KR102107523B1 - Light Emitting Device Package - Google Patents

Light Emitting Device Package Download PDF

Info

Publication number
KR102107523B1
KR102107523B1 KR1020140010387A KR20140010387A KR102107523B1 KR 102107523 B1 KR102107523 B1 KR 102107523B1 KR 1020140010387 A KR1020140010387 A KR 1020140010387A KR 20140010387 A KR20140010387 A KR 20140010387A KR 102107523 B1 KR102107523 B1 KR 102107523B1
Authority
KR
South Korea
Prior art keywords
layer
nitride semiconductor
well
conductivity type
type nitride
Prior art date
Application number
KR1020140010387A
Other languages
Korean (ko)
Other versions
KR20150089587A (en
Inventor
김경훈
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020140010387A priority Critical patent/KR102107523B1/en
Publication of KR20150089587A publication Critical patent/KR20150089587A/en
Application granted granted Critical
Publication of KR102107523B1 publication Critical patent/KR102107523B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors

Abstract

실시 예의 발광 소자 패키지는, 서브 마운트와, 서브 마운트 위에 배치된 제1 도전형 질화물 반도체층과, 제1 도전형 질화물 반도체층 위에 배치되며, 복수의 우물층과 복수의 장벽층이 번갈아 배치된 다중 양자 우물 구조를 포함하는 활성층 및 활성층 위에 배치된 제2 도전형 질화물 반도체층을 포함하고, 복수의 우물층은 제1 도전형 질화물 반도체층과 인접하게 배치된 제1 우물층 및 제1 우물층과 제2 도전형 질화물 반도체층 사이에 배치된 복수의 제2 우물층을 포함하고, 제1 우물층의 제1 에너지 밴드갭은 복수의 제2 우물층의 제2 에너지 밴드갭보다 작다.The light emitting device package according to the embodiment includes a sub-mount, a first conductivity-type nitride semiconductor layer disposed on the sub-mount, a first conductivity-type nitride semiconductor layer, and a plurality of well layers and a plurality of barrier layers alternately arranged. An active layer including a quantum well structure and a second conductivity type nitride semiconductor layer disposed on the active layer, the plurality of well layers comprising a first well layer and a first well layer disposed adjacent to the first conductivity type nitride semiconductor layer It includes a plurality of second well layers disposed between the second conductivity type nitride semiconductor layers, and the first energy band gap of the first well layer is smaller than the second energy band gap of the plurality of second well layers.

Description

발광 소자 패키지{Light Emitting Device Package}Light Emitting Device Package

실시 예는 발광 소자 패키지에 관한 것이다.The embodiment relates to a light emitting device package.

발광 다이오드(LED:Light Emitting Diode)는 화합물 반도체의 특성을 이용하여 전기를 적외선 또는 빛으로 변환시켜서 신호를 주고 받거나, 광원으로 사용되는 반도체 소자의 일종이다.A light emitting diode (LED) is a type of semiconductor device used as a light source or a signal by converting electricity into infrared rays or light using characteristics of a compound semiconductor.

Ⅲ-Ⅴ족 질화물 반도체(group Ⅲ-Ⅴ nitride semiconductor)는 물리적 및 화학적 특성으로 인해 발광 다이오드(LED) 또는 레이저 다이오드(LD:Laser Diode) 등 발광소자의 핵심 소재로 각광을 받고 있다.Group III-V nitride semiconductors are spotlighted as core materials for light emitting devices such as light emitting diodes (LEDs) or laser diodes (LDs) due to their physical and chemical properties.

이러한 발광 다이오드는 백열등과 형광등 등의 기존 조명기구에 사용되는 수은(Hg)과 같은 환경 유해물질이 포함되어 있지 않아 우수한 친환경성을 가지며, 긴 수명과 저전력 소비특성 등과 같은 장점이 있기 때문에 기존의 광원들을 대체하고 있다. 이에, 발광 다이오드의 광 추출 효율을 개선하기 위한 노력들이 다양하게 시도되고 있다.These light emitting diodes do not contain environmentally harmful substances such as mercury (Hg) used in existing lighting fixtures such as incandescent and fluorescent lamps, and thus have excellent eco-friendliness, and have advantages such as long life and low power consumption characteristics. Is replacing them. Accordingly, various efforts have been made to improve the light extraction efficiency of the light emitting diode.

실시 예는 광 추출 효율이 개선된 발광 소자 패키지를 제공한다.The embodiment provides a light emitting device package with improved light extraction efficiency.

실시 예의 발광 소자 패키지는 서브 마운트; 상기 서브 마운트 위에 배치된 제1 도전형 질화물 반도체층; 상기 제1 도전형 질화물 반도체층 위에 배치되며, 복수의 우물층과 복수의 장벽층이 번갈아 배치된 다중 양자 우물 구조를 포함하는 활성층; 및 상기 활성층 위에 배치된 제2 도전형 질화물 반도체층을 포함하고, 상기 복수의 우물층은 상기 제1 도전형 질화물 반도체층과 인접하게 배치된 제1 우물층; 및 상기 제1 우물층과 상기 제2 도전형 질화물 반도체층 사이에 배치된 복수의 제2 우물층을 포함하고, 상기 제1 우물층의 제1 에너지 밴드갭은 상기 복수의 제2 우물층의 제2 에너지 밴드갭보다 작을 수 있다.The light emitting device package of the embodiment includes a sub-mount; A first conductivity type nitride semiconductor layer disposed on the sub-mount; An active layer disposed on the first conductive type nitride semiconductor layer and including a multi-quantum well structure in which a plurality of well layers and a plurality of barrier layers are alternately arranged; And a second conductivity type nitride semiconductor layer disposed on the active layer, the plurality of well layers comprising: a first well layer disposed adjacent to the first conductivity type nitride semiconductor layer; And a plurality of second well layers disposed between the first well layer and the second conductivity type nitride semiconductor layer, wherein the first energy band gap of the first well layer is the first of the plurality of second well layers. 2 may be smaller than the energy band gap.

상기 복수의 제2 우물층의 상기 제2 에너지 밴드갭은 서로 동일할 수 있다. The second energy band gaps of the plurality of second well layers may be identical to each other.

상기 복수의 제2 우물층의 Al 조성은 상기 제1 우물층의 Al의 조성보다 클 수 있다.The Al composition of the plurality of second well layers may be greater than that of Al of the first well layer.

상기 제1 우물층의 제1 두께는 상기 복수의 제2 우물층의 제2 두께보다 클 수 있다. 상기 복수의 제2 우물층의 두께는 서로 동일할 수 있다. 상기 제1 두께와 상기 제2 두께 간의 차는 3 Å이상일 수 있다.The first thickness of the first well layer may be greater than the second thickness of the plurality of second well layers. The plurality of second well layers may have the same thickness. The difference between the first thickness and the second thickness may be 3 Å or more.

상기 제1 도전형은 p형이고, 상기 제2 도전형은 n형일 수 있다. 상기 활성층에서 방출되는 광의 파장 대역은 100 ㎚ 내지 400 ㎚ 예를 들어, 100 ㎚ 내지 280 ㎚일 수 있다.The first conductivity type may be p-type, and the second conductivity type may be n-type. The wavelength band of light emitted from the active layer may be 100 nm to 400 nm, for example, 100 nm to 280 nm.

상기 발광 소자 패키지는 서브 마운트; 상기 서브 마운트 위에 수평 방향으로 서로 이격되어 배치된 제1 및 제2 금속층; 상기 제1 및 제2 금속층 위에 각각 배치된 제1 및 제2 범프부; 상기 제1 범프부와 상기 제1 도전형 질화물 반도체층 사이에 배치된 제1 전극; 상기 제1 도전형 질화물 반도체층과 상기 활성층과 상기 제2 도전형 질화물 반도체층을 메사 식각하여 노출된 상기 제2 도전형 질화물 반도체층과 상기 제2 범프부 사이에 배치된 제2 전극; 및 상기 제2 도전형 질화물 반도체층 위에 배치된 기판을 더 포함할 수 있다.The light emitting device package includes a sub-mount; First and second metal layers spaced apart from each other in a horizontal direction on the sub-mount; First and second bump portions respectively disposed on the first and second metal layers; A first electrode disposed between the first bump portion and the first conductivity type nitride semiconductor layer; A second electrode disposed between the first conductive type nitride semiconductor layer and the second conductive type nitride semiconductor layer and the second bump portion exposed by mesa etching the active layer and the second conductive type nitride semiconductor layer; And a substrate disposed on the second conductivity type nitride semiconductor layer.

상기 제1 도전형 질화물 반도체층은 상기 제1 전극과 상기 활성층 사이에 배치된 제1 도전형 GaN층; 및 상기 제1 도전형 GaN층과 상기 활성층 사이에 배치된 제1 도전형 AlGaN층을 포함하고, 상기 제2 도전형 질화물 반도체층은 제2 도전형 AlGaN층을 포함할 수 있다.The first conductivity type nitride semiconductor layer may include a first conductivity type GaN layer disposed between the first electrode and the active layer; And a first conductivity type AlGaN layer disposed between the first conductivity type GaN layer and the active layer, and the second conductivity type nitride semiconductor layer may include a second conductivity type AlGaN layer.

실시 예에 따른 발광 소자 패키지는 활성층에 배치된 복수의 우물층 중에서 발광에 기여하지 않거나 발광에 기여도가 적은 우물층의 에너지 레벨 및 두께를 튜닝하여 광 추출 효율을 향상시킬 수 있다.The light emitting device package according to the embodiment may improve light extraction efficiency by tuning the energy level and thickness of a well layer that does not contribute to light emission or has little contribution to light emission among a plurality of well layers disposed in the active layer.

도 1은 실시 예에 의한 발광 소자 패키지의 단면도를 나타낸다.
도 2는 도 1에 도시된 활성층의 일 실시 예에 의한 에너지 밴드 다이어그램을 나타낸다.
도 3은 도 1에 도시된 활성층의 다른 실시 예에 의한 에너지 밴드 다이어그램을 나타낸다.
도 4는 도 1에 도시된 발광 소자 패키지의 활성층과 비교되는 활성층의 에너지 밴드 다이어그램을 나타낸다.
도 5는 파장별 방출 광의 세기를 나타내는 그래프이다.
도 6은 실시 예와 비교 례의 광 세기를 나타내는 그래프이다.
도 7a 내지 도 7f는 실시 예에 따른 발광 소자 패키지의 제조 방법을 설명하기 위한 공정 단면도이다.
도 8은 실시예에 의한 공기 살균 장치의 사시도를 나타낸다.
도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 헤드 램프를 나타낸다.
도 10은 실시 예에 따른 발광 소자 칩 또는 발광 소자 패키지를 포함하는 조명 장치를 나타낸다.
1 is a sectional view showing a light emitting device package according to an embodiment.
2 shows an energy band diagram according to an embodiment of the active layer shown in FIG. 1.
3 shows an energy band diagram according to another embodiment of the active layer shown in FIG. 1.
4 shows an energy band diagram of the active layer compared to the active layer of the light emitting device package shown in FIG. 1.
5 is a graph showing the intensity of emitted light for each wavelength.
6 is a graph showing the light intensity of Examples and Comparative Examples.
7A to 7F are process cross-sectional views illustrating a method of manufacturing a light emitting device package according to an embodiment.
8 shows a perspective view of an air sterilization apparatus according to an embodiment.
9 shows a head lamp including a light emitting device package according to an embodiment.
10 shows a lighting device including a light emitting device chip or a light emitting device package according to an embodiment.

