 허브로 유체를 전달하고 허브로부터 유체를 이동시키는 복수의 도관들에 연결된다. 복수의 도관들은 유체가 허브로 유입되고 허브로부터 유출되게 허브의 내측의 플레넘 (plenum) 으로 연결된다.
일 실시예에서, 허브는 페러데이 차폐부 (및 선택적으로 또한 유전체 윈도우) 와 연결되며 열적으로 접속하는 별도의 구조체이거나 페러데이 차폐부에 일체화된 구조체이다.
일 실시예에서, 유체는 공기이다. 일 실시예에서, 공기는 압축된 건조 공기 (CDA) 이다. 페러데이 차폐부에 열적으로 접속된 허브로 그리고 허브로부터 공기를 유동시킴으로써, 인터페이스 위치에서 페러데이 차폐부의 온도가, 챔버의 동작 동안의 페러데이 차폐부의 증가된 온도에 비해서, 감소하게 된다. 일 실시예에서, 공기가 페러데이 차폐부 및/또는 유전체 윈도우의 온도를 감소시키도록 사전-컴퓨팅, 선택 또는 조정된 설정 유동 레이트로 허브의 플레넘을 통해서 유동된다.
예를 들어서, 챔버의 동작 동안에, TCP 코일은 챔버 내에 플라즈마를 구성하기 위해서 챔버로 전력을 공급한다. TCP 코일은 유전체 윈도우 위에 배치되고 페러데이 차폐부는 유전체 윈도우 아래에서 이에 인접하여 배치된다. 이러한 구성에서, TCP 코일은 윈도우 및 페러데이 차폐부를 가열시킬 것이다. 프로세싱 사이클 동안에, 이 열은 높아지고 내려가고 하는 등을 반복하여서 전술한 바와 같은 열 차 (heat differential) 를 유발한다.
따라서, 페러데이 차폐부의 적어도 중앙 영역과 열적으로 접촉하는 허브로 그리고 허브로부터 (즉, 허브를 통해서) 공기를 유동시킴으로써, 이 중앙 영역에서 그 주변에서의 페러데이 차폐부의 온도는 낮아지게 된다. 페러데이 차폐부의 중앙 영역 내 및 주변에서의 낮아진 온도는 페러데이 차폐부를 따라서 온도 차를 유발하며, 이로써 열이 페러데이 차폐부를 따라서 (즉, 페러데이 차폐부의 벌크 (bulk) 바디 내에서) 고온부에서 저온부로 (예를 들어서, 허브를 향해서) 전도될 것이다. 일 실시예에서, 고온부에서 저온부로 열을 전도하는 것은 중앙 영역으로부터 떨어진 페러데이 차폐부의 보다 고온 표면들 (예를 들어서, 페러데이 차폐부의 주변부 및 이 주변부와 중앙 영역 간의 영역) 은 열들이 페러데이 차폐부의 중앙 영역으로 전도됨에 따라서 온도가 떨어질 것임을 의미한다.
본 발명은 이러한 특정 세부사항들 중 일부가 없이도 실시될 수 있음이 본 기술 분야의 당업자에게는 명백하다. 다른 실례로서, 잘 알려진 프로세스 동작들 및 구현 세부사항들은 본 발명을 불필요하게 모호하게 하지 않도록 세부적으로 기술되지 않았다.
도 1은 본 발명의 일 실시예에 따른, 에칭 동작들에서 사용되는 플라즈마 프로세싱 시스템을 예시한다. 시스템은 척 (103), 유전체 윈도우 (104) 및 페러데이 차폐부 (108) 를 포함하는 챔버 (102) 를 포함한다. 척 (103) 은 기판이 존재하는 경우에 기판을 지지하는 정전 척일 수 있다. 또한, 척 (103) 을 둘러싸고 웨이퍼가 척 (103) 상에 존재할 때에 웨이퍼의 상단 표면과 대략 동일한 평면에 있는 상부 표면을 갖는 에지 링 (116) 이 도시된다. 챔버 (102) 는 또한 피내클 (pinnacle) 로 지칭되는, 상부 라이너 (118) 에 연결되는 하부 라이너 (110) 를 포함한다. 상부 라이너 (118) 는 페러데이 차폐부 (108) 를 지지하도록 구성된다. 일 실시예에서, 상부 라이너 (118) 는 접지부에 접속되며 따라서 페러데이 차폐부 (108) 에 접지를 제공한다. 페러데이 차폐부 (108) 와 유전체 윈도우 (106) 간에 공간이 제공된다. 잉여 가스들 (114) 이 배기 플레이트 (112) 를 통해서 챔버의 프로세스 공간으로부터 제거된다.
하나 이상의 생성기들로부터 구성될 수 있는 RF 생성기 (160) 가 또한 도시된다. 다수의 생성기들이 제공되면, 다양한 튜닝 특성들을 달성하는데 상이한 주파수들이 사용될 수 있다. 바이어스 매칭부 (162) 가 RF 생성기들 (160) 과 척 (103) 을 구성하는 어셈블리의 도전성 플레이트 간에 접속된다. 척 (103) 은 또한 웨이퍼의 척킹 및 디척킹을 가능하게 하는 정전 전극들을 포함한다. 보편적으로는, 필터 (164) 및 DC 클램프 전원이 제공된다. 척 (103) 으로부터 웨이퍼를 리프트-오프 (lift-off) 하기 위한 다른 제어 시스템들이 제공될 수도 있다. 도시되지는 않았지만, 진공 제어를 가능하게 하고 작용성 플라즈마 프로세싱 동안에 가스상태의 부산물들을 제거하는 것을 가능하게 하도록 펌프들이 챔버 (102) 에 연결된다.
페러데이 차폐부 (108) 는 샤워헤드가 챔버 (102) 의 프로세싱 공간 내로 프로세스 가스들을 전달하도록 하게 할 중앙 영역을 갖는다. 추가적으로, 다른 프로빙 장치가 홀 (hole) 이 제공된 중앙 영역 근처에서 페러데이 차폐부 (108) 를 통해서 배치될 수 있다. 프로빙 (probing) 장치는 동작 동안에 플라즈마 프로세싱 시스템과 관련된 프로세스 파라미터들을 프로빙하기 위해서 제공될 수 있다. 프로빙 프로세스는 엔드포인트 검출, 플라즈마 밀도 측정, 이온 밀도 측정, 및 다른 계측 프로빙 동작들을 포함할 수 있다. 페러데이 차폐부 (108) 의 원형 형상은 통상적으로 원형인 통상적인 웨이퍼의 기하구조에 의해서 이루어진다. 잘 알려진 바와 같이, 웨이퍼들은 통상적으로 200 mm, 300 mm, 450 mm 등과 같은 다양한 크기로 제공된다.
페러데이 차폐부 (108) 위에 유전체 윈도우 (104) 가 배치된다. 상술한 바와 같이, 유전체 윈도우 (104) 는 석영 타입 재료로 구성될 수 있다. 다른 유전체 재료들이 반도체 에칭 챔버의 상태들을 견딜수만 있으면 역시 사용가능하다. 통상적으로, 챔버들은 약 50 ℃ 내지 약 160 ℃ 범위의 상승된 온도에서 동작한다. 이 온도는 에칭 프로세스 동작 및 특정 레시피에 의존한다. 챔버 (102) 는 또한 약 1 m Torr (mT) 내지 약 100 m Torr (mT) 의 범위의 진공 상태에서 동작할 것이다. 도시되지는 않았지만, 챔버 (102) 는 클린 룸 또는 제조 설비에 설치되는 경우에 설비들에 연결된다. 설비들은 프로세싱 가스들, 진공, 온도 제어 및 분위기 입자 제어를 제공하는 배관을 포함한다.
이러한 설비들은 챔버 (102) 가 목표 제조 설비 내에 설치되는 때에 챔버 (102) 에 연결된다. 또한, 챔버 (102) 는 로봇들이 통상적인 자동화를 사용하여서 챔버 (102) 내로 그리고 챔버 (102) 외부로 반도체 웨이퍼들을 전달하게 할 전달 챔버에 연결될 것이다.
도 1를 계속 참조하면, TCP 코일은 내측 코일 (IC) (122) 및 외측 코일 (OC) (120) 을 포함하게 도시된다. TCP 코일은 페러데이 차폐부 (108) 위에 배치된 유전체 윈도우 (104) 위에서 배치 및 배열된다. 일 실시예에서, 매칭 컴포넌트들 (128) 및 RF 생성기들 (126) 이 코일들에 연결되게 제공된다. 일 실시예에서, 챔버는 챔버 (102) 의 전자장치 패널에 연결되는 제어기에 접속될 것이다. 전자장치 패널은 네트워킹 시스템들에 접속되어서 특정 사이클 동안에 프로세싱 동작들에 의존하는 특정 프로세싱 루틴을 동작시킬 수 있다. 따라서, 전자장치 패널은 챔버 (102) 에서 수행되는 에칭 동작들을 제어하고 페러데이 차폐부 (108) 를 공냉시키는 동안에 유체를 허브로 전달하거나 유체를 허브로부터 제거하는 것을 제어할 수 있다.
도 2a는 본 발명의 일 실시예에 따른, 페러데이 차폐부 (108) 를 공냉시키는데 사용되는 허브 (202) 의 시스템도 (200) 이다. 본 실례에서, 허브 (202) 는 페러데이 차폐부 (108) 에 연결되며 유전체 윈도우 (104) 의 개구 내에 피팅되는 구조체이다. 이 구성은 허브 (102) 가 페러데이 차폐부 (108) 및 유전체 윈도우 (104) 모두에 공냉을 전달할 수 있게 한다. 예를 들어서, 허브 (102) 는 페러데이 차폐부 (108) 및 유전체 윈도우 (104) 의 표면들과 접촉하게 배치된 외측 표면들을 갖는다.
도시된 바와 같이, 인터페이스 (204) 가 허브와 윈도우 인터페이스 간에 제공된다. 인터페이스 (206) 가 허브와 페러데이 차폐부 (108) 간에 제공된다. 넓게 말하자면, 허브 (102) 의 표면들은 페러데이 차폐부 (108) 의 표면들 및 선택적으로는 유전체 윈도우 (104) 에 접촉되게 배치된다. 일 실시예에서, 이러한 접촉은 열적 접촉이다. 예를 들어서, 표면들이 서로 인접하여 배치되는 경우에, 근접 배치는 보다 양호한 열적 상호접속을 제공하며, 직접적 물리적 접촉은 보다 양호한 열적 상호접속을 제공한다. 일 실시예에서, 열적 상호접속은 허브와의 인터페이스 (206) 가 페러데이 차폐부 (108) 와 직접적으로 물리적으로 접촉되도록 설계된다.
일 실시예에서, 허브 (202) 는 각기 연결 라인들 (207 및 208) 에 연결된 복수의 유입 도관 (202a) 및 유출 도관 (202b) 을 포함한다. 연결 라인 (207) 은 유체 전달 제어부 (210) 에 연결된다. 유체 전달 제어부 (210) 는 공기 증폭기 (214b) 에 연결된 공기 공급부 (214a) 또는 압축된 건조 공기 (CDA) 소스 (212) 로부터 유체를 수용한다. 일 실시예에서, 제어기가 유체 전달 제어부 (210) 가 선택할 입력을 규정할 것이다. 다른 실시예에서, 유체 전달 제어부 (210) 는 CDA 소스 (212) 또는 공기 공급부/공기 증폭기 (214) 를 사용하는 배관 또는 설비 라인 또는 튜브를 통해서 연결된다.
일 구성에서, 유체 전달 제어부 (210) 는 특정 유동 레이트를 갖도록 선택된 유체 유동들을 사용한다. 일 실시예에서, 허브의 플레넘은 유체의 유동이 프로세싱 공간 외부에서 유지되도록, 허브 내로 그리고 허브 외부로의 루프 (loop) 를 구성한다. 즉, 허브를 통해 전달되는 어떠한 유체도 동작 동안에 압력 하에 있으면서 프로세싱 가스로 충진된 실링된 프로세싱 공간으로 유입되지 않을 것이다. 또한, 유체의 유동은 페러데이 차폐부의 중앙 영역에서의 저감된 온도를 제공하며 이 중앙 영역에서의 저감된 온도는 열이 페러데이 차폐부를 통해서 중앙 영역으로 전도되는 전도성 유동을 유발한다.
페러데이 차폐부 (108) 를 냉각시키는데 유용하다고 사료되는 유동 레이트들은 0.5 CFM (cubic feet per minute) 내지 20 CFM에 이를 수 있다. 실험 테스트에서, 테스트된 유동 레이트들은 1 CFM, 5 CFM, 및 10 CFM를 포함하지만, 보다 높은 유동 레이트들이 가능하다고 사료된다. 이하에서 기술될 바와 같이, 5 CFM 및 10 CFM의 유동 레이트들이 사용되는 경우에 충분한 냉각이 관측되었다. CDA (212) 가 사용되면, CDA (212) 의 압축된 특성은 유동이 1 내지 10 CFM 유동 레이트에 도달하게 한다. 공기 공급부 (214a) 가 사용되면, 0.5 CFM 내지 20 CFM의 유동 레이트를 생성하기 위해서 공기 증폭기 (214b) 가 필요하다. 예를 들어서, 60 또는 50 CFM에 달하는, 20 CFM보다 매우 높은 유동 레이트들도 역시 유용하다고 사료된다.
일 실시예에서, 허브 (202) 내에서 사용되는 플레넘의 구성에 따라서, 허브의 입력부에서의 압력이 변할 수 있다. 실험 테스트에서 사용되는 허브에서, 허브의 입력부에서의 압력은 10 내지 25 PSI (pounds per square inch) 인 것으로 측정되었다. 압력이 허브 입력부(들) 로 전달되기 바로 전에 떨어질 수도 있기 때문에, 보다 높은 압력들이 소스에서 사용될 수 있다. 실험 테스트에서, 1 CFM이 설정된 경우에, 입력부에서의 PSI는 14.7 PSI로 측정되었으며, 5 CFM이 설정된 경우에, 입력부에서의 PSI는 15.5 PSI로 측정되었으며, 10 CFM이 설정된 경우에, 입력부에서의 PSI는 17 PSI로 측정되었다.
허브 (202) 의 플레넘 내로 그리고 플레넘 외부로의 공기의 유동은 허브 (202) 내로부터 열을 감소 또는 제거하는 공기의 순환 및/또는 유통을 제공한다. 순환하는 공기 유동이 없다면, 허브 (202) 는 페러데이 차폐부 (108) 와 열적으로 접촉하게 배치되는 경우에, 페러데이 차폐부 (108) 의 온도와 일치하거나 대략 일치하는 온도로 증가할 것이다. 그러나, 공기가 허브 (202) 의 플레넘 내로 그리고 플레넘 외부로 유동하며 이로써 플레넘 내의 열이 저감되기 때문에, 예를 들어서 허브와 페러데이 차폐부 (108) 간의 인터페이스 영역에서, 열이 제거된다.
연결 라인 (208) 은 허브 (202) 의 유출 도관 (202b) 에 연결된 유체 제거 제어부 (213) 에 연결된다. 유체 제거 제어부 (213) 는 진공부 (216) 또는 수동 배기부 (217) 에 연결될 수 있다. 일 실시예에서, 진공부 (216) 가 사용되면, 유체 제거 제어부 (213) 는 허브 (202) 의 플레넘을 통해서 전달되는 유체를 흡입하여서 유체 전달 제어부 (210) 에 의해서 제공되는 공기의 유동을 촉진시키는 것을 지원한다. 수동 배기부 (217) 의 경우에, 유체 제거 제어부 (213) 는 허브 (202) 로부터 유체 (즉, 공기) 를 간단하게 제거하여서 이를 챔버 클린 룸의 설비 내에 적절하게 분사한다.
일 실시예에서, 유체 전달 제어부 (210) 는 유동 레이트 조정기를 포함하며 선택적으로 압력 조정기를 포함한다. 다른 실시예에서, 유동 조정기 및/또는 압력 조정기는 유체 전달 제어부 (210) 와 별도의 구성요소이다. 일 실시예에서, 제어기 (240) 는 허브 (202) 로 제공되는 유동 레이트를 설정 또는 조정하도록 하나 이상의 밸브들을 제어하거나 유체 전달 제어부 (210) 에 제어 데이터를 전송할 수 있다.
공기가 허브 (202) 에서 사용되는 유체인 것으로 기술되었지만, 다른 유체들이 사용될 수 있다. 예를 들어서, 액체가 또한 사용될 수 있으며 허브 (202) 를 통해서 유통될 수 있다. 또 다른 실시예들에서, 유체들은 질소, 헬륨 등과 같은 가스들일 수 있다.
다른 실시예들에서, 액체들 또는 공기는, 유체 전달 제어부 (210) 가 유체를 감소된 온도로 제공하도록, 미리 냉각될 수도 있다.
일 실시예에서, 플라즈마 프로세싱 챔버들에서 사용되는 시스템이 제공된다. 이 시스템은 페러데이 차폐부를 구성하는 디스크 구조체를 포함하며 디스크 구조체는 프로세스 측 및 후방 측을 갖는다. 디스크 구조체는 중앙 영역과 주변 영역 (예를 들어서, 페러데이 차폐부의 에지 또는 에지 근방 구역) 간에서 연장된다. 디스크 구조체는 프로세싱 공간 내에서 상주한다. 시스템은 유입 도관으로부터 수용된 유체의 유동을 전달하고 유출 도관으로부터 유체의 유동을 제거하기 위해 내측 플레넘 (plenum) 을 갖는 허브를 더 포함한다. 허브는 중앙 영역에서 디스크 구조체 (예를 들어서, 디스크 형상을 가짐) 의 후방 측에 연결된 인터페이스 표면 (interface surface) 을 갖는다.
유체 전달 제어부 (210) 는 허브 (202) 의 유입 도관에 연결된다. 유체 전달 제어부 (210) 는 유동 레이트 조정기를 갖도록 구성된다. 조정된 공기는 증폭되거나 (214) 압축된 건조 공기 (CDA) (212) 일 수 있다. 시스템은 허브 (202) 의 플레넘으로부터 유체의 유동을 제거하기 위해서 유출 도관에 연결된 유체 제거 제어부 (213) 를 포함한다. 허브의 플레넘은 허브 내로 그리고 외부로의 루프를 구성하며, 이로써 공기 유동이 프로세싱 공간으로부터 격리된다. 이 루프는 수많은 구성 및 경로들을 취할 수 있다. 루프는 간단하게 들어오고 나가는 구조이거나 (예를 들어서, 이하에서 도 3b에서 도시된 바와 같이) 페러데이 차폐부에 형성된 플레넘들 내에서 또는 허브 내측에서 비선형 경로들로 연장될 수 있다. 제어기 (240) 가 제공되어서 공기의 유동의 유동 레이트를 설정하는 유동 레이트 조정기를 관리한다.
도 2b는 본 발명의 일 실시예에 따른, 허브 (202) 가 페러데이 차폐부 (108) 및 유전체 윈도우 (104) 에 접속된 실시예를 예시한다. 본 실례에서, 이러한 접속은 열적 접속이다. 열적 접속은 허브 (202) 의 표면이 페러데이 차폐부 (108) 및/또는 유전체 윈도우 (104) 의 표면과 물리적으로 접촉되는 것을 의미한다. 예를 들어서, 허브는 각기 유전체 윈도우 (104) 및 페러데이 차폐부 (108) 와, 인터페이스 (204) 및 인터페이스 (206) 에서 물리적으로 접촉된다. 열적 접속 (thermal coupling) 은 간단하게 허브의 표면들 또는 공기 유동이 페러데이 차폐부 (108) 또는 유전체 윈도우 (104) 와 직접 물리적으로 접촉하거나 허브가 그의 온도가 인접하는 구조체의 온도에 영향을 줄 수 있도록 (예를 들어서, 물리적 접촉 없이 또는 최소의 접촉 없이) 매우 근접하여 있는 것을 의미한다.
일 실시예에서, 허브 (202) 는 열전도성 재료로 구성된다. 열전도성 재료는 금속일 수 있다. 금속은 열을 열적으로 전달하는 알루미늄, 스테인레스 스틸, 구리, 또는 금속들의 조합 및 합금일 수 있다. 일 실시예에서, 허브 (202) 의 표면 인터페이스는 페러데이 차폐부 (108) 및 유전체 윈도우 (104) 의 열전도성 표면들과의 균일한 표면 접촉을 제공하도록 구성 또는 제조된다. 표면들을 제조하는 것은 표면들이 서로 짝을 이루어 서로 물리적으로 접촉된 때에 열적 접속을 제공하도록 표면들을 폴리싱하는 것을 포함할 수 있다. 다른 실시예들에서, 열적으로 전도성인 접착제 또는 글루 (glue) 가 페러데이 차폐부 (108) 또는 유전체 윈도우 (104) 의 표면들과 허브 간에 배치될 수도 있다.
도 2b의 예시에서, 허브 (202) 는 유체가 허브 내로 그리고 허브 외부로 유동하게, 허브 내의 플레넘을 포함한다. 상술한 바와 같이, 유체 전달 제어부 (210) 가 허브 (202) 로 유체를 전달하고 유체 제거 제어부 (213) 가 유체를 허브 (202) 로부터 제거한다. 유체 전달 제어부 (210) 는 구성 또는 프로세스를 위해서 선택되는 올바른 유체를 제공할 수 있는 설비 공급부와 같은 공급부에 연결된다. 제어기 (240) 가 유체 전달 제어부 (210) 및 유체 제거 제어부 (213) 에 통신하게 도시된다. 제어기 (240) 는 챔버 (102) 내에서 웨이퍼를 프로세싱할 때에 사용되는 레시피들을 제어 및 설정하기 위해서 인터페이스를 포함할 수 있는 시스템 전자장치와 통신한다.
상술한 바와 같이, 챔버 (102) 는 척 지지부 (103) 상에 배치된 웨이퍼의 피처들, 표면들 또는 재료들을 에칭할 수 있는 플라즈마를 사용하여서 에칭 동작들을 프로세싱하는데 사용된다. RF 공급부들이 척 지지부 (103) 에 통신 및 접속되며 RF TCP 코일들 (120/122) 이 동작 동안에 챔버 (102) 의 플라즈마에 전력을 제공하기 위해서 윈도우 (104) 위에 배치된다. 또한, 가스 주입기 (230) 및 광학적 프로브 (232) 가 도시된다. 가스 주입기 (230) 및 광학적 프로브 (232) 는 일 실시예에서 허브 (202) 의 중앙 영역 간에 배치된다. 가스 주입기 (230) 는 동작 동안에 챔버 내에 가스를 주입하도록 제공되며, 광학적 프로브 (232) 는 플라즈마 프로세싱 동작 동안에 챔버 내에서 발생하는 프로세스들의 엔드포인트를 측정하고 엔드포인트 검출을 제공하게 제공된다.
일 실시예에서, 가스 주입기는 허브의 중앙 캐비티 내에 구성되며, 가스 주입기는 프로세스 가스를 프로세싱 공간 내로 제공하기 위해서 구성된다. 일 실시예에서, 광학적 프로브는 중앙 캐비티 내에 구성되며, 광학적 프로브는 사용 동안에 프로세싱 공간 내의 프로세스 상태들을 모니터링하기 위해서 구성된다. 중앙 캐비티는 관형, 정방형 또는 다른 형상일 수 있다. 중앙 캐비티는 페러데이 차폐부 (108) 및 유전체 윈도우를 통해서 연장된다. 프로세스 공간이 챔버의 외부의 상태들에 대해서 폐쇄되도록, 가스 주입기와 허브 간에서 시일 (seal) 이 형성된다. 허브와 그의 공기 공급부들은 허브가 프로세싱 공간으로부터 격리되도록, 챔버 외부에 있다.
도 2c는 허브 (202) 가 페러데이 차폐부 (108) 와 별도로 된 실례를 예시한다. 이 실시예에서, 허브 (202) 는 페러데이 차폐부 (108) 와 물리적으로 접촉되게 배치되도록 구성된다. 물리적 접촉은 허브 (202) 의 하단 인터페이스 표면들 (250) 이 페러데이 차폐부 (108) 의 인터페이스 표면들 (262) 과 접촉하도록 된다. 다른 실시예들에서, 허브 (202) 의 측면 인터페이스 표면들 (252) 도 역시 도 2b에 도시된 바와 같이 유전체 윈도우 (104) 와 같은 다른 표면들에 인접하여 배치될 수 있다. 이로써, 허브 (202) 는 스크루, 클램프, 표면 인덴테이션 (surface indentation), 클립, 글루, 접착제, 또는 이들의 조합과 같은 임의의 연결 수단을 사용하여서 페러데이 차폐부 (108) 와 조립 및 연결될 수 있다.
도 2d는 본 발명의 다른 실시예에 따른, 다른 허브 (202') 가 제공된 실례를 예시한다. 이 실시예에서, 허브 (202') 는 페러데이 차폐부 (108) 와 일체화된다. 이러한 일체화 구성은 허브가 페러데이 차폐부 (108) 의 표면 또는 바디 내에서 적어도 부분적으로 배치되게 할 수 있다. 즉, 플레넘이 페러데이 차폐부 (108) 를 냉각하는 공기를 페러데이 차폐부 (108) 의 바디 내로 유통시키는 것이 가능하게 되도록, 허브 일부가 페러데이 차폐부 일부와 일체화되도록 될 수 있다. 도 2c의 측면 인터페이스 표면들 (252) 이 또한 도 2d에서의 허브 부분의 측면 표면들로서 동작할 수 있다.
도 2e는 본 발명의 다른 실시예에 따른, 허브 (202") 가 제공된 실례를 예시한다. 본 실례에서, 허브 (202") 는 페러데이 차폐부 (108) 의 바디와 일체화되어서 바디 내에서 연장되는 플레넘을 포함한다. 페러데이 차폐부가 복수의 핀들 (fins) 을 갖기 때문에, 이 핀들 중 특정 핀들이 공기 유동이 페러데이 차폐부 (108) 의 내측 표면들을 냉각하게 하도록 내측 플레넘 또는 채널들을 구성할 수 있는 캐비티 또는 캐비티들을 포함할 수 있다. 이 구현예에서, 유전체 윈도우 (104) 가 페러데이 차폐부 (108) 근처에 또는 페러데이 차폐부 (108) 상단 상에 배치되면, 유전체 윈도우 (104) 는 냉각된 페러데이 차폐부 (108) 로부터의 이점을 취할 수 있다. 따라서, 공기 유동이 허브에 제공되며 공기 유동이 페러데이 차폐부 (108) 와 물리적으로 접촉하거나 페러데이 차폐부 (108) 와 일체화된 허브로부터 열을 제거하는데 사용되는 한, 허브 (202) 는 임의의 개수의 구성들을 취할 수 있다는 것이 이해되어야 한다.
도 2f는 본 발명의 일 실시예에 따른, 허브 (202) 내로 그리고 외부로의 공기의 유동에 의해서 페러데이 차폐부 (108) 가 냉각 동작을 받고 있는 실례를 예시한다. 예시된 바와 같이, 페러데이 차폐부 (108) 는 다수의 요소들에 기초하여서 변하는 온도 구배를 취할 수 있다. 이러한 요소들은 페러데이 차폐부 (108) 위의 코일들의 배치 및 플라즈마 프로세싱 동안의 챔버 내에서 생성되는 열을 포함할 수 있다. 본 실례에서, 페러데이 차폐부 (108) 의 중앙 영역은 약 110 ℃의 보다 냉각된 상태를 가지며, 주변 에지도 또한 약 110 ℃의 보다 냉각된 상태를 갖는 것이 예시된다. 페러데이 차폐부 (108) 의 주변 에지와 중앙 영역 간에서, 온도는 그 중앙이 약 130 ℃이며 그 주변이 약 120 ℃인 것으로 검출된다.
허브 (202) 로의 공기유동을 적용함으로써, 열전도 (270) 가 고온부에서 저온부로 페러데이 차폐부를 통해서 발생한다. 페러데이 차폐부 (108) 를 따라서 표시된 화살표들은 페러데이 차폐부 (108) 에 걸친 열의 열 전도성 또는 대류성 유동의 방향을 표시한다. 열의 전도성 유동은 보다 고온 영역에서 보다 저온 영역으로 발생하거나 예시된 실례에서는 페러데이 차폐부 (108) 의 주변부에서 중앙 영역으로 발생할 것이다. 중앙 영역에서 페러데이 차폐부 (108) 와 접촉하는 허브 (202) 로의 냉각용 공기의 유동을 제공하지 않으면, 실험에서 중앙 영역에서의 온도는 대략 140 ℃인 것으로 측정되었다. 그러나, 허브 (202) 를 통한 공기유동에 의한 냉각을 제공함으로써, 도 2f에서 도시된 결과적인 온도 분포가 관측 및 측정되었다. 이하의 도 5bb는 허브 (202) 를 통한 상이한 유동 레이트들에 의해서 제공되는 냉각을 사용하는 경우 및 사용하지 않는 경우에서의 페러데이 차폐부 (108) 의 관측 및 측정된 온도 범위를 예시할 것이다.
도 3a는 유전체 윈도우 (104) 를 마주보는 페러데이 차폐부 (108) 구조체의 실례를 예시한다. 도 3b는 페러데이 차폐부 (108) 의 중앙 영역에 대한 수정 구성을 예시한다. 페러데이 차폐부 (108) 의 중앙 영역에 대한 수정 구성은 도 3c 및 도 3d에 도시된 허브 (202) 가 페러데이 차폐부 (108) 에 접속되는 때에 확립되는 플레넘의 일부를 구성하는 리세스를 포함할 수 있다. 따라서, 도 3c 및 도 3d에 도시된 허브 (202) 는 페러데이 차폐부 (108) 의 중앙 영역 내에 형성된 공기유동 플레넘 (302) 과 짝을 이루는 개방 하단부를 가질 것이다.
따라서 페러데이 차폐부 (108) 는 허브 (202) 의 인터페이스 표면 (250) 과 짝을 이루고 이와 연결되는 인터페이스 표면 (262) 을 가질 것이다. 이러한 짝을 이루면서 연결되는 구성은, 중앙 영역에서 허브 (202) 와 페러데이 차폐부 (108) 간에 열이 전도되도록, 페러데이 차폐부 (108) 와 허브 (250) 간의 물리적 접촉부 기능을 한다. 일 실시예에서, 페러데이 차폐부 (108) 는 또한 금속성 재료로 구성된다. 이 재료는 열이 페러데이 차폐부 (108) 를 통해서 그리고 따라서 전달되고 허브 (202) 의 금속성 재료와 인터페이스하도록 한다. 도 3c에 도시된 바와 같이, 인터페이스 표면 (250) 이 인터페이스 표면 (262) 과 연결되도록, 허브 (202) 는 페러데이 차폐부 (108) 의 중앙 영역과 짝을 이룰 것이다.
도 3d는 허브 (202) 로의 유입된 유체가 허브 (202) 의 측벽들을 따라서 아래로 된 채널들을 따라서 페러데이 차폐부 (108) 와의 인터페이스가 이루어지는 허브 (202) 의 베이스를 향해서 이동하는 일 실례를 예시한다. 이어서, 공기는 페러데이 차폐부 (108) 의 공기 플레넘 (302) 의 홈들 내에서 순환하고, 이어서 허브 (102) 의 채널들 중 하나로부터 유출된다. 따라서, 하나 이상의 유입 도관들 (202a) 은 유체의 전달을 위해서 허브 (202) 에 연결되며 하나 이상의 유출 도관들 (202b) 은 유체의 제거를 위해서 허브 (202) 에 연결된다.
도 3c 및 도 3d에 도시된 허브 (202) 의 구성들은 특성상 단지 예시적이며 페러데이 차폐부 (108) 의 중앙 영역으로부터 열을 제거하기 위한 유동 레이트로 공기 유동을 연속적으로 제공하도록 공기가 허브 (202) 내로 유입되고 허브 (202) 로부터 배출될 수 있기만 하면 다른 구성들도 역시 가능하다.
도 4a는 본 발명의 일 실시예에 따른, 단일 공기 유입 도관을 갖는 허브 (202-A) 의 다른 실례를 예시한다. 이 실시예에서, 공기는 단일 유입부로 유입되고 이 유입부는 공기를 허브 (202-A) 의 구조체의 플레넘 내에서 순환시킨다. 페러데이 차폐부와의 인터페이스 (206') 및 윈도우와의 인터페이스 (204') 에서의 온도가 저감되도록, 공기가 허브 (202-A) 내로 그리고 외부로 유동하도록 된다. 일 실시예에서, 허브 (202-A) 는 허브 (202-A) 와 윈도우 (104) 및 페러데이 차폐부 (108) 간에서 열을 전도시킬 수 있는 열전도성 재료로 구성된다. 이 실시예에서, 허브 (202-A) 는 윈도우 (104) 및 페러데이 차폐부 (108) 모두와의 접촉을 가능하게 하는 만곡진 단차부를 갖는다.
만곡진 단차부 구성은 도 4b에 도시된 바와 같이 유전체 윈도우 (104) 의 중앙 영역 내에서의 견고한 배치를 가능하게 하며 페러데이 차폐부 (108) 와의 접촉도 제공한다. 다시 한번 말하자면, 허브 (202-A) 의 예시적인 구성은 허브가 취할 수 있는 다양성 및 수많은 구성들을 단지 예시하기 위해서 제공되었을 뿐이며, 다양하고 수많은 구성들이 허브와 페러데이 차폐부 (108) 의 일부 표면들 간에 또는 허브와 페러데이 차폐부 (108) 및 유전체 윈도우 (104) 의 일부 표면들 간에 접촉이 이루어지는 한 가능하다. 다른 실시예에서, 허브는 간단히 오직 유전체 윈도우 (104) 와만 접촉되고 페러데이 차폐부 (108) 와는 접촉하지 않거나, 페러데이 차폐부 (108) 와만 접촉하고 유전체 윈도우 (104) 와는 접촉하지 않을 수 있다.
도 5aa은 본 발명의 일 실시예에 따른, 몇몇 냉각 조건들 또는 무냉각 하에서의 유전체 윈도우 (104) 에 의해서 관측되는 온도 구배들의 실례를 예시한다. 도 5aa에 도시된 유전체 윈도우는 오직 예시적인 설명을 위해서 유전체 윈도우의 단면의 반절을 나타낸다. 각 윈도우 (104) 의 좌측은 페러데이 차폐부 (108) 위에 배치되도록 구성되는 유전체 윈도우 (104) 의 대략 중앙 영역이다. 윈도우 (104) 세그먼트의 최우측 부분은 윈도우 (104) 의 외측 주변인 것으로 간주된다.
도 5ab에서, 비교 목적을 위해서, 허브 (202) 를 통한 공기 유동에 대한 다수의 유동 레이트 설정들이 도시된다. 예를 들어서, 허브 (202) 통하여 공기가 전혀 유동하지 않는 무냉각에서의 상태가 도시된다. 1 CFM 유동 레이트에 대한 실례가 도시되는데, 이러한 유동 레이트는 초기에는 중앙 영역에 가장 근접한 윈도우의 온도에 영향을 주며, 허브 (202) 를 통해서 공기가 유동함으로써 중앙 영역이 냉각됨에 따라서, 열은 윈도우 (104) 의 주변으로부터 멀어져서 중앙 영역으로 전도되며, 이로써 윈도우 (104) 의 온도가 떨어진다. 5 CFM 유동 레이트에 대한 실례가 도시되는데, 이러한 유동 레이트도 역시 초기에는 중앙 영역에 가장 근접한 윈도우의 온도에 영향을 주며, 허브 (202) 를 통해서 공기가 유동함으로써 중앙 영역이 냉각됨에 따라서, 열은 윈도우 (104) 의 주변으로부터 멀어져서 중앙 영역으로 전도되며, 이로써 윈도우 (104) 의 온도가 떨어진다. 또한, 10 CFM 유동 레이트에 대한 실례가 도시되는데, 이 유동 레이트가 실험에서 윈도우 (104) 의 열전도에 더 큰 영향을 준다.
열이 줄어드는 현상이 처음에 윈도우에 접촉하거나 또는 간단하게 페러데이 차폐부 (108) 에 접촉될 수 있는 허브 (202) 에 근접한 윈도우의 중앙 영역 근처에서 발생하였지만, 프로세싱 동안에는 결국에는 정상 상태가 발생할 것이다. 이러한 정상 상태는 선정된 CFM 레벨에서의 연속적인 공기유동이 설정되고 프로세싱이 일정 기간에 걸쳐서 진행됨에 따라서 발생하게 된다. 이러한 일정 기간에 걸친 프로세싱 동안에, 유전체 윈도우는 특정 CFM 레벨이 허브 (202) 를 통해서 연속하여서 가해지는 때에 예를 들어서 도시된 온도 분포가 정상 상태가 유지되도록 될 수 있다.
다른 실시예들에서, 공기유동이 허브 (202) 를 통해서 필요하는 경우에 제어기가 설정될 수 있다. 예를 들어서, 프로세싱이 정지되거나 진행되는 사이클 시간 동안에는 어떠한 공기유동도 선택되지 않을 수 있으며, 특정 프로세싱 조건들 동안에 공기유동이 특정 레이트로 재개되거나 증가되며 특정 설정 사항으로 유지된다. 이로써, 예를 들어서 매우 고온에서 저온으로의 천이들 또는 저온에서 매우 고온으로의 천이들과 같은, 설정된 온도 변화/차를 통한 사이클링이 윈도우에서 피해질 수 있다. 다른 실례들에서, 온도 차가 5도보다 크기 않거나 온도 차가 10도보다 크기 않거나 온도 차가 15도보다 크기 않거나 온도 차가 10도보다 크기 않거나 다른 임의의 설정 사항이 되게 시스템에 제어를 행할 수 있다. 달리 말하면, 공기유동이 허브 (202) 로 제공되는 타이밍을 제어함으로써, 챔버를 통해서 실행되는 특정 레시피들에 따라서 프로세스 동작들 동안에 온도 스윙폭을 감소시킬 수 있다.
온도 변화 스윙폭이 감소되면 웨이퍼를 마주보는 페러데이 차폐부 (108) 의 내측면 상에 퇴적된 폴리머가 벗겨져서 처리 중인 웨이퍼의 표면 상으로 퇴적되는 위험을 줄이거나 보장할 수 있다. 또한, 페러데이 차폐부의 온도가 증가하기만 해도 아노다이징된 코팅과 같은 페러데이 차폐부 코팅이 손상을 입을 수 있다. 이러한 코팅이 상승된 온도에서, 페러데이 차폐부가 이러한 상승된 온도, 예를 들어서 135 ℃ 보다 높은 온도에서 연장된 기간에 걸쳐서 유지되면, 벗겨지거나 박리될 수 있으며, 이러한 상승된 온도가 사용되면, 페러데이 차폐부의 수명은 감소될 수 있다. 페러데이 차폐부 (108) 의 온도를 몇몇 사전규정된 온도 차를 넘지 않게 어느 정도 일정하게 또는 어느 정도 제어된 온도 편차 내에서 유지하는 것은 페러데이 차폐부 (108) 에 부착된 폴리머 부산물들로부터의 재료가 다음 세정 동작이 수행되기 까지 계속 붙어 있게 할 수 있다고 사료된다.
도 5ba은 페러데이 차폐부 (108) 의 중앙 영역에 근접한 위치에서, 허브 (202) 와 열적으로 접촉하는 페러데이 차폐부 (108) 를 갖는 바의 온도 효과의 실례를 예시한다. 이 예시에서, 페러데이 차폐부 (108) 의 단면이 절반이 도시되며, 최좌측 부분은 중앙 영역에 가장 근접한 부분이며, 최우측 부분은 페러데이 차폐부 (108) 의 주변 영역에 근접한 부분이다. 예시된 바와 같이, 가장 위의 페러데이 차폐부 (108) 에는 어떠한 냉각도 제공되지 않는다. 어떠한 냉각도 제공되지 않은 무냉각은 허브 (202) 가 페러데이 차폐부 (108) 에 연결 또는 인터페이스되지 않거나 공기유동이 허브 (202) 에 제공되지 않는 것을 의미한다. 예를 들어서, 무냉각 상태의 페러데이 차폐부 (108) 의 중앙 영역은 약 140 ℃ 근처의 온도에 달한다. 약 10 CMF 공기유동이 허브 (202) 에 가해지면, 페러데이 차폐부 (108) 의 중앙 영역은 약 110 ℃의 보다 낮은 온도에 도달하는 것이 나타난다. 동일한 10 CFM에서, 중앙 영역은 약 130 ℃의 온도에 도달하는 것이 나타난다.
도 5bb에 도시된 그래프는 10 CFM, 5 CFM, 1 CFM 및 무냉각과 같은 상이한 유동 레이트들의 다양한 영향을 예시한다. 상술한 바와 같이, 페러데이 차폐부 (108) 와 물리적으로 접촉된 허브를 사용함으로써 또는 허브 내에 플레넘을 제공하고 이 플레넘을 통해서 중앙 영역 근처의 페러데이 차폐부 (108) 로 유체/공기를 유동시킴으로써, 페러데이 차폐부 (108) 의 중앙 영역의 온도는 저감될 것이라고 사료된다. 페러데이 차폐부 (108) 의 중앙 영역에서의 이러한 온도 감소는 허브가 공기유동을 제공하는 중앙 영역 근처의 영역보다 온도가 높은 페러데이 차폐부 (108) 영역들로부터의 열이 전도되게 할 수 있다. 실험을 통해서 확인된 바와 같이, 온도가 도 5ba에 도시된 페러데이 차폐부 세그먼트의 길이에 걸쳐서 여전히 차이가 날 것이지만, 상이한 공기 유동 레이트의 경우에 페러데이 차폐부 표면에 걸쳐서 존재하게 될 온도들을 근사화시킬 수 있다.
그럼에도 불구하고, 유동 레이트를 증가하면 페러데이 차폐부의 중앙 영역 근방의 온도가 떨어지고 이로써 중앙 영역과 주변 영역 간의 온도차가 줄어들 수 있음을 실험이 확인하여 준다. 예를 들어서, 도 5bb의 그래프는, 페러데이 차폐부 (108) 에 접촉하거나 열적으로 접촉하는 허브 (202) 에 대략 10 CFM 유동 레이트가 제공되는 때에, 중앙 영역과 주변 영역 간의 영역이 135 ℃보다 높은 온도에서 대략 130 ℃ 인 온도로 감소될 수 있음을 보이고 있다.
도 6a는 본 발명의 일 실시예에 따른, 페러데이 차폐부를 냉각하는 공기의 유동을 제공하기 위한 허브를 사용하는 플라즈마 챔버를 동작시키는데 사용될 수 있는 방법 동작들의 일 흐름을 예시한다. 동작 (302) 에서, 페러데이 차폐부를 갖는 챔버가 제공된다. 챔버는 반도체 웨이퍼들을 프로세싱하기 위해서, 특히 에칭 동작을 위해서 사용된다. 페러데이 차폐부가 챔버 내의 프로세싱 웨이퍼와 마주보는 구성으로 제공된다. 동작 (304) 에서, 플라즈마가 챔버 내에서 생성된다. 플라즈마는 제조 동안에 반도체 웨이퍼들 상의 특정 표면들을 에칭하기 위해서 구성 및 선택된 가스들을 사용하여서 생성된다. 이어서, 가스들이 RF 전력 전달 시스템들에 의해서 제공된 전력을 사용하여서 여기된다. 이어서, 가스들이 압력 하에서 TCP 코일에 의해서 제공된 RF 전력 또는 동작 동안에 웨이퍼가 안착되거나 배치되는 척에 제공된 전력과 같은 전력을 사용하여서 플라즈마로 변환된다.
동작 (306) 에서, 허브에 유동 플레넘이 제공되고 페러데이 차폐부의 중앙 영역과 인터페이스된다. 페러데이 차폐부와의 인터페이싱은 열 전도가 허브의 플레넘과 허브 또는 페러데이 차폐부와 열적으로 통하도록 허브를 통해서 공기 또는 유체의 유동을 가능하게 하는 채널들과 접촉하는 페러데이 차폐부의 표면 간에서 발생하도록 된다. 허브 및 허브의 플레넘에 제공된 공기의 유동은 이 공기의 유동이, 열이 페러데이 차폐부의 주변부로부터 페러데이 차폐부를 통해서, 허브에 가장 근접하면서 공기유동이 제공되는 페러데이 차폐부의 중앙 영역으로 전달 및 전도되게 함으로써, 열로 하여금 페러데이 차폐부의 중앙 영역으로부터 멀어지게 전도되게 할 수 있다.
동작 (310) 에서, 열이 페러데이 차폐부의 주변부로부터 페러데이 차폐부를 통해서 페러데이 차폐부의 중앙 영역으로 전도되도록, 허브로의 공기유동이 유지될 수 있다. 공기유동을 유지하는 것은 챔버의 제어기가 공기유동이 수행되는 타이밍을 설정함으로써 제어될 수 있으며 공기유동의 레벨은 레시피에 기초하여서 설정될 수 있다. 레시피는 웨이퍼들을 에칭하기 위해서 사용되는 프로세싱 레시피와 관련될 수 있다. 프로세싱 레시피는 중앙 영역에서 목표된 온도 및 페러데이 차폐부에 걸친 결과적인 온도 구배를 유지하도록 허브를 통해서 공기유동이 제공될 유동 레이트 및 공기유동이 제공될 기간들을 특정할 수 있다.
도 6b는 페러데이 차폐부를 공냉하는 허브를 사용하는 다른 실시예를 예시한다. 동작 (320) 에서, 주변부까지 연장된 중앙 영역을 갖는 페러데이 차폐부가 제공된다. 페러데이 차폐부가 플라즈마 에칭 챔버 내에 생성된 플라즈마에 노출되도록 페러데이 차폐부는 챔버 내에서 사용되게 구성된다. 동작 (322) 에서, 유동 플레넘을 갖는 허브가 제공된다. 허브는 인터페이스 표면을 통해서 페러데이 차폐부의 중앙 영역과 인터페이스하도록 구성된다. 동작 (324) 에서, 허브의 인터페이스 표면이 페러데이 차폐부 위에 상주할 수 있는 유전체 윈도우와 접촉하도록 구성될 수 있다. 허브를 유전체 윈도우와 접촉시키는 것은 선택적이다.
동작 (326) 에서, 허브 내로의 공기의 유동 레이트가 선택된다. 유동 레이트는 일정 기간 동안에 선택되거나 레시피에 기초하여서 선택되거나 동작 동안 사용자의 제어 시에 선택되거나 시간마다 조절될 수 있다. 보다 높은 유동 레이트는 중앙 영역 근방의 페러데이 차폐부의 온도를 저감시킬 수 있는 능력을 증가시킬 것이며 또한 주변부를 향하여 감소된 페러데이 차폐부의 온도에 영향을 준다.
동작 (328) 에서, 공기가 허브의 유동 플레넘으로 유입되며 이로써 공기가 페러데이 차폐부의 중앙 영역 및 선택적으로 유전체 윈도우와의 열 전도성 접촉을 제공하게 한다. 다시한번, 공기유동은 사전규정된 레시피에 기초하여서 관리 및 설정될 수 있다. 사전규정된 레시피는 하나 이상의 웨이퍼들에 대해서 사용되는 플라즈마 에칭 레시피로 조절되거나 이와 상관될 수 있다. 동작 (330) 에서, 공기의 유동 레이트는 페러데이 차폐부의 중앙 영역의 온도를 줄이도록 유지될 수 있다. 이는 열이 페러데이 차폐부의 주변부로부터 페러데이 차폐부를 통해서 페러데이 차폐부의 중앙 영역으로 전도되게 할 것이다.
상술한 바와 같이, 일 실시예는 내측 페러데이 차폐부를 냉각하기 위해서 압축된 건조 공기를 사용한다. 그러나, 반드시 압축된 건조 공기일 필요는 없이, 공기의 보다 높은 유동을 사용하면 보다 높은 공기유동을 허브 또는 구조체를 통해서 제공받는 페러데이 차폐부의 온도가 저감되는데 도움이 될 것이라고 사료된다. 따라서, 내측 페러데이 차폐부의 중앙 영역과 짝을 이루는 "중앙 공기 전달 허브"는 보다 높은 공기유동의 전달을 가능하게 하며 이로써 페러데이 차폐부의 온도를 저감시킬 수 있다. 이러한 허브를 통해서, 공기는 페러데이 차폐부와 접촉하게 되고 이로써 페러데이 차폐부의 냉각을 가능하게 한다. 공기 유동은 실제로 챔버 내로 가지 않으며 공기는 단지 허브를 순환하거나 허브를 통해서 페러데이 차폐부에 매우 근접하게 제공된다는 것이 주목되어야 한다.
허브 및 허브의 플레넘은 챔버 외부에서 상주하며 냉각을 지원하기 위해서 어떠한 공기유동도 챔버 내로 제공되지 않는다. 페러데이 차폐부로부터의 열 전달은 전도를 통해서 발생한다. 즉, 열이 페러데이 차폐부의 에지/중간으로부터 페러데이 차폐부 자체를 통해서 전도되도록 공기 유동이 페러데이 차폐부의 중앙부를 냉각시킨다. 공기유동은 페러데이 차폐부의 에지/중앙으로부터 전도를 통해서 열을 직접적으로 제거하지 않는다. 따라서, 보다 높은 공기유동은 열이 페러데이 차폐부를 통해서 이러한 공기유동이 제공되는 보다 저온의 중앙 영역을 향해서 전도되게 함으로써 보다 높은 열 전달 레이트를 제공하는 것을 지원한다.
몇몇 실시예들에서, 유체가 허브 (202) 로 제공되기 이전에 유체를 냉각시키도록 칠러 (chiller) 가 제공된다. 이로써, 칠러에 연결된 유체들은 유체 전달 제어부에 의해서 전달되기 이전에 온도가 저하된다. 칠러는 라인 또는 공급부로 저온을 전달하기 위한 유체 또는 가스를 유동시키거나 공급 라인을 냉각시키는 냉매 시스템을 포함할 수 있다. 칠러는 유체 전달 제어부 (210) 로 들어가거나 떠나는 공급 라인을 두르는 자킷 (jacket) 일 수 있다. 칠러는 -50 ℃ 이하의 온도로 공기를 냉각시킬 수 있다. 다른 실시예들에서, 칠러는 공기/유체를 어느점 (freezing) 바로 위까지 냉각시킬 수 있다.
그러나, 간단한 공기 유동 및 상온 20 ℃ (즉, 칠링 (chillig) 없음) 에서의 공기의 유동 레이트를 증가시키는 것도 허브를 사용하여서 페러데이 차폐부로부터의 열의 전도를 유발 또는 개시하는 기능을 할 것임이 이해되어야 한다.
본 발명이 몇몇 실시예들과 관련하여서 기술되었지만, 선행하는 명세서를 독해하고 도면을 연구하면 본 기술 분야의 당업자는 이들의 다양한 대안, 변경, 추가, 치환 및 균등 사항들을 실현할 수 있음이 이해될 것이다. 따라서, 본 발명은 본 발명의 진정한 사상 및 범위 내에 해당되는 모든 이러한 다양한 대안, 변경, 추가, 치환 및 균등 사항들을 포함하는 것으로 의도된다.

Claims (40)

  1. 프로세싱 공간 (volume) 내에 구성된 (defined) 기판 지지부 및 벽들을 갖는 챔버;
    프로세스 측 및 후방 측을 갖는 디스크 형상체를 갖는 페러데이 차폐부 (Faraday shield) 로서, 상기 디스크 형상체는 중앙 영역과 주변 영역 간에서 연장되며, 상기 페러데이 차폐부는 상기 프로세스 측이 상기 기판 지지부를 마주보도록 상기 프로세싱 공간 내에 구성되는, 상기 페러데이 차폐부;
    상기 페러데이 차폐부 위에 배치되는 유전체 윈도우로서, 상기 유전체 윈도우는 중앙 개구부를 갖는, 상기 유전체 윈도우;
    상기 유전체 윈도우 위에 배치된 코일들로서, 상기 코일들은 무선주파수 (RF) 전력을 공급하기 위한 것인, 상기 코일들;
    유입 도관으로부터 수용된 유체의 유동을 전달하고 유출 도관으로부터 상기 유체의 유동을 제거하기 위해 내측 플레넘 (plenum) 을 갖는 허브로서, 상기 허브는 측벽들 및 광학적 프로브 (optical probe) 를 위한 상기 측벽들 내부의 중앙 캐비티를 갖고, 상기 내측 플레넘은 상기 측벽들 내에 배치되고, 상기 허브는 상기 페러데이 차폐부의 상기 후방 측에 물리적으로 접촉하는 인터페이스 표면 (interface surface) 을 갖고, 상기 물리적 접촉은 상기 중앙 영역에서 상기 페러데이 차폐부에 열적 접속을 제공하고, 그리고 상기 허브의 상기 측벽들의 외측 표면이 상기 유전체 윈도우의 상기 중앙 개구부 내에 배치되고 상기 코일들은 상기 유전체 윈도우 위의 상기 허브의 상기 측벽들 둘레에 배향되고, 상기 허브의 상기 측벽들은 상기 중앙 개구부에 인접한 상기 유전체 윈도우의 영역에 열적 접속을 더 제공하는, 상기 허브;
    상기 허브의 상기 유입 도관에 연결된 유체 전달 제어부로서, 상기 유체 전달 제어부는 상기 허브의 상기 플레넘을 통한 상기 유체의 유동의 유동 레이트를 설정하기 위한 유동 레이트 조정기로 구성되는, 상기 유체 전달 제어부; 및
    상기 허브의 상기 플레넘으로부터 상기 유체의 유동을 제거하기 위해서 상기 유출 도관에 연결된 유체 제거 제어부를 포함하는, 플라즈마 프로세싱 장치.
  2. 제 1 항에 있어서,
    상기 코일들은 TCP (transformer coupled plasma) 코일들인, 플라즈마 프로세싱 장치.
  3. 제 1 항에 있어서,
    상기 허브의 상기 플레넘은 상기 유체의 유동이 상기 프로세싱 공간 외부에서 유지되도록, 상기 허브 내로의 그리고 외부로의 루프 (loop) 를 구성하는, 플라즈마 프로세싱 장치.
  4. 제 1 항에 있어서,
    상기 유체의 유동은 상기 페러데이 차폐부의 상기 중앙 영역에서의 저감된 온도를 제공하며,
    상기 중앙 영역에서의 상기 저감된 온도는 상기 페러데이 차폐부를 통한 상기 중앙 영역으로의 열의 전도성 유동을 유발하는, 플라즈마 프로세싱 장치.
  5. 제 4 항에 있어서,
    상기 허브의 상기 플레넘은 상기 유체의 유동이 상기 프로세싱 공간 외부에서 유지되도록, 상기 허브 내로의 그리고 외부로의 루프 (loop) 를 구성하는, 플라즈마 프로세싱 장치.
  6. 제 1 항에 있어서,
    상기 허브의 상기 인터페이스 표면이 상기 페러데이 차폐부의 상기 플레넘을 둘러싸도록, 상기 페러데이 차폐부의 상기 후방 측에서의 상기 중앙 영역은 상기 허브의 상기 플레넘과 짝을 이루는 (mating) 플레넘을 포함하며,
    상기 페러데이 차폐부의 상기 후방 측으로의 상기 열적 접속은 상기 인터페이스 표면에서 그리고 상기 허브를 통해서 전달되는 상기 유체의 유동을 통해서 이루어지는 (defined), 플라즈마 프로세싱 장치.
  7. 제 6 항에 있어서,
    상기 허브의 상기 플레넘 및 상기 페러데이 차폐부의 상기 플레넘은 상기 허브 내로 그리고 외부로의 루프를 구성하며,
    상기 유체의 유동은 상기 프로세싱 공간 외부에서 유지되는, 플라즈마 프로세싱 장치.
  8. 제 1 항에 있어서,
    상기 허브의 중앙 캐비티 (center cavity) 내에 구성된 가스 주입기를 더 포함하며,
    상기 가스 주입기는 프로세스 가스를 상기 프로세싱 공간 내로 제공하도록 구성되는, 플라즈마 프로세싱 장치.
  9. 제 1 항에 있어서,
    상기 광학적 프로브는 사용 동안에 상기 프로세싱 공간 내에서의 프로세스 상태들을 모니터링하도록 구성되는, 플라즈마 프로세싱 장치.
  10. 제 1 항에 있어서,
    상기 유체 전달 제어부는 공기, 가스, 액체, 또는 이들의 혼합으로부터 선택된 유체들을 전달하는, 플라즈마 프로세싱 장치.
  11. 제 1 항에 있어서,
    상기 유체는 상기 유체 전달 제어부에 의해서 전달되기 전에, 상기 유체의 온도를 낮추기 위해서 칠러 (chiller) 에 연결되는, 플라즈마 프로세싱 장치.
  12. 제 1 항에 있어서,
    상기 유체 전달 제어부에 연결된 압축된 건조 공기 (CDA) 소스를 더 포함하는, 플라즈마 프로세싱 장치.
  13. 제 1 항에 있어서,
    상기 유체 전달 제어부에 연결된 공기 공급부 및 공기 증폭기를 더 포함하는, 플라즈마 프로세싱 장치.
  14. 제 1 항에 있어서,
    상기 유체 전달 제어부의 상기 유동 레이트 조정기를 관리하기 위한 제어기를 더 포함하는, 플라즈마 프로세싱 장치.
  15. 제 14 항에 있어서,
    상기 제어기는 상기 유체 전달 제어부의 유동 레이트를 상기 플라즈마 프로세싱 장치에 의해서 실행될 프로세스 동작들과 상관시키는, 플라즈마 프로세싱 장치.
  16. 제 14 항에 있어서,
    상기 제어기는 상기 페러데이 차폐부의 상기 중앙 영역에서의 온도 저감율 (temperature reductions) 을 증가시키도록 유동 레이트를 증가시키거나 상기 페러데이 차폐부의 상기 중앙 영역에서의 온도 저감율을 감소시키도록 유동 레이트를 감소시키며,
    상기 중앙 영역에서의 온도 저감은 상기 페러데이 차폐부 내에서의, 상기 중앙 영역을 향하는 방향으로의 전도성 열 유동을 증가시키는, 플라즈마 프로세싱 장치.
  17. 페러데이 차폐부를 구성하는 디스크 구조체로서, 상기 디스크 구조체는 프로세스 측 및 후방 측을 가지며, 상기 디스크 구조체는 중앙 영역과 주변 영역 간에서 연장되며, 상기 디스크 구조체는 상기 프로세스 측이 플라즈마 프로세싱 장치의 프로세싱 공간 내의 기판 지지부를 마주보도록, 상기 프로세싱 공간 내에서 상주하도록 구성되는, 상기 디스크 구조체;
    상기 페러데이 차폐부 위에 배치되는 유전체 윈도우로서, 상기 유전체 윈도우는 중앙 개구부를 갖는, 상기 유전체 윈도우;
    상기 유전체 윈도우 위에 배치된 코일들로서, 상기 코일들은 무선주파수 (RF) 전력을 공급하기 위한 것인, 상기 코일들;
    유입 도관으로부터 수용된 공기의 유동을 전달하고 유출 도관으로부터 상기 공기의 유동을 제거하기 위해 내측 플레넘을 갖는 허브로서, 상기 허브는 상기 중앙 영역에서 상기 디스크 구조체의 상기 후방 측에 물리적으로 접촉하는 인터페이스 표면을 갖고, 상기 허브는 측벽들을 갖고, 상기 내측 플레넘은 상기 측벽들 내에 배치되고, 상기 허브의 상기 측벽들은 상기 유전체 윈도우의 상기 중앙 개구부 내에 피팅 (fit) 하고 상기 페러데이 차폐부의 상기 디스크 구조체의 상기 중앙 영역으로 연장하도록 구성되고, 상기 코일들은 상기 유전체 윈도우 위의 상기 허브의 상기 측벽들 둘레에 배향되고, 상기 허브의 상기 측벽들의 외측 표면은 상기 유전체 윈도우의 상기 중앙 개구부에 인접한 상기 유전체 윈도우의 영역에 열적 접속을 더 제공하는, 상기 허브;
    상기 허브의 상기 유입 도관에 연결된 유체 전달 제어부로서, 상기 유체 전달 제어부는 상기 허브의 상기 플레넘을 통한 상기 공기의 유동의 유동 레이트를 설정하기 위한 유동 레이트 조정기로 구성되는, 상기 유체 전달 제어부;
    상기 허브의 상기 플레넘으로부터 상기 공기의 유동을 제거하기 위해서 상기 유출 도관에 연결된 유체 제거 제어부; 및
    상기 공기의 유동의 유동 레이트를 설정하는 상기 유동 레이트 조정기를 관리하기 위한 제어기를 포함하며,
    상기 공기의 유동이 상기 프로세싱 공간으로부터 격리되도록 상기 허브의 상기 플레넘은 상기 허브 내로 그리고 외부로의 루프를 구성하는, 플라즈마 프로세싱 장치.
  18. 제 17 항에 있어서,
    상기 유체 전달 제어부에 연결된 압축된 건조 공기 (CDA) 소스를 더 포함하는, 플라즈마 프로세싱 장치.
  19. 제 17 항에 있어서,
    상기 유체 전달 제어부에 연결된 공기 공급부 및 공기 증폭기를 더 포함하는, 플라즈마 프로세싱 장치.
  20. 제 17 항에 있어서,
    상기 유체 전달 제어부에 의한 전달 전에 상기 공기의 온도를 조절하기 위한 칠러를 더 포함하는, 플라즈마 프로세싱 장치.
  21. 제 17 항에 있어서,
    상기 허브의 상기 인터페이스 표면은 상기 플레넘의 루프를 구획하는, 플라즈마 프로세싱 장치.
  22. 챔버의 기판 지지부 위에 포지셔닝된 (position) 페러데이 차폐부;
    상기 페러데이 차폐부 위에 배치되는 유전체 윈도우로서, 상기 유전체 윈도우는 중앙 개구부를 갖는, 상기 유전체 윈도우; 및
    유입 도관으로부터 수용된 유체의 유동을 전달하고 유출 도관으로부터 상기 유체의 유동을 제거하기 위해 내측 플레넘을 갖는 허브로서, 상기 허브는 측벽들 및 광학적 프로브를 위한 상기 측벽들 내부의 중앙 캐비티를 갖고, 상기 내측 플레넘은 상기 측벽들 내에 배치되고, 상기 허브는 상기 페러데이 차폐부의 후방 측에 물리적으로 접촉하는 인터페이스 표면을 갖고, 상기 물리적 접촉은 상기 중앙 개구부 둘레의 중앙 영역에서 상기 페러데이 차폐부에 열적 접속을 제공하고, 그리고 상기 허브의 상기 측벽들의 외측 표면이 상기 유전체 윈도우의 상기 중앙 개구부 내에 배치되는, 상기 허브를 포함하는, 챔버.
  23. 제 22 항에 있어서,
    상기 허브의 상기 내측 플레넘은 상기 인터페이스 표면으로 연장하고 상기 페러데이 차폐부의 상기 중앙 영역 내에 형성된 공기 유동 (airflow) 플레넘과 짝을 이루는, 챔버.
  24. 제 22 항에 있어서,
    상기 허브의 상기 측벽들의 상기 외측 표면은 상기 유전체 윈도우의 상기 중앙 개구부에 인접한 상기 유전체 윈도우의 영역과의 열적 접속을 제공하는, 챔버.
  25. 제 22 항에 있어서,
    상기 허브의 상기 플레넘은 유체의 유동이 프로세싱 공간의 외부에서 유지되도록, 상기 허브 내로의 그리고 외부로의 루프를 구성하는, 챔버.
  26. 제 22 항에 있어서,
    유체 유동은 상기 페러데이 차폐부의 상기 중앙 영역에서의 저감된 온도를 제공하며,
    상기 중앙 영역에서의 저감된 온도는 상기 페러데이 차폐부를 통한 상기 중앙 영역으로의 열의 전도성 유동을 유발하는, 챔버.
  27. 제 22 항에 있어서,
    상기 페러데이 차폐부는 챔버 측벽들에 연결된 외측 주변부를 갖는 디스크 형상체를 갖는, 챔버.
  28. 제 27 항에 있어서,
    상기 페러데이 차폐주의 상기 외측 주변부가 피내클 (pinnacle) 벽들의 상단 표면과 접촉하도록, 상기 챔버 측벽들은 챔버 바디 벽들 및 상기 챔버 바디 벽들에 연결된 상기 피내클 벽들을 포함하는, 챔버.
  29. 제 22 항에 있어서,
    상기 유전체 윈도우 위에 배치된, 무선 주파수 전력을 공급하기 위한 코일들로서, 상기 코일들은 상기 유전체 윈도우 위의 상기 허브의 상기 측벽들 둘레에 배향되는, 챔버.
  30. 제 22 항에 있어서,
    상기 허브의 상기 인터페이스 표면이 상기 페러데이 차폐부의 상기 플레넘을 둘러싸도록, 상기 페러데이 차폐부의 상기 중앙 영역은 상기 허브의 상기 내측 플레넘과 짝을 이루는 플레넘을 포함하며,
    상기 페러데이 차폐부의 상기 후방 측으로의 상기 열적 접속은 상기 인터페이스 표면에서 이루어지는, 챔버.
  31. 제 30 항에 있어서,
    상기 허브의 상기 내측 플레넘 및 상기 페러데이 차폐부의 상기 플레넘은 상기 허브 내로 그리고 외부로의 루프를 구성하며,
    상기 유체의 유동은 프로세싱 공간 외부에서 유지되는, 챔버.
  32. 제 22 항에 있어서,
    프로세스 가스를 프로세싱 공간 내로 제공하기 위해 상기 허브의 상기 중앙 캐비티 내에 구성된 가스 주입기를 더 포함하는, 챔버.
  33. 제 22 항에 있어서,
    상기 허브의 상기 유입 도관에 연결된 유체 전달 제어부로서, 상기 유체 전달 제어부는 상기 허브의 상기 플레넘을 통한 상기 유체의 유동의 유동 레이트를 설정하기 위한 유동 레이트 조정기로 구성되는, 상기 유체 전달 제어부; 및
    상기 허브의 상기 플레넘으로부터 상기 유체의 유동을 제거하기 위해서 상기 유출 도관에 연결된 유체 제거 제어부를 포함하는, 챔버.
  34. 제 22 항에 있어서,
    상기 광학적 프로브는 사용 동안에 상기 챔버의 프로세싱 공간 내에서의 프로세스 상태들을 모니터링하도록 구성되는, 챔버.
  35. 제 33 항에 있어서,
    상기 유체 전달 제어부는 공기, 가스, 액체, 또는 이들의 혼합으로부터 선택된 유체들을 전달하는, 챔버.
  36. 제 35 항에 있어서,
    상기 유체들은 상기 유체 전달 제어부에 의해서 전달되기 전에, 상기 유체들의 온도를 낮추기 위해서 칠러에 연결되는, 챔버.
  37. 플라즈마 챔버에서 사용하기 위한 장치에 있어서,
    플라즈마 챔버의 상단 영역에 접속하기 위한 페러데이 차폐부로서, 상기 페러데이 차폐부는 상기 플라즈마 챔버의 내측과 마주보는 프로세스 측을 갖고, 상기 페러데이 차폐부는 중앙 개구를 갖는, 상기 페러데이 차폐부;
    유입 도관으로부터 수용된 유체의 유동을 전달하고 유출 도관으로부터 상기 유체의 유동을 제거하기 위해 내측 플레넘을 갖는 허브로서, 상기 허브는 측벽들 및 광학적 프로브를 위한 상기 측벽들 내부의 중앙 캐비티를 갖고, 상기 내측 플레넘은 상기 측벽들 내에 배치되고, 상기 허브는 상기 페러데이 차폐부의 후방 측에 물리적으로 접촉하는 인터페이스 표면을 갖고, 상기 물리적 접촉은 상기 중앙 개구부 둘레의 중앙 영역에서 상기 페러데이 차폐부에 열적 접속을 제공하는, 상기 허브를 포함하고,
    상기 허브의 상기 인터페이스 표면이 상기 페러데이 차폐부의 상기 플레넘을 둘러싸도록 상기 페러데이 차폐부의 상기 중앙 영역은 상기 허브의 내측 플레넘과 짝을 이루는 플레넘을 포함하며, 상기 페러데이 차폐부의 상기 중앙 영역으로의 열적 접속은 상기 인터페이스 표면에서 이루어지는, 장치.
  38. 제 37 항에 있어서,
    상기 허브의 상기 플레넘 및 상기 페러데이 차폐부의 상기 플레넘은 상기 허브 내로 그리고 외부로의 루프를 구성하며,
    상기 유체의 유동은 상기 플라즈마 챔버의 프로세싱 공간 외부에서 유지되는, 장치.
  39. 제 37 항에 있어서,
    프로세스 가스를 프로세싱 공간 내로 제공하기 위해 상기 허브의 상기 중앙 캐비티 내에 구성된 가스 주입기를 더 포함하는, 장치.
  40. 제 37 항에 있어서,
    상기 페러데이 차폐부는 상기 플라즈마 챔버의 상기 상단 영역을 구성하는 챔버 측벽들에 연결되는 외측 주변부를 갖는 디스크 형상체를 갖고,
    상기 허브 및 상기 페러데이 차폐부는 상기 인터페이스 표면에서 함께 연뎔되는, 장치.
KR1020140090667A 2013-07-17 2014-07-17 공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들 KR102306397B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361847407P 2013-07-17 2013-07-17
US61/847,407 2013-07-17
US13/974,324 2013-08-23
US13/974,324 US9885493B2 (en) 2013-07-17 2013-08-23 Air cooled faraday shield and methods for using the same

Publications (2)

Publication Number Publication Date
KR20150009941A KR20150009941A (ko) 2015-01-27
KR102306397B1 true KR102306397B1 (ko) 2021-09-29

Family

ID=52342614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140090667A KR102306397B1 (ko) 2013-07-17 2014-07-17 공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들

Country Status (4)

Country Link
US (3) US9885493B2 (ko)
KR (1) KR102306397B1 (ko)
SG (1) SG10201404158RA (ko)
TW (1) TWI640728B (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249475B2 (en) 2014-04-01 2019-04-02 Applied Materials, Inc. Cooling mechanism utlized in a plasma reactor with enhanced temperature regulation
CN108024436A (zh) * 2016-11-01 2018-05-11 中微半导体设备(上海)有限公司 一种等离子体处理装置
US11749509B2 (en) * 2017-02-20 2023-09-05 Beijing E-Town Semiconductor Technology, Co., Ltd Temperature control using temperature control element coupled to faraday shield
US10410836B2 (en) * 2017-02-22 2019-09-10 Lam Research Corporation Systems and methods for tuning to reduce reflected power in multiple states
US11670490B2 (en) * 2017-09-29 2023-06-06 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit fabrication system with adjustable gas injector
US11521828B2 (en) 2017-10-09 2022-12-06 Applied Materials, Inc. Inductively coupled plasma source
US11538666B2 (en) * 2017-11-15 2022-12-27 Lam Research Corporation Multi-zone cooling of plasma heated window
KR102273084B1 (ko) * 2018-06-29 2021-07-06 주식회사 엘지화학 파라데이 상자를 이용한 플라즈마 식각 방법
CN110660707B (zh) * 2018-06-29 2022-06-14 台湾积体电路制造股份有限公司 电浆产生系统及温度调节方法
WO2021154590A1 (en) * 2020-01-31 2021-08-05 Lam Research Corporation Plenum assemblies for cooling transformer coupled plasma windows
KR102540773B1 (ko) * 2021-01-19 2023-06-12 피에스케이 주식회사 패러데이 실드 및 기판 처리 장치
JP2024506289A (ja) * 2021-02-10 2024-02-13 ラム リサーチ コーポレーション Tcp窓用のハイブリッド液体/空気冷却システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471728B1 (ko) 1996-04-12 2005-03-14 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마 처리장치
KR100695597B1 (ko) * 1999-07-12 2007-03-14 어플라이드 머티어리얼스, 인코포레이티드 안테나 및 유전체 윈도우 사이에 위치하는 차폐 전극을갖는 유도적으로 커플링된 플라즈마 프로세서 챔버

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169139A (ja) 1984-02-13 1985-09-02 Canon Inc 気相法装置
US4918031A (en) 1988-12-28 1990-04-17 American Telephone And Telegraph Company,At&T Bell Laboratories Processes depending on plasma generation using a helical resonator
US5433812A (en) 1993-01-19 1995-07-18 International Business Machines Corporation Apparatus for enhanced inductive coupling to plasmas with reduced sputter contamination
TW296534B (ko) 1993-12-17 1997-01-21 Tokyo Electron Co Ltd
US5540800A (en) 1994-06-23 1996-07-30 Applied Materials, Inc. Inductively coupled high density plasma reactor for plasma assisted materials processing
US5685942A (en) * 1994-12-05 1997-11-11 Tokyo Electron Limited Plasma processing apparatus and method
SG50732A1 (en) 1995-05-19 1998-07-20 Hitachi Ltd Method and apparatus for plasma processing apparatus
TW327236B (en) 1996-03-12 1998-02-21 Varian Associates Inductively coupled plasma reactor with faraday-sputter shield
US5669975A (en) 1996-03-27 1997-09-23 Sony Corporation Plasma producing method and apparatus including an inductively-coupled plasma source
US6280563B1 (en) 1997-12-31 2001-08-28 Lam Research Corporation Plasma device including a powered non-magnetic metal member between a plasma AC excitation source and the plasma
US6034345A (en) 1998-01-28 2000-03-07 Hot Tech Inc. Apparatus for repairing high temperature process vessels
JP2002516952A (ja) 1998-05-28 2002-06-11 シーメンス アクチエンゲゼルシヤフト 内燃機関に用いられる燃料噴射弁
US6390019B1 (en) * 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
US6523493B1 (en) 2000-08-01 2003-02-25 Tokyo Electron Limited Ring-shaped high-density plasma source and method
US6474258B2 (en) 1999-03-26 2002-11-05 Tokyo Electron Limited Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma
US6326597B1 (en) * 1999-04-15 2001-12-04 Applied Materials, Inc. Temperature control system for process chamber
JP3709552B2 (ja) 1999-09-03 2005-10-26 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
US6447636B1 (en) 2000-02-16 2002-09-10 Applied Materials, Inc. Plasma reactor with dynamic RF inductive and capacitive coupling control
US6367412B1 (en) 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
US6531030B1 (en) 2000-03-31 2003-03-11 Lam Research Corp. Inductively coupled plasma etching apparatus
US6422173B1 (en) 2000-06-30 2002-07-23 Lam Research Corporation Apparatus and methods for actively controlling RF peak-to-peak voltage in an inductively coupled plasma etching system
US6868800B2 (en) * 2001-09-28 2005-03-22 Tokyo Electron Limited Branching RF antennas and plasma processing apparatus
US20040194890A1 (en) 2001-09-28 2004-10-07 Tokyo Electron Limited Hybrid plasma processing apparatus
US6555745B1 (en) 2001-10-19 2003-04-29 Medtronic, Inc. Electrical interconnect between an articulating display and a PC based planar board
US6666982B2 (en) 2001-10-22 2003-12-23 Tokyo Electron Limited Protection of dielectric window in inductively coupled plasma generation
JP4741839B2 (ja) 2002-07-31 2011-08-10 ラム リサーチ コーポレーション 通電されたファラデーシールドにかかる電圧を調整するための方法
US7223321B1 (en) 2002-08-30 2007-05-29 Lam Research Corporation Faraday shield disposed within an inductively coupled plasma etching apparatus
TWI238680B (en) * 2002-09-30 2005-08-21 Tokyo Electron Ltd Plasma processing system and method
JP3935850B2 (ja) * 2003-01-31 2007-06-27 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20040163595A1 (en) 2003-02-26 2004-08-26 Manabu Edamura Plasma processing apparatus
US7426900B2 (en) 2003-11-19 2008-09-23 Tokyo Electron Limited Integrated electrostatic inductive coupling for plasma processing
US7273533B2 (en) 2003-11-19 2007-09-25 Tokyo Electron Limited Plasma processing system with locally-efficient inductive plasma coupling
US7771562B2 (en) 2003-11-19 2010-08-10 Tokyo Electron Limited Etch system with integrated inductive coupling
US7179663B2 (en) 2004-04-16 2007-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. CDA controller and method for stabilizing dome temperature
US7959984B2 (en) 2004-12-22 2011-06-14 Lam Research Corporation Methods and arrangement for the reduction of byproduct deposition in a plasma processing system
US7235492B2 (en) 2005-01-31 2007-06-26 Applied Materials, Inc. Low temperature etchant for treatment of silicon-containing surfaces
US7906032B2 (en) 2006-03-31 2011-03-15 Tokyo Electron Limited Method for conditioning a process chamber
US7829469B2 (en) 2006-12-11 2010-11-09 Tokyo Electron Limited Method and system for uniformity control in ballistic electron beam enhanced plasma processing system
KR101119627B1 (ko) * 2007-03-29 2012-03-07 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP2010176078A (ja) 2009-02-02 2010-08-12 Stanley Electric Co Ltd Lcdモジュールのledバックライト構造
JP5136574B2 (ja) 2009-05-01 2013-02-06 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
CN101777391A (zh) 2009-12-31 2010-07-14 中国科学院等离子体物理研究所 一种法拉第屏蔽氦冷却管结构
US20110204023A1 (en) 2010-02-22 2011-08-25 No-Hyun Huh Multi inductively coupled plasma reactor and method thereof
JP5656458B2 (ja) 2010-06-02 2015-01-21 株式会社日立ハイテクノロジーズ プラズマ処理装置
US9490106B2 (en) 2011-04-28 2016-11-08 Lam Research Corporation Internal Faraday shield having distributed chevron patterns and correlated positioning relative to external inner and outer TCP coil
CN202616187U (zh) 2012-05-15 2012-12-19 中微半导体设备(上海)有限公司 一种具有降温功能的法拉第屏蔽装置及等离子体处理设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471728B1 (ko) 1996-04-12 2005-03-14 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마 처리장치
KR100695597B1 (ko) * 1999-07-12 2007-03-14 어플라이드 머티어리얼스, 인코포레이티드 안테나 및 유전체 윈도우 사이에 위치하는 차폐 전극을갖는 유도적으로 커플링된 플라즈마 프로세서 챔버

Also Published As

Publication number Publication date
US20200318852A1 (en) 2020-10-08
TWI640728B (zh) 2018-11-11
KR20150009941A (ko) 2015-01-27
US20150020969A1 (en) 2015-01-22
US10690374B2 (en) 2020-06-23
US20180156489A1 (en) 2018-06-07
US9885493B2 (en) 2018-02-06
US11692732B2 (en) 2023-07-04
TW201516350A (zh) 2015-05-01
SG10201404158RA (en) 2015-02-27

Similar Documents

Publication Publication Date Title
KR102306397B1 (ko) 공냉식 페러데이 차폐부 및 이를 사용하기 위한 방법들
TWI523973B (zh) 應用於高溫操作之溫度控制噴灑頭
JP6594960B2 (ja) ペデスタルの流体による熱制御
KR101456894B1 (ko) 챔버로 가스를 방사상으로 전달하기 위한 장치 및 그 이용 방법들
TWI780597B (zh) 具有獨立隔離的加熱器區域的晶圓載體
JP6203476B2 (ja) 基板温度制御方法及びプラズマ処理装置
KR101039085B1 (ko) 플라즈마처리장치 및 플라즈마처리방법
WO2016085826A1 (en) Substrate carrier using a proportional thermal fluid delivery system
US10186444B2 (en) Gas flow for condensation reduction with a substrate processing chuck
US20120227955A1 (en) Substrate temperature control method and plasma processing apparatus
KR101744847B1 (ko) 플라즈마 처리 장치
JP2003243492A (ja) ウエハ処理装置とウエハステージ及びウエハ処理方法
JP2003243490A (ja) ウエハ処理装置とウエハステージ及びウエハ処理方法
CN104302084B (zh) 空气冷却的法拉第屏蔽罩和使用该屏蔽罩的方法
US11670513B2 (en) Apparatus and systems for substrate processing for lowering contact resistance
TW202141681A (zh) 載置台及基板處理裝置
JP2009283700A (ja) プラズマ処理装置
CN114341398A (zh) 温控吊灯型喷头
TWI805603B (zh) 內壁及基板處理裝置
US20180294197A1 (en) System design for in-line particle and contamination metrology for showerhead and electrode parts
TWI837396B (zh) 溫度調整裝置
US20210351021A1 (en) Methods and apparatus for processing a substrate
JP2005150173A (ja) 真空処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant