KR102088503B1 - 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 - Google Patents
4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 Download PDFInfo
- Publication number
- KR102088503B1 KR102088503B1 KR1020150125106A KR20150125106A KR102088503B1 KR 102088503 B1 KR102088503 B1 KR 102088503B1 KR 1020150125106 A KR1020150125106 A KR 1020150125106A KR 20150125106 A KR20150125106 A KR 20150125106A KR 102088503 B1 KR102088503 B1 KR 102088503B1
- Authority
- KR
- South Korea
- Prior art keywords
- coa
- hydroxybutyrate
- hydroxyalkanoyl
- hydroxyalkanoate
- ala
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/13—Transferases (2.) transferring sulfur containing groups (2.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y208/00—Transferases transferring sulfur-containing groups (2.8)
- C12Y208/03—CoA-transferases (2.8.3)
- C12Y208/03001—Propionate CoA-transferase (2.8.3.1)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Polymers & Plastics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법, 그리고 상기 삼중합체를 생산하는 미생물 및 이의 제조방법이 제공된다.
Description
4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법, 그리고 상기 삼중합체를 생산하는 미생물 및 이의 제조방법이 제공된다.
폴리하이드록시알카노에트(polyhydroxyalkanoate: PHA)는 미생물이 질소, 산소, 인, 마그네슘 등의 성장에 필요한 원소가 부족한 상태에서 탄소원이 풍부하게 존재할 때 에너지 및 환원능의 저장을 위하여 미생물 내부에 축적하는 천연 폴리에스터 물질이다. PHA는 종래 석유로부터 유래된 합성 고분자와 비슷한 물성을 가지면서 생분해성 및 생체적합성을 보이기 때문에, 기존의 합성 플라스틱을 대체할 물질로 인식되고 있다.
PHA 의 모노머로 알려진 것은 약 150종 이상으로, 이 중 대부분의 모노머들이 3-, 4-, 5- 또는 6-하이드록시알카노에트(hydroxyalkanoate: HA)이고, 활발히 연구되고 있는 대표적인 PHA 모노머로는 3-하이드록시부티레이트(3-hydroxybutyrate: 3HB), 4-하이드록시부티레이트(4-hydroxybutyrate: 4HB), 3-하이드록시프로피오네이트(3-hydroxypropionate: 3HP), 및 탄소수가 6~12개인 중간 사슬 길이(medium chain length: MCL)의 3-하이드록시알카노에트(MCL 3-hydroxyalkanoate) 등과 같이, 3번과 4번 탄소 위치에 하이드록시기(hydroxyl group)가 있는 모노머들을 들 수 있다.
미생물에서 PHA 를 합성하는 데 핵심적인 역할을 하는 효소는 PHA 합성효소로, 이는 다양한 하이드록시아실-CoA(hydroxyacyl-CoA) 를 기질로 하여 해당 모노머를 함유한 폴리에스터를 합성한다. 또한, PHA 합성효소는 다양한 하이드록시아실-CoA 들 중에서 기질특이성을 가지기 때문에 고분자의 모노머 조성은 PHA 합성효소에 의해 조절된다. 따라서, PHA 를 합성하기 위해서는, PHA 합성효소의 기질로 사용될 수 있는 다양한 하이드록시아실-CoA 를 합성하고 제공하는 대사경로와, 상기 기질과 PHA 합성효소를 이용한 고분자 합성 대사경로가 필요하다.
한편, 2번 탄소 위치에 하이드록시기가 있는 락테이트(lactate) 또는 2-하이드록시부티레이트(2-hydroxybutyrate, 2HB) 등의 모노머의 경우 PHA 합성효소의 기질특이성에 적합하지 않아, 자연적으로 또는 재조합적인 방법으로 PHA 및 이의 공중합체를 제조한 예가 거의 없었다. 나아가, 아직까지 2HB, 3HB 및 4HB 를 모노머로 하여 생산된 삼중합체 PHA 고분자는 보고되어 있지 않다.
이에, 본 발명은 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 그 제조에 관한 기술을 제공한다.
일 예는, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 제공한다.
다른 예는, 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 폴리하이드록시알카노에트 합성효소를 코딩하는 유전자를 포함하는 미생물을 배양하는 단계를 포함하는, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체의 제조방법을 제공한다.
다른 예는, 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 포함하며, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 생산하는 미생물을 제공한다.
다른 예는, 락테이트 디하이드로게나아제(lactate dehydrogenase)를 코딩하는 유전자를 결실시키고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 세포에 도입하는 단계를 포함하는, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 생산하는 미생물의 제조방법을 제공한다.
일 양태로, 본 발명은 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법에 관한 것이다.
구체적인 일 예는, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 제공한다. 예를 들어, 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체 에 관한 것이다.
다른 예는 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 폴리하이드록시알카노에트합성효소를 코딩하는 유전자를 포함하는 세포를 배양하는 단계를 포함하는, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체의 제조방법에 관한 것이다.
다른 양태로, 본 발명은 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 생산하는 미생물 및 이의 제조방법에 관한 것이다.
구체적인 일 예는, 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 포함하며, 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 생산하는 미생물에 관한 것이다.
다른 예는, 락테이트 디하이드로게나아제(lactate dehydrogenase)를 코딩하는 유전자를 결실시키고, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 세포에 도입하는 단계를 포함하는, 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 생산하는 미생물의 제조방법에 관한 것이다.
이하, 본 발명의 구성을 보다 상세하게 설명한다.
용어, "4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체" 란 모노머로서 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트가 에스터 결합으로 중합된 반복단위를 포함하는 선형의 폴리에스터를 말한다. 이 때, 각 모노머의 중합 순서에는 특별한 제한이 없으며, 무작위적으로 반복될 수 있다. 예를 들어, 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체, 3-하이드록시부티레이트-2-하이드록시부티레이트-4-하이드록시부티레이트 삼중합체, 2-하이드록시부티레이트-4-하이드록시부티레이트-3-하이드록시부티레이트 삼중합체, 4-하이드록시부티레이트-2-하이드록시부티레이트-3-하이드록시부티레이트 삼중합체, 3-하이드록시부티레이트-4-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체, 2-하이드록시부티레이트-3-하이드록시부티레이트-4-하이드록시부티레이트 삼중합체 등을 예시할 수 있다.
용어, "2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소"는, CoA 공여체로부터 CoA 를 떼어서 2-하이드록시알카노에트, 3-하이드록시알카노에트 및 4-하이드록시알카노에트에 각각 전달함으로써 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA을 생성할 수 있는 효소를 말한다. 상기 CoA 공여체로는 아세틸-CoA 또는 아실-CoA (예를 들어, 프로피오닐-CoA 등)를 예시할 수 있다.
일 구현예로, 상기 효소는 프로피오닐-CoA 트랜스퍼라아제일 수 있다. 또한,상기 효소의 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum) 에서 유래한 것일 수 있다.
예를 들어, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자는,
(a) 서열번호 1의 염기서열;
(b) 서열번호 1의 염기서열에서 A1200G가 변이된 염기서열;
(c) 서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C가 변이된 염기서열;
(d) 서열번호 1과 대응하는 아미노산 서열에서 Gly335Asp이 변이되고, 서열번호 1의 염기서열에서 A1200G가 변이된 염기서열;
(e) 서열번호 1과 대응하는 아미노산 서열에서 Ala243Thr이 변이되고, 서열번호 1의 염기서열에서 A1200G가 변이된 염기서열;
(f) 서열번호 1과 대응하는 아미노산 서열에서 Asp65Gly이 변이되고, 서열번호 1 의 염기서열에서 T669C, A1125G 및 T1158C가 변이된 염기서열;
(g) 서열번호 1과 대응하는 아미노산 서열에서 Asp257Asn이 변이되고, 서열번호 1의 염기서열에서 A1200G가 변이된 염기서열;
(h) 서열번호 1과 대응하는 아미노산 서열에서 Asp65Asn이 변이되고, 서열번호 1의 염기서열에서 T669C, A1125G 및 T1158C가 변이된 염기서열;
(i) 서열번호 1과 대응하는 아미노산 서열에서 Thr199Ile이 변이되고, 서열번호 1의 염기서열에서 T669C, A1125G 및 T1158C가 변이된 염기서열; 및
(j) 서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 1과 대응하는 아미노산 서열에서 Val193Ala이 변이된 염기서열
로 이루어진 군으로부터 선택된 염기서열을 갖는 것일 수 있다.
용어, " 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소"는, 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA을 기질로 하여 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 합성할 수 있는 효소를 말한다.
예를 들어, 상기 효소는 슈도모나스 속 6-19(pseudomonas sp. 6-19)에서 유래한 PHA 합성효소(phaC)일 수 있다.
예를 들어, 상기 PHA 합성효소는,
서열번호 4의 아미노산 서열; 또는
서열번호 4의 아미노산 서열에서 L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, Q481R 및 A527S로 구성되는 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열에 대응하는 염기 서열로 이루어진 것일 수 있다.
다른 구체예에서, 상기 PHA 합성효소는,
서열번호 4의 아미노산 서열에서,
(i) S325T 및 Q481M;
(ii) E130D, S325T 및 Q481M;
(iii) E130D, S325T, S477R 및 Q481M;
(iv) E130D, S477F 및 Q481K; 및
(v) L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S로 이루어진 군으로부터 선택되는 변이를 포함하는 아미노산 서열에 대응하는 염기 서열로 이루어진 것일 수 있다.
상기 효소들은 분자의 활성을 전체적으로 변경시키지 않는 범위 내에서 추가적인 변이를 포함할 수 있다. 예를 들어, 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 예를 들어, 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환을 들 수 있으나, 이에 제한되는 것은 아니다. 경우에 따라서, 상기 단백질은, 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification) 될 수도 있다. 또한, 아미노산 서열 상의 변이 또는 수식에 의해서 단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 효소 단백질을 포함할 수 있다.
또한, 상기 효소를 코딩하는 유전자는, 기능적으로 균등한 코돈 또는 (코돈의 축퇴성에 의해) 동일한 아미노산을 코딩하는 코돈, 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 핵산분자를 포함할 수 있다. 상기 핵산 분자는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다.
용어, "락테이트 디하이드로게나아제(lactate dehydrogenase)"는 피루브산과 락테이트 간의 가역적 변환을 촉매하는 효소를 말하며, 락테이트 합성 경로에서 필수적인 역할을 한다. 일 구체예로, 상기 락테이트 디하이드로게나아제를 코딩하는 유전자는 ldhA 일 수 있다.
본원에서는 락테이트가 포함되지 않은 공중합체를 생산하기 위하여, 숙주 세포의 대사과정 중 락테이트 생산에 관여하는 락테이트 디하이드로게나아제의 활성이 내재적 조절 활성에 비하여 약화 또는 결손됨을 특징으로 한다. 내재적 조절 활성이란 숙주 세포가 천연의 상태로 가지고 있는 효소의 활성 상태를 의미하는 것으로, 예를 들어, 대장균이 천연적으로 가지고 있는 락테이트 합성에 관한 활성을 의미할 수 있다.
락테이트 디하이드로게나아제 활성의 결손은, 상기 효소를 코딩하는 유전자의 일부 또는 전부를 결실 또는 치환하거나 상기 유전자의 염기서열 내에 특정 변이서열을 삽입하는 등의 유전자 조작에 의하여 수행될 수 있다. 이 때 당업계에 알려진 통상의 넉아웃 기술을 적용할 수 있다. 또한, 락테이트 디하이드로게나아제 활성의 약화는, 상기 유전자의 프로모터 부위 또는 5'-UTR 부위 등 유전자의 발현 조절 서열의 염기서열을 변형시킴으로써 효소의 발현을 약화시키거나, 해당 유전자의 오픈 리딩 프레임 부위에 변이를 도입함으로써 효소의 활성을 약화시킬 수 있다. 이러한 변이의 도입은, 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합, 또는 람다 레드 재조합 시스템 (lambda red recombination system)에 의하여 이루어질 수 있다.
본원에서 제공하는 미생물은, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 포함하고 있으며, 상기 유전자들이 유전자 재조합적 방법으로 세포 내에 도입되어 있는 것일 수 있다.
예를 들어, 상기 미생물은, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 재조합 벡터로 형질전환하거나 상기 유전자가 염색체상에 삽입되도록 유전자 조작된 것일 수 있다.
또한, 상기 미생물은, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자 중 1종을 이미 포함하고 있을 수 있으며, 나머지 1종은 재조합 벡터로 형질전환되거나 상기 유전자가 염색체상에 삽입되도록 유전자 조작된 것일 수 있다.
예를 들어, 상기 미생물은, 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 포함하는 세포에, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자를 형질전환하여 수득된 것일 수 있다.
다른 예로, 상기 미생물은, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자를 포함하는 세포에, 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 형질전환하여 수득된 것일 수 있다.
유전자 재조합 방법으로 상기 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 생산하는 미생물을 제조하거나 상기 미생물을 이용하여 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 생산하는 과정은 다음 단계를 포함할 수 있다.
우선, 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자 중 1종 이상을 벡터에 삽입하여 재조합 벡터를 제조하는 단계이다. 위 2종의 유전자는 각각 별도의 벡터에 삽입될 수도 있고, 하나의 벡터에 삽입될 수도 있다.
용어, "벡터"는 개체의 세포 내에서 목적 단백질을 코딩하는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말하며, 목적 단백질을 코딩하는 핵산 서열을 숙주 세포로 도입되기 위한 수단이 된다. 상기 벡터로는 플라스미드, 바이러스 벡터, 박테리오파지 벡터, 코즈미드 벡터, YAC(Yeast Artificial Chromosome) 벡터 등 다양한 형태의 벡터를 사용할 수 있다. 재조합 벡터는 클로닝 벡터 및 발현 벡터를 포함한다. 클로닝 벡터는 복제기점, 예를 들어 플라스미드, 파지 또는 코스미드의 복제 기점을 포함하며, 다른 DNA 절편이 부착되어 부착된 절편이 복제될 수 있는 레플리콘이다. 발현 벡터는 단백질을 합성하는데 사용되도록 개발되었다.
본원에서 벡터는 원핵세포 또는 진핵세포 등 각종 숙주 세포에서 목적하는 효소 유전자를 발현하고 이를 생산하는 기능을 하면 특별히 한정되지 않지만, 벡터내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 벡터가 바람직하다.
이러한 벡터는, 해당 유전자가 선택된 숙주 내에서 발현될 수 있도록 하는 전사 및 해독 발현 조절 서열을 포함한다. 발현 조절 서열로는, 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및/또는 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및/또는 리보좀 결합 부위를 포함할 수 있다. 진핵세포에 적합한 조절 서열은 프로모터, 터미네이터 및/또는 폴리아데닐화 시그날을 포함할 수 있다. 개시 코돈 및 종결 코돈은 일반적으로 목적 단백질을 코딩하는 핵산 서열의 일부로 간주되며, 유전자 작제물이 투여되었을 때 개체에서 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 그 외에, 인핸서, 목적하는 유전자의 5' 말단 및 3' 말단의 비해독영역, 선별 마커(예컨대, 항생제 내성 마커), 또는 복제가능단위 등을 적절하게 포함할 수도 있다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다.
유용한 발현 조절 서열의 예로는, 아데노바이러스의 초기 및 후기 프로모터들, 원숭이 바이러스 40(SV40), 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 긴 말단 반복부(LTR) 프로모터, 몰로니 바이러스, 시토메갈로바이러스(CMV) 프로모터, 엡스타인 바이러스(EBV) 프로모터, 로우스 사코마 바이러스(RSV) 프로모터, RNA 폴리머라제 Ⅱ 프로모터, β-액틴 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 포스포글리세레이트 키나아제 (phosphoglycerate kinase, PGK) 또는 다른 글리콜분해 효소에 대한 프로모터, 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합을 포함할 수 있다.
세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는 목적하는 유전자와 전사 및 해독 발현 조절 서열이 서로 작동가능하도록 연결되어야 한다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더(leader)에 대한 DNA가 단백질의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결될 수 있고, 프로모터 또는 인핸서가 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결될 수 있고, 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결될 수 있고, 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결될 수 있다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행될 수 있고, 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하여 수행될 수 있다.
당업자는 숙주 세포의 성질, 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현 등을 고려하여, 본 발명에 적합한 각종 벡터, 발현 조절 서열, 숙주 등을 선정할 수 있다.
다음은, 상기 재조합 벡터를 사용해서 미생물을 형질전환시키는 단계이다.
용어, "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다.
본 발명에 따른 재조합 벡터로 형질전환될 수 있는 미생물은 원핵 세포와 진핵 세포 모두를 포함하며, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용될 수 있다. 구체 예로, 대장균 (예를 들어, E. coli DH5a, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli B 및 E. coli XL1-Blue)을 포함하는 에스케리키아 속, 슈도모나스 속, 바실러스 속, 스트렙토마이세스 속, 어위니아 속, 세라티아 속, 프로비덴시아 속, 코리네박테리움 속, 렙토스피라 속, 살모넬라 속, 브레비박테리아 속, 하이포모나스 속, 크로모박테리움 속, 노카디아 속, 진균 또는 효모와 같은 주지의 진핵 및 원핵 숙주 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다.
또한, 본 발명의 목적상, 상기 숙주 세포는 탄소원으로부터 하이드록시아실-CoA를 생합성하는 경로를 가지고 있는 미생물일 수 있다.
형질전환 방법으로는, 당 분야에서 공지된 바와 같이 적합한 표준 기술, 예들 들어, 전기천공법(electroporation), 전기주입법(electroinjection), 미세주입법(microinjection), 인산칼슘공동-침전법(calcium phosphate co-precipitation), 염화캄슘/염화루비듐법, 레트로바이러스 감염(retroviral infection), DEAE-덱스트란(DEAE-dextran), 양이온 리포좀(cationic liposome)법, 폴리에틸렌 글리콜 침전법(polyethylene glycol-mediated uptake), 유전자총(gene gun) 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 이 때 원형의 벡터를 적절한 제한효소로 절단하여 선형의 벡터 형태로 도입할 수 있다.
다음은, 상기 형질전환된 미생물을 배양하여 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 생산하는 단계이다.
상기 재조합 벡터가 발현되는 형질전환체를 배지에서 배양하여, 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 대량으로 제조, 분리 가능하다. 배지와 배양조건은 형질전환 세포의 종류에 따라 관용되는 것을 적당히 선택하여 이용할 수 있다. 배양 시 세포의 생육과 삼중합체의 대량 생산에 적합하도록 온도, 배지의 pH 및 배양시간 등의 조건들을 적절하게 조절할 수 있다. 상기 배양 방법의 예에는, 회분식, 연속식 및 유가식 배양이 포함되나, 이에 제한되는 것은 아니다.
일 구현예로, 상기 배양은 2-하이드록시부티레이트, 3-하이드록시부티레이트 및/또는 4-하이드록시부티레이트를 포함하는 배지에서 수행되는 것일 수 있다. 또한, 글루코즈 등의 탄소원으로부터 2-하이드록시부티레이트, 3-하이드록시부티레이트 및 4-하이드록시부티레이트를 생합성 할 수 있는 미생물이라면, 2-하이드록시부티레이트, 3-하이드록시부티레이트 및/또는 4-하이드록시부티레이트 별도로 첨가하지 않아도 상기 공중합체를 제조할 수 있다.
이 외에, 배양에 사용되는 배지는 특정한 균주의 요구조건을 적절하게 만족시켜야 한다. 상기 배지는 다양한 탄소원, 질소원, 인원 및 미량원소 성분을 포함할 수 있다. 배지 내 탄소원으로는 글루코즈, 사카로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산을 예시할 수 있으나, 이에 제한되는 것은 아니다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 배지 내 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄을 예시할 수 있으나, 이에 제한되는 것은 아니다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있다. 배지 내 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염을 예시할 수 있으나, 이에 제한되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 포함하거나, 아미노산 및 비타민과 같은 필수 성장 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기된 원료들은 배양 과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다.
또한, 필요에 따라, 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있으며, 배양물의 온도는 보통 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃ 일 수 있다. 배양은 원하는 삼중합체의 생산량이 최대로 얻어질 때까지 계속될 수 있다.
다음은, 상기 생산된 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 회수하는 단계이다.
재조합 미생물로부터 생산된 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체는, 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 분리해낼 수 있다. 삼중합체의 회수 방법의 예로서, 원심분리, 초음파파쇄, 여과, 이온교환 크로마토그래피, 고성능 액체 크로마토그래피(high performance liquid chromatography: HPLC), 가스 크로마토그래피(gas chromatography: GC) 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
본 발명은 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 제공하며, 이는 생분해성 및 생체적합성이 있는 바이오플라스틱의 원료로서, 전자, 자동차, 식품, 농업 및 의료 분야 등에 폭넓게 활용될 수 있다.
도 1은 pPs619C1310-CpPCT540 벡터의 제작 과정 및 개열 지도를 나타낸 것이다.
도 2는 pPs619C1249.18H-CPPCT540 벡터의 개열 지도를 나타낸 것이다.
도 3은 재조합 미생물로부터 생산된 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 가스크로마토그래피로 분석한 결과를 나타낸다.
도 2는 pPs619C1249.18H-CPPCT540 벡터의 개열 지도를 나타낸 것이다.
도 3은 재조합 미생물로부터 생산된 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체를 가스크로마토그래피로 분석한 결과를 나타낸다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예
1. 4-
하이드록시부티레이트
-3-
하이드록시부티레이트
-2-
하이드록시부티레이트
삼중합체의 제조용 재조합 벡터의 제조
1-1.
pPs619C1310
-
CPPCT540
재조합 벡터의 제조
프로피오닐-CoA 트랜스퍼라아제 유전자(pct)는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 프로피오닐-CoA 트랜스퍼라아제(CP-PCT)의 변이체를 사용하였고, PHA 합성효소 유전자는 슈도모나스 속 MBEL 6-19 (KCTC 11027BP) 유래의 PHA 합성효소의 변이체를 사용하였다. 이 때 사용된 벡터는 pBluescript II (Stratagene Co., USA)이다.
우선, PHA 합성효소(phaC1Ps6 -19) 유전자를 분리하기 위하여, 슈도모나스 속 MBEL 6-19 (KCTC 11027BP)의 전체 DNA를 추출하고, phaC1Ps6 -19 유전자 서열(서열번호 3)에 기반하여, 프라이머[5'-GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG-3'(서열번호 5), 5'-CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC-3'(서열번호 6)]를 제작하고, 상기 추출한 전체 DNA를 주형으로 하여, PCR을 수행하였다. 얻어진 PCR 산물을 전기영동하여, phaC1Ps6 -19 유전자에 해당하는 1.7 kb 크기의 유전자 절편을 확인하고, phaC1Ps6 -19 유전자를 수득하였다.
phaC1Ps6 -19 합성효소를 발현시키기 위하여, pSYL105 벡터(Lee et al ., Biotech. Bioeng., 1994, 44:1337-1347)에서 Ralstonia eutropha H16 유래의 PHB 생산 오페론이 함유된 DNA 절편을 BamHI/EcoRI으로 절단하여, pBluescript II (Stratagene Co., USA)의 BamHI/EcoRI 인식부위에 삽입함으로써 pReCAB 재조합 벡터를 제조하였다. pReCAB 벡터는 PHA 합성효소(phaCRE)와 단량체 공급효소(phaARE 및 phaBRE)가 PHB 오페론 프로모터에 의해 항시적으로 발현된다. BstBI/SbfI 인식 부위가 각각 양끝에 하나씩만 포함된 phaC1Ps6 -19 합성효소 유전자 절편을 만들기 위해 우선 내재하고 있는 BstBI 위치를 SDM(site directed mutagenesis) 방법으로 아미노산의 변환 없이 제거하였고, BstBI/SbfI 인식부위를 첨가하기 위해 프라이머[5'- atg ccc gga gcc ggt tcg aa -3'(서열번호 7), 5'- CGT TAC TCT TGT TAC TCA TGA TTT GAT TGT CTC TC -3'(서열번호 8), 5'- GAG AGA CAA TCA AAT CAT GAG TAA CAA GAG TAA CG -3' (서열번호 9), 5- CAC TCA TGC AAG CGT CAC CGT TCG TGC ACG TAC -3'(서열번호 10), 5'- GTA CGT GCA CGA ACG GTG ACG CTT GCA TGA GTG -3'(서열번호 11), 5'- aac ggg agg gaa cct gca gg -3'(서열번호 12)]를 이용하여 오버랩핑 PCR을 수행하였다. pReCAB 벡터를 BstBI/SbfI으로 절단하여 R. eutropha H16 PHA 합성효소 (phaCRE)를 제거한 다음, 상기에서 수득한 phaC1Ps6 -19 유전자를 BstBI/SbfI 인식부위에 삽입함으로써 pPs619C1-ReAB 재조합 벡터를 제조하였다.
SCL(short chain length) 활성에 영향을 미치는 아미노산 위치 3 곳을 아미노산 서열 배열분석을 통해 찾았고, 프라이머[5'- CTG ACC TTG CTG GTG ACC GTG CTT GAT ACC ACC- 3'(서열번호 13), 5- GGT GGT ATC AAG CAC GGT CAC CAG CAA GGT CAG- 3'(서열번호 14), 5'- CGA GCA GCG GGC ATA TC A TGA GCA TCC TGA ACC CGC- 3'(서열번호 15), 5'- GCG GGT TCA GGA TGC TCA TGA TAT GCC CGC TGC TCG- 3'(서열번호 16), 5'- atc aac ctc atg acc gat gcg atg gcg ccg acc- 3'(서열번호 17), 5'- ggt cgg cgc cat cgc atc ggt cat gag gtt gat- 3'(서열번호 18)]를 사용한 SDM 방법을 이용하여, E130D, S325T, Q481M 을 포함하는 phaC1Ps6 -19 합성효소 변이체인 phaC1Ps6 -19300을 함유한 pPs619C1300-ReAB 를 제조하였다.
여기에 프로피오닐-CoA 트랜스퍼라아제가 같이 발현되는 오페론 형태의 항시적 발현되는 시스템을 구축하기 위하여 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 프로피오닐-CoA 트랜스퍼라아제 (CP-PCT)를 사용하였다. CP-PCT는 클로스트리듐 프로피오니쿰의 염색체 DNA를 프라이머[5'-GGAATTCATGAGAAAGGTTCCCATTATTACCGCAGATGA-3'(서열번호 19), 5'-gc tctaga tta gga ctt cat ttc ctt cag acc cat taa gcc ttc tg-3'(서열번호 20)]를 이용하여 PCR하여 얻어진 단편을 사용하였다. 이 때, 원래 야생형 CP-PCT에 존재하는 NdeI site를 cloning의 용이성을 위해 SDM 방법을 이용하여 제거하였고, SbfI/NdeI 인식부위를 첨가하기 위해 프라이머[5'-agg cct gca ggc gga taa caa ttt cac aca gg- 3'(서열번호 21), 5'-gcc cat atg tct aga tta gga ctt cat ttc c- 3'(서열번호 22)]를 이용하여 오버랩핑 PCR을 수행하였다. pPs619C1300-ReAB 벡터를 SbfI/NdeI으로 절단하여 Ralstonia eutrophus H16 유래의 단량체 공급효소 (phaARE 및 phaBRE)를 제거한 다음, 상기 PCR 클로닝한 CP-PCT 유전자를 SbfI/NdeI 인식 부위에 삽입함으로써 pPs619C1300-CPPCT 재조합 벡터를 제조하였다.
다음으로, CP-PCT 유전자에 무작위적 돌연변이(random mutagenesis)를 도입하기 위해 상기에서 제작된 pPs619C1300-CPPCT을 주형으로 하고, 프라이머[5'-CGCCGGCAGGCCTGCAGG-3'(서열번호 23), 5'-GGCAGGTCAGCCCATATGTC-3'(서열번호 24)]를 이용하여 Mn2 +이 첨가되고 dNTPs의 농도 차이가 존재하는 조건에서 Error-prone PCR을 실시하였다. 그 후, 무작위적 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 프라이머를 이용하여 일반 조건에서 PCR하였다. pPs619C1300-CPPCT 벡터를 SbfI/NdeI으로 절단하여 야생형 CP-PCT 를 제거한 후, 상기 증폭된 돌연변이 PCR 단편을 SbfI/NdeI 인식부위에 삽입시킨 ligation mixture를 만들어 E. coli JM109에 도입하여 ~105정도 규모의 CP-PCT 라이브러리를 제작하였다. 상기 제작된 CP-PCT 라이브러리는 고분자 검출배지(LB agar, glucose 20g/L, 3HB 1g/L, Nile red 0.5μg/ml)에서 3일간 생육시킨 후 고분자 생성 여부를 확인하는 스크리닝 작업을 수행하여 ~80여 개체의 후보를 1차 선정하였다. 이들 후보를 고분자가 생성되는 조건에서 4일간 액체 배양(LB agar, glucose 20g/L, 3HB 1g/L, ampicillin 100mg/L, 37℃)하였고, FACS(Florescence Activated Cell Sorting) 분석을 통하여 2 개체, 즉 CP-PCT Variant 512 (핵산치환 A1200G 포함) 및 CP-PCT Variant 522 (핵산치환 T78C, T669C, A1125G, T1158C 포함)를 선정하였다. 상기 1차 선별된 돌연변이체들(CP-PCT Variant 512, CP-PCT Variant 522)을 기본으로 다시 상기 Error-prone PCR의 방법으로 무작위적 돌연변이를 수행하여 다양한 CP-PCT 변이체들을 얻을 수 있었고, 그 중 CP-PCT Variant 540 (Val193Ala 및 침묵돌연변이 T78C, T669C, A1125G, T1158C 포함)를 2차 선별하여 pPs619C1300-CPPCT540 벡터를 제조하였다.
또한, 상기 제조한 phaC1Ps6 -19 합성효소 변이체(phaC1Ps6-19300)를 기초로 하여 프라이머[5'-gaa ttc gtg ctg tcg agc cgc ggg cat atc- 3' (서열번호 25), 5'-gat atg ccc gcg gct cga cag cac gaa ttc- 3'(서열번호 26), 5'-ggg cat atc aag agc atc ctg aac ccg c-3'(서열번호 27), 5'-g cgg gtt cag gat gct ctt gat atg ccc-3'(서열번호 28)]를 사용한 SDM 방법을 이용하여 E130D, S477F 및 Q481K 이 변이된 아미노산 서열을 가진 슈도모나스 속 MBEL 6-19 유래 PHA 합성효소 변이체(phaC1Ps6 -19310) 를 함유한 pPs619C1310-CPPCT540 벡터를 제조하였다(도 1).
1-2.
pPs619C1249
.18H-
CPPCT540
재조합 벡터의 제조
상기 1-1 에서 제조한 pPs619C1310-CPPCT540 벡터를 주형으로 하여 프라이머[5'-ATGCCCGGAGCCGGTTCGAA-3'(서열번호 29) 및 5'-GAAATTGTTATCCGCCTGCAGG-3'(서열번호 30)]를 사용하여 error-prone PCR을 수행하였다. error-prone PCR을 수행한 후 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 프라이머를 이용하여 다시 PCR 한 후 증폭된 돌연변이들을 pPs619C1310-CPPCT540 벡터의 BstBI/SbfI 위치에 삽입하여 변이체들에 대한 라이브러리를 제작하였다. 제작된 변이체 라이브러리를 E.coli XL-1Blue에 형질전환 시키고, 이를 PHB 검출배지(LB agar, glucose 20g/L, Nile red 0.5μg/ml)에서 3일 동안 배양했다. 배양 후 스크리닝 과정을 통해 최종 선별된 변이체는 L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S이 변이된 아미노산 서열을 가진 pPs619C1249.18H 이었다. 이렇게 하여 재조합 벡터 pPs619C1249.18H-CPPCT540 벡터를 제조하였다(도 2).
실시예
2.
ldhA
유전자가
넉아웃(knock-out)된
E.
coli
XL1-
Blue
변이체
제작
Escherichia coli XL1-Blue (Stratagene, USA)를 바탕으로 하여 락테이트가 포함되지 않는 중합체를 생산하기 위하여 대장균의 대사과정 중 락테이트 생산에 관여하는 D-락테이트디하이드로게나제(LdhA)를 genomic DNA에서 knouk-out 시켰다. 유전자의 결실은 업계에 잘 알려져 있는 red-recombination 방법을 이용하였다. ldhA를 결실시키기 위해 사용된 올리고머는 서열번호 31(5'-atcagcgtacccgtgatgctaacttctctctggaaggtctgaccggctttaattaaccctcactaaagggcg-3') 및 서열번호 32 (5'-atcagcgtacccgtgatgctaacttctctctggaaggtctgaccggctttaattaaccctcactaaagggcg-3')의 염기서열로 합성하였다.
실시예
3. 4-
하이드록시부티레이트
-3-
하이드록시부티레이트
-2-
하이드록시부티레이트
삼중합체의
제조
실시예 1에서 제작된 재조합 벡터를 실시예 2에서 제작된 ldhA가 knock-out 된 E.coli XL1-BlueΔldhA 에 전기천공법(electroporation)을 이용하여 형질전환 시킴으로써 재조합 E.coli XL1-BlueΔldhA 를 제작하였다. 이를 이용하여 상기의 삼중합체를 제조하기 위해 플라스크 배양을 수행하였다. 먼저 전 배양(seed culture)을 위해 상기 재조합 대장균을 100mg/L 앰피실린(ampicillin)과 20mg/L 카나마이신이 함유되어 있는 3 mL의 LB 배지[BactoTM Triptone(BD) 10g/L, BactoTM yeast extract(BD) 5g/L, NaCL(amresco) 10g/L]에서 12시간 배양하였다. 본 배양을 위해, 전 배양액 1ml를 1g/L 의 4-하이드록시부티레이트(4-HB), 1g/L 의 3-하이드록시부티레이트(3-HB), 1g/L의 2-하이드록시부티레이트(2-HB), 100mg/L의 앰피실린, 20mg/L 카나마이신, 10mg/L의 thiamine이 추가로 함유된 100ml MR 배지(1L 당 Glucose 10g, KH2PO4 6.67g, (NH4)2HPO4 4g, MgSO4·7H2O 0.8g, citric acid 0.8g, 및 trace metal solution 5mL; 여기에서, Trace metal solution은 1L 당 5M HCl 5mL, FeSO4?7H2O 10g, CaCl2 2g, ZnSO4?7H2O 2.2g, MnSO4·4H2O 0.5g, CuSO4·5H2O 1g, (NH4)6Mo7O2·4H2O 0.1g, 및 Na2B4O2·10H2O 0.02g)에 접종하여 30℃에서 3일간 250 rpm 으로 교반하며 배양하였다.
상기 배양액을 4℃, 4000 rpm에서 10분간 원심분리하여 균체를 회수하고 충분한 양의 증류수로 2회 씻어준 후 80℃ 에서 12시간 건조하였다. 제거된 균체를 정량한 후 100℃에서 클로로포름을 용매로 사용하여 황산 촉매 하에서 메탄올과 반응시켜 주었다. 이를 상온에서 클로로포름의 절반에 해당하는 부피의 증류수를 첨가하여 혼합한 후 두 개의 층으로 분리될 때까지 정치시켰다. 두 개의 층 중에서 메틸화된 고분자의 단량체들이 녹아 있는 클로로포름층을 채취하여 가스크로마토그래피(GC)로 고분자의 성분을 분석하였다. 내부 표준물질로는 벤조에이트(benzoate)를 사용하였다. 이 때 사용된 GC 분석조건은 하기의 표 1과 같다.
GC 분석결과는 표 2와 도 3에 나타낸 바와 같이, 재조합 대장균에 의해 4-하이드록시부티레이트-3-하이드록시부티레이트-2-하이드록시부티레이트 삼중합체가 생성되었음을 확인할 수 있었다.
Item | Quality |
Model | Hewlett Packard 6890N |
Detector | Flame ionization detector(FID) |
Column | Alltech Capillary ATTM-WAX, 30m, 0.53mm |
Liquid phase | 100% polyethylene Glycol |
Inj.port temp/Det.port temp | 250℃/ 250℃ |
Carrier gas | He |
Total flow | 3ml/min |
septum purge went flow | 1ml/min |
Column head pressure | 29kPa |
Injection port mode | Splitless |
Injection volumn/Solvent | 1μl/chloroform |
Initial temp./Time | 80℃/5min |
Final temp./Time | 230℃/5min |
Ramp of temp. | 7.5℃/min |
총 PHA 함량(wt%) | Polymer (mol%) | ||
4HB | 3HB | 2HB | |
9.30 | 18.5 | 38.8 | 42.7 |
<110> LG CHEM, LTD.
<120> Copolymer comprising 4-hydroxybutyrate, 3-hydroxybutyrate and
2-hydroxybutyrate as repeating unit and method for preparing the
same
<130> DPP20147706KR
<160> 32
<170> KopatentIn 1.71
<210> 1
<211> 1575
<212> DNA
<213> Clostridium propionicum
<220>
<221> gene
<222> (1)..(1575)
<223> popionyl-CoA transferase
<400> 1
atgagaaagg ttcccattat taccgcagat gaggctgcaa agcttattaa agacggtgat 60
acagttacaa caagtggttt cgttggaaat gcaatccctg aggctcttga tagagctgta 120
gaaaaaagat tcttagaaac aggcgaaccc aaaaacatta cctatgttta ttgtggttct 180
caaggtaaca gagacggaag aggtgctgag cactttgctc atgaaggcct tttaaaacgt 240
tacatcgctg gtcactgggc tacagttcct gctttgggta aaatggctat ggaaaataaa 300
atggaagcat ataatgtatc tcagggtgca ttgtgtcatt tgttccgtga tatagcttct 360
cataagccag gcgtatttac aaaggtaggt atcggtactt tcattgaccc cagaaatggc 420
ggcggtaaag taaatgatat taccaaagaa gatattgttg aattggtaga gattaagggt 480
caggaatatt tattctaccc tgcttttcct attcatgtag ctcttattcg tggtacttac 540
gctgatgaaa gcggaaatat cacatttgag aaagaagttg ctcctctgga aggaacttca 600
gtatgccagg ctgttaaaaa cagtggcggt atcgttgtag ttcaggttga aagagtagta 660
aaagctggta ctcttgaccc tcgtcatgta aaagttccag gaatttatgt tgactatgtt 720
gttgttgctg acccagaaga tcatcagcaa tctttagatt gtgaatatga tcctgcatta 780
tcaggcgagc atagaagacc tgaagttgtt ggagaaccac ttcctttgag tgcaaagaaa 840
gttattggtc gtcgtggtgc cattgaatta gaaaaagatg ttgctgtaaa tttaggtgtt 900
ggtgcgcctg aatatgtagc aagtgttgct gatgaagaag gtatcgttga ttttatgact 960
ttaactgctg aaagtggtgc tattggtggt gttcctgctg gtggcgttcg ctttggtgct 1020
tcttataatg cggatgcatt gatcgatcaa ggttatcaat tcgattacta tgatggcggc 1080
ggcttagacc tttgctattt aggcttagct gaatgcgatg aaaaaggcaa tatcaacgtt 1140
tcaagatttg gccctcgtat cgctggttgt ggtggtttca tcaacattac acagaataca 1200
cctaaggtat tcttctgtgg tactttcaca gcaggtggct taaaggttaa aattgaagat 1260
ggcaaggtta ttattgttca agaaggcaag cagaaaaaat tcttgaaagc tgttgagcag 1320
attacattca atggtgacgt tgcacttgct aataagcaac aagtaactta tattacagaa 1380
agatgcgtat tccttttgaa ggaagatggt ttgcacttat ctgaaattgc acctggtatt 1440
gatttgcaga cacagattct tgacgttatg gattttgcac ctattattga cagagatgca 1500
aacggccaaa tcaaattgat ggacgctgct ttgtttgcag aaggcttaat gggtctgaag 1560
gaaatgaagt cctaa 1575
<210> 2
<211> 524
<212> PRT
<213> Clostridium propionicum
<220>
<221> PEPTIDE
<222> (1)..(524)
<223> propionyl-CoA transferase
<400> 2
Met Arg Lys Val Pro Ile Ile Thr Ala Asp Glu Ala Ala Lys Leu Ile
1 5 10 15
Lys Asp Gly Asp Thr Val Thr Thr Ser Gly Phe Val Gly Asn Ala Ile
20 25 30
Pro Glu Ala Leu Asp Arg Ala Val Glu Lys Arg Phe Leu Glu Thr Gly
35 40 45
Glu Pro Lys Asn Ile Thr Tyr Val Tyr Cys Gly Ser Gln Gly Asn Arg
50 55 60
Asp Gly Arg Gly Ala Glu His Phe Ala His Glu Gly Leu Leu Lys Arg
65 70 75 80
Tyr Ile Ala Gly His Trp Ala Thr Val Pro Ala Leu Gly Lys Met Ala
85 90 95
Met Glu Asn Lys Met Glu Ala Tyr Asn Val Ser Gln Gly Ala Leu Cys
100 105 110
His Leu Phe Arg Asp Ile Ala Ser His Lys Pro Gly Val Phe Thr Lys
115 120 125
Val Gly Ile Gly Thr Phe Ile Asp Pro Arg Asn Gly Gly Gly Lys Val
130 135 140
Asn Asp Ile Thr Lys Glu Asp Ile Val Glu Leu Val Glu Ile Lys Gly
145 150 155 160
Gln Glu Tyr Leu Phe Tyr Pro Ala Phe Pro Ile His Val Ala Leu Ile
165 170 175
Arg Gly Thr Tyr Ala Asp Glu Ser Gly Asn Ile Thr Phe Glu Lys Glu
180 185 190
Val Ala Pro Leu Glu Gly Thr Ser Val Cys Gln Ala Val Lys Asn Ser
195 200 205
Gly Gly Ile Val Val Val Gln Val Glu Arg Val Val Lys Ala Gly Thr
210 215 220
Leu Asp Pro Arg His Val Lys Val Pro Gly Ile Tyr Val Asp Tyr Val
225 230 235 240
Val Val Ala Asp Pro Glu Asp His Gln Gln Ser Leu Asp Cys Glu Tyr
245 250 255
Asp Pro Ala Leu Ser Gly Glu His Arg Arg Pro Glu Val Val Gly Glu
260 265 270
Pro Leu Pro Leu Ser Ala Lys Lys Val Ile Gly Arg Arg Gly Ala Ile
275 280 285
Glu Leu Glu Lys Asp Val Ala Val Asn Leu Gly Val Gly Ala Pro Glu
290 295 300
Tyr Val Ala Ser Val Ala Asp Glu Glu Gly Ile Val Asp Phe Met Thr
305 310 315 320
Leu Thr Ala Glu Ser Gly Ala Ile Gly Gly Val Pro Ala Gly Gly Val
325 330 335
Arg Phe Gly Ala Ser Tyr Asn Ala Asp Ala Leu Ile Asp Gln Gly Tyr
340 345 350
Gln Phe Asp Tyr Tyr Asp Gly Gly Gly Leu Asp Leu Cys Tyr Leu Gly
355 360 365
Leu Ala Glu Cys Asp Glu Lys Gly Asn Ile Asn Val Ser Arg Phe Gly
370 375 380
Pro Arg Ile Ala Gly Cys Gly Gly Phe Ile Asn Ile Thr Gln Asn Thr
385 390 395 400
Pro Lys Val Phe Phe Cys Gly Thr Phe Thr Ala Gly Gly Leu Lys Val
405 410 415
Lys Ile Glu Asp Gly Lys Val Ile Ile Val Gln Glu Gly Lys Gln Lys
420 425 430
Lys Phe Leu Lys Ala Val Glu Gln Ile Thr Phe Asn Gly Asp Val Ala
435 440 445
Leu Ala Asn Lys Gln Gln Val Thr Tyr Ile Thr Glu Arg Cys Val Phe
450 455 460
Leu Leu Lys Glu Asp Gly Leu His Leu Ser Glu Ile Ala Pro Gly Ile
465 470 475 480
Asp Leu Gln Thr Gln Ile Leu Asp Val Met Asp Phe Ala Pro Ile Ile
485 490 495
Asp Arg Asp Ala Asn Gly Gln Ile Lys Leu Met Asp Ala Ala Leu Phe
500 505 510
Ala Glu Gly Leu Met Gly Leu Lys Glu Met Lys Ser
515 520
<210> 3
<211> 1677
<212> DNA
<213> Pseudomonas sp. 6-19
<220>
<221> gene
<222> (1)..(1677)
<223> PHA synthase
<400> 3
atgagtaaca agagtaacga tgagttgaag tatcaagcct ctgaaaacac cttggggctt 60
aatcctgtcg ttgggctgcg tggaaaggat ctactggctt ctgctcgaat ggtgcttagg 120
caggccatca agcaaccggt gcacagcgtc aaacatgtcg cgcactttgg tcttgaactc 180
aagaacgtac tgctgggtaa atccgggctg caaccgacca gcgatgaccg tcgcttcgcc 240
gatccggcct ggagccagaa cccgctctat aaacgttatt tgcaaaccta cctggcgtgg 300
cgcaaggaac tccacgactg gatcgatgaa agtaacctcg cccccaagga tgtggcgcgt 360
gggcacttcg tgatcaacct catgaccgaa gcgatggcgc cgaccaacac cgcggccaac 420
ccggcggcag tcaaacgctt ttttgaaacc ggtggcaaaa gcctgctcga cggcctctcg 480
cacctggcca aggatctggt acacaacggc ggcatgccga gccaggtcaa catgggtgca 540
ttcgaggtcg gcaagagcct gggcgtgacc gaaggcgcgg tggtgtttcg caacgatgtg 600
ctggaactga tccagtacaa gccgaccacc gagcaggtat acgaacgccc gctgctggtg 660
gtgccgccgc agatcaacaa gttctacgtt ttcgacctga gcccggacaa gagcctggcg 720
cggttctgcc tgcgcaacaa cgtgcaaacg ttcatcgtca gctggcgaaa tcccaccaag 780
gaacagcgag agtggggcct gtcgacctac atcgaagccc tcaaggaagc ggttgacgtc 840
gttaccgcga tcaccggcag caaagacgtg aacatgctcg gggcctgctc cggcggcatc 900
acttgcactg cgctgctggg ccattacgcg gcgattggcg aaaacaaggt caacgccctg 960
accttgctgg tgagcgtgct tgataccacc ctcgacagcg acgtcgccct gttcgtcaat 1020
gaacagaccc ttgaagccgc caagcgccac tcgtaccagg ccggcgtact ggaaggccgc 1080
gacatggcga aggtcttcgc ctggatgcgc cccaacgatc tgatctggaa ctactgggtc 1140
aacaattacc tgctaggcaa cgaaccgccg gtgttcgaca tcctgttctg gaacaacgac 1200
accacacggt tgcccgcggc gttccacggc gacctgatcg aactgttcaa aaataaccca 1260
ctgattcgcc cgaatgcact ggaagtgtgc ggcaccccca tcgacctcaa gcaggtgacg 1320
gccgacatct tttccctggc cggcaccaac gaccacatca ccccgtggaa gtcctgctac 1380
aagtcggcgc aactgtttgg cggcaacgtt gaattcgtgc tgtcgagcag cgggcatatc 1440
cagagcatcc tgaacccgcc gggcaatccg aaatcgcgct acatgaccag caccgaagtg 1500
gcggaaaatg ccgatgaatg gcaagcgaat gccaccaagc atacagattc ctggtggctg 1560
cactggcagg cctggcaggc ccaacgctcg ggcgagctga aaaagtcccc gacaaaactg 1620
ggcagcaagg cgtatccggc aggtgaagcg gcgccaggca cgtacgtgca cgaacgg 1677
<210> 4
<211> 559
<212> PRT
<213> Pseudomonas sp. 6-19
<220>
<221> PEPTIDE
<222> (1)..(559)
<223> PHA synthase
<400> 4
Met Ser Asn Lys Ser Asn Asp Glu Leu Lys Tyr Gln Ala Ser Glu Asn
1 5 10 15
Thr Leu Gly Leu Asn Pro Val Val Gly Leu Arg Gly Lys Asp Leu Leu
20 25 30
Ala Ser Ala Arg Met Val Leu Arg Gln Ala Ile Lys Gln Pro Val His
35 40 45
Ser Val Lys His Val Ala His Phe Gly Leu Glu Leu Lys Asn Val Leu
50 55 60
Leu Gly Lys Ser Gly Leu Gln Pro Thr Ser Asp Asp Arg Arg Phe Ala
65 70 75 80
Asp Pro Ala Trp Ser Gln Asn Pro Leu Tyr Lys Arg Tyr Leu Gln Thr
85 90 95
Tyr Leu Ala Trp Arg Lys Glu Leu His Asp Trp Ile Asp Glu Ser Asn
100 105 110
Leu Ala Pro Lys Asp Val Ala Arg Gly His Phe Val Ile Asn Leu Met
115 120 125
Thr Glu Ala Met Ala Pro Thr Asn Thr Ala Ala Asn Pro Ala Ala Val
130 135 140
Lys Arg Phe Phe Glu Thr Gly Gly Lys Ser Leu Leu Asp Gly Leu Ser
145 150 155 160
His Leu Ala Lys Asp Leu Val His Asn Gly Gly Met Pro Ser Gln Val
165 170 175
Asn Met Gly Ala Phe Glu Val Gly Lys Ser Leu Gly Val Thr Glu Gly
180 185 190
Ala Val Val Phe Arg Asn Asp Val Leu Glu Leu Ile Gln Tyr Lys Pro
195 200 205
Thr Thr Glu Gln Val Tyr Glu Arg Pro Leu Leu Val Val Pro Pro Gln
210 215 220
Ile Asn Lys Phe Tyr Val Phe Asp Leu Ser Pro Asp Lys Ser Leu Ala
225 230 235 240
Arg Phe Cys Leu Arg Asn Asn Val Gln Thr Phe Ile Val Ser Trp Arg
245 250 255
Asn Pro Thr Lys Glu Gln Arg Glu Trp Gly Leu Ser Thr Tyr Ile Glu
260 265 270
Ala Leu Lys Glu Ala Val Asp Val Val Thr Ala Ile Thr Gly Ser Lys
275 280 285
Asp Val Asn Met Leu Gly Ala Cys Ser Gly Gly Ile Thr Cys Thr Ala
290 295 300
Leu Leu Gly His Tyr Ala Ala Ile Gly Glu Asn Lys Val Asn Ala Leu
305 310 315 320
Thr Leu Leu Val Ser Val Leu Asp Thr Thr Leu Asp Ser Asp Val Ala
325 330 335
Leu Phe Val Asn Glu Gln Thr Leu Glu Ala Ala Lys Arg His Ser Tyr
340 345 350
Gln Ala Gly Val Leu Glu Gly Arg Asp Met Ala Lys Val Phe Ala Trp
355 360 365
Met Arg Pro Asn Asp Leu Ile Trp Asn Tyr Trp Val Asn Asn Tyr Leu
370 375 380
Leu Gly Asn Glu Pro Pro Val Phe Asp Ile Leu Phe Trp Asn Asn Asp
385 390 395 400
Thr Thr Arg Leu Pro Ala Ala Phe His Gly Asp Leu Ile Glu Leu Phe
405 410 415
Lys Asn Asn Pro Leu Ile Arg Pro Asn Ala Leu Glu Val Cys Gly Thr
420 425 430
Pro Ile Asp Leu Lys Gln Val Thr Ala Asp Ile Phe Ser Leu Ala Gly
435 440 445
Thr Asn Asp His Ile Thr Pro Trp Lys Ser Cys Tyr Lys Ser Ala Gln
450 455 460
Leu Phe Gly Gly Asn Val Glu Phe Val Leu Ser Ser Ser Gly His Ile
465 470 475 480
Gln Ser Ile Leu Asn Pro Pro Gly Asn Pro Lys Ser Arg Tyr Met Thr
485 490 495
Ser Thr Glu Val Ala Glu Asn Ala Asp Glu Trp Gln Ala Asn Ala Thr
500 505 510
Lys His Thr Asp Ser Trp Trp Leu His Trp Gln Ala Trp Gln Ala Gln
515 520 525
Arg Ser Gly Glu Leu Lys Lys Ser Pro Thr Lys Leu Gly Ser Lys Ala
530 535 540
Tyr Pro Ala Gly Glu Ala Ala Pro Gly Thr Tyr Val His Glu Arg
545 550 555
<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 5
gagagacaat caaatcatga gtaacaagag taacg 35
<210> 6
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 6
cactcatgca agcgtcaccg ttcgtgcacg tac 33
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 7
atgcccggag ccggttcgaa 20
<210> 8
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 8
cgttactctt gttactcatg atttgattgt ctctc 35
<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 9
gagagacaat caaatcatga gtaacaagag taacg 35
<210> 10
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 10
cactcatgca agcgtcaccg ttcgtgcacg tac 33
<210> 11
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 11
gtacgtgcac gaacggtgac gcttgcatga gtg 33
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 12
aacgggaggg aacctgcagg 20
<210> 13
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 13
ctgaccttgc tggtgaccgt gcttgatacc acc 33
<210> 14
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 14
ggtggtatca agcacggtca ccagcaaggt cag 33
<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 15
cgagcagcgg gcatatcatg agcatcctga acccgc 36
<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 16
gcgggttcag gatgctcatg atatgcccgc tgctcg 36
<210> 17
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 17
atcaacctca tgaccgatgc gatggcgccg acc 33
<210> 18
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 18
ggtcggcgcc atcgcatcgg tcatgaggtt gat 33
<210> 19
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 19
ggaattcatg agaaaggttc ccattattac cgcagatga 39
<210> 20
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 20
gctctagatt aggacttcat ttccttcaga cccattaagc cttctg 46
<210> 21
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 21
aggcctgcag gcggataaca atttcacaca gg 32
<210> 22
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 22
gcccatatgt ctagattagg acttcatttc c 31
<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 23
cgccggcagg cctgcagg 18
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 24
ggcaggtcag cccatatgtc 20
<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 25
gaattcgtgc tgtcgagccg cgggcatatc 30
<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 26
gatatgcccg cggctcgaca gcacgaattc 30
<210> 27
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 27
gggcatatca agagcatcct gaacccgc 28
<210> 28
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 28
gcgggttcag gatgctcttg atatgccc 28
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 29
atgcccggag ccggttcgaa 20
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 30
gaaattgtta tccgcctgca gg 22
<210> 31
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomer
<400> 31
atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt aattaaccct 60
cactaaaggg cg 72
<210> 32
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomer
<400> 32
atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt aattaaccct 60
cactaaaggg cg 72
Claims (15)
- 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체.
- 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고,
2-하이드록시알카노에트(2-hydroxyalkanoate)를 2-하이드록시알카노일-CoA(2-hydroxyalkanoyl-CoA)로 전환하고, 3-하이드록시알카노에트(3-hydroxyalkanoate)를 3-하이드록시알카노일-CoA(3-hydroxyalkanoyl-CoA)로 전환하고, 4-하이드록시알카노에트(4-hydroxyalkanoate)를 4-하이드록시알카노일-CoA(4-hydroxyalkanoyl-CoA)로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA를 기질로 사용하는 폴리하이드록시알카노에트(polyhydroxyalkanoate: PHA) 합성효소로서, 서열번호 4의 아미노산 서열에서, L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S 변이를 포함하는 아미노산 서열에 대응하는 염기 서열로 이루어진 유전자를 포함하는 미생물을 배양하는 단계를 포함하고,
상기 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소는, 프로피오닐-CoA 트랜스퍼라아제로서,
서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 1과 대응하는 아미노산 서열에서 Val193Ala이 변이된 염기서열을 가지는 유전자에 의해 코딩되는 효소인,
4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체의 제조방법.
- 제2항에 있어서, 상기 미생물은, 상기 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및 2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자를 형질전환하여 수득된 것인 제조방법.
- 제2항에 있어서, 상기 프로피오닐-CoA 트랜스퍼라아제 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum)에서 유래한 것인, 제조방법.
- 삭제
- 제2항에 있어서, 상기 폴리하이드록시알카노에트 합성효소는, 슈도모나스 속 (Pseudomonas sp.) 6-19 유래의 폴리하이드록시알카노에트 합성효소인 제조방법.
- 삭제
- 삭제
- 제2항에 있어서, 상기 배양은 2-하이드록시부티레이트, 3-하이드록시부티레이트 및 4-하이드록시부티레이트를 포함하는 배지에서 수행되는 것인 제조방법.
- 락테이트 디하이드로게나아제(lactate dehydrogenase)의 활성이 약화 내지 결손되고,
2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소를 코딩하는 유전자, 및
2-하이드록시알카노일-CoA, 3-하이드록시알카노일-CoA 및 4-하이드록시알카노일-CoA 를 기질로 사용하는 PHA 합성효소를 코딩하는 유전자로서, 서열번호 4의 아미노산 서열에서, L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S 변이를 포함하는 아미노산 서열에 대응하는 염기 서열로 이루어진 유전자가 도입되고,
상기 2-하이드록시알카노에트를 2-하이드록시알카노일-CoA로 전환하고, 3-하이드록시알카노에트를 3-하이드록시알카노일-CoA로 전환하고, 4-하이드록시알카노에트를 4-하이드록시알카노일-CoA로 전환하는 효소는, 프로피오닐-CoA 트랜스퍼라아제로서,
서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C가 변이되고, 서열번호 1과 대응하는 아미노산 서열에서 Val193Ala이 변이된 염기서열을 가지는 유전자에 의해 코딩되는 효소인,
4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체를 생산하는 미생물.
- 제10항에 있어서, 상기 프로피오닐-CoA 트랜스퍼라아제 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum)에서 유래한 것인, 미생물.
- 삭제
- 제10항에 있어서, 상기 폴리하이드록시알카노에트 합성효소는, 슈도모나스 속 (Pseudomonas sp.) 6-19 유래의 폴리하이드록시알카노에트 합성효소인, 미생물.
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150125106A KR102088503B1 (ko) | 2015-09-03 | 2015-09-03 | 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150125106A KR102088503B1 (ko) | 2015-09-03 | 2015-09-03 | 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170028186A KR20170028186A (ko) | 2017-03-13 |
KR102088503B1 true KR102088503B1 (ko) | 2020-03-12 |
Family
ID=58412133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150125106A KR102088503B1 (ko) | 2015-09-03 | 2015-09-03 | 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102088503B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102539511B1 (ko) | 2019-03-26 | 2023-06-02 | 주식회사 엘지화학 | 블록 공중합체 제조 방법 |
KR102688629B1 (ko) * | 2019-09-11 | 2024-07-24 | 주식회사 엘지화학 | 블록 공중합체 제조 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062999A1 (en) | 2006-11-23 | 2008-05-29 | Lg Chem, Ltd. | Mutants of pha synthase from pseudomonas sp.6-19 and method for preparing lactate homopolymer or copolymer using the same |
WO2008062995A1 (en) * | 2006-11-21 | 2008-05-29 | Lg Chem, Ltd. | Copolymer comprising 4-hydroxybutyrate unit and lactate unit and its manufacturing method |
KR100957773B1 (ko) | 2006-11-23 | 2010-05-12 | 주식회사 엘지화학 | 신규 3하이드록시프로피오네이트락테이트 공중합체 및 그제조방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100926492B1 (ko) * | 2006-11-21 | 2009-11-12 | 주식회사 엘지화학 | 신규3하이드록시부티레이트4하이드록시부티레이트락테이트 삼중합체 및 그 제조방법 |
KR101328567B1 (ko) * | 2011-03-11 | 2013-11-13 | 한국화학연구원 | 2하이드록시부티레이트를 모노머로 함유하고 있는 폴리하이드록시알카노에이트를 생산하는 능력을 가지는 재조합 미생물 및 이를 이용한 2하이드록시부티레이트를 모노머로 함유하고 있는 폴리하이드록시알카노에이트의 제조방법 |
KR101630003B1 (ko) * | 2011-11-28 | 2016-06-13 | 주식회사 엘지화학 | 2-하이드록시알카노에이트 중합체의 제조방법 |
-
2015
- 2015-09-03 KR KR1020150125106A patent/KR102088503B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062995A1 (en) * | 2006-11-21 | 2008-05-29 | Lg Chem, Ltd. | Copolymer comprising 4-hydroxybutyrate unit and lactate unit and its manufacturing method |
WO2008062999A1 (en) | 2006-11-23 | 2008-05-29 | Lg Chem, Ltd. | Mutants of pha synthase from pseudomonas sp.6-19 and method for preparing lactate homopolymer or copolymer using the same |
KR100957773B1 (ko) | 2006-11-23 | 2010-05-12 | 주식회사 엘지화학 | 신규 3하이드록시프로피오네이트락테이트 공중합체 및 그제조방법 |
EP2089522B1 (en) | 2006-11-23 | 2017-11-01 | LG Chem, Ltd. | Mutants of pha synthase from pseudomonas sp.6-19 and method for preparing lactate homopolymer or copolymer using the same |
Non-Patent Citations (7)
Title |
---|
Applied and Environmental Microbiology (2010) 76(15):4919-4925 |
Applied Microbiology and Biotechnology (2012) 93:273-283 |
Biotechnology Journal (2012) 7:199-212 |
Journal of Biotechnology (2013) 165:93-98 |
Journal of the Korean Industiral and Engineering Chemistry (2014) 25(2):134-141 |
Metabolic Engineering (2013) 20:20-28 |
Microbial Biotechnology (2013) 6(6):621-636 |
Also Published As
Publication number | Publication date |
---|---|
KR20170028186A (ko) | 2017-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100957777B1 (ko) | 슈도모나스 속 6-19 유래의 pha 합성효소 변이체 및이를 이용한 락테이트 중합체 또는 공중합체의 제조방법 | |
KR101045572B1 (ko) | Clostridium propionicum 유래의프로피오닐―CoA 트랜스퍼라아제 변이체 및 상기변이체를 이용한 락테이트 중합체 또는 락테이트공중합체의 제조방법 | |
KR102519456B1 (ko) | 미생물을 이용한 폴리(3-하이드록시프로피오네이트-b-락테이트) 블록공중합체 | |
JP5626735B2 (ja) | ポリ乳酸またはポリ乳酸共重合体生成能を有する組換えラルストニアユートロファ及びこれを利用してポリ乳酸またはポリ乳酸共重合体を製造する方法 | |
KR101037354B1 (ko) | 수크로스로부터 폴리락틱산 또는 폴리락틱산 공중합체를제조할 수 있는 재조합 미생물 및 이러한 미생물을이용하여 수크로스로부터 폴리락틱산 또는 락틱산공중합체를 제조하는 방법 | |
KR102088504B1 (ko) | 3-하이드록시프로피오네이트, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 | |
KR20090078925A (ko) | 폴리락테이트 또는 그 공중합체 생성능을 가지는 재조합미생물 및 이를 이용한 폴리락테이트 또는 그 공중합체의제조방법 | |
KR101273599B1 (ko) | 2-하이드록시부티레이트를 모노머로 함유하고 있는 폴리하이드록시알카노에이트의 제조방법 | |
KR20130059308A (ko) | 2-하이드록시알카노에이트 중합체의 제조방법 | |
KR102088503B1 (ko) | 4-하이드록시부티레이트, 3-하이드록시부티레이트 및 2-하이드록시부티레이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 | |
KR102002096B1 (ko) | 4-하이드록시부티레이트, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 삼중합체 및 이의 제조방법 | |
KR102538109B1 (ko) | ldhD 유전자가 도입된 재조합 미생물을 이용한 폴리락트산 단일중합체의 제조 방법 | |
KR102361618B1 (ko) | 2-하이드록시부티레이트 및 3-하이드록시부티레이트의 공중합체 및 이의 제조방법 | |
KR102060641B1 (ko) | 액상의 바이오폴리머, 이의 용도 및 제조방법 | |
KR102091259B1 (ko) | 5'-비번역영역 서열 조절을 통한 폴리하이드록시알카노에트 함량 조절 방법 | |
KR102318930B1 (ko) | 폴리하이드록시알카노에이트를 포함하는 접착제 조성물 | |
KR102088502B1 (ko) | 4-하이드록시부티레이트, 3-하이드록시부티레이트, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 사중합체 및 이의 제조방법 | |
KR102497785B1 (ko) | 2-하이드록시부티레이트 및 락테이트의 공중합체 제조를 위한 재조합 균주 및 방법 | |
KR102623585B1 (ko) | 2-하이드록시부티레이트, 2-하이드록시이소발레레이트 및 락테이트의 삼중합체 제조를 위한 재조합 균주 및 방법 | |
CN110382699B (zh) | 使用2-羟基异己酸-CoA转移酶生成聚羟基链烷酸酯的方法 | |
KR20200145119A (ko) | 락트산 함량이 증가된 락테이트, 2-하이드록시부티레이트 및 4-하이드록시부티레이트 삼중합체의 제조 방법 | |
KR102009420B1 (ko) | 글루코즈를 이용한 락테이트-4-하이드록시부티레이트 중합체의 제조 방법 | |
KR101293904B1 (ko) | 자일로스로부터 폴리락틱산 또는 폴리락틱산 공중합체를 제조할 수 있는 재조합 미생물 및 이러한 미생물을 이용하여 자일로스로부터 폴리락틱산 또는 락틱산 공중합체를 제조하는 방법 | |
KR101260187B1 (ko) | 글리세롤로부터 폴리락틱산 또는 폴리락틱산 공중합체를 제조할 수 있는 재조합 미생물 및 이러한 미생물을 이용하여 글리세롤로부터 폴리락틱산 또는 락틱산 공중합체를 제조하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right |