이하, 본 발명을 구체적으로 설명하기 위해 실시 예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, examples will be described to specifically describe the present invention, and the present invention will be described in detail with reference to the accompanying drawings to help understand the invention. However, the embodiments according to the present invention may be modified in various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 실시 예의 설명에 있어서, 각 구성요소(element)의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 구성요소(element)가 서로 직접(directly)접촉되거나 하나 이상의 다른 구성요소(element)가 상기 두 구성요소(element) 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다.In the description of this embodiment, when described as being formed on "on (up) or down (down)" (on or under) of each element (element), the top (top) or bottom (bottom) ( on or under includes both two elements directly contacting each other or one or more other elements being formed indirectly between the two elements.

또한 "상(위)" 또는 "하(아래)(on or under)"로 표현되는 경우 하나의 구성요소(element)를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when expressed as "up (up)" or "down (down) (on or under)", it may include the meaning of the downward direction as well as the upward direction based on one element.

또한, 이하에서 이용되는 "제1" 및 "제2," "상부" 및 "하부" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.In addition, relational terms, such as “first” and “second,” “upper” and “lower”, as used below, do not necessarily imply or imply any physical or logical relationship or order between such entities or elements. Thus, it may be used only to distinguish one entity or element from another entity or element.

도 1은 실시 예에 의한 발광 소자 패키지(100)의 단면도를 나타낸다.1 is a sectional view showing a light emitting device package 100 according to an embodiment.

도 1에 예시된 발광 소자 패키지(100)는 서브 마운트(110), 보호층(112), 제1 및 제2 금속층(114A, 114B), 제1 및 제2 범프부(116A, 116B), 제1 및 제2 전극(118A, 118B), 발광 구조물(120), 기판(130) 및 버퍼층(132)을 포함한다.The light emitting device package 100 illustrated in FIG. 1 includes a sub-mount 110, a protective layer 112, first and second metal layers 114A, 114B, first and second bump portions 116A, 116B, and It includes first and second electrodes 118A and 118B, a light emitting structure 120, a substrate 130, and a buffer layer 132.

발광 소자 패키지(100)는 복수의 화합물 반도체층, 예컨대, Ⅲ-Ⅴ족 원소의 화합물 반도체층을 이용한 LED를 포함하며, LED는 청색, 녹색, 또는 적색 등과 같은 광을 방출하는 유색 LED, 자외선(UV:UltraViolet) LED, 심자외선 LED 또는 무분극 LED일 수 있다. LED의 방출 광은 다양한 반도체를 이용하여 구현될 수 있으며, 이에 대해 한정하지는 않는다. 이때, LED에서 방출된 광은 Y축 방향으로 출사될 수 있다.The light emitting device package 100 includes a plurality of compound semiconductor layers, for example, LEDs using a compound semiconductor layer of a group III-V element, and the LEDs are colored LEDs, ultraviolet rays (UV) that emit light such as blue, green, or red ( UV: UltraViolet) LED, deep ultraviolet LED or non-polarized LED. The emitted light of the LED may be implemented using various semiconductors, but is not limited thereto. At this time, the light emitted from the LED may be emitted in the Y-axis direction.

도 1에 예시된 플립 본딩(flip bonding) 구조를 갖는 발광 소자 패키지(100)의 발광 구조물(120)은 제1 및 제2 전극(118A, 118B)을 통해 플립 본딩 방식으로 서브 마운트(110) 상에 위치한 제1 및 제2 금속층(114A, 114B)에 각각 본딩된다. 즉, 제1 전극(118A)은 제1 범프부(116A)를 통해 서브 마운트(110) 상의 제1 금속층(114A)에 연결되며, 제2 전극(118B)은 제2 범프부(116B)를 통해 서브 마운트(110) 상의 제2 금속층(114B)에 연결된다.The light emitting structure 120 of the light emitting device package 100 having the flip bonding structure illustrated in FIG. 1 is mounted on the submount 110 by flip bonding through the first and second electrodes 118A and 118B. It is bonded to the first and second metal layers 114A and 114B, respectively. That is, the first electrode 118A is connected to the first metal layer 114A on the submount 110 through the first bump portion 116A, and the second electrode 118B is through the second bump portion 116B. It is connected to the second metal layer 114B on the submount 110.

예를 들어, 서브 마운트(110)는 AlN, BN, 탄화규소(SiC), GaN, GaAs, Si 등의 반도체 기판으로 이루어질 수 있으며, 이에 국한되지 않고 열적 특성을 갖는 반도체 물질로 이루어질 수도 있다.For example, the sub-mount 110 may be formed of a semiconductor substrate such as AlN, BN, silicon carbide (SiC), GaN, GaAs, Si, but may also be made of a semiconductor material having thermal characteristics.

제1 및 제2 금속층(114A, 114B)은 서브 마운트(110) 위에 수평 방향으로 서로 이격되어 배치된다.The first and second metal layers 114A and 114B are spaced apart from each other in the horizontal direction on the submount 110.

만일, 서브 마운트(110)가 Si으로 이루어지는 경우, 도 1에 예시된 바와 같이 제1 및 제2 금속층(114A, 114B)과 서브 마운트(110) 사이에 보호층(112)이 더 배치될 수도 있다. 여기서, 보호층(112)은 절연 물질로 이루어질 수 있다.If the sub-mount 110 is made of Si, a protective layer 112 may be further disposed between the first and second metal layers 114A and 114B and the sub-mount 110 as illustrated in FIG. 1. . Here, the protective layer 112 may be made of an insulating material.

제1 범프부(116A)는 제1 금속층(114A)과 제1 전극(118A) 사이에 배치되고, 제2 범프부(116B)는 제2 금속층(114B)과 제2 전극(118B) 사이에 배치된다.The first bump portion 116A is disposed between the first metal layer 114A and the first electrode 118A, and the second bump portion 116B is disposed between the second metal layer 114B and the second electrode 118B. do.

제1 전극(118A)은 제1 범프부(116A)와 제1 도전형 질화물 반도체층(122) 사이에 배치된다. 제1 전극(118A)은 활성층(124)과 평행하게 연장되며, 제1 도전형 질화물 반도체층(122) 하부에 배치된다. 제1 전극(118A)은 활성층(124)의 에너지 밴드갭보다 더 큰 에너지 밴드갭을 갖는다. 왜냐하면, 제1 전극(118A)의 에너지 밴드갭이 활성층(124)의 에너지 밴드갭보다 크지 않을 경우, 활성층(124)에서 방출된 광이 제1 전극(118A)을 투과하거나 반사하지 않고 흡수되어 버릴 수 있기 때문이다.The first electrode 118A is disposed between the first bump portion 116A and the first conductivity type nitride semiconductor layer 122. The first electrode 118A extends parallel to the active layer 124 and is disposed under the first conductivity type nitride semiconductor layer 122. The first electrode 118A has an energy band gap larger than that of the active layer 124. Because, when the energy band gap of the first electrode 118A is not greater than the energy band gap of the active layer 124, light emitted from the active layer 124 may be absorbed without being transmitted or reflected through the first electrode 118A. Because it can.

제1 전극(118A)은 예를 들어 AlN 및 BN 중 적어도 하나를 포함할 수 있지만 이에 국한되지 않는다. 즉, 활성층(124)에서 방출된 광을 흡수하지 않고 반사시키거나 투과시킬 수 있고, 제1 도전형 질화물 반도체층(122) 상에 양질로 성장될 수 있는 어느 물질이든지 제1 전극(118A)을 형성할 수 있다.The first electrode 118A may include, but is not limited to, at least one of AlN and BN, for example. That is, the first electrode 118A is any material that can reflect or transmit light emitted from the active layer 124 without absorbing it, and can be grown with good quality on the first conductivity type nitride semiconductor layer 122. Can form.

또한, 제1 전극(118A)은 오믹 접촉하는 물질을 포함하여 오믹 역할을 수행하여 별도의 오믹층(미도시)이 배치될 필요가 없을 수도 있고, 별도의 오믹층(미도시)이 제1 전극(118A)의 상부에 형성될 수도 있다.In addition, the first electrode 118A may include an ohmic-contacting material to perform an ohmic role, so that a separate ohmic layer (not shown) may not need to be disposed, and a separate ohmic layer (not shown) is the first electrode. It may be formed on top of (118A).

제2 전극(118B)은 제1 도전형 질화물 반도체층(122)과 활성층(124)과 제2 도전형 질화물 반도체층(126)을 메사 식각(Mesa etching)하여 노출된 제2 도전형 질화물 반도체층(126)과 제2 범프부(116B) 사이에 배치된다.The second electrode 118B is a second conductive type nitride semiconductor layer exposed by mesa etching the first conductive type nitride semiconductor layer 122, the active layer 124, and the second conductive type nitride semiconductor layer 126 It is disposed between 126 and the second bump portion 116B.

제2 전극(118B)은 금속으로 형성될 수 있으며, 예를 들어, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 이루어질 수 있다. 또는 제2 전극(118B)은 투명 전도성 산화막(TCO:Tranparent Conductive Oxide)일 수도 있다. 예를 들어, 제2 전극(118B)은 전술한 금속 물질과 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있으며, 이러한 재료로 한정하지는 않는다. 제2 전극(118B)은 제2 도전형 질화물 반도체층(126)과 오믹 접촉하는 물질을 포함할 수 있다.The second electrode 118B may be formed of a metal, for example, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and optional combinations thereof. have. Alternatively, the second electrode 118B may be a transparent conductive oxide (TCO). For example, the second electrode 118B includes the aforementioned metal material and indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAO), indium gallium (IGZO) zinc oxide), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), IrOx, RuOx, RuOx / ITO, Ni / IrOx / Au, and Ni / IrOx / Au / ITO may be included, and the material is not limited thereto. The second electrode 118B may include a material in ohmic contact with the second conductivity type nitride semiconductor layer 126.

제2 전극(118B)은 오믹 특성을 갖는 반사 전극 재료로 단층 또는 다층으로 형성될 수 있다. 만일, 제2 전극(118B)이 오믹 역할을 수행할 경우, 별도의 오믹층(미도시)은 형성되지 않을 수 있다.The second electrode 118B may be formed of a single layer or multiple layers of a reflective electrode material having ohmic characteristics. If the second electrode 118B serves as an ohmic, a separate ohmic layer (not shown) may not be formed.

비록 도시되지는 않았지만, 제1 전극(118A)과 제1 범프부(116A) 사이에 제1 상부 범프 금속층(미도시)이 더 배치되고, 제1 금속층(114A)과 제1 범프부(116A) 사이에 제1 하부 범프 금속층(미도시)이 더 배치될 수도 있다. 여기서, 제1 상부 범프 금속층과 제1 하부 범프 금속층은 제1 범프부(116A)가 위치할 자리를 표시하는 역할을 수행한다. 이와 비슷하게 제2 전극(118B)과 제2 범프부(116B) 사이에 제2 상부 범프 금속층(미도시)이 더 배치되고, 제2 금속층(114B)과 제2 범프부(116B) 사이에 제2 하부 범프 금속층(미도시)이 더 배치될 수도 있다. 여기서, 제2 상부 범프 금속층과 제2 하부 범프 금속층은 제2 범프부(116B)가 위치할 자리를 표시하는 역할을 수행한다.Although not shown, a first upper bump metal layer (not shown) is further disposed between the first electrode 118A and the first bump portion 116A, and the first metal layer 114A and the first bump portion 116A are disposed. A first lower bump metal layer (not shown) may be further disposed therebetween. Here, the first upper bump metal layer and the first lower bump metal layer serve to indicate a position where the first bump part 116A is to be located. Similarly, a second upper bump metal layer (not shown) is further disposed between the second electrode 118B and the second bump portion 116B, and the second upper bump metal layer (not shown) is disposed between the second metal layer 114B and the second bump portion 116B. A lower bump metal layer (not shown) may be further disposed. Here, the second upper bump metal layer and the second lower bump metal layer serve to indicate a position where the second bump part 116B will be located.

전술한 제1 및 제2 금속층(114A, 114B), 보호층(112) 및 서브 마운트(110)는 실시 예의 이해를 돕기 위한 례에 불과하며, 다음 상술되는 본 실시 예는 이에 국한되지 않는다.The above-described first and second metal layers 114A and 114B, the protective layer 112 and the sub-mount 110 are only examples to help understanding of the exemplary embodiment, and the exemplary embodiment described below is not limited thereto.

발광 구조물(120)은 버퍼층(132)의 하부에 배치된다. 발광 구조물(120)은 제1 도전형 질화물 반도체층(122), 활성층(124) 및 제2 도전형 질화물 반도체층(126)이 순차로 적층된 형태일 수 있다.The light emitting structure 120 is disposed under the buffer layer 132. The light emitting structure 120 may have a form in which the first conductivity type nitride semiconductor layer 122, the active layer 124, and the second conductivity type nitride semiconductor layer 126 are sequentially stacked.

제1 도전형 질화물 반도체층(122)은 활성층(124)의 아래에 배치되며, 반도체 화합물로 형성될 수 있다. 제1 도전형 질화물 반도체층(122)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다. 예를 들어, 제1 도전형 질화물 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 형성될 수 있다. 제1 도전형 질화물 반도체층(122)이 p형 반도체층인 경우, 제1 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트일 수 있다. 제1 도전형 질화물 반도체층(122)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.The first conductivity type nitride semiconductor layer 122 is disposed under the active layer 124 and may be formed of a semiconductor compound. The first conductivity type nitride semiconductor layer 122 may be implemented with a compound semiconductor such as a III-V group or a II-VI group, and the first conductivity type dopant may be doped. For example, the first conductivity type nitride semiconductor layer 122 has a composition formula of Al x In y Ga (1-xy) N (0≤x≤1, 0≤y≤1, 0≤x + y≤1). It can be formed of a semiconductor material. When the first conductivity type nitride semiconductor layer 122 is a p-type semiconductor layer, the first conductivity type dopant may be a p-type dopant such as Mg, Zn, Ca, Sr or Ba. The first conductivity type nitride semiconductor layer 122 may be formed of a single layer or multiple layers, but is not limited thereto.

제2 도전형 질화물 반도체층(126)은 활성층(124)과 기판(130) 사이에 배치될 수 있다. 제2 도전형 질화물 반도체층(126)은 반도체 화합물로 형성될 수 있다. 제2 도전형 질화물 반도체층(126)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 예컨대, 제2 도전형 질화물 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 형성될 수 있다. 제2 도전형 질화물 반도체층(126)이 n형 반도체층인 경우, 제2 도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다. 제2 도전형 질화물 반도체층(126)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.The second conductivity type nitride semiconductor layer 126 may be disposed between the active layer 124 and the substrate 130. The second conductivity type nitride semiconductor layer 126 may be formed of a semiconductor compound. The second conductivity type nitride semiconductor layer 126 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and a second conductivity type dopant may be doped. For example, the second conductivity type nitride semiconductor layer 126 is a semiconductor having a composition formula of In x Al y Ga 1 -x- y N (0≤x≤1, 0≤y≤1, 0≤x + y≤1) It can be formed of materials. When the second conductivity type nitride semiconductor layer 126 is an n-type semiconductor layer, the second conductivity type dopant may include an n-type dopant such as Si, Ge, Sn, Se, or Te. The second conductivity type nitride semiconductor layer 126 may be formed as a single layer or multiple layers, but is not limited thereto.

만일, 도 1에 예시된 발광 소자 패키지(100)가 자외선(UV), 심자외선(Deep UV) 또는 무분극 발광 소자 패키지일 경우, 제1 도전형 질화물 반도체층(122)은 GaN, InAlGaN 및 AlGaN 중 적어도 하나를 포함할 수 있다. 제1 도전형 질화물 반도체층(122)이 AlGaN으로 이루어질 경우 Al의 함량은 50 %일 수 있다.If the light emitting device package 100 illustrated in FIG. 1 is an ultraviolet (UV), deep ultraviolet or deep polarization light emitting device package, the first conductivity type nitride semiconductor layer 122 is GaN, InAlGaN and AlGaN It may include at least one of. When the first conductivity type nitride semiconductor layer 122 is made of AlGaN, the Al content may be 50%.

또한, 제1 도전형 질화물 반도체층(122)은 제1 도전형 GaN층(122-1) 및 제1 도전형 AlGaN층(122-2)을 포함할 수 있다. 제1 도전형 GaN층(122-1)은 제1 전극(118A)과 활성층(124) 사이에 배치되고, 제1 도전형 AlGaN층(122-2)은 제1 도전형 GaN층(122-1)과 활성층(124) 사이에 배치된다.Further, the first conductivity type nitride semiconductor layer 122 may include a first conductivity type GaN layer 122-1 and a first conductivity type AlGaN layer 122-2. The first conductivity type GaN layer 122-1 is disposed between the first electrode 118A and the active layer 124, and the first conductivity type AlGaN layer 122-2 is the first conductivity type GaN layer 122-1. ) And the active layer 124.

활성층(124)으로부터 100 ㎚ 내지 400 ㎚ 예를 들어 100 ㎚ 내지 280 ㎚의 파장 대역을 갖는 자외선 광이 방출될 경우, 제1 도전형 질화물 반도체층(122)이 GaN으로만 구현된다면, 활성층(124)에서 방출된 광은 제1 도전형 질화물 반도체층(122)에 흡수되어 광 추출 효율이 저하될 수 있다. 이를 방지하기 위해, 제1 도전형 질화물 반도체층(122)이 AlGaN으로만 구현될 경우, 제1 도전형 질화물 반도체층(122)의 높은 저항으로 인해, 제1 전극(118A)으로부터 활성층(124)으로의 캐리어 공급이 원활하지 않을 수 있다. 따라서, 발광 소자 패키지(100)의 경우, 광학적 특성을 개선하기 위해 제1 도전형 AlGaN층(122-2)을 포함하고, 전기적 특성을 개선하기 위해 제1 도전형 GaN층(122-1)을 포함하지만, 실시 예는 이러한 제1 도전형 질화물 반도체층(122)의 구조에 국한되지 않는다.When ultraviolet light having a wavelength band of 100 nm to 400 nm, for example, 100 nm to 280 nm, is emitted from the active layer 124, if the first conductivity type nitride semiconductor layer 122 is implemented only with GaN, the active layer 124 ) Is absorbed by the first conductivity type nitride semiconductor layer 122, the light extraction efficiency may be lowered. To prevent this, when the first conductivity type nitride semiconductor layer 122 is implemented only with AlGaN, due to the high resistance of the first conductivity type nitride semiconductor layer 122, the active layer 124 from the first electrode 118A The carrier supply to the may not be smooth. Therefore, in the case of the light emitting device package 100, the first conductivity type AlGaN layer 122-2 is included to improve optical characteristics, and the first conductivity type GaN layer 122-1 is improved to improve electrical characteristics. Although included, the embodiment is not limited to the structure of the first conductivity type nitride semiconductor layer 122.

또한, 도 1에 예시된 발광 소자 패키지(100)가 자외선(UV), 심자외선(Deep UV) 또는 무분극 발광 소자 패키지일 경우, 제2 도전형 질화물 반도체층(126)은 GaN, InAlGaN 및 AlGaN 중 적어도 하나를 포함할 수 있다. 예를 들어 제2 도전형 질화물 반도체층(126)은 제2 도전형 AlGaN층을 포함할 수 있다.In addition, when the light emitting device package 100 illustrated in FIG. 1 is an ultraviolet (UV), deep UV, or non-polarization light emitting device package, the second conductivity type nitride semiconductor layer 126 includes GaN, InAlGaN, and AlGaN It may include at least one of. For example, the second conductivity type nitride semiconductor layer 126 may include a second conductivity type AlGaN layer.

한편, 활성층(124)은 제1 도전형 질화물 반도체층(122)과 제2 도전형 질화물 반도체층(126) 사이에 배치되며, 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(MQW:Multi Quantum Well) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나를 포함할 수 있다.Meanwhile, the active layer 124 is disposed between the first conductivity type nitride semiconductor layer 122 and the second conductivity type nitride semiconductor layer 126, and has a single well structure, a multiple well structure, a single quantum well structure, and a multiple quantum well ( MQW: Multi Quantum Well may include a structure, a quantum dot structure, or any one of quantum wire structures.

이하, 이해를 돕기 위해, 편의상 활성층(124)은 다중 양자 우물 구조를 갖는 것으로 가정하여 설명하지만, 실시 예는 이에 국한되지 않으며, 활성층(124)이 어떠한 구조를 갖더라도 적용될 수 있다. 또한, 제1 도전형은 p형이고, 제2 도전형은 n형인 것으로 설명하지만, 실시 예는 그 반대의 경우에도 적용될 수 있다.Hereinafter, for ease of understanding, for convenience, the active layer 124 is assumed to have a multi-quantum well structure, but embodiments are not limited thereto, and the active layer 124 may be applied to any structure. Also, although the first conductivity type is p-type and the second conductivity type is n-type, the embodiment may be applied to the opposite case.

활성층(124)에 포함되는 다중 양자 우물 구조란, 복수의 우물층과 복수의 장벽층이 번갈아 배치된 구조를 의미한다. 예를 들어, 활성층(124)은 Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층으로 이루어진 쌍(pair)을 복수 개 가질 수 있다. 예를 들면, 우물층과 장벽층 쌍은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs),/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나의 구조로 형성될 수 있으나 이에 한정되지는 않는다. 우물층은 장벽층의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질로 형성될 수 있다. 특히, 실시 예에 의한 활성층(124)은 자외선 또는 심자외선 파장의 빛을 생성할 수 있다.The multiple quantum well structure included in the active layer 124 means a structure in which a plurality of well layers and a plurality of barrier layers are alternately arranged. For example, the active layer 124 may have a plurality of pairs of a well layer and a barrier layer using a compound semiconductor material of a group III-V element. For example, the well layer and the barrier layer pair may be formed of any one of InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs), / AlGaAs, GaP (InGaP) / AlGaP structures. However, it is not limited thereto. The well layer may be formed of a material having an energy band gap smaller than the energy band gap of the barrier layer. In particular, the active layer 124 according to the embodiment may generate light having an ultraviolet or deep ultraviolet wavelength.

또한, 다중 양자 우물 구조에서, 우물층과 장벽층으로 이루어진 쌍의 개수는 예를 들어 2개 내지 5개일 수 있다.In addition, in a multi-quantum well structure, the number of pairs of the well layer and the barrier layer may be 2 to 5, for example.

도 2는 도 1에 도시된 활성층(124)의 일 실시 예(124A)에 의한 에너지 밴드 다이어그램을 나타내며, 도 3은 도 1에 도시된 활성층(124)의 다른 실시 예(124B)에 의한 에너지 밴드 다이어그램을 나타낸다. 도 2 및 도 3 각각에서, Ec는 전도 대역(conduction band)의 에너지 레벨을 나타내고, Ev는 가전자 대역(valence band)의 에너지 레벨을 나타낸다.FIG. 2 shows an energy band diagram according to an embodiment 124A of the active layer 124 shown in FIG. 1, and FIG. 3 shows an energy band according to another embodiment 124B of the active layer 124 shown in FIG. 1. Show the diagram. 2 and 3, Ec represents the energy level of the conduction band, and Ev represents the energy level of the valence band.

도 2에 도시된 활성층(124A)에서 복수의 우물층은 제1 우물층(QWA1) 및 복수의 제2 우물층(QWA2-1 ~ QWA2-4)을 포함한다. 제1 우물층(QWA1)이란, 제1 도전형 질화물 반도체층(122)과 가장 가깝게 배치된 우물층으로서 정의된다. 제2 우물층(QWA2-1 ~ QWA2-4)이란 제1 우물층(QWA1)과 제2 도전형 질화물 반도체층(126) 사이에 배치된 우물층을 의미한다. 실시 예에 의하면, 제1 우물층(QWA1)의 제1 에너지 밴드갭(Eg11)은 복수의 제2 우물층(QWA2-1 ~ QWA2-4)의 제2 에너지 밴드갭(Eg12)보다 작다. 이를 위해, 복수의 제2 우물층(QWA2-1 ~ QWA2-4)의 Al 조성은 제1 우물층(QWA1)의 Al의 조성보다 클 수 있다.In the active layer 124A illustrated in FIG. 2, the plurality of well layers includes a first well layer QWA1 and a plurality of second well layers QWA2-1 to QWA2-4. The first well layer QWA1 is defined as a well layer disposed closest to the first conductivity type nitride semiconductor layer 122. The second well layers QWA2-1 to QWA2-4 mean a well layer disposed between the first well layer QWA1 and the second conductivity type nitride semiconductor layer 126. According to an embodiment, the first energy band gap Eg11 of the first well layer QWA1 is smaller than the second energy band gap Eg12 of the plurality of second well layers QWA2-1 to QWA2-4. To this end, the Al composition of the plurality of second well layers QWA2-1 to QWA2-4 may be greater than that of Al of the first well layer QWA1.

또한, 도 3에 도시된 활성층(124B)에서 복수의 우물층은 제1 우물층(QWB1) 및 복수의 제2 우물층(QWB2-1 ~ QWB2-4)을 포함한다. 제1 우물층(QWB1)은 제1 도전형 질화물 반도체층(122)과 가장 가깝게 배치된 우물층에 해당한다. 제2 우물층(QWB2-1 ~ QWB2-4)은 제1 우물층(QWB1)과 제2 도전형 질화물 반도체층(126) 사이에 배치된 우물층에 해당한다. 실시 예에 의하면, 제1 우물층(QWB1)의 제1 에너지 밴드갭(Eg21)은 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 제2 에너지 밴드갭(Eg22)보다 작다. 이를 위해, 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 Al 조성은 제1 우물층(QWB1)의 Al의 조성보다 클 수 있다.In addition, the plurality of well layers in the active layer 124B illustrated in FIG. 3 includes a first well layer QWB1 and a plurality of second well layers QWB2-1 to QWB2-4. The first well layer QWB1 corresponds to the well layer disposed closest to the first conductivity type nitride semiconductor layer 122. The second well layers QWB2-1 to QWB2-4 correspond to well layers disposed between the first well layer QWB1 and the second conductivity type nitride semiconductor layer 126. According to an embodiment, the first energy band gap Eg21 of the first well layer QWB1 is smaller than the second energy band gap Eg22 of the plurality of second well layers QWB2-1 to QWB2-4. To this end, the Al composition of the plurality of second well layers QWB2-1 to QWB2-4 may be greater than that of Al of the first well layer QWB1.

또한, 도 2에 도시된 활성층(124A)에서 복수의 제2 우물층(QWA2-1 ~ QWA2-4)의 제2 에너지 밴드갭(Eg12)은 서로 동일한 것으로 도시되어 있고, 도 3에 도시된 활성층(124B)에서 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 제2 에너지 밴드갭(Eg22)은 서로 동일한 것으로 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 도 2에 도시된 복수의 제2 우물층(QWA2-1 ~ QWA2-4) 각각의 제2 에너지 밴드갭은 서로 다를 수도 있고, 도 3에 도시된 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 제2 에너지 밴드갭은 서로 다를 수 있다.In addition, in the active layer 124A illustrated in FIG. 2, the second energy band gaps Eg12 of the plurality of second well layers QWA2-1 to QWA2-4 are shown to be the same as each other, and the active layer illustrated in FIG. 3 In 124B, the second energy band gaps Eg22 of the plurality of second well layers QWB2-1 to QWB2-4 are shown to be the same, but the embodiment is not limited thereto. That is, according to another embodiment, the second energy band gap of each of the plurality of second well layers QWA2-1 to QWA2-4 shown in FIG. 2 may be different from each other, or the plurality of second shown in FIG. 3 The second energy band gaps of the well layers QWB2-1 to QWB2-4 may be different.

또한, 도 2에 도시된 활성층(124A)에서 제1 우물층(QWA1)의 제1 두께(t11)와 제2 우물층(QWA2-1 ~ QWA2-4)의 제2 두께(t12)는 서로 동일하다.In addition, in the active layer 124A illustrated in FIG. 2, the first thickness t11 of the first well layer QWA1 and the second thickness t12 of the second well layers QWA2-1 to QWA2-4 are the same. Do.

그러나, 도 3에 도시된 활성층(124B)에서 제1 우물층(QWB1)의 제1 두께(t21)는 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 제2 두께(t22)보다 클 수 있다. 예를 들어, 다음 수학식 1과 같이 제1 두께(t21)와 제2 두께(t22) 간의 차(Δt)는 3 Å이상일 수 있다.However, the first thickness t21 of the first well layer QWB1 in the active layer 124B illustrated in FIG. 3 is greater than the second thickness t22 of the plurality of second well layers QWB2-1 to QWB2-4. It can be big. For example, as shown in Equation 1 below, the difference Δt between the first thickness t21 and the second thickness t22 may be 3 µs or more.

Figure 112014009092290-pat00001
Figure 112014009092290-pat00001

이와 같이, 제1 두께(t21)보다 제2 두께(t22)가 더 얇을 경우 제1 우물층(QWB1)의 에너지보다 제2 우물층(QWB2-1 ~ QWB2-4)의 에너지가 더 높게 된다.In this way, when the second thickness t22 is thinner than the first thickness t21, the energy of the second well layers QWB2-1 to QWB2-4 is higher than the energy of the first well layer QWB1.

또한, 도 2에 도시된 활성층(124A)에서 복수의 제2 우물층(QWA2-1 ~ QWA2-4)의 제2 두께(t21)는 서로 동일한 것으로 도시되어 있고, 도 3에 도시된 활성층(124B)에서 복수의 제2 우물층(QWB2-1 ~ QWB2-4)의 제2 두께(t22)는 서로 동일한 것으로 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 도 2에 도시된 복수의 제2 우물층(QWA2-1 ~ QWA2-4) 각각의 제2 두께는 서로 다를 수도 있고, 도 3에 도시된 복수의 제2 우물층(QWB2-1 ~ QWB2-4) 각각의 제2 두께는 서로 다를 수 있다.In addition, the second thicknesses t21 of the plurality of second well layers QWA2-1 to QWA2-4 in the active layer 124A illustrated in FIG. 2 are shown to be the same as each other, and the active layer 124B illustrated in FIG. 3 ), The second thicknesses t22 of the plurality of second well layers QWB2-1 to QWB2-4 are shown to be the same, but embodiments are not limited thereto. That is, according to another embodiment, the second thickness of each of the plurality of second well layers QWA2-1 to QWA2-4 shown in FIG. 2 may be different from each other, and the plurality of second well layers shown in FIG. 3 may be different. (QWB2-1 to QWB2-4) Each second thickness may be different.

한편, 기판(130)은 제2 도전형 질화물 반도체층(126) 위에 배치된다. 활성층(124)에서 방출된 광이 기판(130)을 통해 출사되도록, 기판(130)은 투광성을 가질 수 있다. 예를 들어, 기판(130)은 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge 중 적어도 하나로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 또한, 기판(130)은 전체 질화물 반도체에 휨을 가져오지 않으면서, 스크라이빙(scribing) 공정 및 브레이킹(breaking) 공정을 통하여 별개의 칩으로 잘 분리시키기 위한 정도의 기계적 강도를 가질 수 있다.Meanwhile, the substrate 130 is disposed on the second conductivity type nitride semiconductor layer 126. The substrate 130 may be translucent so that light emitted from the active layer 124 is emitted through the substrate 130. For example, the substrate 130 may be formed of at least one of sapphire (Al 2 O 3 ), SiC, GaAs, GaN, ZnO, Si, GaP, InP, and Ge, but is not limited thereto. In addition, the substrate 130 may have a mechanical strength sufficient to separate well into separate chips through a scribing process and a breaking process without bringing warpage to the entire nitride semiconductor.

버퍼층(132)은 기판(130)과 발광 구조물(120)의 사이에 배치되어 기판(130)과 발광 구조물(120) 사이의 격자 정합을 개선시키는 역할을 한다. 예를 들어, 버퍼층(132)은 AlN을 포함하거나 언도프드 질화물을 포함할 수 있으나, 이에 한정되지는 않는다. 버퍼층(132)은 기판(130)의 종류와 발광 구조물(120)의 종류에 따라 생략될 수도 있다.The buffer layer 132 is disposed between the substrate 130 and the light emitting structure 120 to improve lattice matching between the substrate 130 and the light emitting structure 120. For example, the buffer layer 132 may include AlN or undoped nitride, but is not limited thereto. The buffer layer 132 may be omitted depending on the type of the substrate 130 and the type of the light emitting structure 120.

이하, 도 1에 도시된 발광 소자 패키지(100)의 광 추출 개선을 첨부된 도면을 참조하여 다음과 같이 설명한다.Hereinafter, improvement of light extraction of the light emitting device package 100 illustrated in FIG. 1 will be described with reference to the accompanying drawings.

도 4는 도 1에 도시된 발광 소자 패키지(100)의 활성층(124)과 비교되는 활성층(124C)의 에너지 밴드 다이어그램을 나타낸다.4 shows an energy band diagram of the active layer 124C compared to the active layer 124 of the light emitting device package 100 shown in FIG. 1.

도 4에 도시된 활성층(124C)의 복수의 우물층에서, 제1 우물층(QW1)과 제2 우물층(QW2 ~ QW5)의 에너지 밴드갭(Eg3)은 서로 동일하고, 제1 우물층(QW1)의 제1 두께(t3)와 제2 우물층(QW2 ~ QW5)의 제2 두께(t3)는 서로 동일하다.In the plurality of well layers of the active layer 124C illustrated in FIG. 4, the energy band gaps Eg3 of the first well layer QW1 and the second well layers QW2 to QW5 are the same, and the first well layer ( The first thickness t3 of QW1) and the second thickness t3 of the second well layers QW2 to QW5 are the same.

도 5는 파장(wavelength)별 방출 광의 세기(Emissioin intensity)를 나타내는 그래프로서, 횡축은 파장을 나타내고, 왼쪽 종축은 방출 광의 세기를 나타내고 오른쪽 종축은 이득(Gain)을 나타낸다.5 is a graph showing the emission intensity of each wavelength (wavelength), the horizontal axis represents the wavelength, the left vertical axis represents the intensity of the emitted light, and the right vertical axis represents the gain (Gain).

도 6은 실시 예와 비교 례의 광 세기를 나타내는 그래프이다.6 is a graph showing the light intensity of Examples and Comparative Examples.

만일, 도 1에 도시된 발광 소자 패키지(100)의 활성층(124)이 도 2 또는 도 3에 도시된 바와 달리 도 4에 도시된 바와 같이 구현될 경우, 발광 소자 패키지의 광 추출 효율이 저하될 수 있다. 왜냐하면, 도 5를 참조하면, 광의 총 세기(200)에서 제1 우물층(QW1)에서 방출된 광의 세기(202)가 95% 이상이고, 제2 우물층(QW2)에서 방출된 광의 세기(204)와 나머지 우물층(QW3 ~ QW5)에서 방출된 광의 세기(206)가 5%보다 작기 때문이다. 이때, 활성층(124C)에서 심 자외선 대역의 파장을 갖는 광이 방출된 후 화살표 방향(D)으로 진행하여 발광 소자 패키지의 외부로 출사되는 동안, 제2 우물층(QW2 ~ QW5)에서 광의 일부가 흡수되어, 전체적으로 광 추출 효율이 감소할 수 있다.If the active layer 124 of the light emitting device package 100 shown in FIG. 1 is implemented as shown in FIG. 4 unlike that shown in FIG. 2 or 3, the light extraction efficiency of the light emitting device package may be reduced. You can. 5, the intensity 202 of light emitted from the first well layer QW1 in the total intensity 200 of light is 95% or more, and the intensity of light emitted from the second well layer QW2 (204) ) And the intensity 206 of light emitted from the remaining well layers QW3 to QW5 is less than 5%. At this time, while light having a wavelength in the deep ultraviolet band is emitted from the active layer 124C and proceeds in the direction of the arrow D to be emitted to the outside of the light emitting device package, part of the light in the second well layers QW2 to QW5 Absorbed, the overall light extraction efficiency can be reduced.

그러나, 도 1에 도시된 활성층(124)이 도 2에 예시된 바와 같이 구현될 경우, 활성층(124A)에서 제1 우물층(QWA1)의 에너지 밴드갭(Eg11)보다 제2 우물층(QWA2-1 ~ QWA2-4)이 더 높은 에너지 밴드갭(Eg12)을 가지므로, 화살표 방향(D)으로 광이 진행하는 동안, 도 4와 비교할 때 제2 우물층(QWA2-1 ~ QWA2-4)에서 광의 흡수가 감소할 수 있다. 즉, 도 6을 참조하면, 도 4에 도시된 바와 같이 활성층(124C)이 구현될 경우의 광의 세기(◆)(222)보다 도 2에 도시된 바와 같이 활성층(124A)이 구현될 경우의 광의 세기(◆)(224)가 더 커지게 된다.However, when the active layer 124 shown in FIG. 1 is implemented as illustrated in FIG. 2, in the active layer 124A, the second well layer QWA2- is greater than the energy band gap Eg11 of the first well layer QWA1. Since 1 to QWA2-4) have a higher energy bandgap (Eg12), while light is traveling in the direction of the arrow D, in the second well layer (QWA2-1 to QWA2-4) as compared to FIG. The absorption of light can be reduced. That is, referring to FIG. 6, the intensity of light when the active layer 124A is implemented as illustrated in FIG. 2 than the intensity of light (◆) 222 when the active layer 124C is implemented as illustrated in FIG. 4 is implemented. The intensity (◆) 224 becomes larger.

또한, 도 1에 도시된 활성층(124)이 도 3에 예시된 바와 같이 구현될 경우, 활성층(124B)에서 제1 우물층(QWB1)의 제1 두께(t21)가 제2 우물층(QWB2 ~ QWB5)의 제2 두께(t22)보다 더 두껍기 때문에 제1 우물층(QWB1)의 에너지 밴드갭(Eg21)보다 제2 우물층(QWB2-1 ~ QWB2-4)의 에너지 밴드갭(Eg22)이 더 높아져, 화살표 방향(D)으로 광이 진행하는 동안, 도 4와 비교할 때 제2 우물층(QWB2-1 ~ QWB2-4)에서 광의 흡수가 감소할 수 있다. 즉, 도 6을 참조하면, 도 4에 도시된 바와 같이 활성층(124C)이 구현될 경우의 광의 세기(★)(222)보다 도 3에 도시된 바와 같이 활성층(124B)의 구현될 경우의 광의 세기(★)(234)가 더 커지게 된다.In addition, when the active layer 124 illustrated in FIG. 1 is implemented as illustrated in FIG. 3, the first thickness t21 of the first well layer QWB1 in the active layer 124B is the second well layer QWB2 ~ Since it is thicker than the second thickness t22 of QWB5), the energy band gap Eg22 of the second well layers QWB2-1 to QWB2-4 is greater than the energy band gap Eg21 of the first well layer QWB1. As it increases, light absorption in the second well layers QWB2-1 to QWB2-4 may be reduced while light is traveling in the arrow direction D as compared to FIG. 4. That is, referring to FIG. 6, the intensity of light when the active layer 124B is implemented as illustrated in FIG. 3 than the intensity of light (★) 222 when the active layer 124C is implemented as illustrated in FIG. 4 The strength (★) 234 becomes larger.

이와 같이, 전술한 본 실시 예에 의한 발광 소자 패키지(100)는 발광에 기여하지 않거나 발광에 기여도가 낮은 제2 우물층(QWA2-1 ~ QWA2-4, QWB2-1 ~ QWB2-4)의 에너지 레벨을 조정하거나 두께를 조정함으로써, 제2 우물층(QWA2-1 ~ QWA2-4, QWB2-1 ~ QWB2-4)에서의 광의 흡수를 줄여 광 추출 효율을 향상시킬 수 있다.As described above, the energy of the second well layers (QWA2-1 to QWA2-4, QWB2-1 to QWB2-4) in which the light emitting device package 100 according to the present embodiment described above does not contribute to light emission or has low contribution to light emission. By adjusting the level or adjusting the thickness, light absorption efficiency can be improved by reducing absorption of light in the second well layers QWA2-1 to QWA2-4 and QWB2-1 to QWB2-4.

이하, 도 1에 예시된 발광 소자 패키지(100)의 실시 예에 따른 제조 방법에 대해 다음과 같이 살펴본다. 그러나, 발광 소자 패키지(100)는 도 7a 내지 도 7f에 도시된 제조 방법에 의해 국한되지 않으며 다양한 다른 제조 방법에 의해 제조될 수도 있다.Hereinafter, a manufacturing method according to an embodiment of the light emitting device package 100 illustrated in FIG. 1 will be described as follows. However, the light emitting device package 100 is not limited to the manufacturing method illustrated in FIGS. 7A to 7F and may be manufactured by various other manufacturing methods.

도 7a 내지 도 7f는 실시 예에 따른 발광 소자 패키지(100)의 제조 방법을 설명하기 위한 공정 단면도이다.7A to 7F are process cross-sectional views illustrating a method of manufacturing a light emitting device package 100 according to an embodiment.

도 7a를 참조하면, 기판(130) 상에 버퍼층(132)을 형성한다.Referring to FIG. 7A, a buffer layer 132 is formed on the substrate 130.

기판(130)은 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge 중 적어도 하나로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 특히, 기판(130)은 투광성을 갖는 물질로 형성될 수 있다.The substrate 130 may be formed of at least one of sapphire (Al 2 O 3 ), SiC, GaAs, GaN, ZnO, Si, GaP, InP, and Ge, but is not limited thereto. In particular, the substrate 130 may be formed of a light-transmitting material.

또한, 버퍼층(132)은 AlN으로 형성되거나 언도프된 질화물로 형성될 수 있고, 투광성을 갖는 물질로 형성될 수 있지만, 실시 예는 이러한 버퍼층(132)의 물질에 국한되지 않는다. 기판(130)의 종류와 발광 구조물(120)의 종류에 따라 버퍼층(132)의 형성은 생략될 수도 있다.In addition, the buffer layer 132 may be formed of AlN or an undoped nitride, and may be formed of a light-transmitting material, but the embodiment is not limited to the material of the buffer layer 132. The formation of the buffer layer 132 may be omitted depending on the type of the substrate 130 and the type of the light emitting structure 120.

버퍼층(112) 상에 제2 도전형 질화물 반도체층(126)을 형성한다. 제2 도전형 질화물 반도체층(126)은 반도체 화합물로 형성될 수 있다. 제2 도전형 질화물 반도체층(126)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 형성될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 예컨대, 제2 도전형 질화물 반도체층(126)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 형성될 수 있다.The second conductivity type nitride semiconductor layer 126 is formed on the buffer layer 112. The second conductivity type nitride semiconductor layer 126 may be formed of a semiconductor compound. The second conductivity type nitride semiconductor layer 126 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and a second conductivity type dopant may be doped. For example, the second conductivity type nitride semiconductor layer 126 is a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0≤x≤1, 0≤y≤1, 0≤x + y≤1) Can be formed.

이후, 도 7b를 참조하면, 제2 도전형 질화물 반도체층(126) 상에 활성층(124)을 형성한다. 활성층(124)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 갖도록 형성될 수 있다.Thereafter, referring to FIG. 7B, an active layer 124 is formed on the second conductivity type nitride semiconductor layer 126. The active layer 124 may be formed to have any one of a single well structure, a multiple well structure, a single quantum well structure, a multiple quantum well (MQW) structure, a quantum dot structure or a quantum wire structure.

예를 들어, Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 복수의 우물층과 복수의 장벽층이 번갈아 배치된 형태의 다중 양자 우물 구조를 갖도록 활성층(124)을 형성할 수 있다. 이때, 도 2 또는 도 3에 예시된 바와 같은 특성을 갖도록 활성층(124A, 124B)을 형성할 수 있다.For example, the active layer 124 may be formed by using a compound semiconductor material of a group III-V element to have a multi-quantum well structure in which a plurality of well layers and a plurality of barrier layers are alternately arranged. At this time, the active layers 124A and 124B may be formed to have properties as illustrated in FIG. 2 or 3.

이후, 도 7c를 참조하면, 활성층(124) 위에 제1 도전형 질화물 반도체층(122)을 형성한다. 제1 도전형 질화물 반도체층(122)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 형성될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다. 예를 들어, 제1 도전형 질화물 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 형성될 수 있다.Thereafter, referring to FIG. 7C, a first conductivity type nitride semiconductor layer 122 is formed on the active layer 124. The first conductivity type nitride semiconductor layer 122 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and the first conductivity type dopant may be doped. For example, the first conductivity type nitride semiconductor layer 122 has a composition formula of Al x In y Ga (1-xy) N (0≤x≤1, 0≤y≤1, 0≤x + y≤1). It can be formed of a semiconductor material.

전술한, 제2 도전형 질화물 반도체층(126), 활성층(124) 및 제1 도전형 질화물 반도체층(122)은 예를 들어, 유기금속 화학 증착법(MOCVD:Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD:Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD:Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE:Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE:Hydride Vapor Phase Epitaxy) 등의 방법을 이용하여 형성될 수 있으며, 이에 대해 한정하지는 않는다.As described above, the second conductivity type nitride semiconductor layer 126, the active layer 124, and the first conductivity type nitride semiconductor layer 122 are, for example, metal organic chemical vapor deposition (MOCVD), chemical vapor deposition. (CVD: Chemical Vapor Deposition), Plasma-Enhanced Chemical Vapor Deposition (PECVD), Molecular Beam Epitaxy (MBE), Hydride Vapor Phase Epitaxy (HVPE) It may be formed using, but is not limited to this.

이후, 도 7d를 참조하면, 제1 도전형 질화물 반도체층(122), 활성층(124), 제2 도전형 질화물 반도체층(126)을 메사 식각(Mesa etching)하여, 제2 도전형 질화물 반도체층(126)을 노출시킨다.Subsequently, referring to FIG. 7D, the first conductivity type nitride semiconductor layer 122, the active layer 124, and the second conductivity type nitride semiconductor layer 126 are mesa-etched to perform a second conductivity type nitride semiconductor layer. (126) is exposed.

이후, 도 7e를 참조하면, 제1 도전형 질화물 반도체층(122)의 상부와 노출된 제2 도전형 질화물 반도체층(126)의 상부에 제1 및 제2 전극(118A, 118B)을 각각 형성한다.Thereafter, referring to FIG. 7E, first and second electrodes 118A and 118B are formed on the first conductive type nitride semiconductor layer 122 and on the exposed second conductive type nitride semiconductor layer 126, respectively. do.

도 7f를 참조하면, 도 7a 내지 도 7e에 도시된 공정이 진행되는 동안 별개의 공정으로 서브 마운트(110) 상에 제1 및 제2 금속층(114A, 114B)을 형성한다. 만일, 서브 마운트(110)가 Si로 이루어질 경우, 제1 및 제2 금속층(114A, 114B)을 형성하기 이전에 서브 마운트(110)의 상부에 보호층(112)을 더 형성할 수도 있다. 이 경우 보호층(112)을 형성한 후에, 보호층(112)의 상부에 제1 및 제2 금속층(114A, 114B)이 형성된다.Referring to FIG. 7F, first and second metal layers 114A and 114B are formed on the submount 110 in a separate process while the processes illustrated in FIGS. 7A to 7E are in progress. If the sub-mount 110 is made of Si, a protective layer 112 may be further formed on the sub-mount 110 before forming the first and second metal layers 114A and 114B. In this case, after forming the protective layer 112, first and second metal layers 114A and 114B are formed on the protective layer 112.

한편, 도 7e에 도시된 결과물에 대해 랩핑(lapping) 및 폴리싱(polishing) 공정을 수행한다. 이후 기판(130)이 탑 측으로 배치되도록 회전시킨 후 도 7f에 도시된 결과물과 결합시킨다. 이때, 도 1에 도시된 바와 같이 제1 범프부(116A)에 의해 제1 전극(118A)과 제1 금속층(114A)을 결합시키고, 제2 범프부(116B)에 의해 제2 전극(118B)과 제2 금속층(114B)을 결합시킨다.Meanwhile, a lapping and polishing process is performed on the result shown in FIG. 7E. Thereafter, the substrate 130 is rotated so as to be disposed toward the top side, and then combined with the result shown in FIG. In this case, as illustrated in FIG. 1, the first electrode 118A and the first metal layer 114A are joined by the first bump portion 116A, and the second electrode 118B is connected by the second bump portion 116B. And the second metal layer 114B.

다른 실시 예에 따른 발광 소자 패키지는 복수 개가 기판 상에 어레이되며, 발광 소자 패키지에서 방출되는 광의 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트, 형광 시트 등이 배치될 수 있다. 이러한 발광 소자 패키지, 기판, 광학 부재는 각종 살균 장치에 이용되거나 백라이트 유닛으로 기능하거나 조명 유닛으로 기능할 수 있으며, 예를 들어, 조명 시스템은 백라이트 유닛, 조명 유닛, 지시 장치, 램프, 가로등을 포함할 수 있다.In the light emitting device package according to another embodiment, a plurality of light emitting device packages are arrayed on a substrate, and a light guide plate, a prism sheet, a diffusion sheet, a fluorescent sheet, and the like, may be disposed on a path of light emitted from the light emitting device package. The light emitting device package, the substrate, and the optical member may be used for various sterilization devices, function as a backlight unit, or function as a lighting unit. For example, the lighting system includes a backlight unit, a lighting unit, an indicator device, a lamp, and a street light can do.

도 8은 실시예에 의한 공기 살균 장치(500)의 사시도를 나타낸다.8 shows a perspective view of an air sterilization device 500 according to an embodiment.

도 8을 참조하면, 공기 살균 장치(500)는, 케이싱(501)의 일면에 실장된 발광 모듈부(510)와, 방출된 심자외선 파장 대역의 광을 난반사시키는 난반사 반사 부재(530a, 530b)와, 발광 모듈부(510)에서 필요한 가용전력을 공급하는 전원 공급부(520)를 포함한다.Referring to FIG. 8, the air sterilization apparatus 500 includes a light emitting module unit 510 mounted on one surface of the casing 501, and diffuse reflecting members 530a and 530b for diffusely reflecting light in the emitted deep ultraviolet wavelength band. And, it includes a power supply unit 520 for supplying the available power required by the light emitting module unit 510.

먼저 케이싱(501)은 장방형 구조로 이루어지며 발광 모듈부(510)와 난반사 반사부재(530a, 530b) 및 전원 공급부(520)를 모두 내장하는 일체형 즉 콤팩트한 구조로 형성될 수 있다. 또한, 케이싱(501)은 공기 살균 장치(500) 내부에서 발생된 열을 외부로 방출시키기에 효과적인 재질 및 형상을 가질 수 있다. 예를 들어, 케이싱(501)의 재질은 Al, Cu 및 이들의 합금 중 어느 하나의 재질로 이루어 질 수 있다. 따라서, 케이싱(501)의 외기와의 열전달 효율이 향상되어, 방열 특성이 개선될 수 있다.First, the casing 501 is made of a rectangular structure, and may be formed in an integral or compact structure incorporating both the light emitting module unit 510, the diffuse reflection members 530a, 530b, and the power supply unit 520. In addition, the casing 501 may have an effective material and shape for dissipating heat generated inside the air sterilization device 500 to the outside. For example, the material of the casing 501 may be made of any one of Al, Cu, and alloys thereof. Therefore, the heat transfer efficiency of the casing 501 with the outside air is improved, and heat dissipation characteristics can be improved.

또는, 케이싱(501)은 특유한 외부 표면 형상을 가질 수 있다. 예를 들어, 케이싱(501)은 예를 들어 코러게이션(corrugation) 또는 메쉬(mesh) 또는 불특정 요철 무늬 형상으로 돌출 형성되는 외부 표면 형상을 가질 수 있다. 따라서, 케이싱(501)의 외기와의 열전달 효율이 더욱 향상되어 방열 특성이 개선될 수 있다.Alternatively, the casing 501 can have a distinctive outer surface shape. For example, the casing 501 may have, for example, an outer surface shape that protrudes in the form of a corrugation or mesh or an uneven pattern. Therefore, the heat transfer efficiency of the casing 501 with the outside air is further improved, and heat dissipation characteristics can be improved.

한편, 이러한 케이싱(501)의 양단에는 부착판(550)이 더 배치될 수 있다. 부착판(550)은 도 8에 예시된 바와 같이 케이싱(501)을 전체 설비 장치에 구속시켜 고정하는데 사용되는 브라켓 기능의 부재를 의미한다. 이러한 부착판(550)은 케이싱(501)의 양단에서 일측 방향으로 돌출 형성될 수 있다. 여기서, 일측 방향은 심자외선이 방출되고 난반사가 일어나는 케이싱(501)의 내측 방향일 수 있다.Meanwhile, an attachment plate 550 may be further disposed at both ends of the casing 501. The attachment plate 550 means a member having a bracket function used to fix and secure the casing 501 to the entire equipment as illustrated in FIG. 8. The attachment plate 550 may be formed to protrude in one direction from both ends of the casing 501. Here, one direction may be an inner direction of the casing 501 in which deep ultraviolet rays are emitted and diffuse reflection occurs.

따라서, 케이싱(501)으로부터 양단 상에 구비된 부착판(550)은 전체 설비 장치와의 고정 영역을 제공하여, 케이싱(501)이 보다 효과적으로 고정 설치될 수 있도록 한다.Therefore, the mounting plate 550 provided on both ends from the casing 501 provides a fixing area with the entire equipment, so that the casing 501 can be fixedly installed more effectively.

부착판(550)은 나사 체결 수단, 리벳 체결 수단, 접착 수단 및 탈착 수단 중 어느 하나의 형태를 가질 수 있으며, 이들 다양한 결합 수단의 방식은 당업자의 수준에서 자명하므로, 여기서 상세한 설명은 생략하기로 한다.The attachment plate 550 may have any one form of a screw fastening means, a rivet fastening means, an adhesive means and a detachable means, and the manner of these various coupling means is obvious at the level of those skilled in the art, so a detailed description thereof will be omitted here. do.

한편, 발광 모듈부(510)는 전술한 케이싱(501)의 일면 상에 실장 되는 형태로 배치된다. 발광 모듈부(510)는 공기 중의 미생물을 살균 처리하도록 심자외선을 방출하는 역할을 한다. 이를 위해, 발광 모듈부(510)는 모듈 기판(512)과, 모듈 기판(512)에 탑재된 다수의 발광 소자 패키지(100)를 포함한다. 여기서, 발광 소자 패키지(100)는 도 1에 예시된 발광 소자 패키지에 해당한다.On the other hand, the light emitting module unit 510 is disposed in a form mounted on one surface of the casing 501 described above. The light emitting module unit 510 emits deep ultraviolet rays to sterilize microorganisms in the air. To this end, the light emitting module unit 510 includes a module substrate 512 and a plurality of light emitting device packages 100 mounted on the module substrate 512. Here, the light emitting device package 100 corresponds to the light emitting device package illustrated in FIG. 1.

모듈 기판(512)은 케이싱(501)의 내면을 따라 단일 열로 배치되어 있으며, 회로 패턴(미도시)을 포함하는 PCB일 수 있으며, 일반 PCB 뿐 아니라, 메탈 코어 PCB(MCPCB, Metal Core PCB), 연성(flexible) PCB 등을 포함할 수도 있으며, 이에 대해 한정하지는 않는다.The module substrate 512 is disposed in a single row along the inner surface of the casing 501, and may be a PCB including a circuit pattern (not shown), as well as a general PCB, a metal core PCB (MCPCB, Metal Core PCB), It may also include a flexible (flexible) PCB, but is not limited thereto.

다음으로, 난반사 반사부재(530a, 530b)는 전술한 발광 모듈부(510)에서 방출된 자외선을 강제로 난반사시키도록 형성되는 반사판 형태의 부재를 의미한다. 이러한 난반사 반사부재(530a, 530b)의 전면 형상 및 배치 형상은 다양한 형상을 가질 수 있다. 난반사 반사부재(530a, 530b)의 면상 구조(예: 곡률반경 등)를 조금씩 변경하여 설계함에 따라, 난반사된 심자외선이 중첩되게 조사되어 조사 강도가 강해지거나, 또는 조사 영역되는 영역의 폭이 확장될 수 있다.Next, the diffuse reflection members 530a and 530b refer to a reflective plate-shaped member formed to forcibly diffuse the ultraviolet rays emitted from the above-described light emitting module unit 510. The front shape and the arrangement shape of the diffuse reflection members 530a and 530b may have various shapes. As the surface structures (eg, radius of curvature, etc.) of the diffuse reflection members 530a, 530b are changed little by little, the diffused deep ultraviolet rays are irradiated so as to be superimposed, so that the irradiation intensity is increased, or the width of the area to be irradiated is expanded. Can be.

전원 공급부(520)는 전원을 도입 받아 전술된 발광 모듈부(510)에서 필요한 가용전력을 공급하는 역할을 한다. 이러한 전원 공급부(520)는 전술한 케이싱(501) 내에 배치될 수 있다. 도 8에 예시된 바와 같이, 전원 공급부(520)는 난반사 반사부재(530a, 530b)와 발광 모듈부(510) 사이의 이격 공간의 내벽 쪽에 배치될 수 있다. 외부 전원을 전원 공급부(520) 측으로 도입시키기 위해 상호 간을 전기적으로 연결하는 전원 연결부(540)가 더 배치될 수 있다.The power supply unit 520 serves to supply the available power required by the above-described light emitting module unit 510 by receiving power. The power supply unit 520 may be disposed in the casing 501 described above. As illustrated in FIG. 8, the power supply unit 520 may be disposed on an inner wall side of a space spaced between the diffuse reflection members 530a and 530b and the light emitting module unit 510. In order to introduce external power to the power supply unit 520, a power connection unit 540 that electrically connects each other may be further disposed.

도 8에 예시된 바와 같이, 전원 연결부(540)의 형태는 면상일 수 있으나, 외부의 전원 케이블(미도시)이 전기적으로 접속될 수 있는 소켓 또는 케이블 슬롯의 형태를 가질 수 있다. 그리고 전원 케이블은 플렉시블한 연장 구조를 가져, 외부 전원과의 연결이 용이한 형태로 이루어질 수 있다.As illustrated in FIG. 8, the shape of the power connection unit 540 may be planar, but may have a shape of a socket or cable slot to which an external power cable (not shown) can be electrically connected. In addition, the power cable has a flexible extension structure, and can be easily connected to an external power source.

도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 헤드 램프(head lamp, 900)를 나타낸다.9 illustrates a head lamp 900 including a light emitting device package according to an embodiment.

도 9를 참조하면, 헤드 램프(900)는 발광 모듈(901), 리플렉터(reflector, 902), 쉐이드(903) 및 렌즈(904)를 포함한다.Referring to FIG. 9, the head lamp 900 includes a light emitting module 901, a reflector 902, a shade 903, and a lens 904.

발광 모듈(901)은 모듈 기판(미도시) 상에 배치되는 복수의 발광 소자 패키지들(미도시)을 포함할 수 있다. 이때, 발광 소자 패키지는 도 1에 도시된 바와 같을 수 있다.The light emitting module 901 may include a plurality of light emitting device packages (not shown) disposed on a module substrate (not shown). In this case, the light emitting device package may be as illustrated in FIG. 1.

리플렉터(902)는 발광 모듈(901)로부터 조사되는 빛(911)을 일정 방향, 예컨대, 전방(912)으로 반사시킨다.The reflector 902 reflects the light 911 emitted from the light emitting module 901 in a predetermined direction, for example, the front 912.

쉐이드(903)는 리플렉터(902)와 렌즈(904) 사이에 배치되며, 리플렉터(902)에 의하여 반사되어 렌즈(904)로 향하는 빛의 일부분을 차단 또는 반사하여 설계자가 원하는 배광 패턴을 이루도록 하는 부재로서, 쉐이드(903)의 일측부(903-1)와 타측부(903-2)는 서로 높이가 다를 수 있다.The shade 903 is disposed between the reflector 902 and the lens 904, and is a member that blocks or reflects a portion of light reflected by the reflector 902 to the lens 904 to form a light distribution pattern desired by the designer As, the height of one side portion 903-1 and the other side portion 903-2 of the shade 903 may be different from each other.

발광 모듈(901)로부터 조사되는 빛은 리플렉터(902) 및 쉐이드(903)에서 반사된 후 렌즈(904)를 투과하여 차체 전방을 향할 수 있다. 렌즈(904)는 리플렉터(902)에 의하여 반사된 빛을 전방으로 굴절시킬 수 있다.The light emitted from the light emitting module 901 may be reflected by the reflector 902 and the shade 903 and then pass through the lens 904 to face the vehicle body front. The lens 904 may refract light reflected by the reflector 902 in the forward direction.

도 10은 실시 예에 따른 발광 소자 칩 또는 발광 소자 패키지를 포함하는 조명 장치(1000)를 나타낸다.10 shows a lighting device 1000 including a light emitting device chip or a light emitting device package according to an embodiment.

도 10을 참조하면, 조명 장치(1000)는 커버(1100), 광원 모듈(1200), 방열체(1400), 전원 제공부(1600), 내부 케이스(1700) 및 소켓(1800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치(1000)는 부재(1300)와 홀더(1500) 중 어느 하나 이상을 더 포함할 수 있다.Referring to FIG. 10, the lighting device 1000 may include a cover 1100, a light source module 1200, a heat radiator 1400, a power supply unit 1600, an inner case 1700 and a socket 1800. have. In addition, the lighting device 1000 according to the embodiment may further include any one or more of the member 1300 and the holder 1500.

광원 모듈(1200)은 도 1에 예시된 발광 소자 패키지를 포함할 수 있다.The light source module 1200 may include the light emitting device package illustrated in FIG. 1.

커버(1100)는 벌브(bulb) 또는 반구의 형상일 수 있으며, 속이 비어 있고, 일 부분이 개구된 형상일 수 있다. 커버(1100)는 광원 모듈(1200)과 광학적으로 결합될 수 있다. 예를 들어, 커버(1100)는 광원 모듈(1200)로부터 제공되는 빛을 확산, 산란 또는 여기시킬 수 있다. 커버(1100)는 일종의 광학 부재일 수 있다. 커버(1100)는 방열체(1400)와 결합될 수 있다. 커버(1100)는 방열체(1400)와 결합하는 결합부를 가질 수 있다.The cover 1100 may be in the shape of a bulb or a hemisphere, and may be hollow and have a part open. The cover 1100 may be optically coupled to the light source module 1200. For example, the cover 1100 may diffuse, scatter, or excite light provided from the light source module 1200. The cover 1100 may be a kind of optical member. The cover 1100 may be combined with the radiator 1400. The cover 1100 may have a coupling portion that engages the heat radiator 1400.

커버(1100)의 내면에는 유백색 도료가 코팅될 수 있다. 유백색의 도료는 빛을 확산시키는 확산재를 포함할 수 있다. 커버(1100)의 내면의 표면 거칠기는 커버(1100)의 외면의 표면 거칠기보다 크게 형성될 수 있다. 이는 광원 모듈(1200)로부터의 빛이 충분히 산란 및 확산되어 외부로 방출시키기 위함이다.A milky white coating may be coated on the inner surface of the cover 1100. The milky white paint may include a diffusion material that diffuses light. The surface roughness of the inner surface of the cover 1100 may be greater than the surface roughness of the outer surface of the cover 1100. This is for light from the light source module 1200 to be sufficiently scattered and diffused to be emitted to the outside.

커버(1100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는 내광성, 내열성, 강도가 뛰어나다. 커버(1100)는 외부에서 광원 모듈(1200)이 보이도록 투명할 수 있으나, 이에 한정되는 것은 아니고 불투명할 수 있다. 커버(1100)는 블로우(blow) 성형을 통해 형성될 수 있다.The material of the cover 1100 may be glass, plastic, polypropylene (PP), polyethylene (PE), polycarbonate (PC), or the like. Here, the polycarbonate is excellent in light resistance, heat resistance and strength. The cover 1100 may be transparent so that the light source module 1200 is visible from the outside, but is not limited thereto and may be opaque. The cover 1100 may be formed through blow molding.

광원 모듈(1200)은 방열체(1400)의 일 면에 배치될 수 있으며, 광원 모듈(1200)로부터 발생한 열은 방열체(1400)로 전도될 수 있다. 광원 모듈(1200)은 광원부(1210), 연결 플레이트(1230) 및 커넥터(1250)를 포함할 수 있다.The light source module 1200 may be disposed on one surface of the heat radiator 1400, and heat generated from the light source module 1200 may be conducted to the heat radiator 1400. The light source module 1200 may include a light source unit 1210, a connection plate 1230, and a connector 1250.

부재(1300)는 방열체(1400)의 상면 위에 배치될 수 있고, 복수의 광원부(1210)와 커넥터(1250)가 삽입되는 가이드홈(1310)을 갖는다. 가이드홈(1310)은 광원부(1210)의 기판 및 커넥터(1250)와 대응 또는 정렬될 수 있다.The member 1300 may be disposed on an upper surface of the radiator 1400, and has a guide groove 1310 into which a plurality of light source units 1210 and connectors 1250 are inserted. The guide groove 1310 may correspond to or be aligned with the substrate and connector 1250 of the light source unit 1210.

부재(1300)의 표면은 광 반사 물질로 도포 또는 코팅된 것일 수 있다.The surface of the member 1300 may be coated or coated with a light reflective material.

예를 들면, 부재(1300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 부재(1300)는 커버(1100)의 내면에 반사되어 광원 모듈(1200)을 향하여 되돌아오는 빛을 다시 커버(1100) 방향으로 반사할 수 있다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.For example, the surface of the member 1300 may be coated or coated with a white paint. The member 1300 may reflect light reflected on the inner surface of the cover 1100 and return toward the light source module 1200 again in the direction of the cover 1100. Therefore, it is possible to improve the light efficiency of the lighting device according to the embodiment.

부재(1300)는 예로서 절연 물질로 이루어질 수 있다. 광원 모듈(1200)의 연결 플레이트(1230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 방열체(1400)와 연결 플레이트(1230) 사이에 전기적인 접촉이 이루어질 수 있다. 부재(1300)는 절연 물질로 구성되어 연결 플레이트(1230)와 방열체(1400)의 전기적 단락을 차단할 수 있다. 방열체(1400)는 광원 모듈(1200)로부터의 열과 전원 제공부(1600)로부터의 열을 전달받아 방열할 수 있다.The member 1300 may be made of an insulating material, for example. The connection plate 1230 of the light source module 1200 may include an electrically conductive material. Accordingly, electrical contact may be made between the radiator 1400 and the connection plate 1230. The member 1300 may be formed of an insulating material to block electrical shorts between the connection plate 1230 and the radiator 1400. The heat radiator 1400 may radiate heat by receiving heat from the light source module 1200 and heat from the power supply unit 1600.

홀더(1500)는 내부 케이스(1700)의 절연부(1710)의 수납홈(1719)을 막는다. 따라서, 내부 케이스(1700)의 절연부(1710)에 수납되는 전원 제공부(1600)는 밀폐될 수 있다. 홀더(1500)는 가이드 돌출부(1510)를 가질 수 있으며, 가이드 돌출부(1510)는 전원 제공부(1600)의 돌출부(1610)가 관통하는 홀을 가질 수 있다.The holder 1500 closes the storage groove 1719 of the insulating portion 1710 of the inner case 1700. Therefore, the power supply unit 1600 accommodated in the insulating portion 1710 of the inner case 1700 may be sealed. The holder 1500 may have a guide protrusion 1510, and the guide protrusion 1510 may have a hole through which the protrusion 1610 of the power supply unit 1600 passes.

전원 제공부(1600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈(1200)로 제공한다. 전원 제공부(1600)는 내부 케이스(1700)의 수납홈(1719)에 수납될 수 있고, 홀더(1500)에 의해 내부 케이스(1700)의 내부에 밀폐될 수 있다. 전원 제공부(1600)는 돌출부(1610), 가이드부(1630), 베이스(1650) 및 연장부(1670)를 포함할 수 있다.The power supply unit 1600 processes or converts an electrical signal received from the outside and provides it to the light source module 1200. The power supply unit 1600 may be accommodated in the storage groove 1719 of the inner case 1700, and may be sealed inside the inner case 1700 by the holder 1500. The power supply unit 1600 may include a protrusion 1610, a guide unit 1630, a base 1650 and an extension unit 1670.

가이드부(1630)는 베이스(1650)의 일 측에서 외부로 돌출된 형상을 가질 수 있다. 가이드부(1630)는 홀더(1500)에 삽입될 수 있다. 베이스(1650)의 일 면 위에는 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 외부 전원으로부터 제공되는 교류 전원을 직류 전원으로 변환하는 직류변환장치, 광원 모듈(1200)의 구동을 제어하는 구동칩, 광원 모듈(1200)을 보호하기 위한 ESD(ElectroStatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.The guide portion 1630 may have a shape protruding from the side of the base 1650 to the outside. The guide portion 1630 may be inserted into the holder 1500. A plurality of parts may be disposed on one surface of the base 1650. For a number of components, for example, a DC converter for converting AC power supplied from an external power source into DC power, a driving chip controlling driving of the light source module 1200, and ESD (ElectroStatic) for protecting the light source module 1200 discharge) protection element, and the like, but is not limited thereto.

연장부(1670)는 베이스(1650)의 다른 일 측에서 외부로 돌출된 형상을 가질 수 있다. 연장부(1670)는 내부 케이스(1700)의 연결부(1750) 내부에 삽입될 수 있고, 외부로부터의 전기적 신호를 제공받을 수 있다. 예컨대, 연장부(1670)는 내부 케이스(1700)의 연결부(1750)와 폭이 같거나 작을 수 있다. 연장부(1670)에는 "+ 전선"과 "- 전선"의 각 일 단이 전기적으로 연결될 수 있고, "+ 전선"과 "- 전선"의 다른 일 단은 소켓(1800)에 전기적으로 연결될 수 있다.The extension 1670 may have a shape protruding from the other side of the base 1650 to the outside. The extension part 1670 may be inserted inside the connection part 1750 of the inner case 1700, and may receive an electrical signal from the outside. For example, the extension 1670 may be the same or smaller in width than the connection 1750 of the inner case 1700. Each end of the "+ wire" and the "-wire" may be electrically connected to the extension 1670, and the other end of the "+ wire" and "-wire" may be electrically connected to the socket 1800. .

내부 케이스(1700)는 내부에 전원 제공부(1600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 전원 제공부(1600)가 내부 케이스(1700) 내부에 고정될 수 있도록 한다.The inner case 1700 may include a molding unit together with a power supply unit 1600 therein. The molding part is a part in which the molding liquid is hardened, so that the power supply unit 1600 can be fixed inside the inner case 1700.

이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments have been mainly described above, but this is merely an example, and is not intended to limit the present invention. Those of ordinary skill in the art to which the present invention pertains have not been exemplified above in a range that does not depart from the essential characteristics of the present embodiment. It will be appreciated that various modifications and applications are possible. For example, each component specifically shown in the embodiment can be implemented by modification. And differences related to these modifications and applications should be construed as being included in the scope of the invention defined in the appended claims.

100: 발광 소자 패키지 110: 서브 마운트
112: 보호층 114A, 114B: 금속층
116A, 116B: 범프부 118A, 118B: 전극
120: 발광 구조물 122: 제1 도전형 질화물 반도체층
124: 활성층 126: 제2 도전형 질화물 반도체층
130: 기판 132: 버퍼층
500: 공기 살균 장치 501: 케이싱
510: 발광 모듈부 530a, 530b: 난반사 반사 부재
520: 전원 공급부 800: 표시 장치
810: 바텀 커버 820: 반사판
830, 835, 901:발광 모듈 840: 도광판
850, 860: 프리즘 시트 870: 디스플레이 패널
872: 화상 신호 출력 회로 880: 컬러 필터
900: 헤드 램프 902: 리플렉터
903: 쉐이드 904: 렌즈
1000: 조명 장치 1100: 커버
1200: 광원 모듈 1400: 방열체
1600: 전원 제공부 1700: 내부 케이스
1800: 소켓
100: light emitting device package 110: sub-mount
112: protective layer 114A, 114B: metal layer
116A, 116B: bumps 118A, 118B: electrodes
120: light emitting structure 122: a first conductive type nitride semiconductor layer
124: active layer 126: second conductivity type nitride semiconductor layer
130: substrate 132: buffer layer
500: air sterilization device 501: casing
510: light emitting module unit 530a, 530b: diffuse reflection member
520: power supply 800: display device
810: bottom cover 820: reflector
830, 835, 901: light emitting module 840: light guide plate
850, 860: prism sheet 870: display panel
872: image signal output circuit 880: color filter
900: headlamp 902: reflector
903: shade 904: lens
1000: lighting device 1100: cover
1200: light source module 1400: radiator
1600: Power supply 1700: Inner case
1800: socket

Claims (11)

서브 마운트;
상기 서브 마운트 위에 배치된 제1 도전형 질화물 반도체층;
상기 제1 도전형 질화물 반도체층 위에 배치되며, 복수의 우물층과 복수의 장벽층이 번갈아 배치된 다중 양자 우물 구조를 포함하는 활성층; 및
상기 활성층 위에 배치된 제2 도전형 질화물 반도체층을 포함하고,
상기 복수의 우물층은
상기 제1 도전형 질화물 반도체층과 인접하게 배치된 제1 우물층; 및
상기 제1 우물층과 상기 제2 도전형 질화물 반도체층 사이에 배치된 복수의 제2 우물층으로 구성되고,
상기 제1 우물층의 제1 에너지 밴드갭은 상기 복수의 우물층 중에서 상기 제1 우물층을 제외한 모든 상기 복수의 제2 우물층 각각의 제2 에너지 밴드갭보다 작고,
상기 제1 우물층의 제1 두께는 상기 복수의 우물층 중에서 상기 제1 우물층을 제외한 모든 상기 복수의 제2 우물층 각각의 제2 두께보다 큰 발광 소자 패키지.
Sub-mount;
A first conductivity type nitride semiconductor layer disposed on the sub-mount;
An active layer disposed on the first conductive type nitride semiconductor layer and including a multi-quantum well structure in which a plurality of well layers and a plurality of barrier layers are alternately arranged; And
A second conductive type nitride semiconductor layer disposed on the active layer,
The plurality of well layers
A first well layer disposed adjacent to the first conductivity type nitride semiconductor layer; And
It is composed of a plurality of second well layers disposed between the first well layer and the second conductivity type nitride semiconductor layer,
The first energy band gap of the first well layer is smaller than the second energy band gap of each of the plurality of second well layers except the first well layer among the plurality of well layers,
A light emitting device package having a first thickness of the first well layer greater than a second thickness of each of the plurality of second well layers except for the first well layer among the plurality of well layers.
제1 항에 있어서, 상기 복수의 제2 우물층의 상기 제2 에너지 밴드갭은 서로 동일하고,
상기 복수의 제2 우물층의 두께는 서로 동일한 발광 소자 패키지.
The method of claim 1, wherein the second energy band gap of the plurality of second well layers is the same as each other,
The light emitting device package having the same thickness of the plurality of second well layers.
제1 항에 있어서, 상기 복수의 제2 우물층의 Al 조성은 상기 제1 우물층의 Al의 조성보다 큰 발광 소자 패키지.The light emitting device package of claim 1, wherein the Al composition of the plurality of second well layers is larger than that of Al of the first well layer. 삭제delete 삭제delete 제1 항에 있어서, 상기 제1 두께와 상기 제2 두께 간의 차는 3 Å이상인 발광 소자 패키지.The light emitting device package according to claim 1, wherein a difference between the first thickness and the second thickness is 3 mm or more. 삭제delete 삭제delete 삭제delete 제1 항, 제2 항, 제3 항 및 제6 항 중 어느 한 항에 있어서, 상기 발광 소자 패키지는
상기 서브 마운트 위에 수평 방향으로 서로 이격되어 배치된 제1 및 제2 금속층;
상기 제1 및 제2 금속층 위에 각각 배치된 제1 및 제2 범프부;
상기 제1 범프부와 상기 제1 도전형 질화물 반도체층 사이에 배치된 제1 전극;
상기 제1 도전형 질화물 반도체층과 상기 활성층과 상기 제2 도전형 질화물 반도체층을 메사 식각하여 노출된 상기 제2 도전형 질화물 반도체층과 상기 제2 범프부 사이에 배치된 제2 전극; 및
상기 제2 도전형 질화물 반도체층 위에 배치된 기판을 더 포함하고,
상기 제1 도전형 질화물 반도체층은
상기 제1 전극과 상기 활성층 사이에 배치된 제1 도전형 GaN층; 및
상기 제1 도전형 GaN층과 상기 활성층 사이에 배치된 제1 도전형 AlGaN층을 포함하고,
상기 제2 도전형 질화물 반도체층은 제2 도전형 AlGaN층을 포함하는 발광 소자 패키지.
According to any one of claims 1, 2, 3 and 6, wherein the light emitting device package
First and second metal layers spaced apart from each other in a horizontal direction on the sub-mount;
First and second bump portions respectively disposed on the first and second metal layers;
A first electrode disposed between the first bump portion and the first conductivity type nitride semiconductor layer;
A second electrode disposed between the first conductive type nitride semiconductor layer and the second conductive type nitride semiconductor layer and the second bump portion exposed by mesa etching the active layer and the second conductive type nitride semiconductor layer; And
Further comprising a substrate disposed on the second conductive type nitride semiconductor layer,
The first conductivity type nitride semiconductor layer
A first conductivity type GaN layer disposed between the first electrode and the active layer; And
And a first conductivity type AlGaN layer disposed between the first conductivity type GaN layer and the active layer,
The second conductivity type nitride semiconductor layer is a light emitting device package including a second conductivity type AlGaN layer.
삭제delete
KR1020140010387A 2014-01-28 2014-01-28 Light Emitting Device Package KR102107523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140010387A KR102107523B1 (en) 2014-01-28 2014-01-28 Light Emitting Device Package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140010387A KR102107523B1 (en) 2014-01-28 2014-01-28 Light Emitting Device Package

Publications (2)

Publication Number Publication Date
KR20150089587A KR20150089587A (en) 2015-08-05
KR102107523B1 true KR102107523B1 (en) 2020-05-07

Family

ID=53886005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140010387A KR102107523B1 (en) 2014-01-28 2014-01-28 Light Emitting Device Package

Country Status (1)

Country Link
KR (1) KR102107523B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072568A (en) * 2010-12-24 2012-07-04 엘지디스플레이 주식회사 Nitride semiconductor light emitting device
KR20120129449A (en) * 2011-05-20 2012-11-28 엘지이노텍 주식회사 Ultraviolet light emitting device
KR20130065451A (en) * 2011-12-09 2013-06-19 엘지이노텍 주식회사 Light emitting device
KR101886437B1 (en) * 2012-04-26 2018-08-07 엘지디스플레이 주식회사 Nitride semiconductor light emitting device and method for fabricating the same

Also Published As

Publication number Publication date
KR20150089587A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
KR102080778B1 (en) Light emitting device package
EP2830094B1 (en) Light emitting device
KR102019914B1 (en) Light Emitting Device
JP2014096591A (en) Light-emitting element
US9627596B2 (en) Light emitting device, light emitting device package including the device and lighting apparatus including the package
KR102408617B1 (en) Light emitting device package, and light emitting apparatus including the package
KR102170216B1 (en) Light emitting device and light emitting device package
KR102220501B1 (en) Light Emitting Device Package
KR102319734B1 (en) Light emitting device and light emitting device package including the device
KR102140273B1 (en) Light emitting device and light emitting device package including the same
KR102107524B1 (en) Light Emitting Device Package
KR102107523B1 (en) Light Emitting Device Package
KR102140277B1 (en) Light Emitting Device
KR102099442B1 (en) Light Emitting Device and light emitting device package
KR102320866B1 (en) Light emitting device and light emitting device package
KR102194804B1 (en) Light emitting device
KR102087937B1 (en) Light emitting device
KR20150092478A (en) Light Emitting Device
KR102127440B1 (en) Light Emitting Device Package
KR102189131B1 (en) Light emitting device
KR102099441B1 (en) Light emittng device
KR102050057B1 (en) Light Emitting Device Package
KR102080777B1 (en) Light emitting device and light emitting module including the device
KR102109039B1 (en) Light emitting device and light emitting device package including the same
KR101902393B1 (en) Light emitting device package

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant